人教A版高中数学选修3-1-4.4 解析几何的进一步发展 -课件(共13张PPT)
人教A版高中数学课标教材
实习作业中的问题
小结中的问题
在小结中,从知识的联系、数学思想方法的高度提 出问题,引导学生从数学整体结构中把握相应的知 识
3. 强调基础性
• 坚持“双基”不动摇,为学生终身发展 打好数学基础
——对新增内容的定位:教师易上手,学 生好接受。
——对传统内容的定位:在继承传统教材 优点的基础上,“削枝强干”,加强教 材的基础性和可接受性。
算法的思想渗透在整个高中数学课程的学习 中。
案例:无理指数幂
——新增内容、夼实基础 通过数表和图体现 “用有理数逼近无 理数”的思想(逼近的思想),了解实数 指数幂的意义。
案例:“三角函数”的处理
• 突出三角函数作为描述周期变化的数学模 型这一本质
• 以“实际问题——定义——诱导公式、图 象与性质——实际应用”为发展线索
科目;第3、8、10三个专题不再列入备 选专题,只作为课外读物出版。
模块与专题的逻辑顺序
必修课程是选修课程中系列1、系列2 课程的基础。必修课程中,数学1是数学 2、数学3、数学4和数学5的基础。
选修课程中系列3、4(专题)基本上不 依赖其他系列的课程,可以与其他系列 课程同时开设,这些专题的开设可以不 考虑先后顺序。
把握课标,理解教材, 提高教学效率
——人教A版高中数学课标教材
总体介绍
人民教育出版社中数室 李龙才
一、教材总体结构 二、基本观点与总体目标 三、教材编写指导思想 四、教科书改革的重点
五、教材实验的基本成绩和问题
六、初高中衔接问题
七、对实验工作的思考与建议
八、配套资源简介
选修专题
选修模块
选修 系列
• 重解题技能技巧轻普适性思考方法的概括 ,方法论层次的内容渗透不够,机械模仿 多独立思考少,数学思维层次不高
高中数学教材人教A版目录(详细版)要点
第一章 集合与函数概念数学①必修第二章 基本初等函数(I)第三章 函数的应用第一章 空间几何体第二章 点、直线、平面之间的位置关系数学②必修第三章 直线与方程第四章 圆与方程第二章 统计第三章 概率第一章 三角函数第二章 平面向量第四章 圆与方程第一章 算法初步数学③必修数学④必修第二章 数列第三章 不等式第一章 常用逻辑用语第二章 圆锥曲线与方程第三章 导数及其应用第一章 统计案例第三章 三角恒等变换第一章 解三角形数学⑤必修数学选修1-1第二章 推理与证明数学选修1-2第三章 数系的扩充与复数的引入第四章 框图第一章 常用逻辑用语数学选修2-1第二章 圆锥曲线与方程第三章 空间向量与立体几何第一章 导数及其应用数学选修2-2数学选修2-2第二章 推理与证明第三章 数系的扩充与复数的引入第一章 计数原理数学选修2-3第二章 随机变量及其分布第三章 统计案例第一讲 早期的算术与几何第二讲 古希腊数学第三讲 中国古代数学瑰宝第七讲 千古谜题第八讲 对无穷的深入思考第九讲 中国现代数学的开拓与发展第三讲 中国古代数学瑰宝第四讲 平面解析几何的产生第五讲 微积分的诞生第六讲 近代数学两巨星数学选修3-1数学史选讲第一讲 从欧式几何看球面第二讲 球面上的距离和角第三讲 球面上的基本图形第四讲 球面三角形数学选修3-3球面上的几何第五讲 球面三角形的全等第六讲 球面多边形与欧拉公式第七讲 球面三角形的边角关系第八讲 欧式几何与非欧几何第一讲 平面图形的对称群数学选修3-4对称与群第二讲 代数学中的对称与抽象群的概念第三讲 对称与群的故事第一讲 相似三角形的判定及有关性质数学选修4-1几何证明选讲第二讲 直线与圆的位置关系第三讲 圆锥曲线性质的探讨第一讲 线性变换与二阶矩阵数学选修4-2矩阵与变换第二讲 变换的复合与二阶矩阵的乘法第三讲 逆变换与逆矩阵第四讲 变换的不变量与矩阵的特征向量第一讲 坐标系数学选修4-4坐标系与参数方程第四讲 数论在密码中的应用第一讲 优选法第二讲 证明不等式的基本方法第三讲 柯西不等式与排序不等式第四讲 数学归纳法证明不等式第一讲 整数的整除第二讲 同余与同余方程第三讲 一次不定方程第二讲 参数方程第一讲 不等式与绝对值不等式数学选修4-5不等式选讲数学选修4-6初等数论初步第二讲 决策树方法第三讲 风险型决策的敏感性分析第二讲 试验设计初步第一讲 风险与决策的基本概念第四讲 马尔可夫型决策简介数学选修4-7优选法与实验设计初步数学选修4-9风险与决策1.1 集合1.2 函数及其表示1.3 函数的基本性质2.1 指数函数2.2 对数函数2.3 幂函数3.1 函数与方程3.2 函数模型及其应用1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式4.1 圆的方程4.2 直线、圆的位置关系4.2 直线、圆的位置关系4.3 空间直角坐标系1.1 算法与程序框图1.2 基本算法语句1.3 算法案例2.1 随机抽样2.2 用样本估计总体2.3 变量间的相关关系3.1 随机事件的概率3.2 古典概型3.3 几何概型1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图像和性质1.5 函数y=Asin(ωx+ψ)的图像1.6 三角函数模型的简单应用2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例2.5 平面向量应用举例3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换1.1 正弦定理和余弦定理1.2 应用举例1.3 实习作业2.1 数列的概念与简单表示法2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列的前n项和3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次(组)与简单的线性规划问题3.4 基本不等式√ab≤﹙a+b﹚/21.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑关联词1.4 全称量词与存在量词2.1 椭圆2.2 双曲线2.3 抛物线3.1 变化率与导数3.2 导数的计算3.3 导数在研究函数中的应用3.4 生活中的优化问题举例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用2.1 合情推理与演绎推理2.2 直接证明与间接证明3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算4.1 流程图4.2 结构图1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑关联词1.4 全称量词与存在量词2.1 曲线与方程2.2 椭圆2.3 双曲线2.4 抛物线3.1 空间向量及其运算3.2 立体几何中的向量方法1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算1.1 分类加法计数原理与分布乘法计数原理1.2 排列与组合1.3 二项式定理2.1 离散型随机变量及其分布列2.2 二项分布及其应用2.3 离散型随机变量的均值与方差2.4 正态分布3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用一 古埃及的数学二 两河流域的数学三 丰富多彩的记数制度一 希腊数学的先行者二 毕达哥拉斯学派三 欧几里得与《原本》四 数学之神——阿基米德一 《周髀算经》与赵爽弦图二 《九章算术》三 大衍求一术四 中国古代数学家一 坐标思想的早期萌芽二 笛卡尔坐标系三 费马的解析几何思想四 解析几何的进一步发展一 微积分产生的历史背景二 科学巨人牛顿的工作三 莱布尼茨的“微积分”一 分析的化身——欧拉二 数学王子——高斯一 三次、四次方程求根公式的发现二 高次方程可解性问题的解决三 伽罗瓦与群论四 古希腊三大几何问题的解决一 古代的无穷观念二 无穷集合论的创立三 集合论的进一步发展与完善一 中国现代数学发展概观二 人民的数学家——华罗庚三 当代几何大师——陈省身一 平面与球面的位置关系一 平面与球面的位置关系二 直线与球面的位置关系和球幂定理三 球面的对称性一 球面上的距离二 球面上的角一 极与赤道二 球面二角形三 球面三角形一 球面三角形三边之间的关系二 球面“等腰”三角形三 球面三角形的周长四 球面三角形的内角和一 球面多边形及其内角和公式二 简单多面体的欧拉公式三 用球面多边形的内角和公式证明欧拉公式一 球面上的正弦定理和余弦定理二 用向量方法证明球面上的余弦定理三 从球面上的正弦定理看球面与平面四 球面上余弦定理的应用——求地球上两城市间的距离一 平面几何与球面几何的比较二 欧式平行公理与非欧几何模型——庞加莱模型三 欧式几何与非欧几何的意义一 平面刚体运动二 对称变换三 平面图形的对称群一 n元对称群Sn二 多项式的对称变换三 抽象群的概念一 带饰和面饰二 化学分子的对称群三 晶体的分类四 伽罗瓦理论一 平行线等分线段定理二 平行线分线段成比例定理三 相似三角形的判定及性质四 直角三角形的射影定理一 圆周角定理二 圆内接四边形的性质与判定定理三 圆的切线的性质及判定定理四 弦切角的性质五 与圆有关的比例线段一 平行射影二 平面与圆柱面的截线三 平面与圆锥面的截线一 线性变换与二阶矩阵二 二阶矩阵与平面向量的乘法三 线性变换的基本性质一 复合变换与二阶矩阵的乘法二 矩阵乘法的性质一 逆变换与逆矩阵二 二阶行列式与逆矩阵三 逆矩阵与二元一次方程组一 变换的不变量——矩阵的特征向量二 特征向量的应用一 平面直角坐标系二 极坐标系三 简单曲线的极坐标方程四 柱坐标系与球坐标系简介一 曲线的参数方程一 曲线的参数方程二 圆锥曲线的参数方程三 直线的参数方程四 渐开线与摆线一 不等式二 绝对值不等式一 比较法二 综合法与分析法三 反证法与放缩法一 二维形式的柯西不等式二 一般形式的柯西不等式三 排序不等式一 数学归纳法二 用数学归纳法证明不等式一 整除二 最大公因数与最小公倍数三 算术基本定理一 同余二 剩余类及其运算三 费马小定理和欧拉定理四 一次同余方程五 拉格朗日插值法和孙子定理六 弃九验算法一 二元一次不定方程二 二元一次不定方程的特解三 多元一次不定方程一 信息的加密与去密二 大数分解和公开密钥一 什么叫优选法二 单峰函数三 黄金分割法——0.618法四 分数法五 其他几种常用的优选法五 其他几种常用的优选法六 多因素方法一 正交试验设计法二 正交试验的应用一 风险与决策的的关系二 风险与决策的基本概念一 马尔可夫链简介二 马尔可夫型决策简介三 长期准则下的马尔可夫型决策理论1.1.1 集合的含义与表示1.1.2 集合间的基本关系1.1.3 集合的基本运算1.2.1 函数的概念1.2.2 函数的表示法1.3.1 单调性与最大(小)值1.3.2 奇偶性2.1.1 指数与指数幂的运算2.1.2 指数函数及其性质2.2.1 对数与对数运算2.2.2 对数函数及其性质3.1.1 方程的根与函数的零点3.1.2 用二分法求方程的近似解3.2.1 几类不同增长的函数模型3.2.2 函数模型的应用实例1.1.1 柱、锥、台、球的结构特征1.1.2 简单组合体的结构特征1.2.1 空间几何体的三视图1.2.2 空间几何体的直观图1.2.3 平行投影与中心投影1.3.1 柱体、锥体、台体的表面积与体积1.3.2 球的体积和表面积2.1.1 平面2.1.2 空间中直线与直线之间的位置关系2.1.3 空间中直线与平面之间的位置关系2.1.4 平面与平面之间的位置关系2.2.1 直线与平面平行的判定2.2.2 平面与平面平行的判定2.2.3 直线与平面平行的性质2.2.4 平面与平面平行的性质2.3.1 直线与平面垂直的判定2.3.2 平面与平面垂直的判定2.3.3 直线与平面垂直的性质2.3.4 平面与平面垂直的性质3.1.1 倾斜角与斜率3.1.2 两条直线平行与垂直的判定3.2.1 直线的点斜式方程3.2.2 直线的两点式方程3.2.3 直线的一般式方程3.3.1 两条直线的交点坐标3.3.2 两点间的距离3.3.3 点到直线的距离3.3.4 两条平行直线间的距离4.1.1 圆的标准方程4.1.2 圆的一般方程4.2.1 直线与圆的位置关系4.2.2 圆与圆的位置关系4.2.3 直线与圆的方程的应用4.3.1 空间直角坐标系4.3.2 空间两点间的距离公式1.1.1 算法的概念1.1.2 程序框图1.2.1 输入语句、输出语句和赋值语句1.2.2 条件语句1.2.3 循环语句2.1.1 简单随机抽样2.1.2 系统抽样2.1.3 分层抽样2.2.1 用样本的频率分布估计总体分布2.2.2 用样本的数字特征估计总体的数字特征2.3.1 变量之间的相关关系2.3.2 两个变量的线性相关3.1.1 随机事件的概率3.1.2 概率的意义3.1.3 概率的基本性质3.2.1 古典概型3.2.2 整数值随机数(random numbers)的产生3.3.1 几何概型3.3.2 均匀随机数的产生1.1.1 任意角1.1.2 弧度制1.2.1 任意角的三角函数1.2.2 同角三角函数的基本关系1.4.1 正弦函数、余弦函数的图像1.4.2 正弦函数、余弦函数的性质1.4.3 正切函数的性质和图像2.1.1 向量的物理背景与概念2.1.2 向量的几何表示2.1.3 相等向量与共线向量2.2.1 向量加法运算及其几何意义2.2.2 向量减法运算及其几何意义2.2.3 向量数乘运算及其几何意义2.3.1 平面向量基本定理2.3.2 平面向量的正交分解及坐标表示2.3.3 平面向量的坐标运算2.3.4 平面向量共线的坐标表示2.4.1 平面向量数量积的物理背景及其含义2.4.2 平面向量数量积的坐标表示、模、夹角2.5.1 平面几何中的向量方法2.5.2 向量在物理中的应用举例3.1.1 两角差的余弦公式3.1.2 两角和与差的正弦、余弦、正切公式3.1.3 二倍角的正弦、余弦、正切公式1.1.1 正弦定理1.1.2 余弦定理3.3.1 二元一次不等式(组)与平面区域3.3.2 简单的线性规划问题1.1.1 命题1.1.2 四种命题1.1.3 四种命题间的相互关系1.2.1 充分条件与必要条件1.2.2 充要条件1.3.1 且(and)1.3.2 或(or)1.3.3 非(not)1.4.1 全称量词1.4.2 存在量词1.4.3 含有一个量词的命题的否定2.1.1 椭圆及其标准方程2.1.2 椭圆的简单几何性质2.2.1 双曲线及其标准方程2.2.2 双曲线的简单几何性质2.3.1 抛物线及其标准方程2.3.2 抛物线的简单几何性质3.1.1 变化率问题3.1.2 导数的概念3.1.3 导数的几何意义3.2.1 几个常用函数的导数3.2.2 基本初等函数的导数公式及导数的运算法则3.3.1 函数的单调性与导数3.3.2 函数的极值与导数3.3.3 函数的最大(小)值与导数2.1.1 合情推理2.1.2 演绎推理2.2.1 综合法和分析法2.2.2 反证法3.1.1 数系的扩充和复数的概念3.1.2 复数的几何意义3.2.1 复数代数形式的加减运算及其几何意义3.2.2 复数代数形式的乘除运算1.1.1 命题1.1.2 四种命题1.1.3 四种命题间的相互关系1.2.1 充分条件与必要条件1.2.2 充要条件1.3.1 且(and)1.3.2 或(or)1.3.3 非(not)1.4.1 全称量词1.4.2 存在量词1.4.3 含有一个量词的命题的否定2.1.1 曲线与方程2.1.2 求曲线的方程2.2.1 椭圆及其标准方程2.2.2 椭圆的简单几何性质2.3.1 双曲线及其标准方程2.3.2 双曲线的简单几何性质2.4.1 抛物线及其标准方程2.4.2 抛物线的简单几何性质3.1.1 空间向量及其加减运算3.1.2 空间向量的数乘运算3.1.3 空间向量的数量积运算3.1.4 空间向量的正交分解及其坐标表示3.1.5 空间向量运算的坐标表示1.1.1 变化率问题1.1.2 导数的概念1.1.3 导数的几何意义1.2.1 几个常用函数的导数1.2.2 基本初等函数的导数公式及导数的运算法则1.3.1 函数的单调性与导数1.3.2 函数的极值与导数1.3.3 函数的最大(小)值与导数1.5.1 曲边梯形的面积1.5.2 汽车行驶的路程1.5.3 定积分的概念1.7.1 定积分在几何中的应用1.7.2 定积分在物理中的应用2.1.1 合情推理2.1.2 演绎推理2.2.1 综合法和分析法2.2.2 反证法3.3.1 数系的扩充和复数的概念3.3.2 复数的几何意义3.2.1 复数代数形式的加减运算及其几何意义3.2.2 复数代数形式的乘除运算1.2.1 排列1.2.2 组合1.3.1 二项式定理1.3.2 “杨辉三角”与二项式系数的性质2.1.1 离散型随机变量2.1.2 离散型随机变量的分布列2.2.1 条件概率2.2.2 事件的相互独立性2.2.3 独立重复试验与二项分布2.3.1 离散型随机变量的均值2.3.2 离散型随机变量的方差1. 象形文字中的数字记法2. 纸草书上的数学3. 几何学的诞生1. 楔形文字中的记数法2. 泥板上的代数3. 泥板上的几何1. 中国古代的算筹记数2. 印度——阿拉伯数码3. 其他记数制度1. 毕达哥拉斯2. 勾股定理与勾股形数3. 多边形数4. 不可公度1. 几何大师欧几里得2. 《原本》1. 《九章算术》的重要成就举例2. 《九章算术》的深远影响1. 刘徽与割圆术2. 祖冲之与祖暅1. 牛顿与微积分2. 牛顿的“流数术”1. 数学英雄2. 欧拉的丰功伟绩1. 高斯的故事2. 高斯的学术成就1. 三次、四次方程问题2. 世界上最早的数学竞赛3. 张冠李戴1. 初步的尝试2. 中学生数学家取得的成就1. 伽罗瓦的传奇人生2. 伽罗瓦的群论1. 三大几何问题的由来2. 解决三大几何问题的早起努力3. 三大几何问题的最后解决1. 建立集合理论的最早尝试2. 康托尔的集合论思想3. 不朽的康托尔1. 罗素悖论2. 消除悖论的初步成功1. 奠基阶段2. 发展时期1. 小荷才露尖尖角2. 出类拔萃赴英伦3. 艰苦岁月创辉煌4. 报效祖国攀高峰5. 独具慧眼识英才6. 老骥伏枥志千里1. 少年时代2. 清华岁月3. 留学欧洲4. 抗日烽火5. 定居美国6. 崇高荣誉7. 落叶归根1. 平面与球面相交2. 平面与球面相离3. 平面与球面相切1. 球面三角形2. 三面角3. 对顶三角形4. 球极三角形1. “边边边”(S.S.S)判定定理2. “边角边”(S.A.S)判定定理3. “角边角”(A.S.A)判定定理4. “角角角”(A.A.A)判定定理1. 向量的向量积2. 球面上余弦定理的向量证法1. 平面刚体运动的定义2. 平面刚体运动的性质1. 对称变换的定义2. 正多边形的对称变换3. 对称变换的合成4. 对称变换的性质5. 对称变换的逆变换1. 群的一般概念2. 直积1. 相似三角形的判定2. 相似三角形的性质(一)几类特殊线性变换及其二阶矩阵 1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等(一)线性变换的基本性质(二)一些重要线性变换对单位正方形区域的作用1.恒等变换2.旋转变换3.切变变换4.反射变换5.投影变换1. 逆变换与逆矩阵2. 逆矩阵的性质1. 二元一次方程组的矩阵形式2. 逆矩阵与二元一次方程组1. 特征值与特征向量2. 特征值与特征向量的计算1. A^nα的简单表示2. 特征向量在实际问题中的应用1. 平面直角坐标系2. 平面直角坐标系中的伸缩变换1. 极坐标系的概念2. 极坐标和直角坐标的互化1. 圆的极坐标方程2. 直线的极坐标方程1. 柱坐标系2. 球坐标系1. 参数方程的概念2. 圆的的参数方程3. 参数方程和普通方程的互化1. 椭圆的参数方程2. 双曲线的参数方程3. 抛物线的参数方程1. 渐开线2. 摆线1. 不等式的基本性质2. 基本不等式3. 三个正数的算术-几何平均不等式1. 绝对值三角不等式2. 绝对值不等式的解法1. 整除的概念和性质2. 带余除法3. 素数及其判别法1. 最大公因数2. 最小公倍数1. 同余的概念2. 同余的性质1. 一次同余方程2. 大衍求一术1. 黄金分割常数2. 黄金分割法——0.618法1. 分数法2. 分数法的最优性1. 对分法2 盲人爬山法3. 分批试验法4. 多峰的情形1. 纵横对折法和从好点出发法2. 平行线法3. 双因素盲人爬山法1. 正交表2. 正交试验设计3. 试验结果的分析4. 正交表的特性1. 风险(平均损失)2. 平均收益3. 损益矩阵4. 风险型决策1. 马尔可夫性与马尔可夫链2. 转移概率与转移概率矩阵1. 马尔可夫链的平稳分布2. 平稳分布与马尔可夫型决策的长期准则3. 平稳准则的应用案例。
人教a版高中数学选修3-1-4.3 费马的解析几何思想-课件(共18张ppt)
他考虑任意曲线和它上 面的一般点J(如图),J的位 置用A,E两个量定出:A是从 点O沿底线到点Z的距离,E是 从Z到J的距离。
对于不同位置的E,其末 端J,J’,J’’……就描绘出一条 “线”。
费尔马是一个业余从事数学研究的学者,对数论、 解析几何、概率论三个方面都有重要贡献。他性情 谦和,好静成癖,对自己所写的“书”无意发表。 但从他的通信中知道,他早在笛卡尔发表《几何学》 以前,就已写了关于解析几何的小文,就已经有了 解析几何的思想。只是直到1679年,费尔马死后, 他的思想和著述才从给友人的通信中公开发表。
谢谢
意大利科学家伽利略发现投掷物体是沿着抛物 线运动的。
这些发现都涉及到圆锥曲线,要研究这些比较 复杂的曲线,原先的一套方法显然已经不适应了, 这就导致了解析几何的出现。
费马和笛卡儿创立了解析几何
费马和笛卡儿是17世纪伟大的数学家,他们所 创立的学科叫坐标几何或解析几何。
其中心思想是把代数方程与曲线、曲面联系起 来,这个创造是数学中最丰富的、最有效的设想之 一。
J
E A OZ
J’’ J’
Z’ Z’’
在《平面和立体的轨迹引论》(1679年出版) 中,他给出方程(用我们现在的写法): dx=by 和 d(a-x)=by 代表一条直线; p ²-x ²=y ²代表一个圆; a ²-x ²=ky ²代表一个椭圆; a ²+x ²=ky ²和xy=a各代表一条双曲线; x ²=ay代表一条抛物线。
为了实现上述的设想,笛卡尔茨从天文和地理 的经纬制度出发,指出平面上的点和实数对(x,y) 的对应关系。x,y的不同数值可以确定平面上许多 不同的点,这样就可以用代数的方法研究曲线的性 质。这就是解析几何的基本思想。
人教a版高中数学教材目录全)
必修 1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用3.1 函数与方程3.2 函数模型及其应用必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ)1.6 三角函数模型的简单应用第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换必修5第一章解三角形1.1正弦定理和余弦定理1.2应用举例1.3实习作业第二章数列2.1数列的概念与简单表示法2.2等差数列2.3等差数列的前n项和2.4等比数列2.5等比数列的前n项和第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域3.3.2简单的线性规划问题3.4基本不等式选修1-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1椭圆2.2双曲线2.3抛物线第三章导数及其应用3.1变化率与导数3.2导数的计算3.3导数在研究函数中的应用3.4生活中的优化问题举例选修1-2第一章统计案例1.1回归分析的基本思想及其初步应用1.2独立性检验的基本思想及其初步应用第二章推理与证明2.1合情推理与演绎证明2.2直接证明与间接证明第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算第四章框图4.1流程图4.2结构图选修2-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线第三章空间向量与立体几何3.1空间向量及其运算3.2立体几何中的向量方法选修2-2第一章导数及其应用1.1变化率与导数1.2导数的计算1.3导数在研究函数中的应用1.4生活中的优化问题举例1.5定积分的概念1.6微积分基本定理1.7定积分的简单应用第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算选修2-3第一章计数原理1.1分类加法计数原理与分步乘法计数原理1.2排列与组合1.3二项式定理第二章随机变量及其分布2.1离散型随机变量及其分布列2.2二项分布及其应用2.3离散型随机变量的均值与方差2.4正态分布第三章统计案例3.1回归分析的基本思想及其初步应用3.2独立性检验的基本思想及其初步应用选修3-1第一讲早期的算术与几何第二讲古希腊数学第三讲中国古代数学瑰宝第四讲平面解析几何的产生第五讲微积分的诞生第六讲近代数学两巨星第七讲千古谜题第八讲对无穷的深入思考第九讲中国现代数学的开拓与发展选修3-2选修3-3第一讲从欧氏几何看球面第二讲球面上的距离和角第三讲球面上的基本图形第四讲球面三角形第五讲球面三角形的全等第六讲球面多边形与欧拉公式第七讲球面三角形的边角关系第八讲欧氏几何与非欧几何选修3-4第一讲平面图形的对称群第二讲代数学中的对称与抽象群的概念第三讲对称与群的故事选修4-1第一讲相似三角形的判定及有关性质第二讲直线与圆的位置关系第三讲圆锥曲线性质的探讨选修4-2第一讲线性变换与二阶矩阵第二讲变换的复合与二阶矩阵的乘法第三讲逆变换与逆矩阵第四讲变换的不变量与矩阵的特征向量选修4-3选修4-4第一讲坐标系第二讲参数方程选修4-5第一讲不等式和绝对值不等式第二讲证明不等式的基本方法第三讲柯西不等式与排序不等式第四讲数学归纳法证明不等式选修4-6第一讲整数的整除第二讲同余与同余方程第三讲一次不定方程第四讲数伦在密码中的应用选修4-7第一讲优选法第二讲试验设计初步选修4-8选修4-9第一讲风险与决策的基本概念第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介高中人教版(B)教材目录介绍必修一第一章集合1.1 集合与集合的表示方法1.2 集合之间的关系与运算第二章函数2.1 函数2.2 一次函数和二次函数2.3 函数的应用(Ⅰ)2.4 函数与方程第三章基本初等函数(Ⅰ)3.1 指数与指数函数3.2 对数与对数函数3.3 幂函数3.4 函数的应用(Ⅱ)必修二第一章立体几何初步1.1 空间几何体1.2 点、线、面之间的位置关系第二章平面解析几何初步2.1 平面真角坐标系中的基本公式2.2 直线方程2.3 圆的方程2.4 空间直角坐标系必修三第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 中国古代数学中的算法案例第二章统计2.1 随机抽样2.2 用样本估计总体2.3 变量的相关性第三章概率3.1 随机现象3.2 古典概型3.3 随机数的含义与应用3.4 概率的应用必修四第一章基本初等函(Ⅱ)1.1 任意角的概念与弧度制1.2 任意角的三角函数1.3 三角函数的图象与性质第二章平面向量2.1 向量的线性运算2.2 向量的分解与向量的坐标运算2.3 平面向量的数量积2.4 向量的应用第三章三角恒等变换3.1 和角公式3.2 倍角公式和半角公式3.3 三角函数的积化和差与和差化积必修五第一章解直角三角形1.1 正弦定理和余弦定理1.2 应用举例第二章数列2.1 数列2.2 等差数列2.3 等比数列第三章不等式3.1 不等关系与不等式3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单线性规划问题选修1-1第一章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线第三章导数及其应用3.1 导数3.2 导数的运算3.3 导数的应用选修1-2第一章统计案例第二章推理与证明第三章数系的扩充与复数的引入第四章框图选修4-5第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法 1.4 绝对值的三角不等式 1.5 不等式证明的基本方法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.2 排序不等式2.3 平均值不等式(选学) 2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3.2 用数学归纳法证明不等式,贝努利不等式。
高中数学人教a版课本学习顺序
高中数学人教a版课本学习顺序必考:14523阶(具体顺序因地而异)选修:常用逻辑术语、圆锥曲线与方程、导数及其应用、数系的展开与复数、空间向量与立体几何的计数原理、随机变量及其分布表、统计案例。
今年开始好像换课本了,部编本然鹅,实际上课本有:想想都爽必修课程由5个模块组成:必修1:集合、函数概念与基本初等函数(指、对、幂函数) 2.必修课:初步立体几何和初步平面解析几何。
必修3:算法初步、统计、概率。
必修:基本初等函数(三角函数),平面向量,三角恒等式变换。
必修5:解三角形、数列、不等式。
选修课程有4个系列:系列1:由2个模块组成。
选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。
选修1—2:统计案例、推理与证明、数系的扩充与复数、框图系列2:由3个模块组成。
选修2—1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。
选修2—2:导数及其应用,推理与证明、数系的扩充与复数选修2—3:计数原理、随机变量及其分布列,统计案例。
系列3:由6个专题组成。
选修3—1:数学史选讲。
选修3—2:信息安全与密码。
选修3—3:球面上的几何。
选修3—4:对称与群。
选修3—5:欧拉公式与闭曲面分类。
选修3—6:三等分角与数域扩充。
系列4:由10个专题组成。
选修4—1:几何证明选讲。
选修4—2:矩阵与变换。
选修4—3:数列与差分。
选修4—4:坐标系与参数方程。
选修4—5:不等式选讲。
选修4—6:初等数论初步。
选修4—7:优选法与试验设计初步。
选修4—8:统筹法与图论初步。
选修4—9:风险与决策。
选修4—10:开关电路与布尔代数这一堆玩意长这样4-10的课本图片是真的难找新课本长这模样很可惜我们是用旧课本的最后一届重难点及考点:重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数难点:函数、圆锥曲线高考相关考点:⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布⑿导数:导数的概念、求导、导数的应用⒀复数:复数的概念与运算。
人教A版选修3-1数学史选讲第六讲近代数学两巨星第二课数学王子——高斯课件 (共28张PPT)
贵人资助——如虎添翼
u 15岁 进入布伦瑞克工业大学,开始对高等数学作研究。 独立发现: 二项式定理的一般形式;数论上的二次互逆定理、 素数定理、算术-几何平均数
18岁时,高斯转入哥廷根大学学习 发现了质数分布定理;最小二乘法;高斯钟形曲线 (正态分布曲线),并在概率计算中大量使用
有关高斯的故事,哪一 个故事让你感受最深? 你从中得到什么启发?
议一议
高斯对数学思考和应用的方法, 对你今后数学学习有何启发?
不知道自己缺点的人,一辈子都不会想要改善。成功的花,人们只惊慕她现时的明艳!然而当初她的芽儿,浸透了奋斗的泪泉,洒遍了牺牲的血雨。成功的条件在于勇气和 信乃是由健全的思想和健康的体魄而来。成功了自己笑一辈子,不成功被人笑一辈子。成功只有一个理由,失败却有一千种理由。从胜利学得少,从失败学得多。你生而有 前进,形如蝼蚁。你一天的爱心可能带来别人一生的感谢。逆风的方向,更适合飞翔。只有承担起旅途风雨,才能最终守得住彩虹满天只有创造,才是真正的享受,只有拚 活。知识玩转财富。志不立,天下无可成之事。竹笋虽然柔嫩,但它不怕重压,敢于奋斗、敢于冒尖。阻止你前行的,不是人生道路上的一百块石头,而是你鞋子里的那一 爱,不必呼天抢地,只是相顾无言。最值得欣赏的风景,是自己奋斗的足迹。爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。生活不可能像你想 不会像你想的那么糟。时间告诉你什么叫衰老,回忆告诉你什么叫幼稚。不要总在过去的回忆里缠绵,昨天的太阳,晒不干今天的衣裳。实现梦想往往是一个艰苦的坚持的 到位,立竿见影。那些成就卓越的人,几乎都在追求梦想的过程中表现出一种顽强的毅力。世界上唯一不变的字就是“变”字。事实胜于雄辩,百闻不如一见。思路决定出 细节决定成败,性格决定命运虽然你的思维相对于宇宙智慧来说只不过是汪洋中的一滴水,但这滴水却凝聚着海洋的全部财富;是质量上的一而非数量上的一;你的思维拥 所有过不去的都会过去,要对时间有耐心。人总会遇到挫折,总会有低潮,会有不被人理解的时候。如果你希望成功,以恒心为良友,以经验为参谋,以小心为兄弟,以希 个人不知道他要驶向哪个码头,那么任何风都不会是顺风。沙漠里的脚印很快就消逝了。一支支奋进歌却在跋涉者的心中长久激荡。上天完全是为了坚强你的意志,才在道 碍。拥有资源不能成功,善用资源才能成功。小成功靠自己,大成功靠团队。炫耀什么,缺少什么;掩饰什么,自卑什么。所谓正常人,只是自我防御比较好的人。真正的 防而又不受害。学习必须如蜜蜂一样,采过许多花,这才能酿出蜜来态度决定高度。外在压力增加时,就应增强内在的动力。我不是富二代,不能拼爹,但为了成功,我可 站在万人中央成为别人的光。人一辈子不长不短,走着走着,就进了坟墓,你是要轰轰烈烈地风光下葬,还是一把骨灰撒向河流山川。严于自律:不能成为自己本身之主人 他周围任何事物的主人。自律是完全拥有自己的内心并将其导向他所希望的目标的惟一正确的途径。生活对于智者永远是一首昂扬的歌,它的主旋律永远是奋斗。眼泪的存 伤不是一场幻觉。要不断提高自身的能力,才能益己及他。有能力办实事才不会毕竟空谈何益。故事的结束总是满载而归,就是金榜题名。一个人失败的最大原因,是对自 的信心,甚至以为自己必将失败无疑。一个人炫耀什么,说明内心缺少什么。一个人只有在全力以赴的时候才能发挥最大的潜能。我们的能力是有限的,有很多东西飘然于 之外。过去再优美,我们不能住进去;现在再艰险,我们也要走过去!即使行动导致错误,却也带来了学习与成长;不行动则是停滞与萎缩。你的所有不甘和怨气来源于你 你可以平凡,但不能平庸。懦弱的人只会裹足不前,莽撞的人只能引为烧身,只有真正勇敢的人才能所向披靡。平凡的脚步也可以走完伟大的行程。平静的湖面锻炼不出精 生活打造不出生活的强者。人的生命似洪水在奔流,不遇着岛屿、暗礁,难以激起美丽的浪花人生不怕重来,就怕没有将来。人生的成败往往就在于一念之差。人生就像一 为你在看别人耍猴的时候,却不知自己也是猴子中的一员!人生如天气,可预料,但往往出乎意料。人生最大的改变就是去做自己害怕的事情。如果不想被打倒,只有增加 你向神求助,说明你相信神的能力;如果神没有帮助你,说明神相信你的能力。善待自己,不被别人左右,也不去左右别人,自信优雅。活是欺骗不了的,一个人要生活得 象这杯浓酒,不经三番五次的提炼呵,就不会这样一来可口!生命不止需要长度,更需要宽度。时间就像一张网,你撒在哪里,你的收获就在哪里。世上最累人的事,莫过于 你感到痛苦时,就去学习点什么吧,学习可以使我们减缓痛苦。当世界都在说放弃的时候,轻轻的告诉自己:再试一次。过错是暂时的遗憾,而错过则是永远的遗憾!很多 结果,但是不努力却什么改变也没有。后悔是一种耗费精神的情绪后悔是比损失更大的损失,比错误更大的错误所以不要后悔。环境不会改变,解决之道在于改变自己。积 成功者的最基本要素。激情,这是鼓满船帆的风。风有时会把船帆吹断;但没有风,帆船就不能航行。即使道路坎坷不平,车轮也要前进;即使江河波涛汹涌,船只也航行 粹取出来的。浪费时间等于浪费生命。老要靠别人的鼓励才去奋斗的人不算强者;有别人的鼓励还不去奋斗的人简直就是懦夫。不要问别人为你做了什么,而要问你为别人 遥远的梦想和最朴素的生活,即使明天天寒地冻,金钱没有高贵,低贱之分。金钱在高尚人的手中,就会变得高尚;金钱在庸俗人手中,就会变得低级庸俗。涓涓细流一旦 大海也就终止了呼吸。漫无目的的生活就像出海航行而没有指南针。如果我没有,我就一定要,我一定要,就一定能。上一秒已成过去,曾经的辉煌,仅仅是是曾经。其实 在昨天,而是失败在没有很好利用今天。千万人的失败,都有是失败在做事不彻底,往往做到离成功只差一步就终止不做了。强者征服今天,懦夫哀叹昨天,懒汉坐等明天 只是不来的人,要来,千军万马也是挡不住的。求人不如求己;贫穷志不移;吃得苦中苦;方为人上人;失意不灰心;得意莫忘形。人们总是在努力珍惜未得到的,而遗忘 告诉我,无理取闹的年龄过了,该懂事了。时间是个常数,但也是个变数。勤奋的人无穷多,懒惰的人无穷少。手莫伸,伸手必被捉。党与人民在监督,万目睽睽难逃脱。汝 不伸能自觉,其实想伸不敢伸,人民咫尺手自缩。思考是一件最辛苦的工作,这可能是为什么很少人愿意思考的原因。我们不能成为贵族的后代,但我们可以成为贵族的祖先 年后的自己。自信!开朗!豁达!无论现在的你处于什么状态,是时候对自己说:不为模糊不清的未来担忧,只为清清楚楚的现在努力。无人理睬时,坚定执着。万人羡慕 志者常立志,有志者立常志,咬定一个目标的人最容易成功。心随境转是凡夫,境随心转是圣贤。学会以最简单的方式生活,不要让复杂的思想破坏生活的甜美。要无条件 的时候。一个人能走多远,要看他有谁同行;一个人有多优秀,要看他有谁指点;一个人有多成功,要看他有谁相伴。成功在优点的发挥,失败是缺点的累积。从绝望中寻 辉煌。当你跌到谷底时,那正表示,你只能往上,不能往下!当你决定坚持一件事情,全世界都会为你让路。贫穷本身并不可怕,可怕的是贫穷的思想,以及认为自己命中 了贫穷的思想,就会丢失进取心,也就永远走不出失败的阴影请享受无法回避的痛苦。人的一生就是体道,悟道,最后得道的过程。人生就是一万米长跑,如果有人非议你 一点,这样,那些声音就会在你的身后,你就再也听不见了。人生就像一杯没有加糖的咖啡,喝起来是苦涩的,回味起来却有久久不会退去的余香。人生可如蚁而美如神。 变故、循环不已的痛苦和欢乐组成的。那种永远不变的蓝天只存在于心灵中间,向现实的人生去要求未免是奢望。是我们不认识自己的智慧,不明白自己拥有全宇宙的力量 是被命运安排!做好自己其他的让别人说去吧!成功不是凭梦想和希望,而是凭努力和实践成功就是简单的事情不断地重复做。荆棘的存在是为了野草不轻易地任人践踏。 人贪安逸易失志没有目标的人永远为有目标的人去努力。没有人可以做你的双拐,你必须学会独立去闯荡。每天叫醒自己的不是闹钟,而是梦想。能把在面前行走的机会抓 都会成功。你既然认准一条道路何必去打听要走多久!你可以选择这样的“三心二意”:信心、恒心、决心;创意、乐意。你若花开,蝴蝶自来。盆景秀木正因为被人溺爱 梁之材的梦。潜龙怎能久卧于深水,勤奋,是步入成功之门的通行证。
新人教A版高中数学教材目录(必修+选修)【很全面】
人教A版高中数学教材目录(必修+选修)必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质实习作业小结复习参考题第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数小结复习参考题第三章函数的应用3.1 函数与方程3.2 函数模型及其应用实习作业小结复习参考题必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积实习作业小结复习参考题第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质小结复习参考题第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式小结复习参考题第四章圆与方程4.1 圆的方程4.2 直线、圆的位置关系4.3 空间直角坐标系小结复习参考题必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术小结复习参考题第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱实习作业小结复习参考题第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码小结复习参考题必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ) 的图象1.6 三角函数模型的简单应用小结复习参考题第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例小结复习参考题第三章三角恒等变换3.1两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换小结复习参考题必修5第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业小结复习参考题第二章数列2.1 数列的概念与简单表示法阅读与思考斐波那契数列阅读与思考估计根号下2的值2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和阅读与思考九连环探究与发现购房中的数学小结复习参考题第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4 基本不等式2abba+≤小结复习参考题选修1-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2 双曲线2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用小结复习参考题第三章导数及其应用3.1 变化率与导数3.2 导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质3.4 生活中的优化问题举例实习作业走进微积分小结复习参考题选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题第二章推理与证明2.1 合情推理与演绎推理阅读与思考科学发现中的推理2.2 直接证明与间接证明小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题第四章框图4.1 流程图4.2 结构图信息技术应用用Word2002绘制流程图小结复习参考题选修2-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.3 双曲线探究与发现2.4 抛物线探究与发现阅读与思考小结复习参考题第三章空间向量与立体几何3.1 空间向量及其运算阅读与思考向量概念的推广与应用3.2 立体几何中的向量方法小结复习参考题选修 2-2第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用小结复习参考题第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题选修2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2 排列与组合探究与发现组合数的两个性质1.3 二项式定理探究与发现“杨辉三角”中的一些秘密小结复习参考题第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2 二项分布及其应用探究与发现服从二项分布的随机变量取何值时概率最大2.3 离散型随机变量的均值与方差2.4 正态分布信息技术应用μ,σ对正态分布的影响小结复习参考题第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题选修3-1数学史选讲第一讲早期的算术与几何一古埃及的数学二两河流域的数学三丰富多彩的记数制度第二讲古希腊数学一希腊数学的先行者二毕达哥拉斯学派三欧几里得与《原本》四数学之神──阿基米德第三讲中国古代数学瑰宝一《周髀算经》与赵爽弦图二《九章算术》三大衍求一术四中国古代数学家第四讲平面解析几何的产生一坐标思想的早期萌芽二笛卡儿坐标系三费马的解析几何思想四解析几何的进一步发展第五讲微积分的诞生一微积分产生的历史背景二科学巨人牛顿的工作三莱布尼茨的“微积分”第六讲近代数学两巨星一分析的化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式的发现二高次方程可解性问题的解决三伽罗瓦与群论四古希腊三大几何问题的解决第八讲对无穷的深入思考一古代的无穷观念二无穷集合论的创立三集合论的进一步发展与完善第九讲中国现代数学的开拓与发展一中国现代数学发展概观二人民的数学家──华罗庚三当代几何大师──陈省身学习总结报告选修3-3球面上的几何第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性思考题第二讲球面上的距离和角一球面上的距离二球面上的角思考题第三讲球面上的基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形思考题第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和思考题第五讲球面三角形的全等1.“边边边”(s.s.s)判定定理2.“边角边”(s.a.s.)判定定理3.“角边角”(a.s.a.)判定定理4.“角角角”(a.a.a.)判定定理思考题第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式思考题第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方法证明球面上的余弦定理1.向量的向量积2.球面上余弦定理的向量证法三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离思考题第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义阅读与思考非欧几何简史学习总结报告选修3-4对称与群第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义2.平面刚体运动的性质思考题二对称变换1.对称变换的定义2.正多边形的对称变换3.对称变换的合成4.对称变换的性质5.对称变换的逆变换思考题三平面图形的对称群思考题第二讲代数学中的对称与抽象群的概念一n元对称群Sn思考题二多项式的对称变换思考题三抽象群的概念1.群的一般概念2.直积思考题第三讲对称与群的故事一带饰和面饰二化学分子的对称群三晶体的分类四伽罗瓦理论学习总结报告附录一附录二选修4-1 几何证明选讲第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行射影二平面与圆柱面的截线三平面与圆锥面的截线学习总结报告选修 4-2矩阵与变换第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法三线性变换的基本性质(一)线性变换的基本性质(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组的矩阵形式2.逆矩阵与二元一次方程组探究与发现三阶矩阵与三阶行列式第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1.特征值与特征向量2.特征值与特征向量的计算二特征向量的应用1.Anα的简单表示2.特征向量在实际问题中的应用学习总结报告选修4-4 坐标系与参数方程引言第一讲坐标系一平面直角坐标系二极坐标系三简单曲线的极坐标方程四柱坐标系与球坐标系简介第二讲参数方程一曲线的参数方程二圆锥曲线的参数方程三直线的参数方程四渐开线与摆线学习总结报告选修4-5 不等式选讲引言第一讲不等式和绝对值不等式一不等式1.不等式的基本性质2.基本不等式3.三个正数的算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法第二讲证明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式阅读与思考法国科学家柯西二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式学习总结报告选修4-6 初等数论初步引言第一讲整数的整除一整除1.整除的概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余的概念2.同余的性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程1.一次同余方程2.大衍求一术五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程的特解三多元一次不定方程第四讲数论在密码中的应用一信息的加密与去密二大数分解和公开密钥学习总结报告附录一剩余系和欧拉函数附录二多项式的整除性选修4-7 优选法与试验设计初步引言第一讲优选法一什么叫优选法二单峰函数三黄金分割法——0.618法1.黄金分割常数2.黄金分割法——0.618法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法的最优性五其他几种常用的优越法1.对分法2.盲人爬山法3.分批试验法4.多峰的情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果的分析4.正交表的特性二正交试验的应用学习总结报告附录一、附录二、附录三选修4-9 风险与决策引言第一讲风险与决策的基本概念一风险与决策的关系二风险与决策的基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策探究与发现风险相差不大时该如何决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下的马尔可夫型决策理论1.马尔可夫链的平稳分布2.平稳分布与马尔可夫型决策的长期准则3.平稳准则的应用案例学习总结报告附录。
高中数学目录(人教A版_必修+选修)[1]
必修一第一章1.1集合与集合的表示方法1.1.1集合的概念1.1.2集合的表示方法第二章2.1函数2.1.1函数2.1.2函数的表示方法2.1.3函数的单调性2.1.4函数的奇偶性2.1.5用计算机作函数图像(选学)2.2一次函数和二次函数2.2.1一次函数的性质与图像2.2.2二次函数的性质与图像2.3函数的应用(1)2.4函数与方程2.4.1函数的零点2.4.2求函数零点近似解的一种计算方法----二分法第三章基本初等函数(1)3.1指数与指数函数3.1.1实数指数幂及其运算3.1.2指数函数3.2对数与对数函数3.2.1对数及其运算3.2.2对数函数3.2.3指数函数与对数函数的关系3.3幂函数3.4函数的应用(2)必修二第一章立体几何初步1.1空间几何体1.1.1构成空间几何体的基本元素1.1.2棱柱棱锥棱台的结构特征1.1.3圆柱圆锥圆台和球1.1.4投影与直观图1.1.5三视图1.1.6棱柱棱锥棱台和球的表面积1.1.7柱锥台和球的体积1.2点线面之间的位置关系1.2.1平面的基本性质与推论1.2.2空间中的平行关系1.2.3空间中的垂直关系第二章平面解析几何初步2.1平面直角坐标系中的基本公式2.1.1数轴上的基本公式2.1.2平面直角坐标系中的基本公式2.2直线的方程2.2.1直线方程的概念与直线的斜率2.2.2直线方程的集中形式2.2.3两条直线的位置关系2.2.4点到直线的距离2.3圆的方程2.3.1圆的标准方程2.3.2圆的一般方程2.3.3直线与圆的位置关系2.3.4圆与圆的位置关系2.4空间直角坐标系2.4.1空间直角坐标系2.4.2空间两点距离公式必修三第一章算法初步1.1算法与程序框图1.1.1算法的概念1.1.2程序框图1.1.3算法的三种基本逻辑结构和框图表示1.2基本算法语句1.2.1赋值输入输出语句1.2.2条件语句1.2.3循环语句1.3中国古代数学中的算法案例第二章统计2.1随机抽样2.1.1简单的随机抽样2.1.2系统抽样2.1.3分层抽样2.1.4数据的收集2.2用样本估计总体2.2.1用样本的频率分布估计总体的分布2.2.2用样本的数字特征估计总体的数字特征2.3变量的相关性2.3.1变量间的相互关系2.3.2两个变量的线性相关第三章概率3.1事件与概率3.1.1随机现象3.1.2事件与基本事件空间3.1.3频率与概率3.1.4概率的加法公式3.2古典概型3.2.1古典概型3.2.2概率的一般加法公式(选学)3.3随机数的含义与应用3.3.1几何概型3.3.2随机数的含义与应用3.4概率的应用必修四第一章基本的初等函数(2)1.1任意角的概念与弧度制1.1.1角的概念的推广1.1.2弧度制和弧度制与角度制的换算1.2任意角的三角函数1.2.1三角函数的定义1.2.2单位圆与三角函数线1.2.3同角三角函数的基本关系式1.2.4诱导公式1.3三角函数的图像与性质1.3.1正弦函数的图像与性质1.3.2余弦函数正切函数的图像与性质1.3.3已知三角函数值求角第二章平面向量2.1向量的线性运算2.1.1向量的概念2.1.2向量的加法2.1.3向量的减法2.1.4数乘向量2.1.5向量共线的条件和轴上向量坐标运算2.2向量的分解和向量的坐标运算2.2.1平面向量基本定理2.2.2向量的正交分解与向量的直角坐标运算2.2.3用平面向量坐标表示向量共线条件2.3平面向量的数量积2.3.1向量数量积的物理背景与定义2.3.2向量数量积的运算律2.3.3向量数量积的坐标运算与度量公式2.4向量的应用2.4.1向量在几何中的应用2.4.2向量在物理中的应用第三章三角恒等变换3.1和角公式3.1.1两角和与差的余弦3.1.2两角和与差的正弦3.1.3两角和与差的正切3.2倍角公式和半角公式3.2.1倍角公式3.2.2半角的正弦余弦和正切3.3三角函数的积化和差与和差化积必修五第一章解三角形1.1正弦定理和余弦定理1.1.1正弦定理1.1.2余弦定理1.2应用举例第二章数列2.1数列2.1.1数列2.1.2数列的递推公式(选学)2.2等差数列2.2.1等差数列2.2.2等差数列的前n项和2.3等比数列2.3.1等比数列2.3.2等比数列的前n项和第三章不等式3.1不等关系与不等式3.1.1不等关系与不等式3.1.2不等式性质3.2均值不等式3.3一元二次不等式及其解法3.4不等式的实际应用3.5二元一次不等式(组)与简单的线性规划问题3.5.1二元一次不等式(组)所表示的平面区域3.5.2简单线性规划选修2-1第一章常用逻辑用语1.1命题与量词1.1.1命题1.1.2量词1.2基本逻辑联结词1.2.1且与或1.2.2非(否定)1.3充分条件必要条件与命题的四种形式1.3.1推出与充分条件必要条件1.3.2命题的四种形式第二章圆锥曲线方程2.1曲线方程2.1.1曲线与方程的概念2.1.2由曲线求它的方程由方程研究曲线性质2.2椭圆2.2.1椭圆的标准方程2.2.2椭圆的集几何性质2.3双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质2.5直线与圆锥曲线第三章空间向量与几何体3.1空间向量及其运算3.1.1空间向量的线性运算3.1.2空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2空间向量在立体几何中的应用3.2.1直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离(选学)选修2-2第一章导数及其应用1.1导数1.1.1函数的平均变化率1.1.2瞬时速度与导数1.1.3导数的几何1.2导数的运算1.2.1常数函数与幂函数的导数1.2.2导数公式表及数学软件的应用1.2.3导数的四则运算法则1.3导数的应用1.3.1利用导数判断函数的单调性1.3.2利用导数研究函数的极值1.3.3导数的实际应用1.4定积分与微积分的基本定理1.4.1曲边梯形面积与定积分1.4.2微积分基本定理第二章推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.2直接证明与间接证明2.2.1综合法与分析法2.2.2反证法2.3数学归纳法2.3.1数学归纳法2.3.2数学归纳法应用举例第三章数系的扩充与复数3.1数系的扩充与复数的概念3.1.1实数系3.1.2复数的概念3.1.3复数的几何意义3.2复数的运算3.2.1复数的加法与减法3.2.2复数的乘法3.2.3复数的除法选修2-3第一章计数原理1.1基本计数原理1.2排列与组合1.2.1排列1.2.2组合1.3二项式定理1.3.1二项式定理1.3.2杨辉三角第二章概率2.1离散型随机变量及其分布列2.1.1离散型随机变量2.1.2离散型随机变量的分布列2.1.3超几何分布2.2条件概率与实践的独立性2.2.1条件概率2.2.2事件的独立性2.2.3独立重复试验与二项分布2.3随机变量的数字特征2.3.1离散型随机变量的数学期望2.3.2离散型随机变量的方差2.4正态分布第三章统计案例3.1独立性检验3.2回归分析选修4-4第一章坐标系1.1直角坐标系平面上的伸缩变换1.1.1直角坐标系1.1.2平面上的伸缩变换1.2极坐标系1.2.1平面上点的极坐标1.2.2极坐标与直角坐标的关系1.3曲线的极坐标方程1.4圆的极坐标方程1.4.1圆心在极轴上且过极点的圆1.4.2圆心在点(a,∏/2)处且过极点的圆1.5柱坐标系和球坐标系1.5.1柱坐标系1.5.2球坐标系第二章参数方程2.1曲线的参数方程2.1.1抛射体的运动2.1.2曲线的参数方程2.2直线与圆的参数方程2.2.1直线的参数方程2.2.2圆的参数方程2.3圆锥曲线的参数方程2.3.1椭圆的参数方程2.3.2双曲线的参数方程2.3.3抛物线的参数方程2.4一些常见曲线的参数方程2.4.1摆线的参数方程2.4.2圆的渐开线的参数方程。
人教版高中数学选修3-1 第四讲 平面解析几何的产生 二 笛卡儿坐标系 (共31张PPT)教育课件
在《几何学》的第二卷中,笛卡儿考 虑了曲线的分类及其性质,用代数方程的 直接可解性区分“几何曲线”与“非几何 曲线”.他把复杂的高次曲线也看作几何曲 线(代数曲线),把不能用代数方程表示 的曲线称为“机械曲线”(超越曲线).这 样,笛卡儿开辟了全新的曲线领域.
凡 事 都是 多 棱 镜 , 不 同 的 角 度 会 看 到 不 同 的 结果 。 若 能 把 一 些 事 看 淡 了 ,就 会 有 个 好 心 境 , 若 把 很 多事 看 开 了 , 就 会有 个 好 心 情 。 让 聚 散 离 合 犹 如 月 缺 月 圆那 样 寻 常 , 让 得 失 利 弊 犹 如花 开 花 谢 那 样 自 然 , 不 计 较, 也 不 刻 意 执 着; 让 生 命 中 各 种 的 喜 怒 哀 乐 , 就 像 风 儿一 样 , 来 了 , 不 管 是 清 风 拂面 , 还 是 寒 风 凛 冽 , 都 报 以自 然 的 微 笑 , 坦然 的 接 受 命 运 的 馈 赠 , 把 是 非 曲 折 , 都当 作 是 人
人们在他的墓碑上刻下了这样一句话: “笛卡尔,欧洲文艺复兴以来,第一个为人 类争取并保证理性权利的人.”
笛卡儿解析几何的思想
1637年笛卡儿出版科著名的 著作《方法论》.该书主要是哲 学著作,但包括了3个著名的附 录:《几何学》、《折光》和 《气象》.其中的《几何学》是 他唯一的数学著作.书中阐述了 解析几何的思想,后人把这本书 看作解析几何的开端.
笛卡尔《几何》
第一部分讨论尺规作图,将几 何问题化为代数问题,提出“仅用 圆与直线的作图问题”.
1.1 平面直角坐标系 课件(人教A选修4-4)(2)
[悟一法]
求轨迹方程,其实质就是根据题设条件,把几何关系通过 “坐标”转化成代数关系,得到对应的方程. (1)求轨迹方程的一般步骤是:建系→设点→列式→化简→ 检验.
(2)求轨迹方程时注意不要把范围扩大或缩小,也就是要
检验轨迹的纯粹性和完备性. (3)由于观察的角度不同,因此探求关系的方法也不同, 解题时要善于从多角度思考问题.
解决代数问题;第三步:把代数运算结果翻译成几何结论.
2.平面直角坐标系中的伸缩变换 设点 P(x,y)是平面直角坐标系中的任意一点,在变换
x′=λ· x,λ>0, φ: y′=μ· y,μ>0
的作用下, P(x, 点 y)对应到点 P′(x′,
y′), φ 为平面直角坐标系中的坐标伸缩变换, 称 简称伸缩变换.
[研一题] [例 3] 在平面直角坐标系中, 求下列方程所对应的图形经过
1 x′=3x, 伸缩变换 y′=1y 2
后的图形是什么形状?
(1)y2=2x;(2)x2+y2=1.
[精讲详析]
本题考查伸缩变换的应用,解答此题需要先根
据伸缩变换求出变换后的方程,然后再判断图形的形状.
1 x′=3x, 由伸缩变换 y′=1y. 2
[通一类] 1.已知线段 AB 与 CD 互相垂直平分于点 O,|AB|=8,|CD|=4, 动点 M 满足|MA|· |MB|=|MC|· |MD|,求动点 M 的轨迹方程.
解:以 O 为原点,分别以直线 AB,CD 为 x 轴、y 轴建立直 角坐标系, 则 A(-4,0),B(4,0),C(0,2),D(0,-2). 设 M(x,y)为轨迹上任一点,则 |MA|= x+42+y2,|MB|= x-42+y2,
变换后得到双曲线
新课标人教版高中A版数学目录(超详细完美版)
人教版高中数学A版目录新课标A版必修1•第一章集合与函数概念•第二章基本初等函数(Ⅰ)•第三章函数的应用•单元测试•综合专栏第一章集合与函数概念• 1.1集合• 1.2函数及其表示• 1.3函数的基本性质•实习作业•同步练习•单元测试•本章综合1.1集合• 1.1.1集合的含义与表示• 1.1.2集合间的基本关系• 1.1.3集合的基本运算•本节综合1.2函数及其表示• 1.2.1函数的概念• 1.2.2函数的表示法•本节综合1.3函数的基本性质• 1.3.1单调性与最大(小)值• 1.3.2奇偶性•本节综合实习作业同步练习单元测试本章综合第二章基本初等函数(Ⅰ)• 2.1指数函数• 2.2对数函数• 2.3幂函数•同步练习•单元测试•本章综合2.1指数函数• 2.1.1指数与指数幂的运算• 2.1.2指数函数及其性质•本节综合2.2对数函数• 2.2.1对数与对数运算• 2.2.2对数函数及其性质•本节综合2.3幂函数同步练习单元测试本章综合第三章函数的应用• 3.1函数与方程• 3.2函数模型及其应用•实习作业•同步练习•单元测试•本章综合3.1函数与方程• 3.1.1方程的根与函数的零点• 3.1.2用二分法求方程的近似解•本节综合3.2函数模型及其应用• 3.2.1几类不同增长的函数模型• 3.2.2函数模型的应用实例•本节综合实习作业同步练习单元测试本章综合单元测试综合专栏新课标A版必修2•第一章空间几何体•第二章点、直线、平面之间的位置关系•第三章直线与方程•第四章圆与方程•单元测试综合专栏第一章空间几何体• 1.1空间几何体的结构• 1.2空间几何体的三视图和直观图• 1.3空间几何体的表面积与体积•复习参考题•实习作业•同步练习•单元测试•本章综合•第二章点、直线、平面之间的位置关系• 2.1空间点、直线、平面之间的位置关系• 2.2直线、平面平行的判定及其性质• 2.3直线、平面垂直的判定及其性质•同步练习•单元测试•本章综合第三章直线与方程• 3.1直线的倾斜角与斜率• 3.2直线的方程• 3.3直线的交点坐标与距离公式•同步练习•单元测试•本章综合第四章圆与方程• 4.1圆的方程• 4.2直线、圆的位置关系• 4.3空间直角坐标系•同步练习•单元测试•本章综合单元测试综合专栏新课标A版必修3•第一章算法初步•第二章统计•第三章概率•单元测试•综合专栏第一章算法初步• 1.1算法与程序框图• 1.2基本算法语句• 1.3算法与案例•同步练习•单元测试•本章综合1.1算法与程序框图• 1.1.1算法的概念• 1.1.2程序框图和算法的逻辑结构•本节综合1.2基本算法语句• 1.2.1输入、输出、赋值语句• 1.2.2条件语句• 1.2.3循环语句•本节综合1.3算法与案例同步练习单元测试本章综合第二章统计• 2.1随机抽样• 2.2用样本估计总体• 2.3变量间的相关关系•实习作业•同步练习•单元测试•本章综合2.1随机抽样• 2.1.1简单随机抽样• 2.1.2系统抽样• 2.1.3分层抽样•本节综合2.2用样本估计总体• 2.2.1用样本的频率分布估计总体• 2.2.2用样本的数字特征估计总体•本节综合2.3变量间的相关关系• 2.3.1变量之间的相关关系• 2.3.2两个变量的线性相关•本节综合实习作业同步练习单元测试本章综合第三章概率• 3.1随机事件的概率• 3.2古典概型• 3.3几何概型•同步练习•单元测试•本章综合3.1随机事件的概率• 3.1.1随机事件的概率• 3.1.2概率的意义• 3.1.3概率的基本性质•本节综合3.2古典概型• 3.2.1古典概型• 3.2.2随机数的产生•本节综合3.3几何概型• 3.3.1几何概型• 3.3.2均匀随机数的产生•本节综合同步练习单元测试本章综合单元测试综合专栏新课标A版必修4•第一章三角函数•第二章平面向量•第三章三角恒等变换•单元测试•综合专栏第一章三角函数• 1.1任意角和弧度制• 1.2任意的三角函数• 1.3三角函数的诱导公式• 1.4三角函数的图象与性质• 1.5函数y=Asin(ωx+ψ)• 1.6三角函数模型的简单应用•同步练习•单元测试•本章综合第二章平面向量• 2.1平面向量的实际背景及基本概念• 2.2平面向量的线性运算• 2.3平面向量的基本定理及坐标表示• 2.4平面向量的数量积• 2.5平面向量应用举例•同步练习•单元测试•本章综合第三章三角恒等变换• 3.1两角和与差的正弦、余弦和正切公式• 3.2简单的三角恒等变换•同步练习•单元测试•本章综合单元测试综合专栏新课标A版必修5•第一章解三角形•第二章数列•第三章不等式•单元测试•综合专栏第一章解三角形• 1.1正弦定理和余弦定理• 1.2应用举例• 1.3实习作业•探究与发现解三角形的进一步讨论•同步练习•单元测试•本章综合第二章数列• 2.1数列的概念与简单表示法• 2.1等差数列• 2.3等差数列的前n项和• 2.4等比数列• 2.5等比数列的前n项和•同步练习•单元测试•本章综合第三章不等式• 3.1不等关系与不等式• 3.2一元二次不等式及其解法• 3.3二元一次不等式(组)与简单的线性• 3.4基本不等式:•同步练习•单元测试•本章综合单元测试综合专栏新课标A版选修一•新课标A版选修1-1•新课标A版选修1-2新课标A版选修1-1•第一章常用逻辑用语•第二章圆锥曲线与方程•第三章导数及其应用•月考专栏•期中专栏•期末专栏•单元测试•综合专栏第一章常用逻辑用语• 1.1命题及其关系• 1.2充分条件与必要条件• 1.3简单的逻辑联结词• 1.4全称量词与存在量词•同步练习•单元测试•本章综合第二章圆锥曲线与方程• 2.1椭圆• 2.2双曲线• 2.3抛物线•同步练习•单元测试•本章综合第三章导数及其应用• 3.1变化率与导数• 3.2导数的计算• 3.3导数在研究函数中的应用• 3.4生活中的优化问题举例•同步练习•单元测试•本章综合月考专栏期中专栏期末专栏单元测试新课标A版选修1-2•第一章统计案例•第二章推理与证明•第三章数系的扩充与复数的引入•第四章框图•月考专栏•期中专栏•期末专栏•单元测试•本章综合点击这里展开-- 查看子节点索引目录,更精确地筛选资料!第一章统计案例• 1.1回归分析的基本思想及其初步应用• 1.2独立性检验的基本思想及其初步应用•实习作业•同步练习•综合第二章推理与证明• 2.1合情推理与演绎推理• 2.2直接证明与间接证明•同步练习•综合第三章数系的扩充与复数的引入• 3.1数系的扩充和复数的概念• 3.2复数代数形式的四则运算•同步练习•综合第四章框图• 4.1流程图• 4.2结构图•同步练习•综合月考专栏期中专栏期末专栏单元测试本章综合新课标A版选修二•新课标人教A版选修2-1•新课标人教A版选修2-2•新课标人教A版选修2-3新课标人教A版选修2-1•第一章常用逻辑用语•第二章圆锥曲线与方程•第三章空间向量与立体几何•单元测试•本册综合第一章常用逻辑用语• 1.1命题及其关系• 1.2充分条件与必要条件• 1.3简单的逻辑联结词• 1.4全称量词与存在量词•同步练习•本章综合第二章圆锥曲线与方程• 2.1曲线与方程• 2.2椭圆• 2.3双曲线• 2.4抛物线•同步练习•本章综合第三章空间向量与立体几何• 3.1空间向量及其运算• 3.2立体几何中的向量方法•同步练习•本章综合单元测试本册综合新课标人教A版选修2-2•第一章导数及其应用•第二章推理与证明•第三章数系的扩充与复数的引入•单元测试•本册综合第一章导数及其应用• 1.1变化率与导数• 1.2导数的计算• 1.3导数在研究函数中的应用• 1.4生活中的优化问题举例• 1.5定积分的概念• 1.6微积分基本定理• 1.7定积分的简单应用•同步练习•本章综合第二章推理与证明• 2.1合情推理与演绎推理• 2.2直接证明与间接证明• 2.3数学归纳法•同步练习•本章综合第三章数系的扩充与复数的引入• 3.1数系的扩充和复数的概念• 3.2复数代数形式的四则运算•同步练习•本章综合单元测试本册综合新课标人教A版选修2-3•第一章计数原理•第二章随机变量及其分布•第三章统计案例•单元测试•本册综合第一章计数原理• 1.1分类加法计数原理与分步乘法计.• 1.2排列与组合• 1.3二项式定理•同步练习•本章综合第二章随机变量及其分布• 2.1离散型随机变量及其分布列• 2.2二项分布及其应用• 2.3离散型随机变量的均值与方差• 2.4正态分布•同步练习•本章综合第三章统计案例• 3.1回归分析的基本思想及其初步应用• 3.2独立性检验的基本思想及其初步•本章综合•同步练习单元测试本册综合新课标A版选修三•新课标A版选修3-1•新课标A版选修3-3•新课标A版选修3-4新课标A版选修3-1•第一讲早期的算术与几何•第二讲古希腊数学•第三讲中国古代数学瑰宝•第四讲平面解析几何的产生•第五讲微积分的诞生•第六讲近代数学两巨星•第七讲千古谜题•第八讲对无穷的深入思考•第九讲中国现代数学的开拓与发展•单元测试•本册综合第一讲早期的算术与几何•一古埃及的数学•二两河流域的数学•三丰富多彩的记数制度•同步练习•本章综合第二讲古希腊数学•一希腊数学的先行者•二毕达哥拉斯学派•三欧几里得与《原本》•四数学之神──阿基米德•同步练习•本章综合第三讲中国古代数学瑰宝•一《周髀算经》与赵爽弦图•二《九章算术》•三大衍求一术•四中国古代数学家•同步练习•本章综合第四讲平面解析几何的产生•一坐标思想的早期萌芽•二笛卡儿坐标系•三费马的解析几何思想•四解析几何的进一步发展•同步练习•本章综合第五讲微积分的诞生•一微积分产生的历史背景•二科学巨人牛顿的工作•三莱布尼茨的“微积分”•同步练习•本章综合第六讲近代数学两巨星•一分析的化身──欧拉•二数学王子──高斯•同步练习•本章综合第七讲千古谜题•一三次、四次方程求根公式的发现•二高次方程可解性问题的解决•三伽罗瓦与群论•四古希腊三大几何问题的解决•同步练习•本章综合第八讲对无穷的深入思考•一古代的无穷观念•二无穷集合论的创立•三集合论的进一步发展与完善•同步练习•本章综合第九讲中国现代数学的开拓与发展•一中国现代数学发展概观•二人民的数学家──华罗庚•三当代几何大师──陈省身•同步练习•本章综合单元测试本册综合新课标A版选修3-3•第一讲从欧氏几何看球面•第二讲球面上的距离和角•第三讲球面上的基本图形•第四讲球面三角形•第五讲球面三角形的全等•第六讲球面多边形与欧拉公式•第七讲球面三角形的边角关系•第八讲欧氏几何与非欧几何•单元测试•本册综合第一讲从欧氏几何看球面•一平面与球面的位置关系•二直线与球面的位置关系和球幂定理•三球面的对称性•同步练习•本章综合第二讲球面上的距离和角•一球面上的距离•二球面上的角•同步练习•本章综合第三讲球面上的基本图形•一极与赤道•二球面二角形•三球面三角形•同步练习•本章综合第四讲球面三角形•一球面三角形三边之间的关系•二、球面“等腰”三角形•三球面三角形的周长•四球面三角形的内角和•同步练习•本章综合第五讲球面三角形的全等•1.“边边边”(s.s.s)判定定理•2.“边角边”(s.a.s.)判定定理•3.“角边角”(a.s.a.)判定定理•4.“角角角”(a.a.a.)判定定理•同步练习•本章综合第六讲球面多边形与欧拉公式•一球面多边形及其内角和公式•二简单多面体的欧拉公式•三用球面多边形的内角和公式证明欧拉公式•同步练习•本章综合第七讲球面三角形的边角关系•一球面上的正弦定理和余弦定理•二用向量方法证明球面上的余弦定理•三从球面上的正弦定理看球面与平面•四球面上余弦定理的应用──求地球上两城市间的距离•同步练习•本章综合第八讲欧氏几何与非欧几何•一平面几何与球面几何的比较•二欧氏平行公理与非欧几何模型──庞加莱模型•三欧氏几何与非欧几何的意义•同步练习•本章综合单元测试本册综合新课标A版选修3-4•第一讲平面图形的对称群•第二讲代数学中的对称与抽象群的概念•第三讲对称与群的故事•综合专栏•单元测试第一讲平面图形的对称群•平面刚体运动•对称变换•平面图形的对称群•同步练习•本章综合第二讲代数学中的对称与抽象群的概念•n元对称群S•多项式的对称变换•抽象群的概念•同步练习•本章综合第三讲对称与群的故事•带饰和面饰•化学分子的对称群•晶体的分类•伽罗瓦理论•同步练习•本章综合综合专栏单元测试新课标A版选修四•新课标人教A版选修4-1•选修4-2•新课标A版选修4-4•新课标A版选修4-5新课标人教A版选修4-1•第一讲相似三角形的判定及有关性质•第二讲直线与圆的位置关系•第三讲圆锥曲线性质的探讨•单元测试•本册综合第一讲相似三角形的判定及有关性质•一平行线等分线段定理•二平行线分线段成比例定理•三相似三角形的判定及性质•四直角三角形的射影定理•同步练习•本章综合第二讲直线与圆的位置关系•一圆周角定理•二圆内接四边形的性质与判定定理•三圆的切线的性质及判定定理•四弦切角的性质•五与圆有关的比例线段•同步练习•本章综合第三讲圆锥曲线性质的探讨•一平行射影•二平面与圆柱面的截线•三平面与圆锥面的截线•同步练习•本章综合单元测试本册综合选修4-2•第一讲线性变换与二阶矩阵•第二讲变换的复合与二阶矩阵的乘法•第三讲逆变换与逆矩阵•第四讲变换的不变量与矩阵的特征向量•单元测试•本册综合第一讲线性变换与二阶矩阵•一线性变换与二阶矩阵•二二阶矩阵与平面向量的乘法•三线性变换的基本性质•同步练习•本章综合第二讲变换的复合与二阶矩阵的乘法•一复合变换与二阶短阵的乘法•二矩阵乘法的性质•同步练习•本章综合第三讲逆变换与逆矩阵•一逆变换与逆矩阵•二二阶行列式与逆矩阵•三逆矩阵与二元一次方程组•同步练习•本章综合第四讲变换的不变量与矩阵的特征向量•一变换的不变量---矩阵的特征向量•二特征向量的应用•同步练习•本章综合单元测试本册综合新课标A版选修4-4•第一章坐标系•第二章参数方程•单元测试•本册综合第一章坐标系• 1.1直角坐标系、平面上的伸缩变换• 1.2极坐标系• 1.3曲线的极坐标方程• 1.4圆的极坐标方程• 1.5柱坐标系与球坐标系•同步练习•本章综合第二章参数方程• 2.1曲线的参数方程• 2.2直线和圆的参数方程• 2.3圆锥曲线的参数方程• 2.4一些常见曲线的参数方程•同步练习•本章综合单元测试本册综合新课标A版选修4-5•第一讲不等式和绝对值不等式•第二讲讲明不等式的基本方法•第三讲柯西不等式与排序不等式•第四讲数学归纳法证明不等式•单元测试•本册综合第一讲不等式和绝对值不等式•一不等式•二绝对值不等式•单元测试•本章综合第二讲讲明不等式的基本方法•一比较法•二综合法与分析法•三反证法与放缩法•单元测试•本章综合第三讲柯西不等式与排序不等式•一二维形式的柯西不等式•二一般形式的柯西不等式•三排序不等式•单元测试•本章综合第四讲数学归纳法证明不等式•一数学归纳法•二用数学归纳法证明不等式•单元测试•本章综合单元测试本册综合。
高中数学详细目录章节
高中数学目录数学必修1第1章集合1.1 集合的含义及其表示1.2 子集、全集、补集1.3 交集、并集第2章函数概念与基本初等函数Ⅰ2.1 函数的概念和图象函数的概念和图象函数的表示方法函数的简单性质映射的概念2.2 指数函数分数指数幂指数函数2.3 对数函数对数对数函数2.4 幂函数2.5 函数与方程二次函数与一元二次方程用二分法求方程的近似解2.6 函数模型及其应用数学必修2第3章立体几何初步3.1 空间几何体棱柱、棱锥和棱台圆柱、圆锥、圆台和球中心投影和平行投影直观图画法空间图形的展开图柱、锥、台、球的体积3.2 点、线、面之间的位置关系平面的基本性质空间两条直线的位置关系直线与平面的位置关系平面与平面的位置关系第4章平面解析几何初步4.1 直线与方程直线的斜率直线的方程两条直线的平行与垂直两条直线的交点平面上两点间的距离点到直线的距离4.2 圆与方程圆的方程直线与圆的位置关系圆与圆的位置关系4.3 空间直角坐标系空间直角坐标系空间两点间的距离数学必修3第5章算法初步5.1 算法的意义5.2 流程图5.3 基本算法语句5.4 算法案例第6章统计6.1 抽样方法6.2 总体分布的估计6.3 总体特征数的估计6.4 线性回归方程第7章概率7.1随机事件及其概率7.2 古典概型7.3 几何概型7.4 互斥事件及其发生的概率数学必修4第8章三角函数8.1 任意角、弧度8.2 任意角的三角函数8.3 三角函数的图象和性质第9章平面向量9.1 向量的概念及表示9.2 向量的线性运算9.3 向量的坐标表示9.4 向量的数量积9.5 向量的应用第10章三角恒等变换10.1 两角和与差的三角函数10.2 二倍角的三角函数10.3 几个三角恒等式数学必修5第11章解三角形11.1正弦定理11.2余弦定理11.3正弦定理、余弦定理的应用第12章数列12.1等差数列12.2等比数列12.3数列的进一步认识第13章不等式13.1不等关系13.2一元二次不等式13.3二元一次不等式组与简单的线性规划问题13.4基本不等式选修 1-1第1章常用逻辑用语1.1命题及其关系1.2简单的逻辑联结词1.3全称量词与存在量词第2章圆锥曲线与方程2.1圆锥曲线2.2椭圆2.3双曲线2.4抛物线2.5圆锥曲线与方程第3章导数及其应用3.1导数的概念3.2导数的运算3.3导数在研究函数中的应用3.4导数在实际生活中的应用选修 1-2第1章统计案例1.1假设检验1.2独立性检验1.3线性回归分析1.4聚类分析第2章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3公理化思想第3章数系的扩充与复数的引入3.1数系的扩充3.2复数的四则运算3.3复数的几何意义第4章框图4.1流程图5.2结构图选修 2-1第1章常用逻辑用语1.1命题及其关系1.2简单的逻辑连接词1.3全称量词与存在量词第2章圆锥曲线与方程2.1圆锥曲线2.2椭圆2.3双曲线2.4抛物线2.5圆锥曲线的统一定义2.6曲线与方程第3章空间向量与立体几何3.1空间向量及其运算3.2空间向量的应用选修 2-2第1章导数及其应用1.1导数的概念1.2导数的运算1.3导数在研究函数中的应用1.4导数在实际生活中的应用1.5定积分第2章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法2.4公理化思想第3章数系的扩充与复数的引入3.1数系的扩充3.2复数的四则运算3.3复数的几何意义选修 2-3第1章计数原理1.1两个基本原理1.2排列1.3组合1.4计数应用题1.5二项式定理第2章概率2.1随机变量及其概率分布2.2超几何分布2.3独立性2.4二项分布2.5离散型随机变量的均值与方差2.6正态分布第3章统计案例3.1假设检验3.2独立性检验3.3线性回归分析4.4聚类分析。
最新人教A版高中数学教材目录(全)
人教A版高中数学目录必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用3.1 函数与方程3.2 函数模型及其应用必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图 1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ)1.6 三角函数模型的简单应用第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换必修5第一章解三角形1.1正弦定理和余弦定理1.2应用举例1.3实习作业第二章数列2.1数列的概念与简单表示法2.2等差数列2.3等差数列的前n项和2.4等比数列2.5等比数列的前n项和第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域3.3.2简单的线性规划问题3.4基本不等式选修1-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1椭圆2.2双曲线2.3抛物线第三章导数及其应用3.1变化率与导数3.2导数的计算3.3导数在研究函数中的应用3.4生活中的优化问题举例选修1-2第一章统计案例1.1回归分析的基本思想及其初步应用1.2独立性检验的基本思想及其初步应用第二章推理与证明2.1 合情推理与演绎证明2.2 直接证明与间接证明第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算第四章框图4.1流程图4.2结构图选修2-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线第三章空间向量与立体几何3.1空间向量及其运算3.2立体几何中的向量方法选修2-2第一章导数及其应用1.1变化率与导数1.2导数的计算1.3导数在研究函数中的应用1.4生活中的优化问题举例1.5定积分的概念1.6微积分基本定理1.7定积分的简单应用第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算选修2-3第一章计数原理1.1分类加法计数原理与分步乘法计数原理1.2排列与组合1.3二项式定理第二章随机变量及其分布2.1离散型随机变量及其分布列2.2二项分布及其应用2.3离散型随机变量的均值与方差2.4正态分布第三章统计案例3.1回归分析的基本思想及其初步应用3.2独立性检验的基本思想及其初步应用选修3-1第一讲早期的算术与几何第二讲古希腊数学第三讲中国古代数学瑰宝第四讲平面解析几何的产生五讲微积分的诞生第六讲近代数学两巨星第七讲千古谜题第八讲对无穷的深入思考第九讲中国现代数学的开拓与发展选修3-2选修3-3第一讲从欧氏几何看球面第二讲球面上的距离和角第三讲球面上的基本图形第四讲球面三角形第五讲球面三角形的全等第六讲球面多边形与欧拉公式第七讲球面三角形的边角关系第八讲欧氏几何与非欧几何选修3-4第一讲平面图形的对称群第二讲代数学中的对称与抽象群的概念第三讲对称与群的故事选修4-1第一讲相似三角形的判定及有关性质第二讲直线与圆的位置关系第三讲圆锥曲线性质的探讨选修4-2第一讲线性变换与二阶矩阵第二讲变换的复合与二阶矩阵的乘法第三讲逆变换与逆矩阵第四讲变换的不变量与矩阵的特征向量选修4-3选修4-4第一讲坐标系第二讲参数方程选修4-5第一讲不等式和绝对值不等式第二讲证明不等式的基本方法第三讲柯西不等式与排序不等式第四讲数学归纳法证明不等式选修4-6第一讲整数的整除第二讲同余与同余方程第三讲一次不定方程第四讲数伦在密码中的应用选修4-7第一讲优选法第二讲试验设计初步选修4-8选修4-9第一讲风险与决策的基本概念第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介高中人教版(B)教材目录介绍必修一第一章集合1.1 集合与集合的表示方法1.2 集合之间的关系与运算第二章函数2.1 函数2.2 一次函数和二次函数2.3 函数的应用(Ⅰ)2.4 函数与方程第三章基本初等函数(Ⅰ)3.1 指数与指数函数3.2 对数与对数函数3.3 幂函数3.4 函数的应用(Ⅱ)必修二第一章立体几何初步1.1 空间几何体1.2 点、线、面之间的位置关系第二章平面解析几何初步2.1 平面真角坐标系中的基本公式 2.2 直线方程2.3 圆的方程2.4 空间直角坐标系必修三第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 中国古代数学中的算法案例第二章统计2.1 随机抽样2.2 用样本估计总体2.3 变量的相关性第三章概率3.1 随机现象3.2 古典概型3.3 随机数的含义与应用3.4 概率的应用必修四第一章基本初等函(Ⅱ)1.1 任意角的概念与弧度制1.2 任意角的三角函数 1.3 三角函数的图象与性质第二章平面向量2.1 向量的线性运算2.2 向量的分解与向量的坐标运算2.3 平面向量的数量积2.4 向量的应用第三章三角恒等变换3.1 和角公式3.2 倍角公式和半角公式3.3 三角函数的积化和差与和差化积必修五第一章解直角三角形1.1 正弦定理和余弦定理1.2 应用举例第二章数列2.1 数列2.2 等差数列2.3 等比数列第三章不等式3.1 不等关系与不等式3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单线性规划问题选修1-1第一章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线第三章导数及其应用3.1 导数3.2 导数的运算3.3 导数的应用选修1-2第一章统计案例第二章推理与证明第三章数系的扩充与复数的引入第四章框图选修4-5第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.2 排序不等式2.3 平均值不等式(选学)2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3.2 用数学归纳法证明不等式,贝努利不等式。
人教高中数学A版教材介绍修订(河南)
案例:函数概念的处理
(1)从典型实例出发引出函数概念 目的: ❖ 加强背景,体现“函数模型”思想; ❖ 加强概念形成过程; ❖ 在学生头脑中形成丰富的函数例证。 抽象概念的学习要从具体例证开始 理解抽象概念需要具体例证的支持
背景实例 归纳、概括 获得定义
(2)实例的选择 解析式、图象、表格
目的——形成正确的函数概念: ❖ 函数是刻画变量间依赖关系的法则; ❖ 不一定都有解析式,即y=f(x)可以是解析式,
案例:关于新增内容算法的整体定位
结合对具体数学实例的分析,体验程序框 图在解决问题中的作用、算法的要素、算法的基 本结构、基本语句等。
通过模仿、操作、探索,学习设计程序框图 表达解决问题的过程;体会算法的基本思想以及 算法的程序性、有限性和有效性,发展有条理的 思考与表达的能力,提高逻辑思维能力。
普通高中数学课程标准实验教科书
人 教 A版
教材课程分析
讲解人:孙利明
一、教材总体结构 二、教材教学基本观点与总体目标 三、教材编写指导思想 四、教科书改革的重点
五、实验教材的基本成果和问题
六、初高中衔接问题
七、教学的思考与建议
一、教材总体结构
选修专题
选修 系列
选修模块
系列2
系列1
选修2-3
选修1-2 选修1-1
2.强调问题性、启发性, 引导教、学方式的变革
遵循认知规律,以问题引导学习,体 现数学知识、学生认知的过程性,促使学 生主动探究,培养学生的创新意识和应用 意识,引导教、学方式的改进
案例:统计一章中的问题
章头图中的问题
数学3——第二章
沙漠化土地总面积,沙漠的扩张速度 “你知道这些数据是怎么来的吗?”
❖ 基础与创新
人教A版高中数学教材目录(全)
创作编号:BG7531400019813488897SX 创作者: 别如克*必修1第一章 集合与函数概念 1.1 集合1.2 函数及其表示 1.3 函数的基本性质第二章 基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数 2.3 幂函数第三章 函数的应用 3.1 函数与方程3.2 函数模型及其应用必修2第一章 空间几何体 1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章 点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章 直线与方程3.1 直线的倾斜角与斜率 3.2 直线的方程3.3 直线的交点坐标与距离公式 必修3第一章 算法初步1.1 算法与程序框图 1.2 基本算法语句 1.3 算法案例阅读与思考 割圆术第二章 统计 2.1 随机抽样阅读与思考 一个著名的案例阅读与思考 广告中数据的可靠性阅读与思考 如何得到敏感性问题的诚实反应2.2 用样本估计总体 阅读与思考 生产过程中的质量控制图2.3 变量间的相关关系 阅读与思考 相关关系的强与弱第三章 概率3.1 随机事件的概率阅读与思考 天气变化的认识过程3.2 古典概型 3.3 几何概型必修4第一章 三角函数 1.1 任意角和弧度制创作编号:BG7531400019813488897SX 创作者: 别如克*1.2 任意角的三角函数 1.3 三角函数的诱导公式 1.4 三角函数的图象与性质 1.5 函数y=Asin (ωx+ψ) 1.6 三角函数模型的简单应用第二章 平面向量 2.1 平面向量的实际背景及基本概念 2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例第三章 三角恒等变换 3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换必修5第一章 解三角形1.1正弦定理和余弦定理 1.2应用举例 1.3实习作业第二章 数列2.1数列的概念与简单表示法 2.2等差数列2.3等差数列的前n 项和 2.4等比数列2.5等比数列的前n 项和第三章 不等式3.1不等关系与不等式3.2一元二次不等式及其解法 3.3二元一次不等式(组)与简单的线性规划问题 3.3.1二元一次不等式(组)与平面区域3.3.2简单的线性规划问题 3.4基本不等式选修1-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1椭圆2.2双曲线2.3抛物线第三章导数及其应用3.1变化率与导数3.2导数的计算3.3导数在研究函数中的应用3.4生活中的优化问题举例选修1-2第一章统计案例1.1回归分析的基本思想及其初步应用1.2独立性检验的基本思想及其初步应用第二章推理与证明2.1合情推理与演绎证明2.2直接证明与间接证明第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念创作编号:BG7531400019813488897SX创作者:别如克*3.2复数代数形式的四则运算第四章框图4.1流程图4.2结构图选修2-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线第三章空间向量与立体几何3.1空间向量及其运算3.2立体几何中的向量方法选修2-2第一章导数及其应用1.1变化率与导数1.2导数的计算1.3导数在研究函数中的应用1.4生活中的优化问题举例1.5定积分的概念1.6微积分基本定理1.7定积分的简单应用第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算选修2-3第一章计数原理1.1分类加法计数原理与分步乘法计数原理1.2排列与组合1.3二项式定理第二章随机变量及其分布2.1离散型随机变量及其分布列2.2二项分布及其应用2.3离散型随机变量的均值与方差2.4正态分布第三章统计案例3.1回归分析的基本思想及其初步应用3.2独立性检验的基本思想及其初步应用选修3-1第一讲早期的算术与几何第二讲古希腊数学第三讲中国古代数学瑰宝第四讲平面解析几何的产生第五讲微积分的诞生第六讲近代数学两巨星第七讲千古谜题第八讲对无穷的深入思考第九讲中国现代数学的开拓与发展选修3-2选修3-3第一讲从欧氏几何看球面第二讲球面上的距离和角第三讲球面上的基本图形作编号:BG7531400019813488897SX作者:别如克*第四讲球面三角形第五讲球面三角形的全等第六讲球面多边形与欧拉公式第七讲球面三角形的边角关系第八讲欧氏几何与非欧几何选修3-4第一讲平面图形的对称群第二讲代数学中的对称与抽象群的概念第三讲对称与群的故事选修4-1第一讲相似三角形的判定及有关性质第二讲直线与圆的位置关系第三讲圆锥曲线性质的探讨选修4-2第一讲线性变换与二阶矩阵第二讲变换的复合与二阶矩阵的乘法第三讲逆变换与逆矩阵第四讲变换的不变量与矩阵的特征向量选修4-3选修4-4第一讲坐标系第二讲参数方程选修4-5第一讲不等式和绝对值不等式第二讲证明不等式的基本方法第三讲柯西不等式与排序不等式第四讲数学归纳法证明不等式选修4-6第一讲整数的整除第二讲同余与同余方程第三讲一次不定方程第四讲数伦在密码中的应用选修4-7第一讲优选法第二讲试验设计初步选修4-8选修4-9第一讲风险与决策的基本概念第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介高中人教版(B)教材目录介绍必修一第一章集合1.1 集合与集合的表示方法1.2 集合之间的关系与运算第二章函数2.1 函数2.2 一次函数和二次函数2.3 函数的应用(Ⅰ)2.4 函数与方程第三章基本初等函数(Ⅰ)3.1 指数与指数函数3.2 对数与对数函数3.3 幂函数3.4 函数的应用(Ⅱ)必修二第一章立体几何初步1.1 空间几何体1.2 点、线、面之间的位置关系第二章平面解析几何初步2.1 平面真角坐标系中的基本公式2.2 直线方程2.3 圆的方程2.4 空间直角坐标系必修三第一章算法初步作编号:BG7531400019813488897SX创作者: 别如克*1.1 算法与程序框图1.2 基本算法语句1.3 中国古代数学中的算法案例第二章 统计 2.1 随机抽样2.2 用样本估计总体 2.3 变量的相关性第三章 概率 3.1 随机现象3.2 古典概型3.3 随机数的含义与应用 3.4 概率的应用必修四第一章 基本初等函(Ⅱ) 1.1 任意角的概念与弧度制1.2 任意角的三角函数 1.3 三角函数的图象与性质第二章 平面向量 2.1 向量的线性运算2.2 向量的分解与向量的坐标运算2.3 平面向量的数量积 2.4 向量的应用第三章 三角恒等变换 3.1 和角公式3.2 倍角公式和半角公式 3.3 三角函数的积化和差与和差化积必修五 第一章 解直角三角形 1.1 正弦定理和余弦定理1.2 应用举例第二章 数列 2.1 数列2.2 等差数列 2.3 等比数列第三章 不等式3.1 不等关系与不等式3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用 3.5 二元一次不等式(组)与简单线性规划问题选修1-1第一章 常用逻辑用语 1.1 命题与量词1.2 基本逻辑联结词 1.3 充分条件、必要条件与命题的四种形式第二章 圆锥曲线与方程 2.1 椭圆2.2 双曲线 2.3 抛物线第三章 导数及其应用3.1 导数3.2 导数的运算 3.3 导数的应用选修1-2第一章 统计案例 第二章 推理与证明 第三章 数系的扩充与复数的引入 第四章 框图选修4-5第一章 不等式的基本性质和证明的基本方法 1.1 不等式的基本性质和一元二次不等式的解法 1.2 基本不等式1.3 绝对值不等式的解法 1.4 绝对值的三角不等式 1.5 不等式证明的基本方法第二章 柯西不等式与排序不等式及其应用 2.1 柯西不等式2.2 排序不等式2.3 平均值不等式(选学) 2.4 最大值与最小值问题,优化的数学模型第三章 数学归纳法与贝努利不等式3.1 数学归纳法原理3.2 用数学归纳法证明不等式,贝努利不等式作编号:BG7531400019813488897SX作编号:BG7531400019813488897SX 作者: 别如克*作者: 别如克*。
人教A版高中数学教材目录(全)
必修 1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质第二章基本初等函数(Ⅰ)2. 1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用3. 1 函数与方程3.2 函数模型及其应用必修 2第一章空间几何体1 .1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2 .1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程3. 1 直线的倾斜角与斜率3.2 直线的方程3 . 3 直线的交点坐标与距离公式必修 3第一章算法初步1 .1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术第二章统计2 .1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2 .2 用样本估计总体阅读与思考生产过程中的质量控制图人教 A 版高中数学目录2. 3 变量间的相关关系阅读与思考相关关系的强与弱第三章概率3 .1 随机事件的概率阅读与思考天气变化的认识过程3. 2 古典概型3. 3 几何概型必修 4第一章三角函数1 .1 任意角和弧度制1. 2 任意角的三角函数1. 3 三角函数的诱导公式1. 4 三角函数的图象与性质1. 5 函数 y=Asin (ωx+ψ)1. 6 三角函数模型的简单应用第二章平面向量2 .1 平面向量的实际背景及基本概念2. 2 平面向量的线性运算2. 3 平面向量的基本定理及坐标表示2. 4 平面向量的数量积2. 5 平面向量应用举例第三章三角恒等变换3 .1 两角和与差的正弦、余弦和正切公式3. 2 简单的三角恒等变换必修 5第一章解三角形1.1 正弦定理和余弦定理1.2 应用举例1.3 实习作业第二章数列2.1 数列的概念与简单表示法2.2 等差数列2.3 等差数列的前n 项和2.4 等比数列2.5 等比数列的前n 项和第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题3.3.1 二元一次不等式(组)与平面区域3.3.2 简单的线性规划问题3.4 基本不等式选修 1-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线第三章导数及其应用3.1 变化率与导数3.2 导数的计算3.3 导数在研究函数中的应用3.4 生活中的优化问题举例选修 1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用第二章推理与证明2.1合情推理与演绎证明2.2直接证明与间接证明第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算第四章框图4. 1 流程图4. 2 结构图人教 A 版高中数学目录选修 2-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线第三章空间向量与立体几何3.1空间向量及其运算3.2 立体几何中的向量方法选修 2-2第一章导数及其应用1.1变化率与导数1.2导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5定积分的概念1.6微积分基本定理1.7定积分的简单应用第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算选修 2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理1.2排列与组合1.3二项式定理第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2二项分布及其应用2.3 离散型随机变量的均值与方差2.4正态分布第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用选修 3-1第一讲早期的算术与几何第二讲古希腊数学第三讲中国古代数学瑰宝人教 A 版高中数学目录选修 3-2选修 3-3第一讲从欧氏几何看球面第二讲球面上的距离和角第三讲球面上的基本图形第四讲球面三角形第五讲球面三角形的全等第六讲球面多边形与欧拉公式第七讲球面三角形的边角关系第八讲欧氏几何与非欧几何第二讲直线与圆的位置关系第三讲圆锥曲线性质的探讨选修 4-2第一讲线性变换与二阶矩阵第二讲变换的复合与二阶矩阵的乘法第三讲逆变换与逆矩阵第四讲变换的不变量与矩阵的特征向量选修 4-3选修 4-4第一讲坐标系第二讲参数方程第四讲平面解析几何的产生第五讲微积分的诞生第六讲近代数学两巨星第七讲千古谜题第八讲对无穷的深入思考第九讲中国现代数学的开拓与发展选修 3-4第一讲平面图形的选修 4-5对称群第一讲不等式和绝对值不等式第二讲代数学中的对称与抽象群的概念第二讲证明不等式的基本方法第三讲对称与群的故事第三讲柯西不等式与排序不等式选修 4-1第四讲数学归纳法证明不等式第一讲相似三角形的判定及有关性质选修 4-6第一讲整数的整除第二讲同余与同余方程第三讲一次不定方程第四讲数伦在密码中的应用选修 4-7第一讲优选法第二讲试验设计初步选修 4-8选修 4-9第一讲风险与决策的基本概念第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介高中人教版( B)教材目录介绍必修一第一章集合1. 1 集合与集合的表示方法1.2 集合之间的关系与运算人教 A 版高中数学目录第二章函数2.1 函数2. 2 一次函数和二次函数2. 3 函数的应用(Ⅰ)2. 4 函数与方程第三章基本初等函数(Ⅰ)3 .1 指数与指数函数3. 2 对数与对数函数3.3 幂函数3. 4 函数的应用(Ⅱ)必修二第一章立体几何初步1.1 空间几何体1. 2 点、线、面之间的位置关系第二章平面解析几何初步2 .1 平面真角坐标系中的基本公式2. 2 直线方程2. 3 圆的方程2. 4 空间直角坐标系必修三第一章算法初步1.1 算法与程序框图1. 2 基本算法语句1. 3 中国古代数学中的算法案例第二章统计2.1 随机抽样2. 2 用样本估计总体2. 3 变量的相关性第三章概率3.1 随机现象3. 2 古典概型3. 3 随机数的含义与应用3. 4 概率的应用必修四第一章基本初等函(Ⅱ )1 .1 任意角的概念与弧度制1. 2 任意角的三角函数1. 3 三角函数的图象与性质第二章平面向量2 .1 向量的线性运算2 .2 向量的分解与向量的坐标运算2. 3 平面向量的数量积2.4 向量的应用第三章三角恒等变换3.1 和角公式3.2 倍角公式和半角公式3.3 三角函数的积化和差与和差化积必修五第一章解直角三角形1.1 正弦定理和余弦定理1.2 应用举例第二章数列2.1 数列2.2 等差数列2.3 等比数列第三章不等式3 .1 不等关系与不等式3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单线性规划问题选修 1-1第一章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线第三章导数及其应用3.1 导数3.2 导数的运算3.3 导数的应用选修 1-2第一章统计案例第二章推理与证明第三章数系的扩充与复数的引入第四章框图选修 4-5第一章不等式的基本性质和证明的基本方法1 .1 不等式的基本性质和一元二次不等式的解法1.2 基本不等式人教 A 版高中数学目录1.3 绝对值不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法第二章柯西不等式与排序不等式及其应用2. 1 柯西不等式2.2 排序不等式2.3 平均值不等式 ( 选学 )2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3. 1 数学归纳法原理3.2 用数学归纳法证明不等式,贝努利不等式。
高中数学选修3-1-1.4.2 费马与他的解析几何-课件
• 利用费马小定理,是目前最有效的鉴定 质数的方法。
知识梳理
费马大定理
• 1637年前后,费马在《算术》这本书的 靠近问题8的页边处记下这样ቤተ መጻሕፍቲ ባይዱ个结论 (现在的写法):
如果n 2,则方程xn yn zn没有非零整数解。
• 同时又写下一个附加的评注:“对于该 命题,我确信已发现一种奇妙的证明, 可惜这里的空白太小,写不下”。
• 当n=1时,22n+1=221+1=5; • 当n=2时,22n+1=222+1=17; • 当n=3时,22n+1=223+1=257; • 当n=4时,22n+1=224+1=65537; • 猜测:只要n是自然数, 22n+1一定是质数 • 1732年,欧拉进行了否定
知识梳理
费马小定理
• 如果P是一个质数,那么对于任何自然数 n,nP-n一定能够被P整除。
知识梳理
费马大定理产生的历史性背景
费尔马大定理,启源于两千多年前, 挑战人类三个多世纪,多次震惊全世 界,耗尽人类最杰出大脑的精力,也 让千千万万业余者痴迷 。
古希腊,丢番图《算术》第II卷第八命题: “将一个平方数分为两个平方数”; 即求方程x2 + y2 = z2 的正整数解。
知识梳理
毕达哥拉斯定理: 在直角三角形中,斜边的平 方等于两直角边的平方之和。 x2 + y2 = z2 .
知识梳理
➢代数数论与代数几何已密不可分,特别是韦 依猜想证明之后,这种关系越发密切,有一些 统一的猜想,如贝林森猜想等正等待大手笔的 解决。
知识梳理
➢代数曲线论仍有一些遗留问题,特别是椭圆 曲线的三大猜想仍然迫在眉睫,但人们已经 开始向代数曲线进军了。代数曲面问题很难, 但是这条路肯定要走。
人教A版高中数学选修3-1-4.2 笛卡尔坐标系-教案设计
笛卡尔坐标系【教学目标】1.知识与技能了解笛卡尔坐标系的相关内容。
2.过程与方法用通俗易懂的语言,深入浅出地介绍该节课的基本教学内容及其基本思想。
引导学生简述相应的教学内容。
在学习过程中,可以针对学生的实际情况,布置不同的任务,采用自主学习与合作学习相结合的方式组织教学活动。
3.情感、态度与价值观让学生对于数学的科学价值和文化价值有更多的认识,开阔学生的视野,从数学的发展或从一个具体的数学分支,来认识数学的魅力和价值。
【教学重难点】重点:笛卡尔坐标系的相关内容的了解。
难点:简述笛卡尔坐标系的过程。
【教学过程】一、直接引入师:今天这节课我们主要学习笛卡尔坐标系。
我们主要了解它的具体内容。
二、讲授新课(1)教师引导学生在预习的基础上了解笛卡尔坐标系的内容,形成初步感知。
(2)首先,我们先来学习笛卡尔坐标系。
笛卡尔,法国数学家、科学家和哲学家。
他是西方近代资产阶级哲学奠基人之一。
他的哲学与数学思想对历史的影响是深远的。
人们在他的墓碑上刻下了这样一句话:“笛卡尔,欧洲文艺复兴以来,第一个为人类争取并保证理性权利的人。
”在数学里,笛卡儿坐标系(Cartesian坐标系),也称直角坐标系,是一种正交坐标系。
二维的直角坐标系是由两条相互垂直、0点重合的数轴构成的。
在平面内,任何一点的坐标是根据数轴上对应的点的坐标设定的。
在平面内,任何一点与坐标的对应关系,类似于数轴上点与坐标的对应关系。
欧拉-笛卡儿公式,是几何学中的一个公式。
该公式的内容为:在任意凸多面体,设V为顶点数,E为棱数,F是面数,则V−E+F=2。
该公式最早由法国数学家笛卡儿于1635年左右证明,但不为人知。
后瑞士数学家莱昂哈德·欧拉于1750年独立证明了这个公式。
1860年,笛卡儿的工作被发现,此后该公式遂被称为欧拉-笛卡儿公式。
三、课堂总结这节课我们主要讲了哪些内容?笛卡儿坐标系【学习目标】1.了解笛卡尔的数学成就2.能够尝试运用笛卡尔的方法论解决现实中的问题3.激发学生的学习热情与求知欲,培养积极进取的精神【学习重难点】重点:了解笛卡尔的数学成就难点:理解笛卡尔方法的内涵【学习过程】一、新课学习1.1596年,哲学家、数学家笛卡尔出生在法国的一个上层社会家庭。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
谢谢
在没找到重新开始的理由前,别给自己太多退却的借口。就在那一瞬间,我仿佛听见了全世界崩溃的声音。因为穷人很多,并且穷人没有钱,所以,他们才会在网络上聊 了答应自己要做的事情,别忘了答应自己要去的地方,无论有多难,有多远。分手后不可以做朋友,因为彼此伤害过;不可以做敌人,因为彼此深爱过,所以只好成了最 只有站在足够的高度才有资格被仰望。渐渐淡忘那些过去,不要把自己弄的那么压抑。往往原谅的人比道歉的人还需要勇气。因为爱,割舍爱,这种静默才是最深情的告 时光已成过往,是我再也回不去的远方。不要把自己的伤口揭开给别人看,世界上多的不是医师,多的是撒盐的人。这世界,比你不幸的人远远多过比你幸运的人,路要 的那一步很激动人心,但大部分的脚步是平凡甚至枯燥的,但没有这些脚步,或者耐不住这些平凡枯燥,你终归是无法迎来最后的'那些激动人心。一个人害怕的事,往往 都会有乐观的心态,每个人也会有悲观的现状,可事实往往我们只能看到乐观的一面,却又无视于悲观的真实。从来没有人喜欢过悲观,也没有人能够忍受悲观,这就是 就会缅怀过去,无论是幸福或是悲伤,苍白或是绚烂,都会咀嚼出新的滋味。要让事情改变,先改变我自己;要让事情变得更好,先让自己变得更好。当日子成为照片当 背对背行走的路人,沿着不同的方向,固执的一步步远离,再也没有回去的路。想要别人尊重你,首先就要学会尊重别人。所有的胜利,与征服自己的胜利比起来,都是 与失去自己的失败比起来,更是微不足道。生命不在于活得长与短,而在于顿悟的早与晚。既不回头,何必不忘。既然无缘,何须誓言。感谢上天我所拥有的,感谢上天 千万条,成功的人生也有千万种,选对适合自己的那条路,走好自己的每段人生路,你一定会是下一个幸福宠儿。活在别人的掌声中,是禁不起考验的人。每一次轻易的 笔。什么时候也不要放弃希望,越是险恶的环境越要燃起希望的意志。现实会告诉你,没有比记忆中更好的风景,所以最好的不要故地重游。有些记忆就算是忘不掉,也 满,现实很骨感。我落日般的忧伤就像惆怅的飞鸟,惆怅的飞鸟飞成我落日般的忧伤。舞台上要尽情表演,赛场上要尽力拼搏,工作中要任劳任怨,事业上要尽职尽责。 乐,今天的抗争为了明天的收获!积德为产业,强胜于美宅良田。爱情永远比婚姻圣洁,婚姻永远比爱情实惠。爱有两种,一种是抓住,你紧张他也紧张;一种是轻松拖 人无忧,智者常乐。并不是因为所爱的一切他都拥有了,而是所拥有的一切他都爱。原来爱情不是看见才相信,而是相信才看得见。磨难是化了妆的幸福。如果你明明知 者选择说出来,或者装作不知道,万不要欲言又止。有时候留给别人的伤害,选择沉默比选择坦白要痛多了。我爱自己的内心,慢慢通过它,慢慢抵达世界,或者,抵达 我忘记一切,时间不会改变痛,只会让我适应痛。人生不容许你任性,接受现实,好好努力。曾经以为爱情是甜蜜,幸福的,不知道它也会伤人,而且伤的很痛,很痛。 出的代价却是好些年的失败。时间几乎会愈合所有事情,请给时间一点时间。蚁穴虽小,溃之千里。多少人要离开这个世间时,都会说出同一句话,这世界真是无奈与凄 孵出来的却是失败。太完美的爱情,我不相信,途中聚聚散散难舍难分,终有一天会雨过天晴。我分不清东南西北,却依然固执的喜欢乱走。若是得手,便是随手可丢; 爱情不是寻找共同点,而是学会尊重不同点。总有一天我会从你身边默默地走开,不带任何声响。我错过了狠多,我总是一个人难过,3、戏路如流水,从始至终,点滴不 未变,终归大海。一步一戏,一转身一变脸,扑朔迷离。真心自然流露,举手投足都是风流戏。一旦天幕拉开,地上再无演员。 相信自己有福气,但不要刻意拥有;相信 绝眼泪;相信世上有好人,但一定要防范坏人;相信金钱能带来幸福,但不要倾其一生;相信真诚,但不要指责所有虚伪;相信成功,但不要逃避失败;相信缘分,但不 但不要求全责备;相信上帝,但别忘了锁上门。 一个人总要走陌生的路,看陌生的风景,听陌生的歌。最后你会发现,原本费尽心机想要忘记的事情真的就那么忘记了明 每次却总是不自觉的想起那个给与温暖的人;每每又总是在微笑沉醉时看到了现实,想到了伤痛,然后,冷的感觉再也暖和不起来了,如此反复,心,终于累了,现实就 又最终醒来,我正在行走,却找不到方向。 有些人,注定是等待别人的,有些人,注定是被人等的。一件事,再美好,你做不到,也要放弃;一个人,再留恋,不属于你 生命都免不了缺憾,最真的幸福,莫过于一杯水、一块面包、一张床,还有一双无论风雨,都和你十指相扣的手。 有些伤痕,划在手上,愈合后就成了往事;有些伤痕, 轻,也会留驻于心;有些人,近在咫尺,却是一生无缘的生命中,似乎总有一种承受不住的痛;有些遗憾,注定了要背负一辈子。生命中,总有一些精美的情感在我们身 留在了岁暮回首的刹那。 这世界并不是所有的东西都符合想象,有些时候,山是水的故事,云是风的故事;也有些时候,星不是夜的故事,情不是爱的故事,许多人走着 着看着就淡了,许多梦做着做着就断了,许多泪流着流着就干了。人生,原本就是风尘中的沧海桑田,只是,回眸处,世态炎凉演绎成了苦辣酸甜。 正所谓“独乐乐不如众 离开了原主人的手里,并实现了更有意义的价值。此刻,送人玫瑰这定是开心的,得玫�
笛卡尔的《几何学》共分三卷,第一卷讨论尺规作 图;第二卷是曲线的性质;第三卷是立体和“超立体” 的作图,但他实际是代数问题,探讨方程的根的性质。 后世的数学家和数学史学家都把笛卡尔的《几何学》作
为解析几何的起点。
❖ 笛卡儿的理论以两个观念为基础:坐标观念 和利用坐标方法把带有两个未知数的任意代 数方程看成平面上的一条曲线。
❖ 著作:《几何学》。笛卡《几何学》所阐述 的思想,被弥尔称作“精密科学进步中最伟 大的一步”。
解析几何诞生二(费马《平面与立体轨迹引论》 )
❖ 他用代数方法对阿波罗尼奥斯关于轨迹的一些失 传的证明作了补充,对古希腊几何学,尤其是阿波 罗尼奥斯圆锥曲线论进行了总结和整理,对曲线作 了一般研究。并于1630年用拉丁文撰写了仅有八 页的论文《平面与立体轨迹引论》。
学科创建人
笛卡尔
费马
解析几何的诞生一(笛卡尔 《几何学》)
❖ 1637年,法国的哲学家和数学家笛卡尔发表了他 的著作 《方法论》,这本书的后面有三篇附录, 一篇叫《折光学》,一篇叫《流星学》,一篇叫 《几何学》。当时的这个“几何学”实际上指的 是数学,就像我国古代“算数”和“数学”是一 个意思。
在1643年的一封信里,费马也谈到了他的解析几 何思想。他谈到了柱面、椭圆抛物面、双叶双曲面 和椭球面,指出:含有三个未知量的方程表示一个 曲面,并对此做了进一步地研究。
解析几何就这样诞生和发展了
解析几何诞生意义
❖ 解析几何的创立,引入了一系列新的数学概念,特 别是将变量引入数学,使数学进入了一个新的发展 时期,这就是变量数学的时期。解析几何在数学发 展中起了推动作用。恩格斯对此曾经作过评价“数 学中的转折点是笛卡尔的变数,有了变数,运动进 入了数学;有了变数,辩证பைடு நூலகம்进入了数学;有了变 数,微分和积分也就立刻成为必要的了,……”
解析几何的进一步发展
解析几何是变量数学最重要的
体现解析几何的基本思想是在平面上 引入“坐标”的概念,并借助这种坐 标在平面上的点和有序实数对(x,y) 建立一一对应的关系,于是几何问题 就转化为代数问题。
解析几何产生原因
❖ 十六世纪以后,由于生产和科学技术的发展,天文、 力学、航海等方面都对几何学提出了新的需要。比 如,德国天文学家开普勒发现行星是绕着太阳沿着 椭圆轨道运行的,太阳处在这个椭圆的一个焦点上; 意大利科学家伽利略发现投掷物体是沿着抛物线运 动的。这些发现都涉及到圆锥曲面,要研究这些比 较复杂的曲线,原先的一套方法显然已经不适应了, 这就导致了解析几何的出现。
❖ 笛卡儿是从一个轨迹来寻找它的方程的,而 费马则是从方程出发来研究轨迹的,这正是 解析几何基本原则的两个相对的方面。
《平面与立体轨迹引论》中道出了费马的发现。他 指出:“两个未知量决定的—个方程式对应着一条 轨迹,可以描绘出一条直线或曲线。” 费马的发现 比勒奈•笛卡儿发现解析几何的基本原理还早七年。 费马在书中还对一般直线和圆的方程、以及关于双 曲线、椭圆、抛物线进行了讨论。