复变函数第四版余家荣答案
复变函数(第四版余家荣)4
如果函数 f ( x) 在 | x x0 | a 内有无限阶导数 , 则
其中 所以
当且仅当
复函数在一点的邻域内 能够展开成幂级数的条 件是什么? 问题:
设 f ( z )在 U {z :| z z0 | R}内解析 . 则对任意 z U , 有
由于
z z 0
c
所以级数 所以级数
f ( z) 在上一致收敛于 . 所以 m 1 ( z z0 )
例 求函数
解 当1 | z | 2 时,
r2
r1
2
z0
1
R1
R2
问题: 关于 Laurent系数 an , 是否有
z
命题 设 f ( z )在 R1 | z z0 | R2 内解析 , 那么 f ( z )在 R1 | z z0 | R2 内的
Laurent 展式是唯一的 .
证明
设
1 在上有界,所以 此Laurent展式在 上一致收敛 . 由于 m 1 ( z z0 )
证明
r2
如果 2 ,则
r1
2
z0
1
R1
R2
z
因为
所以
在 2上一致收敛 . 由于 f ( )在 2 上有界, 所以
r2
在 2上一致收敛 .
r1
2
z0
1
R1
R2
如果 1 ,则
z
在 1上一致收敛 . 由此得
在 1上也一致收敛 . 所以
其中
由Cauchy积分定理得
n
定理 设
(1) f ( z ) 在区域 D内解析 ,
(2) 存在 f ( z ) 的零点构成的序列 {zn }, {zn }收敛于 z0 D.
复变函数课后习题答案(全)
精心整理页脚内容习题一答案1. 求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+(2)(1)(2)i i i --(3)131i i i--(4)8214i i i -+-解:(1)1323213iz i -==+, 因此:32Re , Im 1313z z ==-,(2)3(1)(2)1310i i iz i i i -+===---,因此,31Re , Im 1010z z =-=,(3)133335122i i iz i i i --=-=-+=-, 因此,35Re , Im 32z z ==-,(4)82141413z i i i i i i =-+-=-+-=-+ 因此,Re 1, Im 3z z =-=,2. 将下列复数化为三角表达式和指数表达式: (1)i (2)13i -+(3)(sin cos )r i θθ+(4)(cos sin )r i θθ-(5)1cos sin (02)i θθθπ-+≤≤解:(1)2cossin22iii e πππ=+=(2)13i -+23222(cos sin )233i i e πππ=+=(3)(sin cos )r i θθ+()2[cos()sin()]22ir i reπθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin2sin cos 222i i θθθθθ-+=+精心整理页脚内容3. 求下列各式的值: (1)5(3)i -(2)100100(1)(1)i i ++-(3)(13)(cos sin )(1)(cos sin )i i i i θθθθ-+--(4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+-(5)3i (6)1i +解:(1)5(3)i -5[2(cos()sin())]66i ππ=-+- (2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(13)(cos sin )(1)(cos sin )i i i i θθθθ-+--(4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+- (5)3i 3cossin22i ππ=+(6)1i +2(cossin )44i ππ=+ 4. 设121, 3,2iz z i +==-试用三角形式表示12z z 与12z z解:12cossin, 2[cos()sin()]4466z i z i ππππ=+=-+-,所以12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+,5. 解下列方程: (1)5()1z i +=(2)440 (0)z a a +=>解:(1)51,z i +=由此2551k i z i ei π=-=-,(0,1,2,3,4)k =(2)4444(cos sin )za a i ππ=-=+11[cos (2)sin (2)]44a k i k ππππ=+++,当0,1,2,3k =时,对应的4个根分别为:精心整理页脚内容(1), (1), (1), (1)2222a a a a i i i i +-+--- 6. 证明下列各题:(1)设,zx iy =+则2x y z x y+≤≤+证明:首先,显然有22z x y x y =+≤+;其次,因222,x y x y +≥固此有2222()(),x y x y +≥+从而222x y z x y +=+≥。
高等教育出版社《复变函数》与《积分变换》第四版课后习题参考答案
26 7
−
π
+
2kπ
= arctan 26 + (2k −1)π ,
7
k = 0,±1,±2," .
( ) ( ) (4) i8 − 4i21 + i = i2 4 − 4 i2 10i + i = (−1)4 − 4(− )1 10i + i
所以
= 1 − 4i + i = 1 − 3i
{ } { } Re i8 − 4i21 + i = 1, Im i8 − 4i21 + i = −3
习题一解答
1.求下列复数的实部与虚部、共轭复数、模与辐角。
(1) 1 ; (2)1 − 3i ; (3) (3 + 4i)(2 − 5i) ;
3 + 2i
i 1−i
2i
解
(1)
1 3 + 2i
=
(3
+
3 − 2i
2i)(3 −
2i)
=
1 13
(3
−
2i)
所以
(4)i8 − 4i 21 + i
Re⎨⎧ ⎩3
2)如果 R(z) 为 1)中的有理分式函数,但具有实系数,那么 R(z ) = X − iY ;
3)如果复数 a + ib 是实系数方程
a0 zn + a1zn−1 +" + an−1z + an = 0
的根,那么 a − ib 也是它的根。
证 1) R(z) = P(z) = P(z)Q(z) = Re(P(z)Q(z)) + Im(P(z)Q(z)) ;
3i 1−
复变函数课后习题答案(全)
创作编号:BG7531400019813488897SX创作者:别如克*习题一答案1.求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+(2)(1)(2)ii i--(3)131ii i--(4)8214i i i-+-解:(1)1323213i zi-==+,因此:32 Re, Im1313 z z==-,232arg arctan,31313z z z i==-=+(2)3(1)(2)1310i i izi i i-+===---,因此,31Re, Im1010z z=-=,131arg arctan,31010 z z z iπ==-=--(3)133335122i i iz ii i--=-=-+=-,因此,35Re, Im32z z==-,535,arg arctan,232iz z z+ ==-=(4)82141413z i i i i i i=-+-=-+-=-+因此,Re1,Im3z z=-=,arg arctan3,13z z z iπ==-=--2. 将下列复数化为三角表达式和指数表达式: (1)i (2)1-+ (3)(sin cos )r i θθ+(4)(cos sin )r i θθ-(5)1cos sin (02)i θθθπ-+≤≤解:(1)2cossin22iii e πππ=+=(2)1-+23222(cos sin )233i i e πππ=+=(3)(sin cos )r i θθ+()2[cos()sin()]22ir i reπθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+ 22sin [cossin]2sin 2222ii eπθθπθπθθ---=+=3. 求下列各式的值:(1)5)i - (2)100100(1)(1)i i ++-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+-(5(6解:(1)5)i -5[2(cos()sin())]66i ππ=-+-5552(cos()sin()))66i i ππ=-+-=-+(2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+--2[cos()sin()](cos sin)33)sin()][cos()sin()]44i ii iππθθππθθ-+-+=-+--+-)sin()](cos2sin2)1212i iππθθ=-+-+(2)12)sin(2)]1212iiπθππθθ-=-+-=(4)23(cos5sin5)(cos3sin3)iiϕϕϕϕ+-cos10sin10cos19sin19cos(9)sin(9)iiiϕϕϕϕϕϕ+==+-+-(5=11cos(2)sin(2)3232k i kππππ=+++1,0221,122,2i ki ki k+=⎪⎪⎪=-+=⎨⎪-=⎪⎪⎩(6=11(2)sin(2)]2424k i kππππ=+++88,0,1iie ke kππ==⎪=⎩4.设12,z z i==-试用三角形式表示12z z与12zz解:12cos sin, 2[cos()sin()]4466 z i z iππππ=+=-+-,所以12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+,12z z 1155[cos()sin()](cos sin )2464621212i i ππππππ=+++=+ 5. 解下列方程: (1)5()1z i += (2)440 (0)z a a +=>解:(1)z i += 由此25k i z i ei π=-=-, (0,1,2,3,4)k =(2)z==11[cos (2)sin (2)]44a k i k ππππ=+++,当0,1,2,3k =时,对应的4个根分别为:(1), 1), 1), )i i i i +-+--- 6. 证明下列各题:(1)设,zx iy =+z x y≤≤+证明:首先,显然有z x y =≤+;创作编号:BG7531400019813488897SX创作者: 别如克*其次,因222,x y x y +≥ 固此有2222()(),x y x y +≥+从而z =≥。
大学教材课后题答案网站
大学教材部分答案参考网站 (供大家学习)1、C 程序设计第三版 (谭浩强著) 清华大学出版社课后答案/bbs/viewthread.php?tid=80&fromuid=92、复变函数与积分变换第四版 (张元林西安交大著) 高等教育出版社课后答案/bbs/viewthread.php?tid=612&fromuid=9C 语言程序设计教程第三版(谭浩强张基温著) 高等教育出版社课后答案[khdaw_lxywyl]/bbs/viewthread.php?tid=79&fromuid=9C 语言程序设计教程第二版 (谭浩强张基温著) 高等教育出版社课后答案【khdaw】/bbs/viewthread.php?tid=256&fromuid=9离散数学(第三版)(耿素云屈婉玲张立昂著) 清华大学出版社课后答案【khdaw_ricardo】/bbs/viewthread.php?tid=293&fromuid=9耿国华数据结构课后答案/bbs/viewthread.php?tid=103&fromuid=9严蔚敏《数据结构(c 语言版)习题集》答案/bbs/viewthread.php?tid=102&fromuid=9谭浩强C++程序设计习题答案/bbs/viewthread.php?tid=420&fromuid=9《微机原理与接口技术》清华(冯博琴吴宁)版课后答案/bbs/viewthread.php?tid=707&fromuid=9数据库系统概论 (王珊萨师煊著) 清华大学出版社课后答案/bbs/viewthread.php?tid=991&fromuid=9C 程序设计第二版 (谭浩强著) 课后答案/bbs/viewthread.php?tid=47&fromuid=9清华大学《数据结构》习题+课后答案/bbs/viewthread.php?tid=249&fromuid=9《数学物理方法》(梁昆淼第二版)习题解答谢希仁版《计算机网络教程》课后答案/bbs/viewthread.php?tid=203&fromuid=9《计算机网络第四版》答案【khdaw】/bbs/viewthread.php?tid=340&fromuid=9数据结构习题集(C 版)答案/bbs/viewthread.php?tid=374&fromuid=9计算机操作系统 (汤子赢著) 西安电子科技大学课后答案/bbs/viewthread.php?tid=1083&fromuid=9离散数学 (左孝凌著) 上海科学技术文献出版社课后答案【khdaw】/bbs/viewthread.php?tid=466&fromuid=9近世代数基础 (刘绍学著) 高等教育出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=177&fromuid=9计算机组成原理习题&答案唐朔飞高等教育出版社【khdaw】/bbs/viewthread.php?tid=984&fromuid=9计算机网络(第4 版)清华(Andrew S.Tanenbaum)版答案(中文版)【khdaw】/bbs/viewthread.php?tid=201&fromuid=9《常微分方程》王高雄高等教育出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=567&fromuid=9数学分析(陈传璋版)习题答案下载/bbs/viewthread.php?tid=714&fromuid=9计算机算法设计与分析(第 3 版) (王晓东著) 电子工业出版社课后答案【khdaw_ricardo】/bbs/viewthread.php?tid=3162&fromuid=9《计算机系统结构》清华第2 版习题解答(chm)【khdaw】/bbs/viewthread.php?tid=1303&fromuid=9《编译原理》课后习题答案/bbs/viewthread.php?tid=175&fromuid=9《计算机网络》(第三版) (Andrew S.Tanenbaum 著) 清华大学出版社课后答案《软件工程》课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=896&fromuid=9C++语言程序设计(第3 版) (郑莉著) 清华大学出版社课后答案/bbs/viewthread.php?tid=988&fromuid=9计算机操作系统第三版 (汤子瀛哲凤屏汤小丹著) 西安电子科技大学出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=691&fromuid=9微型计算机接口技术及应用【khdaw】/bbs/viewthread.php?tid=375&fromuid=9常微分方程 (王高雄)第三版高等教育出版社课后答案【khdaw】/bbs/viewthread.php?tid=2563&fromuid=9编译原理第三版 (陈火旺著) 国防工业出版社课后答案/bbs/viewthread.php?tid=1476&fromuid=9《常微分方程》(王高雄版)习题答案/bbs/viewthread.php?tid=489&fromuid=9大学计算机基础教程答案/bbs/viewthread.php?tid=379&fromuid=980x86 汇编语言程序设计 (沈明美温冬禅著) 清华大学出版社课后答案/bbs/viewthread.php?tid=523&fromuid=9IBM-PC 汇编语言程序设计课后习题答案 (美明温冬婵著) 清华大学出版社课后答案/bbs/viewthread.php?tid=370&fromuid=9数学分析 (华东师范大学数学系著) 高等教育出版社课后答案/bbs/viewthread.php?tid=238&fromuid=9李春葆:数据结构习题与解析-C 语言版/bbs/viewthread.php?tid=1005&fromuid=9visual basic 示例程序、实验答案下载/bbs/viewthread.php?tid=508&fromuid=9汇编语言 (王爽著) 课后答案清华版《编译原理》课后答案/bbs/viewthread.php?tid=228&fromuid=9离散数学(高等教育出版社)耿素云屈婉玲【khdaw】/bbs/viewthread.php?tid=1224&fromuid=9离散数学及其应用 (傅彦顾小丰著) 电子工业出版社课后答案/bbs/viewthread.php?tid=233&fromuid=9《计算机网络》机械工业出版社(James F.Kurose, Keith W.Ross)答案【khdaw_cola】/bbs/viewthread.php?tid=730&fromuid=9计算机网络(第5 版)课后习题答案【khdaw】/bbs/viewthread.php?tid=2981&fromuid=9常微分方程课后习题答案(华东师范版)/bbs/viewthread.php?tid=172&fromuid=9《Visual FoxPro 程序设计教程》课后习题答案(刘卫国主编)/bbs/viewthread.php?tid=232&fromuid=9有关《计算机组成原理》相关课后答案发布/bbs/viewthread.php?tid=3565&fromuid=9《计算机组成原理》课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=505&fromuid=9C 程序设计第三版 (谭浩强著) 清华大学出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=3690&fromuid=9离散数学教程 (耿素云屈婉玲王捍贫著) 北京大学出版社课后答案/bbs/viewthread.php?tid=36&fromuid=9数据库系统概念答案【khdaw_cola】/bbs/viewthread.php?tid=759&fromuid=9数据库系统概论答案清华版【khdaw_cola】/bbs/viewthread.php?tid=337&fromuid=9所有有关《操作系统》的答案发布和一些版本的答案求助【khdaw】/bbs/viewthread.php?tid=3320&fromuid=9/bbs/viewthread.php?tid=2653&fromuid=9数据库系统概论(第四版)王珊、萨师煊【khdaw】/bbs/viewthread.php?tid=2291&fromuid=9数学分析答案复旦陈纪修【khdaw_cola】/bbs/viewthread.php?tid=328&fromuid=9《数据库系统概论》课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=219&fromuid=9数据库系统概论-第四版-高教版-王珊-封面看内图【khdaw_cola】/bbs/viewthread.php?tid=2344&fromuid=9计算机组成原理课后答案(白中英版)/bbs/viewthread.php?tid=173&fromuid=9所有《数据结构》版本课后答案发布/bbs/viewthread.php?tid=4310&fromuid=9《数值分析》(第4版)李庆扬编清华大学出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=3596&fromuid=9《数学分析》(第三版)华东师范大学高等教育出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=7192&fromuid=9数学分析复旦大学陈传章/bbs/viewthread.php?tid=448&fromuid=9近世代数基础 (张禾瑞著) 课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=269&fromuid=9《计算机组成与结构》王爱英(第四版)答案/bbs/viewthread.php?tid=4836&fromuid=9《软件工程导论》张海潘第五版清华大学出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=7159&fromuid=9所有有关《数据库系统概论》的答案发布和一些有关数据库版本的答案求助【khdaw】/bbs/viewthread.php?tid=3321&fromuid=9离散数学耿素云屈婉玲高等教育出版社课后习题参考答案【khdaw】C++语言程序设计(第3 版)(郑莉版)郑莉清华大学出版社【khdaw_lxywyl】/bbs/viewthread.php?tid=1106&fromuid=9目前最完整的数据结构1800 题包括完整答案(word 版本)/bbs/viewthread.php?tid=1244&fromuid=9《操作系统》(中国铁道出版社,刘振鹏,李亚平,王煜,张明)习题答案/bbs/viewthread.php?tid=348&fromuid=9机械工业版《c++程序设计语言》题解下载/bbs/viewthread.php?tid=254&fromuid=9《数字逻辑》(第二版)鲍家元毛文林高教出版课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=1081&fromuid=9《Visual FoxPro 及其应用系统开发》(简明版)谭浩强清华大学出版【khdaw_cola】/bbs/viewthread.php?tid=1362&fromuid=9《数据结构题集》严蔚敏 (C 语言版)答案【khdaw】/bbs/viewthread.php?tid=3319&fromuid=9《计算机组成原理与汇编语言程序设计》教材答案【khdaw_cola】/bbs/viewthread.php?tid=1233&fromuid=9计算机网络第二版 (吴功宜著) 清华大学出版社课后答案/bbs/viewthread.php?tid=4403&fromuid=9计算机网络谢希仁第五版电子工业出版社课后参考答案【khdaw_cola】/bbs/viewthread.php?tid=6495&fromuid=9复变函数与积分变换第四版西安交大课后答案/bbs/viewthread.php?tid=2181&fromuid=9《数学物理方法》学习指导【khdaw_cola】/bbs/viewthread.php?tid=1142&fromuid=9数值分析【khdaw_cola】/bbs/viewthread.php?tid=1521&fromuid=9信息论与编码学习辅导及习题详解/bbs/viewthread.php?tid=1903&fromuid=9/bbs/viewthread.php?tid=3048&fromuid=9VB 高教版课后答案/bbs/viewthread.php?tid=250&fromuid=9实变函数与泛函分析课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=1332&fromuid=9《微机系统原理与接口技术》课后答案【khdaw_cola】/bbs/viewthread.php?tid=1304&fromuid=9清华版编译原理课后答案(chm)【khdaw】/bbs/viewthread.php?tid=1302&fromuid=9计算机网络教程谢希仁版/bbs/viewthread.php?tid=1082&fromuid=9数值分析第四版 (李庆扬王能超易大义著) 清华大学出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=8086&fromuid=9耿国华数据结构---C 语言的描课后大部分习题答案西安电大学出版社【khdaw_cola】/bbs/viewthread.php?tid=2015&fromuid=9新版汇编语言程序设计 (钱晓捷著) 电子工业出版社课后答案/bbs/viewthread.php?tid=692&fromuid=9《计算机组成原理》唐朔飞第二版高等教育出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=9774&fromuid=9计算机组成原理白中英第四版课后答案【khdaw_cola】/bbs/viewthread.php?tid=3419&fromuid=9IBM-PC 汇编语言程序设计(第2 版) (沈美明温冬婵编著著) 清华出版社课后答案/bbs/viewthread.php?tid=3497&fromuid=9初等数论答案严士健高教版【khdaw_cola】/bbs/viewthread.php?tid=2360&fromuid=9计算机组成原理唐朔飞版高等教育出版社(部分答案)【khdaw】/bbs/viewthread.php?tid=3422&fromuid=9西电汤操作系统第三版【khdaw_cola】计算机应用基础 (不详著) 不详课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=262&fromuid=9数学模型(第三版)习题参考解答/bbs/viewthread.php?tid=4879&fromuid=9微型计算机原理与接口技术 (冯博琴著) 清华出版课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=2617&fromuid=9离散答案(王元元张桂蕓编著)科学出版社【khdaw_cola】/bbs/viewthread.php?tid=1100&fromuid=9《C 程序设计》谭浩强(第三版)清华大学出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=2608&fromuid=9C++ 程序设计(第二版)高等教育出版课件例题源代码及习题答案/bbs/viewthread.php?tid=1751&fromuid=9计算机网络教程第五版 (谢希仁著) 电子工业出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=11354&fromuid=9计算机网络第4 版 (谢希仁著) 电子工业出版社课后答案【khdaw】/bbs/viewthread.php?tid=225&fromuid=9软件工程导论第五版 (张海藩著) 清华大学出版社课后答案【khdaw】/bbs/viewthread.php?tid=7449&fromuid=9数据结构教程(第2 版)李春葆答案/bbs/viewthread.php?tid=3334&fromuid=9数值分析 (未知著) 华中科技大课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=3525&fromuid=9数据结构(C 语言版) (严蔚敏吴伟民米宁著) 清华大学出版社课后答案/bbs/viewthread.php?tid=2067&fromuid=9泛函分析讲义-习题解答张恭庆、林源渠北大版【khdaw_cola】/bbs/viewthread.php?tid=3139&fromuid=9近世代数基础 (张禾瑞著) 课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=3510&fromuid=9【khdaw_ricardo】/bbs/viewthread.php?tid=11229&fromuid=9白中英《计算机组成原理_试题、题解与题库》电子书(超星版)/bbs/viewthread.php?tid=1085&fromuid=9电子工业版《vb 语言程序设计》习题答案/bbs/viewthread.php?tid=107&fromuid=9C++ 程序设计教程(第二版) (钱能著) 清华大学出版课后答案/bbs/viewthread.php?tid=2503&fromuid=9计算机应用基础理论习题参考答案/bbs/viewthread.php?tid=116&fromuid=9数学模型第三版 (姜启源谢金星叶俊著) 高等教育出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=1972&fromuid=9Java 编程思想.第四版.课后练习答案/bbs/viewthread.php?tid=1846&fromuid=9《Java2 实用教程》(第三版)清华(耿祥义张跃平)版课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=6922&fromuid=9中文原版《编译原理》课后答案机械工业出版社李建中编/bbs/viewthread.php?tid=1847&fromuid=9计算机组成原理(教师用书)附带答案蒋本珊清华大学出版社【khdaw】/bbs/viewthread.php?tid=9254&fromuid=9《积分变换》张元林第四版东南大学答案【khdaw_lxywyl】/bbs/viewthread.php?tid=5074&fromuid=9《马克思主义基本原理概论》课后答案(很全哦)(2008 年修订版)【khdaw_cola】/bbs/viewthread.php?tid=6053&fromuid=9<计算机操作系统教程>清华大学第二版/第三版张尧学课后习题答案【khdaw】/bbs/viewthread.php?tid=9091&fromuid=9<计算机网络教程> 谢希仁第二版人民邮电出版社课后答案【khdaw_cola】/bbs/viewthread.php?tid=4862&fromuid=9/bbs/viewthread.php?tid=7785&fromuid=9vfp 数据库课后题答案/bbs/viewthread.php?tid=231&fromuid=9单片机基础第3 版李广第朱月秀冷祖祁编著北京航空航天大学出版社【khdaw_cola】/bbs/viewthread.php?tid=4271&fromuid=9电工学第六版 (秦曾煌著) 高等教育出版社课后答案【khdaw_ricardo】/bbs/viewthread.php?tid=11241&fromuid=9《数据通信与计算机网络》高传善(第二版)高等教育出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=6610&fromuid=9《计算机组成原理》唐朔飞第4,5 章课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=1144&fromuid=9软件工程导论第五版 (张海藩著) 清华大学出版社课后答案【khdaw】/bbs/viewthread.php?tid=13716&fromuid=9初等数论第三版 (闵嗣鹤著) 高等教育出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=1508&fromuid=9《数据库系统概论》王珊萨师煊(第四版)高等教育出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=5249&fromuid=9计算机数值方法 (施吉林著) 高等教育出版社课后答案/bbs/viewthread.php?tid=3903&fromuid=9离散数学耿素云屈婉玲课后答案/bbs/viewthread.php?tid=7839&fromuid=9数据结构---C 语言描述答案(耿国华)高教版【khdaw_cola】/bbs/viewthread.php?tid=2094&fromuid=9软件工程导论课后答案/bbs/viewthread.php?tid=5172&fromuid=9数据结构(殷人昆主编)【khdaw】/bbs/viewthread.php?tid=3077&fromuid=9《c 程序设计语言》英文第2 版课后答案严蔚敏数据结构例题算法代码/bbs/viewthread.php?tid=1031&fromuid=9国防科学技术大学计算机学院离散数学课后习题答案/bbs/viewthread.php?tid=100&fromuid=9计算机网络-自顶向下方法与Internet 特色第三版英文课后答案【khdaw_cola】/bbs/viewthread.php?tid=2495&fromuid=9《计算机组成原理》白中英第三版课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=3423&fromuid=9数据结构(C++版)王红梅,胡明,王涛版课后答案【khdaw_cola】/bbs/viewthread.php?tid=4426&fromuid=9清华版编译原理【khdaw_cola】/bbs/viewthread.php?tid=1027&fromuid=9微机原理与接口技术-基于IA-32 处理器和32 为汇编语言 (钱晓捷著) 机械工业出版社课后答案【khdaw_cola】/bbs/viewthread.php?tid=5668&fromuid=9《离散数学》左孝凌,刘永才上海科学技术文献出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=5236&fromuid=9网络操作系统课后答案/bbs/viewthread.php?tid=430&fromuid=9《点集拓扑讲义》高教(熊金城)版课后答案【khdaw_cola】/bbs/viewthread.php?tid=6441&fromuid=9数学分析第二版 (陈传章著) 高等教育出版社课后答案【khdaw_cola】/bbs/viewthread.php?tid=2442&fromuid=9软件工程【khdaw】/bbs/viewthread.php?tid=3072&fromuid=9操作系统教程第4 版 (张钟秀著) 高等教育出版社课后答案/bbs/viewthread.php?tid=7703&fromuid=9信息论与编码技术--冯桂林其伟陈东华--清华大学出版社【khdaw_cola】/bbs/viewthread.php?tid=3332&fromuid=9编译原理课程设计报告(词法,语法等)【khdaw_cola】/bbs/viewthread.php?tid=2514&fromuid=9微机原理与接口技术楼顺天,周佳社科学出版社【khdaw_cola】/bbs/viewthread.php?tid=5304&fromuid=9《单片机原理及接口技术》梅丽凤清华大学出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=5538&fromuid=9数据库系统概论_王珊、萨师煊第四版(chm 格式)【khdaw】/bbs/viewthread.php?tid=6403&fromuid=9数字逻辑答案第三版(华中科大欧阳星明)/bbs/viewthread.php?tid=6833&fromuid=9算法导论(英文版)答案【khdaw_cola】/bbs/viewthread.php?tid=2792&fromuid=9数学物理方法第三版 (梁昆淼著) 高等教育出版社课后答案/bbs/viewthread.php?tid=2398&fromuid=9微型计算机原理与接口技术 (周荷琴吴秀清著) 课后答案/bbs/viewthread.php?tid=4086&fromuid=9《工程数学概率统计简明教程(同济大学应用数学系)》课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=7219&fromuid=9复变函数答案【khdaw_cola】/bbs/viewthread.php?tid=6557&fromuid=9复变函数与积分变换 (马柏林著) 复旦大学课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=14749&fromuid=9计算机操作系统教程(第二版)左万历周长林【khdaw_cola】/bbs/viewthread.php?tid=1690&fromuid=9计算机组成原理(唐朔飞)答案高等教育出版社【khdaw】/bbs/viewthread.php?tid=8804&fromuid=9信息论与编码陈运电子工业出版社【khdaw_cola】/bbs/viewthread.php?tid=2828&fromuid=9计算机网络英文原版(第4 版)【khdaw】/bbs/viewthread.php?tid=3239&fromuid=9《数据库系统概念》(第五版影印版)高级教育出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=5283&fromuid=9离散数学 (王义和著) 哈尔滨工业大学出版社课后答案【khdaw_ricardo】/bbs/viewthread.php?tid=5724&fromuid=9IBM-PC 汇编语言程序设计(沈美明2 版)【khdaw_cola】/bbs/viewthread.php?tid=5203&fromuid=9《C 程序设计解题与上机指导》谭浩强第二版清华大学出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=1551&fromuid=9《组合数学》第四版机械工业出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=4346&fromuid=9《计算机英语(第2 版)》参考译文与习题解答【khdaw】/bbs/viewthread.php?tid=2963&fromuid=9C 语言程序设计教程杨路明北京邮电大学出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=10074&fromuid=9《数据库系统及应用》崔魏(第二版)高等教育出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=2482&fromuid=9编译原理第三板 (陈火旺刘春林著) 国防工业课后答案/bbs/viewthread.php?tid=7680&fromuid=9《SQL SERVER 2005 数据库开发与实现》微软公司课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=1335&fromuid=9信号与线性系统管致中第4 版答案/bbs/viewthread.php?tid=6729&fromuid=9《计算机算法基础》(第三版)华中科技大4、5、6、8 章课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=4348&fromuid=9计算机系统结构第二版清华大学出版社课后答案/bbs/viewthread.php?tid=5370&fromuid=9《visual basic》课后作业答案【khdaw_lxywyl】常微分方程(张禾瑞)第三版【khdaw_cola】/bbs/viewthread.php?tid=1654&fromuid=9《数学分析》陈传璋课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=2217&fromuid=9高等几何梅学明高教版【khdaw_cola】/bbs/viewthread.php?tid=5698&fromuid=9数学分析高教出版社第二版复旦数学系主编/bbs/viewthread.php?tid=3025&fromuid=9编译原理第三版西北工业大学出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=5614&fromuid=9数值分析数值计算方法曾金平湖南大学出版社课后答案【khdaw】/bbs/viewthread.php?tid=9628&fromuid=9C 语言程序设计 (何钦铭颜晖著) 浙江科学技术出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=14395&fromuid=9计算机网络第四版【khdaw_cola】/bbs/viewthread.php?tid=1084&fromuid=9数据结构课后答案(高等教育出版社唐策善版))【khdaw】/bbs/viewthread.php?tid=5994&fromuid=9微型计算机技术及应用答案/bbs/viewthread.php?tid=6013&fromuid=9实变函数论第三版(江泽坚吴智泉纪友清著) 高等教育出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=11505&fromuid=9《微积分》人教版课后课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=5190&fromuid=9严蔚敏《数据结构(c 语言版)习题集》答案/bbs/viewthread.php?tid=6170&fromuid=9微型计算机原理与接口技术 (邹逢兴著) 清华大学出版社课后答案【khdaw_cola】数据结构习题答案+耿国华主编【khdaw_cola】/bbs/viewthread.php?tid=7218&fromuid=9《数据库系统概论》王珊萨师煊(第四版)课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=6054&fromuid=9计算机组成与结构第四版 (王爱英著) 清华大学出版社课后答案【khdaw_ricardo】/bbs/viewthread.php?tid=11208&fromuid=9《数据结构习题集》答案严蔚敏【khdaw_cola】/bbs/viewthread.php?tid=6552&fromuid=9概率论与数理统计 (同济大学应用数学系著) 高等教育出版社课后答案/bbs/viewthread.php?tid=9101&fromuid=9立体几何大题30 题(有详细答案)[整理]人教版/bbs/viewthread.php?tid=333&fromuid=9计算机答案合集(组成原理,操作系统...)/bbs/viewthread.php?tid=5204&fromuid=9《应用概率统计》(张国权)版科学出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=7334&fromuid=9《C 程序设计》谭浩强编习题答案【khdaw_cola】/bbs/viewthread.php?tid=7836&fromuid=9数据结构(C 语言版)习题答案/bbs/viewthread.php?tid=5200&fromuid=9编译原理 (陈火旺著) 国防工业出版社课后答案/bbs/viewthread.php?tid=2978&fromuid=9微机原理与接口技术第三章 (郭兰英赵祥模著) 清华出版社课后答案_khdaw/bbs/viewthread.php?tid=7347&fromuid=9计算机网络第二版) (冯博琴陈文革著) 高等教育出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=5989&fromuid=9《数据结构》清华大学答案+例程+ppt 课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=9713&fromuid=9软件工程第二版 (张海藩著) 人民邮电出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=10940&fromuid=9计算机专业英语课后答案【khdaw_cola】/bbs/viewthread.php?tid=7258&fromuid=9数值计算课后答案曾喆昭文卉编著【khdaw_cola】/bbs/viewthread.php?tid=2538&fromuid=9计算机组成与结构(第4 版)习题解答(上)【khdaw_cola】/bbs/viewthread.php?tid=6286&fromuid=9数据结构(c 语言版)习题集答案/bbs/viewthread.php?tid=6096&fromuid=9vb 程序设计(第四版)课后习题答案【khdaw】/bbs/viewthread.php?tid=2994&fromuid=9汇编语言(清华大学出版社)【khdaw】/bbs/viewthread.php?tid=3421&fromuid=9离散数学答案修订版 (耿素云屈婉玲著) 高等教育出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=15917&fromuid=9《编译原理》蒋立源课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=4518&fromuid=9《数字逻辑》(第二版)华中科技大学出版社(欧阳星明)版课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=7332&fromuid=9严蔚敏数据机构实习报告部分答案【khdaw_cola】/bbs/viewthread.php?tid=1036&fromuid=9数值分析部分答案/bbs/viewthread.php?tid=3523&fromuid=9《数字图像处理》(第二版)英文版习题答案(全)【khdaw_lxywyl】/bbs/viewthread.php?tid=5854&fromuid=9C 程序设计(第二版)谭浩强习题解答清华大学出版社课后答案【khdaw_cola】/bbs/viewthread.php?tid=5679&fromuid=9微分几何梅向明第三版黄敬之高等教育出版社课后答案【khdaw】/bbs/viewthread.php?tid=9287&fromuid=9c++语言基础教程 (吕凤葛著) 清华大学出版社课后答案【khdaw】/bbs/viewthread.php?tid=14461&fromuid=9求《数值分析》第五版答案/bbs/viewthread.php?tid=6704&fromuid=9微分几何第三章、第四章 (梅向明著) 高等教育出版社课后答案/bbs/viewthread.php?tid=4721&fromuid=9《计算机组成原理》白中英(第四版•立体化教材)课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=5281&fromuid=9数值分析/bbs/viewthread.php?tid=4245&fromuid=9c 程序设计 (谭浩强著) 清华大学出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=7611&fromuid=9《数据库原理》课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=4345&fromuid=9数据结构/bbs/viewthread.php?tid=1624&fromuid=9现代微机原理与接口技术 (杨全胜著) 电子工业出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=11531&fromuid=9《计算机系统组成与体系结构》人民邮电出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=2852&fromuid=9求数值分析(第4版)李庆扬编/bbs/viewthread.php?tid=6580&fromuid=9java2 实用教程(第三版)【khdaw_cola】/bbs/viewthread.php?tid=7256&fromuid=9数据结构答案【khdaw】/bbs/viewthread.php?tid=2066&fromuid=9人工智能原理及其应用王万森电子工业出版社(2-7 章)【khdaw】/bbs/viewthread.php?tid=9145&fromuid=9JAVA 大学实用教程第二版 (耿祥义张跃平著) 电子工业出版社课后答案【khdaw】/bbs/viewthread.php?tid=15805&fromuid=9Visual C++面向对象编程教程(第2 版) (王育坚著) 清华大学出版社课后答案【khdaw】/bbs/viewthread.php?tid=14404&fromuid=9清华大学出版社计算机网络第4 版中文答案【khdaw_cola】/bbs/viewthread.php?tid=8080&fromuid=9计算机网络第四版 (潘爱民译著) 清华大学出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=15080&fromuid=9初等数学研究学习指导 (叶立军著) 华东师范大学出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=13939&fromuid=9《复变函数论》张锦豪邱维元版高等教育出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=5919&fromuid=9算法导论原书第二版 (潘金贵顾铁成李成法著) 机械工业出版社课后答案【khdaw】/bbs/viewthread.php?tid=12100&fromuid=9张禾瑞的<<近世代数基础>>的答案/bbs/viewthread.php?tid=1540&fromuid=9c++程序设计/bbs/viewthread.php?tid=5608&fromuid=9《概率论与统计学》浙大出版社(复习指南)课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=4871&fromuid=9计算机基础课后答案(浙江科学出版社)/bbs/viewthread.php?tid=2014&fromuid=9《C 语言程序设计》张世禄,潘大志,冯天敏电子工业出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=2568&fromuid=9C 语言程序设计(洪维恩)课后答案【khdaw】/bbs/viewthread.php?tid=1955&fromuid=9《计算机组成原理》白中英第四版科学出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=6433&fromuid=9微机原理与接口技术第 4 版 (周荷琴,吴秀清著) 中国科学技术大学出版社课后答案【khdaw】/bbs/viewthread.php?tid=15151&fromuid=9数值计算课后答案(清华大学出版)/bbs/viewthread.php?tid=5246&fromuid=9java 程序设计【khdaw_cola】/bbs/viewthread.php?tid=7541&fromuid=9《高等数值分析》清华大学出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=5692&fromuid=9数据与计算机通信(第七版) William Stallings 等【khdaw_cola】/bbs/viewthread.php?tid=5201&fromuid=9数值方法第二版 (金一庆陈越著) 机械工业出版社课后答案/bbs/viewthread.php?tid=11539&fromuid=9高等代数北师大高教第三版张和瑞【khdaw】/bbs/viewthread.php?tid=8607&fromuid=9微波技术与天线(第二版) 王新稳李萍李延平编电子工业出版社【khdaw_cola】/bbs/viewthread.php?tid=6534&fromuid=9数据结构(陈慧南编 C++描述)南京邮电大学课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=9506&fromuid=9四川大学出版社编的离散数学教程答案【khdaw_cola】/bbs/viewthread.php?tid=7402&fromuid=9计算机组成原理(白中英版)【khdaw_cola】/bbs/viewthread.php?tid=3243&fromuid=9现代微型计算机与接口教程课后答案杨文显主编寿庆余副主编【khdaw_cola】/bbs/viewthread.php?tid=7964&fromuid=9C 语言程序设计 3-5 章部分程序题答案杨路明北京邮电大学出版社【khdaw】/bbs/viewthread.php?tid=8775&fromuid=9《操作系统》汤子赢西安电子科技大学答案【khdaw_lxywyl】/bbs/viewthread.php?tid=6055&fromuid=9数据库原理与应用教程第二版陈志泊人民邮电出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=9933&fromuid=9数据结构与算法分析(C++ 第二版)Clifford A. Shaffer 电子工业出版社【khdaw】/bbs/viewthread.php?tid=9211&fromuid=9《程序设计基础》练习题及答案【khdaw_lxywyl】/bbs/viewthread.php?tid=2801&fromuid=9《多媒体技术基础(第2 版)》林福宗清华大学出版社课后参考答案【khdaw】/bbs/viewthread.php?tid=9299&fromuid=9计算机专业英语(含课文、译文、模拟试题、专业英语习题、答案)【khdaw】/bbs/viewthread.php?tid=9364&fromuid=908 版考研概率复习指南答案/bbs/viewthread.php?tid=509&fromuid=9计算机网络(第4 版) (Andrew S.Tanenbaum 著) 清华大学出版社课后答案/bbs/viewthread.php?tid=11361&fromuid=9计算机图形学王汝传 1-4 章人民邮电出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=10000&fromuid=9计算机网络教程(第3 版)习题答案【khdaw_cola】/bbs/viewthread.php?tid=7777&fromuid=9c++语言程序设计(实验部分)第 3 版(郑莉著) 清华大学出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=15124&fromuid=9数字信号处理学习指导与题解 (丁美玉高西全王军宁著) 电子工业出版社课后答案【khdaw】/bbs/viewthread.php?tid=15168&fromuid=9计算机网络第五版 (谢希仁著) 电子工业出版社课后答案/bbs/viewthread.php?tid=16108&fromuid=9数学物理方程与特殊函数第三版完整 (东南大学数学系王元明著) 高等教育出版社课后答案【khdaw】/bbs/viewthread.php?tid=17311&fromuid=9《操作系统概念》英文版高等教育出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=3491&fromuid=9计算机网络第二版蔡开裕朱培栋徐明(国防科技大学版)【khdaw】/bbs/viewthread.php?tid=9239&fromuid=9《C++语言程序设计教程》吕凤翥人民邮电出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=8119&fromuid=9电工学第七版下册 (秦曾黄著) 高等教育出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=19778&fromuid=9vfp 表修复工具/bbs/viewthread.php?tid=73&fromuid=9C++语言基础教程吕凤翥人民邮电出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=10016&fromuid=9数据库及其应用教材课后习题答案_【khdaw_lxywyl】/bbs/viewthread.php?tid=9530&fromuid=9Turbo C 错误信息表/bbs/viewthread.php?tid=70&fromuid=9《微机原理及汇编技术》课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=5684&fromuid=9复变函数答案第四版 (余家荣著) 高等教育出版社课后答案【khdaw】/bbs/viewthread.php?tid=17004&fromuid=9Java 程序设计(第二版) (朱喜福著) 人民邮电出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=10576&fromuid=9计算机专业英语教程译文(第 4 版) (金志权等主编著) 电子工业出版社课后答案【khdaw】/bbs/viewthread.php?tid=14170&fromuid=9数据结构习题/bbs/viewthread.php?tid=4344&fromuid=9《计算机英语》第2版全书翻译及课后答案_【khdaw_lxywyl】。
复变函数课后答案
复变函数课后答案复变函数是数学中的一个重要的分支,它将实变函数的概念引入到复数域中。
复变函数的研究对于科学和工程领域有着广泛的应用,因此学习复变函数是数学学生的必修课程之一。
在学习过程中,课后习题是一个不可或缺的重要环节。
本文将为读者提供复变函数课后答案,希望可以帮助大家在学习上得到更好的理解和掌握。
一、Cauchy-Riemann方程Cauchy-Riemann方程是研究复变函数的基础。
它是一个关于函数的实部和虚部的偏微分方程组。
具体而言,设$f(z)=u(x,y)+iv(x,y)$是一个复变函数,其中$x,y\in\mathbb{R}$是实数,$z=x+iy$是一个复数,那么Cauchy-Riemann方程可以表示为:$$\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y},\quad\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$$当且仅当复变函数满足Cauchy-Riemann方程时,它才是解析的。
此外,如果$f(z)$是解析的,则它在一个开放的区域内是无限可微的。
这是我们在复分析中经常使用的重要性质。
二、复积分复积分是计算复变函数的积分的一种方法。
与实变函数中的积分不同的是,复变函数的积分是在复平面上的路径上取值的。
具体而言,设$f(z)$是一个在复平面上连续的函数,$C$是一条连接$z_0$和$z_1$的可求长曲线,则$f(z)$沿着$C$的积分定义为:$$\int_Cf(z)dz=\int_C [u(x,y)dx-v(x,y)dy]+i\int_C [u(x,y)dy+v(x,y)dx] $$其中,$u(x,y)$和$v(x,y)$分别是$f(z)$的实部和虚部。
如果$\int_Cf(z)dz=0$,则称$f(z)$沿着$C$是可积的。
三、Laurent级数在复分析中,我们经常需要将一个复变函数表示为一个Laurent 级数的形式,这个级数包含一部分关于$z$的负次幂,并且它可以用于计算发生奇点的复变函数。
复变函数第四版余家荣答案
复变函数第四版余家荣答案【篇一:1第一章复数与复变函数】京1第一章复数与复变函数1 复数及其代数运算1.复数的概念①在解方程时,有时会遇到负数开方的问题,但在实数范围内负数是不能开平方的。
为此,需要扩大数系。
我们给出如下的代数形式的复数定义:复数的代数定义:把有序实数对(x,y)作代数组合所确定的形如x?iy的数称为(代数形式的)复数,记为z?x?iy,2其中,i满足i??1。
我们称i为虚单位;实数x和y分别称为复数z 的实部和虚部,并记为x?rez,y?imz。
特别地,当imz?0时,z?x?i0?rez?x是实数;当rez?0时且imz?0时,z?iimz?iy称为纯虚数;虚部不为零的复数称为虚数(即不为实数的复数称为虚数);z?0当且仅当rez?0且imz?0,即复数0?0?i?0。
z1?z2当且仅当rez1?rez2且imz1?imz2。
2.复数的代数运算2.1 四则运算设z1?x1?iy1,z2?x2?iy2为任意两个复数,它们的四则运算定义为: 加法:z1?z2?(x1?x2)?i(y1?y2) 减法:z1?z2?(x1?x2)?i(y1?y2) 乘法:z1z2?(x1x2?y1y2)?i(x1y2?x2y1) 除法:z1x1x2?y1y2y1x2?x1y2(z2?0) ??i2222z2x2?y2x2?y22【注】:(1).可见,复数的四则运算,可以按照多项式的四则运算进行,只要注意将i换成?1。
(2).关于除法的具体操作可以按两种方法来进行:①.先看成分式的形式,然后分子分母同乘以一个与分母的实部相等而虚部只相差一个正负号的复数(在后面将会看到,这被定义为共轭复数),再进行简化;②.用复数z1?x1?iy1除以非零复数z2?x2?iy2,就是要求出这样一个复数z?x?iy,使得z1?z2?z。
按乘法的定义,为求出z需要解方程组?x2x?y2y?x1??x2y?xy2?y12.2 共轭复数复数x?iy和x?iy互称为对方的共轭复数,如果记z?x?iy,则用记其共轭复数,即?x?iy?x?iy。
复变函数(第四版余家荣)ppt课件
完整编辑ppt
17
反函数求导法则
设w 函 f(z) 数 在D 区 内域 解 f'(析 z) 0 , , 又 且 反
zf1(w)(w)
存在且为连续, 则有:
'(w) 1
1
f'(z)z(w) f'((w))
在 D 内 ? 解析 完整编辑ppt 吗
19
设
可微,则
首先设 h 为实数,得
令
得
再令
t 为实数,得
完整编辑ppt
20
令
得
由
得
完整编辑ppt
Cauchy-Riemann方程
21
定设 理函 f(z) u 数 (x ,y ) i(v x ,y )在D 区 内域 有 定义 z , x i yD 在 可点 导,则
要求复 z变 xiy的 量函 f(z数 )满足下列条
(1) x R , f(x)ex;
(2) f (z)在C上解析;
( 3 ) z 1 ,z 2 C ,f( z 1 z 2 ) f( z 1 ) f( z 2 );
首先
f(z)f(xi)yexf(i)y,
设
f(i)yA (y)iB (y),
则
则得到一个单值函此数函,数称作幅角函一数个单的值分支.
如果此单值函数连则续称,其为幅角函数个的 连续一单值分支.
完整编辑ppt
53
设
则主值幅角函数 argz是
D上的一个连续单值分支 . 对每一个整数 k,
也是D上的一个连续单值分支 .
西交《复变函数》答案
二、填空题1.设C 是0z =到1z i =+的直线段,则z ce dz =⎰____1(1)i i e --_____________.2.方程1ze -+=0的全部解是_______(2)i k k Z ππ+∈_______________;3.幂级数1in nn ez π+∞=∑的收敛半径是__________1____________;4.函数21()(1)z f z z e =-的全部奇点是_______2kik Z π∈_______________.三、证明:若iv u z f +=)(在区域D 内解析,并且2v u =,则)(z f 在D 内为常数.(8分)证: 因为 ()f z u iv =+ 在区域D 内解析,且2u v =从而yv v y u x v y vx u x v v∂∂-=∂∂-=∂∂∂∂=∂∂=∂∂2,2 (50)所以 2020v v v x y v v v xy ∂∂⎧-=⎪∂∂⎪⎨∂∂⎪+=⎪∂∂⎩系数行列式 22141012v v v-=+≠所以0v v x y∂∂==∂∂,同理 0u u x y ∂∂==∂∂1()0v vf z x i y∂∂'=+=∂∂ 即 在D 内()f z 为常数.四、已知调和函数(,)(1)u x y x y =+,求解析函数iv u z f +=)(,且满足条件0)1(=f .(8分) 解()()u v u u f z i i x x x y ∂∂∂∂'=+=+-∂∂∂∂ (1)y x i xi i y =+--=--+()x yi i i zi i =-+-=--2()()2if z z i i d z z z i c ∴=--=--+⎰由 3(1)022i f i c i c =--+=-+= 得 32c i =23()22i f z z zi i ∴=--+五、求函数231)(2++=z z z f 在20=z 处的泰勒展开式,并指出它的收敛半径.(10分) 解 : 21111()32(1)(2)12f z z z z z z z ===-++++++ 而,)2(31)1(321131)2(311101n n n n z z z z --=-+=-+=+∑∞=+ 3|2|<-z4|2|,)2(41)1(421141211<---=-+=+∑+z z z z n n n所以nnn n n nnn nnn n nz z z z f )2)(4131()1()2(41)1()2(31)1()(010---=-----=∑∑∑∞=∞=+∞=级数的收敛半径为3=R六、将函数2)1(1)(z z z f -=在圆环域:011z <-<内展开成洛朗级数.(10分) 解: 因为 011(1)(1)(|1|1),11n nn z z z z +∞===---<+-∑所以 22011()(1)(1)(|1|1),(1)(1)n nn f z z z z z z +∞===---<--∑2(1)(1)(|1|1),n n n z z +∞-==---<∑七、计算下列各积分.(圆周均取正向)(每小题6分,共24分)(1)23cos3(2)z z dz z z =-⎰ ; (2)32(1)(2)zz e dz z z =-+⎰(3)2523()14z z dz z z i =+++⎰; (4)222(1)z z ze dz z =-⎰ (1) 解 : 在||3z =内,10z =是二级极点,22z =是一级极点220cos3Re [(),0]lim[](2)z zs f z z z z →'=-203(2)sin 3cos31lim(2)4z z z z z →---==--22c o s 3c o s 6R e [(),2]l i m 2z z s f z z→== 23cos3cos612()(cos61)(2)442z z idz i z z =π=π-=--⎰ (2)解: 13322222(1)(2)123zzzz z z e e e z dz dz i e i z z z z ===+==π⋅=π-+-+⎰⎰(3) 解 : 在||5z =内,,4z i z i =±=-均为函数的一级极点225552323()1414z z z z z dz dz dz z z iz z i ===+=+++++⎰⎰⎰ 22222[]32(1)(1)z i z izz i i z z ==-=π++⋅π''++10i =π(4)解:2211 222()2()(1)zzz zzzedz if z i zez== =''=π=π-⎰22212(2)6z zzi e ze ie==π+=π。
复变函数(第四版余家荣)5
则当| z | 1时,
由于f (z) azn 在 | z | 1内有n个零点,所以ez azn 在 | z | 1内有n个零点.
3. 利用儒歇定理证明代数基本定理.
证明 如果
,则
所以只要R充分大,不妨设R max{| a1 | | a2 | | an |,1},当| z | R时,有 即 由儒歇定理知p(z)在 | z | R内有n个零点.
解令 则
因此
§2 留数计算的应用
1. 计算积分 令z eit ,则| z | 1, 且
例1 计算积分 解
和 1阶极点.
均为函数
2. 计算积分 例 计算积分
解
r
A
B
r
r
令r , 得 所以
3. 计算积分
引理(Jordan)设 f (z)在区域 D {z rei : 0 1 2 , r0 r } 内连续,r表示弧z rei (1 2 ). 如果
例 计算积分 解
因为
R
r
R
r r
R
所以令 r 0, R , 得
由此得
例 计算积分
其中0 1.
解 沿正实轴割破平面. 令(z )0 表示z 在正实轴上沿取实数的单值解 析分支,即
如果z x在正实数上沿,则 (x )0 x (实幂函数).
如果z x在正实数上沿,则
r
r
令 0, r , 得
对任意z* c, 存在z *的邻域,使得 Lnf (z)在此邻域内能分出单值解析分支.
且每一个单值解析分支均为 f (z) 在 f (z)
此邻域内的一个原函数. 由有限覆盖定理,存在有限个圆盘 V1,V2 ,,Vn , 使得
复变函数习题四参考答案
习题四4.1判别下列复数列的收敛性,若收敛求其极限。
(1)11n ni z n +=+;(2)()cos +sin 1n nn i n z i =+;(3)cos n in z n =;(4)nin z e = 解:(1)1lim lim1n n n niz i n→∞→∞+==+所以复数列11nin++收敛。
(2)()()cos +sin 111nnii n nnn i ne e z i i i ⎛⎫=== ⎪+++⎝⎭, 11i e i <+,所以复数列()cos +sin 1n n i ni +收敛,且lim 0n n z →∞=。
(3)cos =2n nn in e e z n n-+=,复数列cos in n 不收敛。
(4)cos +sin ni n z e n i n ==,cos n ,sin n 都不收敛,所以复数列ni e 不收敛。
4.4判别下列级数的收敛性(1)1n n i n ∞=∑;(2)()1658n n n i ∞=+∑;(3)()012nnn i ∞=-+∑;(4)011n i n ∞=++∑ 解:(1)由于1n i n n =,所以1n n i n ∞=∑发散,但是1n n i n∞=∑收敛,所以原级数条件收敛;(2)6518i +<,所以()1658nn n i ∞=+∑绝对收敛; (3)()12nnn ∞=-∑和012n n ∞=∑均绝对收敛,所以()012nn n i ∞=-+∑绝对收敛; (4)一般项的实部,虚部为11n +,都发散,所以011n in ∞=++∑发散。
4.5判断下列命题是否正确。
(1)每个幂级数在它的收敛圆上处处收敛。
(2)每个幂级数的和函数在收敛圆内可能有奇点。
(3)每个在0z 连续的函数必能在0z 的邻域能展开成泰勒级数。
解:(1)错,幂级数在它的收敛圆上可能收敛,也可能发散。
(2)错,每个幂级数的和函数在收敛圆内不可能有奇点。
复变函数(第四版余家荣)
1. 极限与连续性
§1.解析函数
单值函数:
对于 G 中的每个 z ,有唯一的 w 与其对应。
多值函数:
至少存在一个 z0 属于 G,与 z0 对应的 w 有 两个或两个以上。
y
z
o
x
vw
o
u
复变函数极限的定义
设函数w f (z)在z0的空心邻域 0 | z z0 |
内有定义。 如果存在一个复数A(A ),使得 0, 0,
z0
z
存在(为有限的复数),并且等于复数 A,则称函数 f (z)在 z0可微
或可导, A 称为函数 f (z) 在 z0 的导数,记为
f '(z0 ),或
dw ,
dz zz0
即
f
'(z0 )
lim
z0
f
(z0
z) z
f
( z0 ),
定义 对任意的 0,可以找到一个正数 ( ),使得当 0 | z z0 | 时,有
i
o
u
三角函数
由于Euler公式,对任何实数 y,我们有:
所以有
定义 对于任何复数z,规定
三角函数的性质
(1) 若z x R,则复正弦函数和复余弦函数等于实正弦函数和 实余弦函数.
(2)cosz是偶函数,sinz是奇函数
证明
(3)cosz 和 sinz 是以 2π 为周期的周期函数:
证明Biblioteka 证明因为所以 lim z 不存在, f (z)处处不可微.
z0 z
Cauchy-Riemann 方程 问题
若 u(x, y)和 v(x, y)在区域 D上可微,那么 f (z) u(x, y) iv(x, y) 在 D内解析吗 ?
复变函数(第四版余家荣)6
w
1
1
1
1 1 1 令 , 则w ( )将 平面上的单位圆盘保形 映成 w 平面上 z 2
去掉实直线段 [1, 1]后剩下部分构成的区域 .
1
1
z
1
z 1 z1 z 1
z
z1
z 2 z1
2
z2
w
z2 1 z2 1
w
1
1
1
1
(1) 当| z | 1时, | f ( z ) || z |, ( 2) | f (0) | 1, (3) 如果对于某个 z0 (0 | z0 | 1), | f ( z0 ) || z0 |, 或者如果 | f (0) | 1, 则
在 | z | 1 , f ( z ) z, | | 1. 内
问题:| f ( z ) | 在区域 D内能取到最大值吗 ?
f ( z ) 将区域 D的内点 z0映为区域 f ( D)的内点 w0 . | f ( z1 ) || w1 || w0 || f ( z0 ) |
z
w
z1
z0
w
1
w0
最大模定理 设 f ( z ) 在区域 D内解析且不为常数 , 则 f ( z ) 在D内任一
z
w
z0
w f (z )
w0
z
w
z0
D
C
w f (z )w0 Nhomakorabea
z
z0
w
w0
w
w f (z )
z
w
z2
复变函数课后习题答案(全)第四版
习题一答案1. 求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+ (2)(1)(2)i i i --(3)131i i i-- (4)8214i i i -+-解:(1)1323213iz i -==+, 因此:32Re , Im 1313z z ==-,1232, arg arctan , 3131313z z z i ==-=+(2)3(1)(2)1310i i iz i i i -+===---, 因此,31Re , Im 1010z z =-=,1131, arg arctan , 3101010z z z i π==-=--(3)133335122i i iz i i i --=-=-+=-, 因此,35Re , Im 32z z ==-,34535, arg arctan , 232i z z z +==-=(4)82141413z i i i i i i =-+-=-+-=-+因此,Re 1, Im 3z z =-=,10, arg arctan3, 13z z z i π==-=--2. 将下列复数化为三角表达式和指数表达式: (1)i (2)13i -+ (3)(sin cos )r i θθ+(4)(cos sin )r i θθ- (5)1cos sin (02)i θθθπ-+≤≤解:(1)2cossin22iii e πππ=+=(2)13i -+23222(cos sin )233i i e πππ=+=(3)(sin cos )r i θθ+()2[cos()sin()]22ir i reπθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+22sin [cossin]2sin 2222ii e πθθπθπθθ---=+=3. 求下列各式的值:(1)5(3)i - (2)100100(1)(1)i i ++-(3)(13)(cos sin )(1)(cos sin )i i i i θθθθ-+-- (4)23(cos5sin5)(cos3sin3)i i ϕϕϕϕ+-(5)3i (6)1i +解:(1)5(3)i -5[2(cos()sin())]66i ππ=-+-5552(cos()sin())16(3)66i i ππ=-+-=-+ (2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(13)(cos sin )(1)(cos sin )i i i i θθθθ-+--2[cos()sin()](cos sin )332[cos()sin()][cos()sin()]44i i i i ππθθππθθ-+-+=-+--+-2[cos()sin()](cos2sin 2)1212i i ππθθ=-+-+(2)122[cos(2)sin(2)]21212ii eπθππθθ-=-+-=(4)23(cos5sin5)(cos3sin3)i i ϕϕϕϕ+- cos10sin10cos19sin19cos(9)sin(9)i i i ϕϕϕϕϕϕ+==+-+- (5)3i 3cossin22i ππ=+11cos (2)sin (2)3232k i k ππππ=+++31, 02231, 122, 2i k i k i k ⎧+=⎪⎪⎪=-+=⎨⎪-=⎪⎪⎩(6)1i +2(cossin )44i ππ=+ 4112[cos (2)sin (2)]2424k i k ππππ=+++48482, 02, 1i i e k e k ππ⎧=⎪=⎨⎪-=⎩4. 设121, 3,2iz z i +==-试用三角形式表示12z z 与12z z解:12cossin , 2[cos()sin()]4466z i z i ππππ=+=-+-,所以12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+, 12z z 1155[cos()sin()](cos sin )2464621212i i ππππππ=+++=+ 5. 解下列方程: (1)5()1z i += (2)440 (0)z a a +=> 解:(1)51,z i+= 由此2551k i z i ei π=-=-, (0,1,2,3,4)k =(2)4444(cos sin )za a i ππ=-=+11[cos (2)sin (2)]44a k i k ππππ=+++,当0,1,2,3k =时,对应的4个根分别为:(1), (1), (1), (1)2222a a a ai i i i +-+--- 6. 证明下列各题:(1)设,z x iy =+则2x y z x y +≤≤+证明:首先,显然有22z x y x y =+≤+;其次,因222,x y x y +≥固此有2222()(),x y x y +≥+ 从而222x y z x y +=+≥。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复变函数第四版余家荣答案【篇一:1第一章复数与复变函数】京1第一章复数与复变函数1 复数及其代数运算1.复数的概念①在解方程时,有时会遇到负数开方的问题,但在实数范围内负数是不能开平方的。
为此,需要扩大数系。
我们给出如下的代数形式的复数定义:复数的代数定义:把有序实数对(x,y)作代数组合所确定的形如x?iy的数称为(代数形式的)复数,记为z?x?iy,2其中,i满足i??1。
我们称i为虚单位;实数x和y分别称为复数z 的实部和虚部,并记为x?rez,y?imz。
特别地,当imz?0时,z?x?i0?rez?x是实数;当rez?0时且imz?0时,z?iimz?iy称为纯虚数;虚部不为零的复数称为虚数(即不为实数的复数称为虚数);z?0当且仅当rez?0且imz?0,即复数0?0?i?0。
z1?z2当且仅当rez1?rez2且imz1?imz2。
2.复数的代数运算2.1 四则运算设z1?x1?iy1,z2?x2?iy2为任意两个复数,它们的四则运算定义为: 加法:z1?z2?(x1?x2)?i(y1?y2) 减法:z1?z2?(x1?x2)?i(y1?y2) 乘法:z1z2?(x1x2?y1y2)?i(x1y2?x2y1) 除法:z1x1x2?y1y2y1x2?x1y2(z2?0) ??i2222z2x2?y2x2?y22【注】:(1).可见,复数的四则运算,可以按照多项式的四则运算进行,只要注意将i换成?1。
(2).关于除法的具体操作可以按两种方法来进行:①.先看成分式的形式,然后分子分母同乘以一个与分母的实部相等而虚部只相差一个正负号的复数(在后面将会看到,这被定义为共轭复数),再进行简化;②.用复数z1?x1?iy1除以非零复数z2?x2?iy2,就是要求出这样一个复数z?x?iy,使得z1?z2?z。
按乘法的定义,为求出z需要解方程组?x2x?y2y?x1??x2y?xy2?y12.2 共轭复数复数x?iy和x?iy互称为对方的共轭复数,如果记z?x?iy,则用记其共轭复数,即?x?iy?x?iy。
①复数的公理化定义见附录1 2对于复数z?x?iy,称z?x2?y2为z的模或绝对值。
共轭复数和模有下列等式及不等式性质成立(1)()?z(2)z??2rez,z??2iimz (3)z?z?x?y (4)?z (5)z1?z2?1?2 (6)z1z2?1?2 (7)??222?z1?1???(z2?0) z2?2?2(8)z1?z2(9)x??z1?z2?z12?1z2?z1?z2?2re(z12)(此即相干叠加原理式.京.2222z?z?,y? (由此二式可知,任何实变数的方程原则上都可以用复变数表示 22i(10)?z?rez?z?rez?imz(11)?z?imz?z?rez?imz(12)z1?z2?z1?z2?z1?z2 (三角不等式)(13)(z1?z2)?第(8)式证明:n?ck?0nkn?kn1zk(n?1,2,?)(复数的二项式定理) z2z1?z2?(z1?z2)(z1?z2)?(z1?z2)(1?2)?z11?z22?z12?1z2 ?z1?z2?z12?z12?z1?z2?(z12 ?z12)?z1?z2?2re(z12) (根据z??2rez得)■22222223.复数域一般地,对一些数形成的集合s,若对s中的数按某种法则规定的四则运算在s中是封闭的,即s中任意两个数经所规定的加、减、乘、除运算后所得的数仍在s中,则称s为一数域。
如有有理数域q、实数域r、复数域c。
复数域与有理数域、实数域不同的是,复数没有大小之分,不能像有理数、实数那样可以比较大小,即复数域不是有序域,而是无序域。
尽管复数的实部x和虚部y均为实数,但是由于复数z?x?iy是实部和虚部通过虚单位i联系起来,从而是不能比较大小的.例:利用复数表示圆的方程3a(x2?y2)?bx?cy?d?0其中a?0,而a,b,c,d是实常数。
解:令z?x?iy,由上述第(3)及第(9)式得a(x2?y2)?bx?cy?d?a(z)?bz?z??c?d 22i11?az?(b?ci)z?(b?ci)?d221(b?ci),故知圆方程的复数表示可以是 2????d?0,其中a,d是实数。
反之,这种形式的方程就表示一个圆。
记??【注】:1.这种形式的特点就是两条:z的系数和常数项是实的,而z与的系数彼此共轭;2.以后还会看到圆的另外两种复变数表示。
它们分别适于不同的场合;3.由第(9)式可知,任何实变数的方程原则上都可以用复变数表示。
2 复数的几何表示1.复数可以表示为复平面上的点或向量由于一个复数z?x?iy本质上由一个有序实数对(x,y)唯一确定,而有序实数对(x,y)与平面上给定的直角坐标系上的点,或与从原点到坐标为(x,y)的点的向量(称为点(x,y)的位置向量,或简称位矢),可以建立起一一对应关系。
于是,可以用坐标平面的点或向量来表示复数。
与复数建立了这种对应关系的坐标平面称为复平面或z平面,也常用表示复数域的记号c来表示复平面。
此时,x轴称为实轴,y轴称为虚轴。
【注】:将复数表示为平面向量,这种对应关系使复数的加减法与向量图1.1 x 的加减法之间保持一致。
但是,复数的乘法与平面向量的乘法(无论是点积还是叉积)却是不同的。
也即把复数当作向量看待时只能针对加减法意义(或说只能针对问题中只出现加减法运算时)而言。
更准确地说,只能针对加减法及数量乘法(即一实数乘以一向量或复数)而言。
不过即使在这样的情况下也不能说“复数与向量可互为表示”,而只能说“复数与平面向量可互为表示”,因为一般向量概念还可以是三维及三维以上的。
可见线性代数中的线性空间概念比复数概念更弱。
2.复数可以表示为复球面上的点除了用平面内的点或向量来表示复数外,复数还有一种几何表示法,它是借用地图制图学中将地球投影到平面上的测地投影法,建立复平面与球面上的点的对应,也即还可以用球面上的点来表示复数。
取一个与复平面c切于原点的球面,通过原点作垂直于复平面c的直线与球面相交于另一点n, 称n为北极,而o点为南极。
在复平面xoy上任取一点z(x,y),它与球的北极n的连线相交于球面点p(?,?)。
如此,复平面c上的有限远点与球面上除n点外的点满足一一对应关系。
这样,除n点外的球面上的每一个点,就有复平面c 上唯一的一个复数与之对应。
此外,球面北极n可以看成是与在复平面c上引进的一个模为无穷大的假想的点相对应,这个假想点称为无穷远点,并记为?。
复平面c加上点?后称为扩充复平面,记为c?,即c??c????,与它对应的就是整个球面s,这样的整个球面s称为复球面。
简单地说,扩充复平面的另一个几何模型就是复球面。
如图所示。
为区别起见,我们把不含无穷远点的复平面c又称为开平面,把扩充复平面c?又称为闭平面。
以后,凡涉及到闭平面时,一定强调指出这个“闭”字或“扩充”二字;凡没有指明的地方,均默认指开平面。
4z(2(y)具体地,利用解析几何知识,我们可以推出在重合的直角坐标系下,扩充复平面c?上点的坐标与复球面s上对应点的坐标的关系式:设与c?上的点z?x?iy相应的s上的点为z(x,x,x),则有及3.关于?有如下规定(1)?的实部、虚部及幅角(幅角的定义见后)都无意义,????; ?0,都无意义;(特别注意,???也无意义,这不同于实分析) ?0?a(3)a??时,a?????a??,??,?0;a?a(4)a?0(但可为?)时,a?????a??,??;(5)在扩充复平面上,任一直线都是通过无穷远点的。
同时,没有一个半平面包含点?。
【注】:扩充复平面上点?只有一个,它和实分析中的??、??的概念不同。
(2)运算???,0??,5【篇二:复变函数与积分变换-车军领】ass=txt>课程编码:08课程名称(中、英文):复变函数 complex function theory积分变换 integral transformation先修课程:高等数学总学时:48 (授课学时: 48 上机学时: 0实验学时: 0 )一、课程的性质和任务:学科基础必修课,本课程介绍复平面上的区域以及复变函数的极限与连续等概念、解析函数的理论和方法;介绍积分变换的基本内容及应用。
二、课程教学内容的基本要求、重点和难点及学时分配1.复数与复变函数( 6 学时)基本要求:理解复数的概念,掌握复数的表示方法;掌握复数的四则运算及乘幂与方根;了解复平面上点集的基本概念,理解区域的概念;掌握复变函数的概念,了解复变函数极限与连续性;了解复球面与无穷远点的概念。
重点: 复数的表示方法,复数的四则运算及乘幂与方根,区域,复变函数的概念。
难点: 复数的乘幂与方根、区域、复变函数极限与连续性。
2.解析函数( 6 学时)基本要求:理解解析函数的概念,掌握柯西-黎曼条件;掌握初等解析函数:指数函数和三角函数的概念,了解双曲函数的概念;理解初等多值函数即根式函数和对数函数的概念,了解幂函数、指数函数和反函数的概念;掌握求根式函数z和对数函数lnz的单值解析分支的方法。
重点: 解析函数,柯西-黎曼条件;根式函数和对数函数;幂函数、指数函数;根式函数z和对数函数lnz的单值解析分支。
难点: 柯西-黎曼条件;求根式函数z和对数函数lnz的单值解析分支的方法。
3.复变函数的积分( 8 学时)基本要求:了解复积分的概念及其简单性质;掌握柯西-古萨基本定理、复合闭路原理及其应用;理解柯西积分公式及其推论,掌握利用柯西积分公式求积分的方法;理解解析函数的无穷可微性,掌握解析函数的高阶导数公式及应用;了解解析函数与调和函数的关系,会求共轭调和函数及其构成的解析函数。
重点: 柯西-古萨基本定理,复合闭路原理;柯西积分公式及其求积分的方法;解析函数的高阶导数公式及应用;共轭调和函数及其构成的解析函数。
难点: 复合闭路原理;用柯西积分公式求积分的方法;解析函数的高阶导数公式及应用;求共轭调和函数及其构成的解析函数。
4.解析函数的幂级数表示法( 10 学时)基本要求:了解复级数的概念和基本性质;理解幂级数的敛散性,和的解析性,掌握收敛半径的求法及幂级数的运算和性质;掌握解析函数的泰勒展式,会求一些初等函数的泰勒展式;理解解析函数的罗朗展式,会求简单的解析函数在孤立奇点领域内的罗朗展式。
重点: 幂级数收敛半径的求法,解析函数的泰勒展式,解析函数的罗朗展式。
难点: 求解析函数在孤立奇点领域内的罗朗展式。
5.留数( 6 学时)基本要求:理解解析函数的孤立奇点的概念;理解孤立奇点的三种类型的等价定理,会判断孤立奇点的类型;了解解析函数在无穷远点的性质;掌握留数的定义及留数定理,及留数的求法;会用留数定理计算复积分;会用留数定理计算下面三种形式的定积分2????0r(cos?,sin?)d?型,???r(x)dx型,?????r(x)eaixdx(a?0)型。