相似专题:一线三等角相似模型(用)
相似专题:一线三等角模型

由于角顶点位置的改变,或角绕顶点旋转会产生各 种各样的变式,但万变不离其宗: 都是构造相似三角形列比例式解决问题.
常见类型
考题赏析:
考题赏析
应用举例
应用举例.
2、当等角所对的边相等时的两个三角形全等. 如图,当CE=ED时,易得△AEC≌△BDE.
3、“中点型一线三等角”的特殊性质
如图,当∠1=∠2=∠3且D是BC中点时, △BDE∽△CFD∽△DFE.
四、一线三等角的常见构图(以等腰三角形为例)
A与E重合时如图所示
也可以在射线上
点D也可以在线段 BC外面
练习中的问题:
相似专题复习 :
合肥实验学校 孙红涛
引例
已知相邻两条平行线间距离相等,若等腰直角三角形顶 点分别在三条平行线上,则sinα =
C
a
B
起源
二、“一线三等角”的两种基本类型
1.三等角都在直线的同侧
2.三等角分居直线的两侧
三、“一线三等角”的性质
1.一般情况下,由∠1=∠2=∠3易得△AEC∽△BDE.
中考数学专题训练6:相似形中的一线三等角模型

中考数学专题训练6:相似形中的一线三等角模型【考点分析】三个相等的角的顶点在同一条直线上,那么就有一对三角形相似,这一结构称为“一线三等角”,如下图所示.此结构虽然不能直接作为定理使用,但因为其结构特殊,许多问题中常见,不妨引起重视.如图,∠A =∠CDE =∠B,则△ADE ∽△BCD ,因此EA :AD =BD :BC .例1.如图,在边长为2的等边△ABC 中,D 是BC 边上一点,E 、F 分别在AB 、AC 边上,且∠EDF =∠ABC . 已知BD =1,BE =31,求CF .例2.如图,等边△ABC 中,D 是BC 的中点,点E 、F 分别在边AB 、AC 上,且∠EDF =60°,找出图中的相似三角形,并证明之.练习:已知在等腰△ABC 中,AB=AC,D 是BC 的中点,∠EDF =∠B ,求证:△BDE ∽△DFE .例3. 如图,在梯形ABCD 中,AD ∥BC ,AB =CD =BC =6,AD =3..点M 为边BC 的中点,以M 为顶点作∠EMF =∠B ,射线ME 交腰AB 于点E ,射线MF 交腰CD 于点F ,联结EF .(1)求证:△MEF ∽△BEM ;(2)若△BEM 是以BM 为腰的等腰三角形,求EF 的长;(3)若EF ⊥CD ,求BE 的长.例4.在△ABC 中,AB =AC =8,BC =10,D 是BC 边上的一个动点,点E 在AC 边上,且∠ADE =∠C .(1) 求证:△ABD ∽△DCE ;(2) 如果BD=x,AE=y ,求y 与x 的函数解析式,并写出自变量x 的取值范围;(3) 当点D 是BC 的中点时,试说明△ADE 是什么三角形,并说明理由.例5. 已知矩形ABCD 中,CD =2,AD =3,点P 是AD 上的一个动点,且和点A,D 不重合,过点P 作PE ⊥CP ,交边AB 于点E ,设PD=x,AE=y,,求y 关于x 的函数关系式,并写出x 的取值范围。
人教版九年级数学下册《相似专题“一线三等角”模型》教学设计

《相似专题——“一线三等角”模型》教学设计一、【教材分析】二、【教学过程】几何画板展示三个直角变为三个相等的锐角或【归纳2】“一线三等角”条件:①有三个相等的角;②三等角顶点在同一直线上。
结论:△CBE s^EAD 学生思考:当三个直角变为三个相等的锐角或钝角的时候,两三角形相似的结论是否还成立?教师引导学生得出证明两三角形相似的过程,并归纳出“一线三等角”模型的基本特征。
Z B的对应角为Z C的对应角为Z BEC的对应角为BC的对应边为BE的对应边为CE的对应边为环节二•深入应用,能力提升【例题】已知三角形ABC中,AB=AC=5,BC=8,P为BC上以动点(不与B,C重合)且Z APM=Z B,PM交AC于点M。
(1)求证:△ABP s^pCM;2)若BP=2,求CM的长度。
BpC【例题变式】如图,在△ABC中,AB=AC=2, Z A=90°,O为BC中点,点E、点F分别在学生找准相似三角形的三对对应角,三对对应边,从而得出进一步推论:对应边的比相等。
学生思考:是“一线三等角”模型吗?三个相等的角在哪里?为什么会相等?学生思考、写出解题过程,教师必要时进行点拨,展示学生答题过程。
学生独立思考,写出解题过程,教师通过几何画板动态展示,让学生直观感受“一线三等角”模型的几种形态。
学生经历观察、比较、归纳的学习过程,从本质上把握“一线三等角”模型的基本特征。
学生体会由特殊到一般思想、分类讨论思想和化归思想方法。
为下面解决“一线三等角”模型的相关问题作知识准备。
题目没有直接给出三个相等的角,要在隐藏条件中找出“一线三等角”模型,找出解决问题的突破口。
再一次在隐藏条件中找出“一线三等AB、AC上,且Z EOF=45°.若BE=x,CF=y,求y与x之间的关系式.展示学生解题过角”模型,进步掌程。
握模型的基本特征,掌握条件与结论的规律。
学生思考得出:若两个相似三角形某一对对应边的长相等,则这两个三角形全等。
“一线三等角”相似模型

“一线三等角”相似模型“一线三等角”相似模型(一)情景再现问题1:如图,在等腰△ABC中,AB=AC ∠BAC=120°,点P为BC边上的点,过点P作∠MPN=30°,将∠MPN绕点P旋转,∠MPN的两边分别交AB、AC于点E、F时,问:△BPE与△PCF是否相似?证明你的结论。
问题2:如图,在等边△ABC中,边长为6,点D是BC上的动点,∠MDN=60°,当BD=1,NC=3时,求BM的长。
问题3:如图,在正方形ABCD中,边长为1,点E在线段BC 上,BE=,∠AEF=90°,边EF交DC于F,求EF的长。
(二)抽象模型1、模型定义所谓“一线三等角模型”,即两个相等的角一边在同一直线上,另一边在该直线的同侧或异侧,第三个与之相等的角的顶点在前一组等角的顶点所确定的线段上或线段的延长线上,该角的两边分别位于一直线的同侧或异侧,并与两等角两边相交,就会形成一组相似三角形,习惯上把该组相似三角形称为“一线三等角”型相似三角形.(通俗地讲,一条直线上有三个相等的角一般会存在相似三角形)2、基本图形:(1)点P在线段AB上(2)点P在线段AB延长线上三、载体(1)等腰或等边三角形底边上的“一线三等角”模型(2) 矩形或正方形中的“一线三等角”模型(“K”字型)(3)平面直角坐标系中的“一线三等角”模型(三)问题探究问题:如图16,在△ABC中,AB=AC=5,BC=8,点D、E分别在BC、AC上,连接AD、DE,使∠1=∠B 求线段CE的最大值变式1:(2017年无锡中考副卷第28题改编)如图1,在矩形ABCD 中,点P在AD上,AB=2,AP=1,将三角板的直角顶点放于P处,三角板的两直角边分别与AB、BC边相交于点E、F,连接EF。
(1)如图2,当点E与点B重合时,点F恰好与点C重合,求此时PC的长(2)将三角板从图1中点的位置开始,绕点P顺时针旋转,当点E与点A重合时停止,∠PEF的大小是否发生变化?变式2:(1)在平面直角坐标系中,如图,直线l1:y=-2x+4与x 轴、y轴分别交于A、B两点,将△OAB沿l1翻折,求O的对称点P 的坐标(2)直线l2过点P,且与直线l1的夹角是45°,求两直线l1、l2的交点的坐标。
初三相似三角形之一线三等角专题

相似三角形——“一线三等角型”一、知识梳理:一线三等角:两个等角的一边在同一直线上,另一边在该直线的同侧。
若有第三个与之相等的角、其顶点在该直线上,角的两边(或两边所在直线)分别与两等角的非共线边(或该边所在直线)相交,此时通过证明,一般都可以得到一组相似三角形,该组相似三角形习惯上被称为“一线三等角型”相似三角形.(图1)(图2)(1)如图1,已知三角形ABC中,AB=AC,∠ADE=∠B,那么一定存在的相似三角形有;(2)如图2,已知三角形ABC中,AB=AC,∠DEF=∠B,那么一定存在的相似三角形有.二、【例题解析】【例1】如图,等边△ABC中,边长为4,D是BC上动点,∠EDF=60°,(1)求证:△BDE∽△CFD;(2)当BD=1,FC=52时,求BE.【变式1】在边长为4的等边ABC∆中,D是BC的中点,点E、F分别在AB、AC上,且保持ABCEDF∠=∠,连接EF.(1) 已知BE=1,DF=2,求DE的值;(2) 求证:∠BED=∠DEF.【变式2】在边长为4的等边ABC ∆中,若BD =1时,当△DEF 与△AEF 相似,求BE 的值.【变式3】如图,已知边长为3的等边ABC ∆,点F 在边BC 上,CF =1,点E 是射线BA 上一动点,以线段EF 为边向右侧作等边EFG ∆,直线EG ,FG 交直线AC 于点M ,N ,(1)写出图中与BEF ∆相似的三角形;(2)证明其中一对三角形相似;(3)设BE =x ,MN =y ,,求y 与x 之间的函数关系式,并写出自变量x 的取值范围.【例2】在ABC ∆中,O BC AC C ,3,4,90===∠o 是AB 上的一点,且52=AB AO ,点P 是AC 上的一个动点,OP PQ ⊥交线段BC 于点Q (不与点B ,C 重合),已知AP =2,求CQ .【变式1】 如图,在△ABC 中,8==AC AB ,10=BC ,D 是BC 边上的一个动点,点E 在AC 边上,且C ADE ∠=∠.(1) 求证:△ABD ∽△DCE ;(2) 如果x BD =,y AE =,求y 与x 的函数解析式,并写出自变量x 的定义域;(3) 当点D 是BC 的中点时,试说明△ADE 是什么三角形,并说明理由.QC P【变式2】在直角三角形ABC 中,D BC AB C ,,90==∠o是AB 边上的一点,E 是在AC 边上的一个动点(与A ,C 不重合),DF DE DF ,⊥与射线BC 相交于点F .(1) 如图1,当点D 是边AB 的中点时,求证:DF DE =;(2) 如图2,当m DB AD =,求DF DE 的值.图(2)图(1)F CF C A BB A D E D E【例3】已知在梯形ABCD 中,AD ∥BC ,AD <BC ,且AD =5,AB =DC =2,P 为AD 上的一点,满足∠BPC =∠A . ① 求证;△ABP ∽△DPC ; ② 求AP 的长.【变式1】如果点P 在AD 边上移动(点P 与点A 、D 不重合),且满足∠BPE =∠A ,PE 交直线BC 于点E ,同时交直线DC 于点Q ,那么①当点Q 在线段DC 的延长线上时,设AP =x ,CQ =y ,求y 关于x 的函数解析式,并写出函数的定义域;②当CE =1时,写出AP 的长.C B AD C B A D【变式2】在梯形ABCD 中,AD ∥BC ,6AB CD BC ===,3AD =.点M 为边BC 的中点,以M 为顶点作EMF B ∠=∠,射线ME 交腰AB 于点E ,射线MF 交腰CD 于点F ,联结EF .(1)求证:△MEF ∽△BEM ;(2)若△BEM 是以BM 为腰的等腰三角形,求EF 的长;(3)若EF CD ⊥,求BE 的长.【作业】1、如图,在ABC ∆中,90C ∠=︒,6AC =,43=BC AC ,D 是BC 边的中点,E 为AB 边上的一个动点,作90DEF ∠=︒,EF 交射线BC 于点F .设BE x =,BED ∆的面积为y .(1)求y 关于x 的函数关系式,并写出自变量x 的取值范围;(2)如果以B 、E 、F 为顶点的三角形与BED ∆相似,求BED ∆的面积.2、如图,已知在△ABC 中, AB =AC =6,BC =5,D 是AB 上一点,BD =2,E 是BC 上一动点,连结DE ,并作DEF B ∠=∠,射线EF 交线段AC 于F .(1)求证:△DBE ∽△ECF ;(2)当F 是线段AC 中点时,求线段BE 的长;(3)联结DF ,如果△DEF 与△DBE 相似,求FC 的长.3、已知在梯形ABCD 中,AD ∥BC ,AD <BC ,且BC =6,AB =DC =4,点E 是AB 的中点.(1)如图,P 为BC 上的一点,且BP =2.求证:△BEP ∽△CPD ;(2)如果点P 在BC 边上移动(点P 与点B 、C 不重合),且满足∠EPF =∠C ,PF 交直线CD 于点F ,同时交直线AD 于点M ,那么:①当点F 在线段CD 的延长线上时,设BP =x ,DF =y ,求y 关于x 的函数解析式,并写出函数的定义域;②当BEP DMF S S ∆∆=49时,求BP 的长.。
中考数学常见几何模型一线三等角(K型图)模型(从全等到相似)

专题05 一线三等角(K 型图)模型(从全等到相似) 全等三角形与相似三角形在中考数学几何模块中占据着重要地位。
相似三角形与其它知识点结合以综合题的形式呈现,其变化很多,难度大,是中考的常考题型。
如果大家平时注重解题方法,熟练掌握基本解题模型,再遇到该类问题就信心更足了.本专题就一线三等角模型进行梳理及对应试题分析,方便掌握。
模型1.一线三等角(K 型图)模型(全等模型)【模型解读】在某条直线上有三个角相等,利用平角为180°与三角形内角和为180°,证得两个三角形全等。
【常见模型及证法】同侧型一线三等角(常见):锐角一线三等角 直角一线三等角(“K 型图”) 钝角一线三等角条件:A CED B ∠=∠=∠+ CE=DE证明思路:,A B C BED ∠=∠∠=∠+任一边相等BED ACE ⇒≅异侧型一线三等角:锐角一线三等角 直角一线三等角 钝角一线三等角条件:FAC ABD CED ∠=∠=∠+ 任意一边相等证明思路:,A B C BED ∠=∠∠=∠+任一边相等BED ACE ⇒≅1.(2022·湖南湘潭·中考真题)在ABC 中,90BAC ∠=︒,AB AC =,直线l 经过点A ,过点B 、C 分别作l 的垂线,垂足分别为点D 、E .(1)特例体验:如图①,若直线l BC ∥,2AB AC ==,分别求出线段BD 、CE 和DE 的长;(2)规律探究:①如图②,若直线l 从图①状态开始绕点A 旋转()045αα<<︒,请探究线段BD 、CE 和DE 的数量关系并说明理由;②如图③,若直线l 从图①状态开始绕点A 顺时针旋转()4590αα︒<<︒,与线段BC 相交于点H ,请再探线段BD 、CE 和DE 的数量关系并说明理由;(3)尝试应用:在图③中,延长线段BD 交线段AC 于点F ,若3CE =,1DE =,求BFCS △. 【答案】(1)BD =1;CE =1;DE =2(2)①DE =CE +BD ;理由见解析;②BD =CE +DE ;理由见解析 (3)258BFC S ∆= 【分析】(1)先根据得出90452ABC ACB ︒∠=∠==︒,根据l BC ∥,得出45DAB ABC ∠=∠=︒,45EAC ACE ∠=∠=︒,再根据90BDA CEA ∠=∠=︒,求出45ABD ∠=︒,45ACE ∠=︒, 即可得出45DAB ABD EAC ACE ∠=∠=∠=∠=︒,最后根据三角函数得出1AD BD ==,1AE CE ==,即可求出2DE AD AE =+=;(2)①DE =CE +BD ;根据题意,利用“AAS”证明ABD CAE ∆∆≌,得出AD =CE ,BD =AE ,即可得出结论;②BD =CE +DE ;根据题意,利用“AAS”证明ABD CAE ∆∆≌,得出AD =CE ,BD =AE ,即可得出结论;(3)在Rt△AEC 中,根据勾股定理求出225AC AE CE =+=,根据DF CE ∥,得出AD AF AE CF=,代入数据求出AF ,根据AC =5,算出CF ,即可求出三角形的面积.(1)解:△90BAC ∠=︒,AB AC =,△90452ABC ACB ︒∠=∠==︒, △l BC ∥,△45DAB ABC ∠=∠=︒,45EAC ACE ∠=∠=︒,△BD △AE ,CE △DE ,△90BDA CEA ∠=∠=︒,△904545ABD ∠=︒-︒=︒,904545ACE ∠=-=︒︒︒,△45DAB ABD EAC ACE ∠=∠=∠=∠=︒,△2sin 212AD BD AB DAB ==⨯∠=⨯=,2sin 212AE CE AC EAC ==⨯∠=⨯=,△2DE AD AE =+=. (2)①DE =CE +BD ;理由如下:△BD △AE ,CE △DE ,△90BDA CEA ∠=∠=︒,△90DAB DBA ∠+∠=︒,△90BAC ∠=︒,△90DAB CAE ∠+∠=︒,△DBA CAE ∠=∠,△AB =AC ,△ABD CAE ∆∆≌,△AD =CE ,BD =AE ,△DE =AD +AE =CE +BD ,即DE =CE +BD ;②BD =CE +DE ,理由如下:△BD △AE ,CE △DE ,△90BDA CEA ∠=∠=︒,△90DAB DBA ∠+∠=︒,△90BAC ∠=︒,△90DAB CAE ∠+∠=︒,△DBA CAE ∠=∠,△AB =AC ,△ABD CAE ∆∆≌,△AD =CE ,BD =AE ,△BD =AE =AD +DE =CE +DE ,即BD =CE +DE .(3)根据解析(2)可知,AD =CE=3,△314AE AD DE =+=+=,在Rt△AEC 中,根据勾股定理可得:225AC AE CE =+=,△BD △AE ,CE △AE ,△DF CE ∥,△AD AF AE CF =,即345AF =,解得:154=AF , △155544CF AC AF =-=-=,△AB =AC =5,△1152552248BFC S CF AB ∆=⨯=⨯⨯=. 【点睛】本题主要考查了三角形全等的判定和性质,等腰三角形的判定和性质,勾股定理,平行线的性质,解直角三角形,根据题意证明ABD CAE ∆∆≌,是解题的关键.2.(2022·黑龙江·九年级期末)(1)如图(1),已知:在△ABC 中,△BAC =90°,AB =AC ,直线m 经过点A ,BD △直线m , CE △直线m ,垂足分别为点D 、E .证明△DE =BD +CE .(2)如图(2),将(1)中的条件改为:在△ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有△BDA =△AEC =△BAC =α,其中α为任意锐角或钝角.请问结论DE =BD +CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为△BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE ,若△BDA =△AEC =△BAC ,试判断△DEF 的形状.【答案】(1)见解析(2)成立,证明见解析(3)△DEF为等边三角形,证明见解析【分析】(1)因为DE=DA+AE,故由全等三角形的判定AAS证△ADB△△CEA,得出DA=EC,AE=BD,从而证得DE=BD+CE;(2)成立,仍然通过证明△ADB△△CEA,得出BD=AE,AD=CE,所以DE=DA+AE=EC+BD;(3)由△ADB△△CEA得BD=AE,△DBA =△CAE,由△ABF和△ACF均等边三角形,得△ABF=△CAF=60°,FB=F A,所以△DBA+△ABF=△CAE+△CAF,即△DBF=△F AE,所以△DBF△△EAF,所以FD=FE,△BFD=△AFE,再根据△DFE=△DF A+△AFE=△DF A+△BFD=600得到△DEF是等边三角形.【详解】解:(1)证明:△BD△直线m,CE△直线m,△△BDA=△CEA=90°.△△BAC=90°,△△BAD+△CAE=90°.△△BAD+△ABD=90°,△△CAE=△ABD.又AB=AC,△△ADB△△CEA(AAS).△AE=BD,AD=CE.△DE=AE+AD=BD+CE;(2)成立.证明如下:△△BDA =△BAC=α,△△DBA+△BAD=△BAD +△CAE=180°-α.△△DBA=△CAE.△△BDA=△AEC=α,AB=AC,△△ADB△△CEA(AAS).△AE=BD,AD=CE.△DE=AE+AD=BD+CE;(3)△DEF为等边三角形.理由如下:由(2)知,△ADB△△CEA,BD=AE,△DBA =△CAE,△△ABF和△ACF均为等边三角形,△△ABF=△CAF=60°.△△DBA+△ABF=△CAE+△CAF.△△DBF=△F AE.△BF=AF,△△DBF△△EAF(SAS).△DF=EF,△BFD=△AFE.△△DFE=△DF A+△AFE=△DF A+△BFD=60°.△△DEF为等边三角形.【点睛】此题考查了全等三角形的性质和判定、等边三角形的性质和判定,解题的关键是熟练掌握全等三角形的性质和判定,等边三角形的性质和判定.3.(2022·江苏·九年级专题练习)【感知模型】“一线三等角”模型是平面几何图形中的重要模型之一,请根据以下问题,把你的感知填写出来:①如图1,ABC 是等腰直角三角形,90C ∠=︒,AE =BD ,则AED ≌_______; ②如图2,ABC 为正三角形,,60BD CF EDF =∠=︒,则BDE ≌________;③如图3,正方形ABCD 的顶点B 在直线l 上,分别过点A 、C 作AE l ⊥于E ,CF l ⊥于F .若1AE =,2CF =,则EF 的长为________.【模型应用】(2)如图4,将正方形OABC 放在平面直角坐标系中,点O 为原点,点A 的坐标为()1,3,则点C 的坐标为________.【模型变式】(3)如图5所示,在ABC 中,90ACB ∠=︒,AC BC =,BE CE ⊥于E ,AD △CE 于D ,4cm DE =,6cm AD =,求BE 的长.【答案】①△BDF ;②△CFD ;③3;(2)(31)-,(3)2cm【分析】①根据等腰直角三角形的性质及和角关系,可得△AED △△BDF ;②根据等边三角形的性质及和角关系,可得△BDE △△CFD ;③根据正方形的性质及和角关系,可得△ABE △△BCF ,由全等三角形的性质即可求得EF 的长;(2)分别过A 、C 作x 轴的垂线,垂足分别为点D 、E ,根据正方形的性质及和角关系,可得△COE △△OAD ,从而可求得OE 、CE 的长,进而得到点C 的坐标;(3)由三个垂直及等腰直角三角形可证明△BCE △△CAD ,由全等三角形的性质即可求得BE 的长.【详解】①△△ABC 是等腰直角三角形,△C =90゜△△A =△B =45゜△△BDF +△BFD =180゜−△B =135゜△△EDF =45゜△△ADE +△BDF =180゜−△EDF =135゜△△ADE =△BFD在△AED 和△BDF 中A B ADE BFD AEBD ∠=∠⎧⎪∠=∠⎨⎪=⎩△△AED △△BDF (AAS ) 答案为:△BDF ; ②△△ABC 是等边三角形△△B =△C =60゜△△BDE +△BED =180゜−△B =120゜△△EDF =60゜△△BDE +△CDF =180゜−△EDF =120゜△△BED =△CDF在△BDE 和△CFD 中B C BED CDF BD CF ∠=∠⎧⎪∠=∠⎨⎪=⎩△△BDE △△CFD (AAS )故答案为:△CFD ; ③△四边形ABCD 是正方形△△ABC =90゜,AB =BC△△ABE +△CBF =180゜−△ABC =90゜△AE △l ,CF △l △△AEB =△CFB =90゜△△ABE +△EAB =90゜△△EAB =△CBF在△ABE 和△BCF 中AEB CFB EAB CBF AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩△△ABE △△BCF (AAS ) △AE =BF =1,BE =CF =2△EF =BE +BF =2+1=3 故答案为:3;(2)分别过A 、C 作x 轴的垂线,垂足分别为点D 、E ,如图所示△四边形OABC 是正方形△△AOC =90゜,AO =OC△△COE +△AOD =180゜−△ACO =90゜△AD △x 轴,CE △x 轴△△CEO =△ADO =90゜△△ECO +△COE =90゜△△ECO =△AOD在△COE 和△OAD 中CEO ADO ECO AOD OC AO ∠=∠⎧⎪∠=∠⎨⎪=⎩△△COE △△OAD (AAS )△CE =OD ,OE =AD △(1,3)A △OD =1,3AD =△CE =1,3OE =△点C 在第二象限△点C 的坐标为(31)-,故答案为:(31)-,; (3)△△ACB =90゜△△BCE +△ACD =90゜△BE △CE ,AD △CE △△CEB =△ADC =90゜△△BCE +△CBE =90゜ △△CBE =△ACD在△BCE 和△CAD 中CBE ACD CEB ADC BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩△△BCE △△CAD (AAS ) △BE =CD ,CE =AD =6cm △BE =CD =CE -DE =6-4=2(cm)【点睛】本题是三角形全等的综合,考查了全等三角形的判定与性质,掌握全等三角形的判定方法是关键.模型2.一线三等角模型(相似模型)【模型解读与图示】“一线三等角”型的图形,因为一条直线上有三个相等的角,一般就会有两个三角形的“一对角相等”,再利用平角为180°,三角形的内角和为180°,就可以得到两个三角形的另外一对角也相等,从而得到两个三角形相似.1.(2022·四川·一模)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形:(1)如图1,已知:在△ABC 中,AB AC =,D 、A 、E 三点都在直线m 上,并且有BDA AEC BAC α∠=∠=∠=.试猜想DE 、BD 、CE 有怎样的数量关系,请证明你的结论; (2)老师鼓励学习小组继续探索相似的情形.于是,学习小组又研究以下问题:如图2,△ABC 中,(060)B C αα∠=∠=<<︒.将一把三角尺中30°角顶点P 放在BC 边上,当P 在BC 边上移动时,三角尺中30°角的一条边始终过点A ,另一条边交AC 边于点Q ,P 、Q 不与三角形顶点重合.设CPQ β∠=.当β在许可范围内变化时,α取何值总有△ABP △△PCQ ?当α在许可范围内变化时,β取何值总有△ABP △△QCP ?(3)试探索有无可能使△ABP 、△QPC 、△ABC 两两相似?若可能,写出所有α、β的值(不写过程);若不可能,请说明理由.【答案】(1)DE AE AD BD CE =+=+;证明见解析;(2)30α=︒;75β=︒;(3)可能;30α=︒,30β=︒或52.5α=︒,75β=︒.【分析】(1)证明△ADB △△CEA (AAS ),由全等三角形的性质得出AE =BD ,AD =CE ,则可得出结论;(2)由β=△2或△1=△CQP ,即△2=30°+β-α=β,解得α=30°,即可求解;由β=△1或△2=△CQP ,同理可得:β=75°,即可求解;(3)①当α=30°,β=30°时,则△2=△B =α=30°,即可求解;②当β=75°,α=52.5°时,同理可解.【详解】解:(1)如图1,△BDA BAC α∠=∠=,△180DBA BAD BAD CAE ∠∠∠∠α+=+=︒-,△DBA CAE ∠=∠,在△ADB 和△CEA 中,DBA EAC BDA AEC BA AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,△△ADB △△CEA (AAS ),△AE BD =,AD CE =, △DE AE AD BD CE =+=+;(2)在△ABP 中,2230APC B αβ∠=∠+∠=+∠=︒+,△1150β∠=︒-,同理可得:230βα∠=︒+-;由2β=∠或1CQP ∠=∠,即230βαβ∠=︒+-=,解得30α=︒,则△ABP △△PCQ ;△当β在许可范围内变化时,30α=︒时,总有△ABP △△PCQ ;由1β=∠或2CQP ∠=∠,同理可得:75β=︒.△当α在许可范围内变化时,75β=︒总有△ABP △△QCP ;(3)可能.①当30α=︒,30β=︒时,则230B α∠=∠==︒,则△ABP △△PCQ △△BCA ; ②当75β=︒,52.5α=︒时,同理可得:115075ββ∠=︒-=︒=,23052.5βαα∠=︒+-=︒=,△△ABP △△CQP △△BCA .【点睛】本题是相似形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,熟练掌握相似三角形的性质是解本题的关键.2.(2022·河南新乡·二模)如图,△ABC 和△ADE 是有公共顶点A 的两个等腰直角三角形,△DAE =△BAC =90°,AD =AE ,AB =AC =6,D 在线段BC 上,从B 到C 运动,点M 和点N 分别是边BC ,DE 的中点.(1)【问题发现】若点D 是BC 边的中点时,BD MN= ,直线BD 与MN 相交所成的锐角的度数为 (请直接写出结果)(2)【解决问题]若点D 是BC 边上任意一点时,上述结论是否成立,请说明理由.(3)【拓展探究】在整个运动过程中,请直接写出N 点运动的路径长,及CN 的最小值.【答案】(1)2,45° (2)成立,理由见解析(3)N 点运动的路径长为6,CN 的最小值为3【分析】(1)证明△AMN 是等腰直角三角形,可得结论.(2)结论不变.连接AM ,AN ,证明△BAD △△MAN ,可得结论.(3)利用三角形中位线定理,垂线段最短解决问题即可.(1)解:如图1中,当点D 是BC 的中点时,△AB =AC ,△AD △BC ,AD 平分△BAC ,△△CAD =△ADE =45°,△AC △DE ,△AC 平分DE ,△点N 落在AC 上,△BM =AM =2MN ,△NMC =45°,△BD MN=2,故答案为:2,45°. (2)解:如图2中,连接AM ,AN .△AB =AC ,△BAC =90°,BM =CM ,△AM △MC ,AM =BM =CM ,△AB =2AM ,同法可证AD =2AN ,△△BAM =△DAN =45°,△△BAD =△MAN ,△AB AM =AD AN ,△△BAD △△MAN ,△BD MN =AB AM=2,△ABD =△AMN =45°.(3)解:如图3中,当D 在线段BC 上,从B 运动到C 时,由(2)问可知,△AMN =45°,所以点N 的运动路径是图3中的线段MN ,MN =12BE =6.当CN △MN 时,CN 的值最小,最小值=12AC =3.【点睛】本题属于三角形综合题,考查了等腰直角三角形的性质,相似三角形的判定和性质,三角形中位线定理,垂线段最短等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.3.(2022·山东菏泽·三模)(1)问题:如图1,在四边形ABCD 中,点P 为AB 上一点,当90DPC A B ∠=∠=∠=︒时,求证:AD BC AP BP ⋅=⋅.(2)探究:若将90°角改为锐角或钝角(如图2),其他条件不变,上述结论还成立吗?说明理由.(3)应用:如图3,在ABC 中,22AB =,45B ∠=︒,以点A 为直角顶点作等腰Rt ADE △.点D 在BC 上,点E 在AC 上,点F 在BC 上,且45EFD ∠=︒,若5CE =,求CD 的长.【答案】(1)见解析;(2)成立,理由见解析;(3)5CD =【分析】(1)由△DPC =△A =B =90°,可得△ADP =△BPC ,即可证到△ADP ∽△BPC ,然后运用相似三角形的性质即可解决问题;(2)由△DPC =△A =△B =α,可得△ADP =△BPC ,即可证到△ADP∽△BPC ,然后运用相似三角形的性质即可解决问题;(3)先证△ABD ∽△DFE ,求出DF =4,再证△EFC ∽△DEC ,可求FC =1,进而解答即可.【详解】(1)证明:如题图1,△△DPC =△A =△B =90°,△△ADP +△APD =90°,△BPC +△APD = 90°,△△ADP = △BPC ,△△ADP ∽△BPC ,AD AP BP BC∴=,△AD ⋅BC = AP ⋅BP , (2)结论仍然成立,理由如下,BPD DPC BPC ∠=∠+∠,又BPD A ADP ∠=∠+∠,DPC BPC A ADP ∴∠+∠=∠+∠,DPC A ∠=∠,设DPC A α∠=∠=,BPC ADP ∴∠=∠,ADP BPC ∴∽△△,AD AP BP BC ∴=,△AD ⋅BC = AP ⋅BP ,(3)45EFD ∠=︒,45B ADE ∴∠=∠=︒,BAD EDF ∴∠=∠,ABD DFE ∴∽,AB AD DF DE∴=,ADE 是等腰直角三角形,2DE AD ∴=,22AB =,4DF ∴=,45,45EFD ADE ∠=︒∠=︒,135EFC DEC ∴∠=∠=︒,EFC DEC ∴∽,FC EC EC CD ∴=, 5EC =,4CD DF FC FC =+=+,()245EC FC CD FC FC ∴=⋅=⋅+=,1FC ∴=,5CD ∴=. 【点睛】本题考查相似三角形的综合题,三角形的相似;能够通过构造45°角将问题转化为一线三角是解题的关键.模型3.一线三直角模型(相似模型)【模型解读与图示】“一线三直角”模型的图形,实则是“一线三等角”型的图形的特例,因为这种图形在正方形和矩形中出现的比较多,对它做一专门研究,这样的图形,因为有三个角是直角,就有两个角相等,再根据“等角的余角相等”可以得到另外一对角相等,从而判定两个三角形相似.1.(2022·湖南郴州·中考真题)如图1,在矩形ABCD 中,4AB =,6BC =.点E 是线段AD 上的动点(点E 不与点A ,D 重合),连接CE ,过点E 作EF CE ⊥,交AB 于点F .(1)求证:AEF DCE ∽;(2)如图2,连接CF ,过点B 作BG CF ⊥,垂足为G ,连接AG .点M 是线段BC 的中点,连接GM .①求AG GM +的最小值;②当AG GM +取最小值时,求线段DE 的长.【答案】(1)见解析(2)①5;②35DE =+或35DE =-【分析】(1)证明出DCE AEF ∠=∠即可求解;(2)①连接AM .先证明132BM CM GM BC ====.确定出点G 在以点M 为圆心,3为半径的圆上.当A ,G ,M 三点共线时,AG GM AM +=.此时,AG GM +取最小值.在Rt ABM 中利用勾股定理即可求出AM ,则问题得解.②先求出AF ,求AF 的第一种方法:过点M 作∥MN AB 交FC 于点N ,即有CMN CBF ∽△△,进而有12MN CM BF CB ==.设AF x =,则4BF x =-,()142MN x =-.再根据∥MN AB ,得到AFG MNG ∽△△,得到AF AG MN GM =,则有()21342xx =-,解方程即可求出AF ;求AF 的第二种方法:过点G 作GH AB ∥交BC 于点H .即有MHG MBA ∽△△.则有GM GH MH AM AB MB ==,根据5AM =,可得3543GH MH ==,进而求出125GH =,95MH =.由GH AB ∥得CHG CBF ∽△△,即可求出AF .求出AF 之后,由(1)的结论可得AF AE DE DC.设DE y =,则6AE y =-,即有164y y -=,解得解方程即可求出DE .(1)证明:如图1,△四边形ABCD 是矩形,△90A D ∠=∠=︒,△90CED DCE ∠+∠=︒.△EF CE ⊥,△90CED AEF ∠+∠=︒,△DCE AEF ∠=∠,△AEF DCE ∽;(2)①解:如图2-1,连接AM .△BG CF ⊥,△BGC 是直角二角形.△132BM CM GM BC ====. △点G 在以点M 为圆心,3为半径的圆上.当A ,G ,M 三点不共线时,由三角形两边之和大于箒三边得:AG GM AM +>, 当A ,G ,M 三点共线时,AG GM AM +=.此时,AG GM +取最小值.在Rt ABM 中,225AM AB BM =+=.△AGGM+的最小值为5.②(求AF 的方法一)如图2-2,过点M 作∥MN AB 交FC 于点N ,△CMN CBF ∽△△.△12MN CM BF CB ==. 设AF x =,则4BF x =-,△()11422MN BF x ==-. △∥MN AB ,△AFG MNG ∽△△,△AF AG MN GM=, 由①知AG GM +的最小值为5、即5AM =,又△3GM =,△2AG =.△()21342xx =-,解得1x =,即1AF =. (求AF 的方法二)如图2-3,过点G 作GH AB ∥交BC 于点H .△MHG MBA ∽△△.△GM GH MH AM AB MB ==, 由①知AG GM +的最小值为5,即5AM =,又△3GM =,△3543GH MH ==.△125GH =,95MH =. 由GH AB ∥得CHG CBF ∽△△,△GH CH FB CB =,即1293556FB +=,解得3FB =. △1AF AB FB =-=.由(1)的结论可得AF AE DE DC. 设DE y =,则6AE y =-,△164y y -=,解得35y =+或35-. △0356<+<,0356<-<,△35DE =+或35DE =-.【点睛】本题主要考查了相似三角形的判定与性质、平行的性质、勾股定理以及一元二次方程的应用等知识,掌握相似三角形的判定与性质是解答本题的关键.2.(2022·山东济宁·二模)情境观察:将含45°角的三角板的直角顶点R 放在直线l 上,分别过两锐角的顶点M ,N 作l 的垂线,垂足分别为P , Q ,(1)如图1.观察图1可知:与NQ 相等的线段是______________,与NRQ∠相等的角是_____(2)问题探究直角ABC 中,90B ∠=︒,在AB 边上任取一点D ,连接CD ,分别以AC ,DC 为边作正方形ACEF 和正方形CDGH ,如图2,过E ,H 分别作BC 所在直线的垂线,垂足分别为K ,L .试探究EK 与HL 之间的数量关系,并证明你的结论.(3)拓展延伸:直角ABC 中,90B ∠=︒,在AB 边上任取一点D ,连接CD ,分别以AC ,DC 为边作矩形ACEF 和矩形CDGH ,连接EH 交BC 所在的直线于点T ,如图3.如果AC kCE =,CD kCH =,试探究TE 与TH 之间的数量关系,并证明你的结论.【答案】(1)PR ,PMR ∠,(2)EK LH =,证明见解析;(3)ET HT=,证明见解析.【分析】(1)根据等腰直角三角形的性质得到,=MR RN ,90MRN ∠=︒,根据余角性质得到PMR NRQ ∠=∠,再证明MPR NRQ ≌△△,即可得到QN PR =,NRQ PMR ∠=∠;(2)证明ABC CEK ≌△△,得到EK BC =,再证明DCB CHL ≌△△,得到BC HL =,可得到EK LH =;(3)证明ACB ECM ∽△△,得到BC kEM =,证明BCD NHC ∽△△,得到BC kHN =,得到EM HN =,证明NHT EMT ≌△△即可得到ET HT =.(1)解:△MRN △是等腰直角三角形,△=MR RN ,90MRN ∠=︒,△MP PQ ⊥,NQ PQ ⊥,△90MPR NQR ∠=∠=︒,△90PMR MRP MRP NRQ ∠+∠=∠+∠=︒,△PMR NRQ ∠=∠,在MPR △和NRQ △中,PMR NRQ MPR NRQ MR NR ∠=∠⎧⎪∠=∠⎨⎪=⎩△MPR NRQ ≌△△,△QN PR =,NRQ PMR ∠=∠,故答案为:PR ,PMR ∠;(2)解:△四边形ACEF 是正方形,△AC CE =,90ACE ∠=︒,△EK BK ⊥△90B EKC ∠=∠=︒,△90BAC ACB ACB ECK ∠+∠=∠+∠=︒,△BAC ECK ∠=∠,在ABC 和CEK △中,BAC KCE B EKCAC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩△ABC CEK ≌△△,△EK BC =, △四边形CDGH 是正方形,△CD CH =,90DCH ∠=︒△HL BC ⊥,△90B CLH ∠=∠=︒,△90DCB LCK LCK CHL ∠+∠=∠+∠=︒,△DCB CHL ∠=∠,在DCB 和CHL △中,B CLH BCD CHL CD CH ∠=∠⎧⎪∠=∠⎨⎪=⎩△DCB CHL ≌△△,△BC HL =,EK LH =, (3)解:过E 作EM BC ⊥与M ,过H 作HN BC ⊥与N ,△四边形ACEF 是矩形,△90ACE ∠=︒,△90BAC ACB ACB ECM ∠+∠=∠+∠=︒,△BAC ECM ∠=∠,△ACB ECM ∽△△,△BC AC k EM CE==,△BC kEM =, 同理:BCD NHC ∽△△,△BC CD k HN CH==,△BC kHN =,△EM HN =, 在NHT △和EMT △中,HNT EMT NTH MTE HN EM ∠=∠⎧⎪∠=∠⎨⎪=⎩△NHT EMT ≌△△,△ET HT =. 【点睛】本题考查全等三角形的判定及性质,相似三角形的判定及性质,正方形的性质,矩形的性质,余角的性质,(3)证明ACB ECM ∽△△,BCD NHC ∽△△是解题的关键.3.(2022·浙江·嘉兴一中一模)阅读材料:我们知道:一条直线经过等腰直角三角形的直角顶点,过另外两个顶点分别向该直线作垂线,即可得三垂直模型”如图①:在△ABC 中,△ACB =90°,AC =BC ,分别过A 、B 向经过点C 直线作垂线,垂足分别为D 、E ,我们很容易发现结论:△ADC △△CEB .(1)探究问题:如果AC ≠BC ,其他条件不变,如图②,可得到结论;△ADC △△CEB .请你说明理由.(2)学以致用:如图③,在平面直角坐标系中,直线y =12x 与直线CD 交于点M (2,1),且两直线夹角为α,且tanα=32,请你求出直线CD 的解析式.(3)拓展应用:如图④,在矩形ABCD 中,AB =4,BC =5,点E 为BC 边上一个动点,连接AE ,将线段AE 绕点E 顺时针旋转90°,点A 落在点P 处,当点P 在矩形ABCD 外部时,连接PC ,PD .若△DPC 为直角三角形时,请你探究并直接写出BE 的长.【答案】(1)见解析(2)41577y x =-+(3)4或372+ 【分析】(1)由同角的余角相等可得△BCE =△DAC ,且△ADC =△BEC =90°,可得结论;(2)过点O 作ON △OM 交直线CD 于点N ,分别过M 、N 作ME △x 轴NF △x 轴,由(1)的结论可得: △NFO △△OEM ,可得NF OF NO OE ME MO== ,可求点N 坐标,利用待定系数法可求解析式;(3)分两种情况讨论,由全等三角形的性质和相似三角形的性质可求解.(1)解:理由如下,△△ACB =90°,△△ACD +△BCE =90°,又△△ADC =90°,△△ACD +△DAC =90°,△△BCE =△DAC ,且△ADC =△BEC =90°,△△ADC △△CEB ;(2)解:如图,过点O 作ON △OM 交直线CD 于点N ,分别过M 、N 作ME △x 轴,NF △x 轴,由(1)可得:△NFO △△OEM ,△NF OF NO OE ME MO==,△点M (2,1),△OE =2,ME =1, △tanα=ON OM =32,△3212NF OF ==,△NF =3,OF =32 ,△点N (32-,3), △设直线CD 表达式:y =kx +b ,△12332k b k b =+⎧⎪⎨=-+⎪⎩△47157k b ⎧=-⎪⎪⎨⎪=⎪⎩△直线CD 的解析式为:y =-47x +157; (3)解:当△CDP =90°时,如图,过点P 作PH △BC ,交BC 延长线于点H ,△△ADC +△CDP =180°,△点A ,点D ,点P 三点共线,△△BAP =△B =△H =90°,△四边形ABHP 是矩形,△AB =PH =4,△将线段AE 绕点E 顺时针旋转90°,△AE =EP ,△AEP =90°,△△AEB +△PEH =90°,且△BAE +△AEB =90°,△△BAE =△PEH ,且△B =△H =90°,AE =EP ,△△ABE △△EHP (AAS ),△BE =PH =4,当△CPD =90°时,如图,过点P 作PH △BC ,交BC 延长线于点H ,延长HP 交AD 的延长线于N ,则四边形CDNH 是矩形,△CD =NH =4,DN =CH ,设BE =x ,则EC =5-x ,△将线段AE 绕点E 顺时针旋转90°,△AE =EP ,△AEP =90°,△△AEB +△PEH =90°,且△BAE +△AEB =90°,△△BAE =△PEH ,且△B =△EHP =90°,AE =EP ,△△ABE △△EHP (AAS ),△PH =BE =x ,AB =EH =4,△PN =4-x ,CH =4-(5-x )=x -1=DN ,△△DPC =90°,△△DPN +△CPH =90°,且△CPH +△PCH =90°,△△PCH =△DPN ,且△N =△CHP =90°,△△CPH △△PDN ,△DN NP PH CH =,△1x x -=41x x --△x =372± △点P 在矩形ABCD 外部,△x =372+,△BE =372+, 综上所述:当BE 的长为4或372+时,△DPC 为直角三角形. 【点睛】本题是考查了待定系数法求解析式,相似三角形的判定和性质,全等三角形的判定和性质,矩形的判定和性质等知识,添加恰当辅助线构造相似三角形是本题的关键.课后专项训练:1.(2022·贵州铜仁·三模)(1)探索发现:如图1,已知Rt ABC 中,90ACB ∠=︒,AC BC =,直线l 过点C ,过点A 作AD l ⊥,过点B 作BE l ⊥,垂足分别为D 、E .求证:CD BE =. (2)迁移应用:如图2,将一块等腰直角的三角板MON 放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O 重合,另两个顶点均落在第一象限内,已知点N 的坐标为()4,2,求点M 的坐标.(3)拓展应用:如图3,在平面直角坐标系内,已知直线44y x =-+与y 轴交于点P ,与x 轴交于点Q ,将直线PQ 绕P 点沿逆时针方向旋转45︒后,所得的直线交x 轴于点R .求点R 的坐标.【答案】(1)见详解;(2)点M的坐标为(1,3);(3)R(203,0)【分析】(1)先判断出△ACB=△ADC,再判断出△CAD=△BCE,进而判断出△ACD△△CBE,即可得出结论;(2)过点M作MF△y轴,垂足为F,过点N作NG△MF,判断出MF=NG,OF=MG,设M(m,n)列方程组求解,即可得出结论;(3)过点Q作QS△PQ,交PR于S,过点S 作SH△x轴于H,先求出OP=4,由y=0得x=1,进而得出Q(1,0),OQ=1,再判断出PQ=SQ,即可判断出OH=5,SH=OQ=1,进而求出直线PR的解析式,即可得出结论.【详解】(1)证明:△△ACB=90°,AD△l,△△ACB=△ADC.△△ACE=△ADC+△CAD,△ACE=△ACB+△BCE,△△CAD=△BCE,△△ADC=△CEB=90°,AC=BC.△△ACD△△CBE,△CD=BE,(2)解:如图2,过点M作MF△y轴,垂足为F,过点N作NG△MF,交FM的延长线于G,由已知得OM=ON,且△OMN=90°,△由(1)得△OFM△△MGN,△MF=NG,OF=MG,设M(m,n),△MF=m,OF=n,△MG=n,NG=m,△点N的坐标为(4,2)△42m n n m +=⎧⎨-=⎩解得13m n =⎧⎨=⎩△点M 的坐标为(1,3); (3)如图3,过点Q 作QS △PQ ,交PR 于S ,过点S 作SH △x 轴于H ,对于直线y =﹣4x +4,由x =0得y =4,△P (0,4),△OP =4,由y =0得x =1,△Q (1,0),OQ =1,△△QPR =45°,△△PSQ =45°=△QPS .△PQ =SQ .△由(1)得SH =OQ ,QH =OP . △OH =OQ+QH =OQ+OP =4+1=5,SH =OQ =1.△S (5,1),设直线PR 为y =kx+b ,则451b k b =⎧⎨+=⎩,解得435b k =⎧⎪⎨=-⎪⎩.△直线PR 为y =35x +4.由y =0得,x =203,△R (203,0). 【点睛】本题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,构造出全等三角形是解本题的关键.2.(2022·广东·汕头市潮阳区教师发展中心教学研究室一模)(1)模型建立,如图1,等腰直角三角形ABC 中,△ACB =90°,CB =CA ,直线ED 经过点C ,过A 作AD △ED 于D ,过B 作BE △ED 于E .求证:△BEC △△CDA ;(2)模型应用:①已知直线AB 与y 轴交于A 点,与x 轴交于B 点,sin△ABO =35,OB =4,将线段AB 绕点B 逆时针旋转90度,得到线段BC ,过点A ,C 作直线,求直线AC 的解析式;②如图3,矩形ABCO ,O 为坐标原点,B 的坐标为(8,6),A ,C 分别在坐标轴上,P 是线段BC 上动点,已知点D 在第一象限,且是直线y =2x -5上的一点,若△APD 是以D 为直角顶点的等腰直角三角形,请求出所有符合条件的点D 的坐标.【答案】(1)见解析;(2)①137y x =-+;②D (3,1)或1923,33D ⎛⎫ ⎪⎝⎭【详解】(1)解:由题意可得, 90ACB ADC BEC ∠∠∠===︒ ,△90EBC BCE BCE ACD ∠+∠=∠+∠=︒ ,△EBC ACD ∠=∠ ,在BEC △和CDA 中EBC ACD E D BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,△BEC CDAAAS ∆∆≌() , (2)解:①如图,过点C 作 CD x ⊥ 轴于点D ,在Rt △ABO 中 sin△ABO 35=,OB =4, △设AO =3m ,AB =5m ,△OB =4m =4,△m =1,△AO =3,同(1)可证得CDB BOA ∆∆≌,△4CD BO == ,3BD AO ==,△437OD =+=,△74C -(,),△03A (,),设直线AC 解析式为 3y kx =+ ,把C 点坐标代入可得734k -+=,解得 17k =- , △直线AC 解析式为137y x =-+; ②设D 坐标为(x ,2x -5),当D 在AB 的下方时,过D 作DE △y 轴于E ,交BC 于F ,同(1)可证得△ADE △△DPF ,△DF =AE =6-(2x -5)=11-2x ,DE =x,△11-2x +x =8,△x =3,△D (3,1),当D 在AB 的上方时,如图,过D 作DE △y 轴于E ,交BC 的延长线于F , 同(1)可证得ADE DPF △△≌,△DF =AE =(2x -5)-6=2x -11,DE =x ,△2x -11+x =8,△193x =,△1923,33D ⎛⎫ ⎪⎝⎭,综上述D (3,1)或1923,33D ⎛⎫ ⎪⎝⎭. 【点睛】本题考查了全等三角形的判定和性质、待定系数法一次函数的解析式、正弦的定义、勾股定理、等腰三角形的判定和性质及方程思想,作辅助线构造模型是解本题的关键. 3.(2022·黑龙江·桦南县九年级期中)如图1,在ABC 中,90ACB ∠=︒,AC BC =,直线MN 经过点C ,且AD MN ⊥于D ,BE MN ⊥于E .(1)由图1,证明:DE AD BE =+;(2)当直线MN 绕点C 旋转到图2的位置时,请猜想出DE ,AD ,BE 的等量关系并说明理由;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE ,AD ,BE 又具有怎样的等量关系?请直接写出这个等量关系(不必说明理由).【答案】(1)证明见解析;(2)DE AD BE =-,证明过程见解析;(3)DE BE AD =-,证明过程见解析【分析】(1)先证明△ADC △△CEB ,得到AD=CE ,DC=BE ,进而得到DE=CE+DC=AD+BE 即可;(2)同(1)中思路,证明△ADC △△CEB ,进而得到DE=CE -DC=AD -BE 即可;(3)同(1)中思路,证明△ADC △△CEB ,进而得到DE=DC -CE=BE -AD 即可.【详解】解:(1)证明:在ABC 中,△90ACB ∠=︒,△90ACD BCE ∠+∠=︒,△AD MN ⊥,△90ACD CAD ∠+∠=︒,△BCE =∠∠CAD ,又△AC BC =,90ADC CEB ∠=∠=,△()≌ADC CEB AAS ,△AD CE =,DC BE =, △直线MN 经过点C ,△DE CE DC AD BE =+=+;(2)DE ,AD ,BE 的等量关系为:DE AD BE =-,理由如下:△AD MN ⊥于D ,BE MN ⊥于E △90ADC BEC ACB ∠=∠=∠=︒,△90CAD ACD ∠+∠=︒,90ACD BCE ∠+∠=︒,△CAD BCE ∠=∠, 在ADC 和CEB △中90CAD BCE ADC BEC AC CB ∠=∠⎧⎪∠=∠=⎨⎪=⎩,△()ADC CEB AAS △≌△ △CE AD =,CD BE =,△DE CE CD AD BE =-=-;(3)当MN 旋转到图3的位置时,DE 、AD 、BE 所满足的等量关系是DE BE AD =-,理由如下:△AD MN ⊥于D ,BE MN ⊥于E △90ADC BEC ACB ∠=∠=∠=︒,△90CAD ACD ∠+∠=︒,90ACD BCE ∠+∠=︒,△CAD BCE ∠=∠, 在ADC 和CEB △中90CAD BCE ADC BEC AC CB ∠=∠⎧⎪∠=∠=⎨⎪=⎩,△()ADC CEB AAS △≌△ △CE AD =,CD BE =,△DE CD CE BE AD =-=-.【点睛】本题考查了全等三角形的判定方法、等腰直角三角形的性质及等角的余角相等等知识点,熟练掌握三角形全等的判定方法是求解的关键.4.(2022·山东·九年级课时练习)(1)课本习题回放:“如图①,90ACB ∠=︒,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别为D ,E , 2.5cm AD =, 1.7cm DE =.求BE 的长”,请直接写出此题答案:BE 的长为________.(2)探索证明:如图②,点B ,C 在MAN ∠的边AM 、AN 上,AB AC =,点E ,F 在MAN∠内部的射线AD 上,且BED CFD BAC ∠=∠=∠.求证:ABE CAF ∆∆≌.(3)拓展应用:如图③,在ABC ∆中,AB AC =,AB BC >.点D 在边BC 上,2CD BD =,点E 、F 在线段AD 上,BED CFD BAC ∠=∠=∠.若ABC ∆的面积为15,则ACF ∆与BDE ∆的面积之和为________.(直接填写结果,不需要写解答过程)【答案】(1)0.8cm ;(2)见解析(3)5【分析】(1)利用AAS 定理证明△CEB △△ADC ,根据全等三角形的性质解答即可; (2)由条件可得△BEA =△AFC ,△4=△ABE ,根据AAS 可证明△ABE △△CAF ;(3)先证明△ABE △△CAF ,得到ACF ∆与BDE ∆的面积之和为△ABD 的面积,再根据2CD BD =故可求解.【详解】解:(1)△BE △CE ,AD △CE ,△△E =△ADC =90°,△△EBC +△BCE =90°.△△BCE +△ACD =90°,△△EBC =△DCA .在△CEB 和△ADC 中,E ADC EBC DCA BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩△△CEB △△ADC (AAS ),△BE =DC ,CE =AD =2.5cm .△DC =CE −DE ,DE =1.7cm ,△DC =2.5−1.7=0.8cm ,△BE =0.8cm 故答案为:0.8cm ; (2)证明:△△1=△2,△△BEA =△AFC .△△1=△ABE +△3,△3+△4=△BAC ,△1=△BAC ,△△BAC =△ABE +△3,△△4=△ABE .△△AEB =△AFC ,△ABE =△4,AB =AC ,△△ABE △△CAF (AAS ).(3)△BED CFD BAC ∠=∠=∠△△ABE +△BAE =△F AC +△BAE =△F AC +△ACF△△ABE =△CAF ,△BAE =△ACF又AB AC =△△ABE △△CAF ,△ABE CAF S S =△ACF ∆与BDE ∆的面积之和等于ABE ∆与BDE ∆的面积之和,即为△ABD 的面积, △2CD BD =,△ABD 与△ACD 的高相同则13ABD ABC S S =△△=5 故ACF ∆与BDE ∆的面积之和为5故答案为:5.【点睛】本题考查的是全等三角形的判定和性质、三角形内角和定理,掌握全等三角形的判定定理和性质定理是解题的关键.5.(2022·无锡市九年级月考)(1)如图1,直线m 经过等腰直角△ABC 的直角顶点A ,过点B 、C 分别作BD ⊥m ,CE ⊥m ,垂足分别是D 、E .求证:BD +CE =DE ;(2)如图2,直线m 经过△ABC 的顶点A ,AB =AC ,在直线m 上取两点 D 、E ,使∠ADB =∠AEC =α,补充∠BAC = (用α表示),线段BD 、CE 与DE 之间满足BD +CE =DE ,补充条件后并证明;(3)在(2)的条件中,将直线m 绕着点A 逆时针方向旋转一个角度到如图3的位置,并改变条件∠ADB =∠AEC = (用α表示).通过观察或测量,猜想线段BD 、CE 与DE 之间满足的数量关系,并予以证明.【答案】(1)证明见详解,(2)∠BAC=α,证法见详解,(3)180º-α,DE=EC-BD,证明见详解.【分析】(1)根据已知首先证明∠DAB=∠ECA,再利用AAS即可得出△ADB≌△CEA;(2)补充∠BAC=α.利用△ADB≌△CAE,即可得出三角形对应边之间的关系,即可得出答案;(3)180º-α,DE=CE-BD,根据已知首先证明∠DAB=∠ECA,再利用AAS即可得出△ADB≌△CEA,即可得出三角形对应边之间的关系,即可得出答案.【详解】证明:(1)∵BD⊥m,CE⊥m,∠ABC=90°,AC=BC,∴△ADB和△AEC都是直角三角形,∴∠DBA+∠DAB=90°,∴∠ECA+∠EAC=90°,∵∠BAC=90°,∠DAB+∠EAC=90º,∴∠DAB=∠ECA,又∵∠ADB=∠CEA=90°,AB=BC,所以△ADB≌△CEA(AAS),BD=AE,DA=EC,DE=DA+AE=EC+BD,BD+CE=DE.(2)∵等腰△ABC中,AC=CB,∠ADB=∠BAC=∠CEA=α,∴∠DAB+∠EAC=180°-α,∠ECA+∠CAE=180º-α,∴∠DAB=∠ECA,∵∠ADB=∠CEA=α,AC=CB,∴△ADB≌△CEA(AAS),∴CE=AD,BD=AE,∴AD+BE=CE+CD,所以BD+CE=DE.(3)180º-α,数量关系为DE=CE-BD,∵∠ADB=∠AEC= 180º-α,∠BAC=α,∴∠ABD+∠BAD=α,∠BAD+∠EAC=α,∴∠ABD=∠CAE,∵AB=AC,∴△BAD≌△ACE(AAS),∴AD=CE,BD=AE,∴DE=AD-AE=EC-BD.【点睛】点评:此题主要考查了三角形全等的证明,根据已知得出∠DAB=∠ECA,再利用全等三角形的判定方法得出是解决问题的关键.6.(2022·河南新乡·九年级期中)某学习小组在探究三角形相似时,发现了下面这种典型的基本图形.(1)如图1,在ABC中,△BAC=90°,ABAC=k,直线l经过点A,BD△直线I,CE上直线l,垂足分别为D、E.求证:BDAE=k.(2)组员小刘想,如果三个角都不是直角,那么结论是否仍然成立呢?如图2,将(1)中的条件做以下修改:在ABC中,ABAC=k,D、A、E三点都在直线l上,并且有△BDA=△AEC=△BAC=α,其中α为任意锐角或钝角.请问(1)中的结论还成立吗?若成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,在。
专题 相似三角形一线三等角模型(学生版)

专题04相似三角形重要模型-一线三等角模型相似三角形在中考数学几何模块中占据着重要地位。
相似三角形与其它知识点结合以综合题的形式呈现,其变化很多,难度大,是中考的常考题型。
如果大家平时注重解题方法,熟练掌握基本解题模型,再遇到该类问题就信心更足了.本专题就一线三等角模型进行梳理及对应试题分析,方便掌握。
模型1.一线三等角模型(相似模型)【模型解读与图示】“一线三等角”型的图形,因为一条直线上有三个相等的角,一般就会有两个三角形的“一对角相等”,再利用平角为180°,三角形的内角和为180°,就可以得到两个三角形的另外一对角也相等,从而得到两个三角形相似.1)一线三等角模型(同侧型)(锐角型)(直角型)(钝角型)条件:如图,∠1=∠2=∠3,结论:△ACE∽△BED.2)一线三等角模型(异侧型)条件:如图,∠1=∠2=∠3,结论:△ADE∽△BEC.3)一线三等角模型(变异型)图1图2图3①特殊中点型:条件:如图1,若C为AB的中点,结论:△ACE∽△BED∽△ECD.②一线三直角变异型1:条件:如图2,∠ABD=∠AFE=∠BDE=90°.结论:△ABC∽△BDE∽△BFC∽△AFB.③一线三直角变异型2:条件:如图3,∠ABD=∠ACE=∠BDE=90°.结论:△ABM∽△NDE∽△NCM.是边A.3B.5C.2D.1B (1)如图2,在53⨯个方格的纸上,小正方形的顶点为格点、边长均为1,AB 为端点在格点的已知线段.请用三种不...同连接格点.....的方法,作出以线段AB 为等联线、某格点P 为等联点的等联角,并标出等联角,保留作图痕迹;(2)如图3,在Rt APC △中,90A ∠=,AC AP >,延长AP 至点B ,使AB AC =,作A ∠的等联角CPD ∠和PBD ∠.将APC △沿PC 折叠,使点A 落在点M 处,得到MPC ,再延长PM 交BD 的延长线于E ,连接CE 并延长交PD 的延例5.(2022·浙江·嘉兴一中一模)阅读材料:我们知道:一条直线经过等腰直角三角形的直角顶点,过另外两个顶点分别向该直线作垂线,即可得三垂直模型”如图①:在△ABC 中,∠ACB =90°,AC =BC ,分别过A 、B 向经过点C 直线作垂线,垂足分别为D 、E ,我们很容易发现结论:△ADC ≌△CEB .(1)探究问题:如果AC ≠BC ,其他条件不变,如图②,可得到结论;△ADC ∽△CEB .请你说明理由.(2)学以致用:如图③,在平面直角坐标系中,直线y =12x 与直线CD 交于点M (2,1),且两直线夹角为α,且tanα=32,请你求出直线CD 的解析式.(3)拓展应用:如图④,在矩形ABCD 中,AB =4,BC =5,点E 为BC 边上一个动点,连接AE ,将线段AE 绕点E 顺时针旋转90°,点A 落在点P 处,当点P 在矩形ABCD 外部时,连接PC ,PD .若△DPC 为直角三角形时,请你探究并直接写出BE 的长.例6.(2023·浙江·九年级专题练习)在Rt ABC 中,90BAC ∠=︒,2AB AC ==,点D 在BC 所在的直线上运动,作45ADE ∠=︒(A 、D 、E 按逆时针方向).(1)如图,若点D 在线段BC 上运动,DE 交AC 于E .①求证:ABD DCE △△∽;②当ADE V 是等腰三角形时,求AE 的长;(2)如图,若点D 在BC 的延长线上运动,DE 的反向延长线与AC 的延长线相交于点E ',是否存在点D ,使ADE '△是等腰三角形?若存在,求出线段CD 的长度;若不存在,请简要说明理由;(3)若点D 在BC 的反向延长线上运动,是否存在点D ,使ADE V 是等腰三角形?若存在,写出所有点D 的位置;若不存在,请简要说明理由.上一点,轴9,23A.()9,3B.()3.(2023·湖南长沙·九年级专题练习)如图,在矩形4.(2021·浙江台州·中考真题)如图,点E,F,G分别在正方形ABCD的边AB,BC,AD上,AF⊥EG.若AB=5,AE=DG=1,则BF=_____.分别在边6.(2022秋·安徽淮北·九年级校考阶段练习)如图,在四边形分别在线段AD、DC上(点E与点A、CD=,在BC边上取中点E,连接DE,过点E 8.(2023·山东烟台·九年级统考期末)如图,在正方形ABCD中,4做EF ED⊥与AB交于点G,与DA的延长线交于点F.(1)求证:BEG CDE△∽△;(2)求AFG的面积.⊥交AB于点M,9.(2023·上海·九年级假期作业)在矩形ABCD中,3AB=,4=AD,点E是边AD上一点,EM EC∠=∠.(1)求证:AE是AM和AN的比例中项;(2)当点N在线段AB的延点N在射线MB上(如图),且ANE DCE长线上时,联结AC,且AC与NE互相垂直,求MN的长.的两个等腰直角三角形,(3)【拓展探究】在整个运动过程中,请直接写出N点运动的路径长,及CN的最小值.312.(2023·广东深圳·九年级校考阶段练习)如图,在ABC 中6cm AB AC ==,8cm BC =,点E 是线段BC 边上的一动点(不含B 、C 两端点),连接AE ,作AED B ∠=∠,交线段AB 于点D .(1)求证:BDE CEA△∽△(2)设BE x =,AD y =,请求y 与x 之间的函数关系式.(3)E 点在运动的过程中,ADE V 能否构成等腰三角形?若能,求出BE 的长;若不能,请说明理由.13.(2023春·广东深圳·八年级校考期中)【操作发现】如图1,在边长为1个单位长度的小正方形组成的网格中,ABC 的三个顶点均在格点上.①请按要求画图:将ABC 绕点A 顺时针方向旋转90︒,点B 的对应点为点B ',点C 的对应点为点C ',连接BB ';②在①中所画图形中,AB B '∠=______︒.【问题解决】如图2,在Rt ABC △中,190BC C =∠=︒,,延长CA 到D ,使1CD =,将斜边AB 绕点A 顺时针旋转90︒到AE ,连接DE ,求ADE ∠的度数.【拓展延伸】如图3,在四边形ABCD 中,AE BC ⊥,垂足为E ,BAE ADC ∠=∠,1BE CE ==,3CD =,2=AD AB ,求BD 的长.14.(2023·浙江·九年级专题练习)在平面直角坐标系中,O 为坐标原点,直线AB 与y 轴交于点A ,与x 轴交于点B ,2OA =,AOB 的面积为2.(1)如图1,求直线AB 的解析式.(2)如图2,线段OA 上有一点C ,直线BC 为2(0)y kx k k =-<,AD y ⊥轴,将BC 绕点B 顺时针旋转90︒,交AD 于点D ,求点D 的坐标.(用含k 的式子表示)(3)如图3,在(2)的条件下,连接OD ,交直线BC 于点E ,若345ABC BDO ∠-∠=︒,求点E 的坐标.九年级专题练习)某数学兴趣小组在学习了尺规作图、等腰三角形和相似三角形的有关知识后,在BC=.点E是线段AD上的动点(点E不与18.(2022·湖南郴州·中考真题)如图1,在矩形ABCD中,4AB=,6⊥,交AB于点F.点A,D重合),连接CE,过点E作EF CE∽;(1)求证:AEF DCE⊥,垂足为G,连接AG.点M是线段BC的中点,连接GM.(2)如图2,连接CF,过点B作BG CF①求AG GM+的最小值;②当AG GM+取最小值时,求线段DE的长.。
2024中考数学总复习冲刺专题:《一线三等角模型》通用版

《一线三等角模型》一、教材分析“一线三等角”是指三个相等角的顶点在同一直线上,其中两个角的一边与该直线重合,第三个角的两边均不与直线重合,这样会形成一组全等或相似三角形.根据等角的度数,此模型可分为锐角一线三等角、直角一线三等角和钝角一线三等角.“一线三等角”模型本质上是一个重要的基本几何模型,数学模型是对客观事物的空间形式和数量关系的表现形式,初中阶段的“一线三等角”模型是利用方程或函数等来表示数量之间的关系或变化规律.它一般不单独出现,通常与其他特殊图形结合,如等腰三角形、等边三角形、矩形、正方形,以及与翻折、坐标系结合等,从而考查这些图形的性质.因此“一线三等角”模型可以出现在选择题、填空题的最后一题,也可以出现在解答题的几何证明、综合题中,是一个使用频率高、综合性较强的模型.平时的训练中,需要提升自己的模型思想,提炼问题的基本图形,利用基本图形的性质特点来突破考题,在具体分析过程中,也要结合数形结合思想,如根据题干信息提炼图形的结构特点,然后结合图形,采用代数运算的方式探求深层信息,促进信息的融合、转化.二、核心素养分析2022年版义务教育数学课程标准希望学生在初中阶段形成模型观念、数据观念;数学学科核心素养也提到数学抽象和直观想象,逻辑推理和运算能力,数学模型和数据分析.因此在数学学习中,我们有必要及时归纳一些数学模型.“一线三等角”问题的核心思想就是模型思想,关键的解题途径是能从复杂图形中分离出此模型,把握基本图形并建立方程或函数,帮助我们塑造模型观念,增强数学能力,提高解题技巧,提升数学核心素养.三、学情分析本次教学设计的授课对象为九年级学生,学生已有与本课时内容相关的知识基础如下:①全等三角形的性质与判定;②相似三角形的性质与相似;③三角函数;④二元一次方程(组).本课程适用于对中考几何题有一定解决能力并有待提升综合能力的学生,弥补和改善学生漏听或未听懂这部分知识的不足,旨在促进学生深入理解方法和思想,从复杂图形中分离出基本数学模型,对解决问题有化繁为简的效果.四、教学任务分析1.课堂教学目标(1)知识与技能:探索“一线三等角”的基本特征,并且能够在不同背景中认识和把握基本图形,能利用“一线三等角”模型解决相关计算和证明问题;能够构造“一线三等角”模型,解决较为复杂的几何问题.(2)过程与方法:通过观察分析,大胆猜想,探索“一线三等角”基本图形,培养学生合作交流、逻辑推理的能力;让学生在解决相关问题时感受几何基本模型对几何学习的重要性.(3)情感态度与价值观:在学习活动中积累对数学的兴趣,培养与同学的交往、合作意识,在动手动脑的过程中发展想象力,体会模型思想、转化思想、分类讨论思想和数形结合思想;提高解题技巧,提升数学核心素养.2.教学重点和难点(1)教学重点①识别“一线三等角”模型的基本特征,并应用“一线三等角”模型解决相关问题;②构造“一线三等角”模型,解决复杂的几何问题.(2)教学难点构造“一线三等角”模型,并解决较为复杂的几何问题.五、具体教学过程设计1、概述:引导学生回顾一线三等角模型的基本分类:1)全等篇:条件:∠1=∠CPD=∠2,结论:△ACP ≅△BPD 1)全等篇:条件:∠1=∠CPD=∠2,结论:△ACP ≅△BPD同侧锐角直角钝角异侧2)相似篇:条件:∠1=∠CPD=∠2,结论:△ACP∽△BPD同侧锐角直角钝角222111122222211111异侧3)一线三等角模型(变异型)图1图2图3①特殊中点型:条件:如图1,当∠1=∠2=∠3,且D是BC中点时.结论:△BDE∽△CFD∽△DFE.②一线三直角变异型1:条件:如图2,∠ABD=∠AFE=∠BDE=90°.结论:△ABC∽△BDE∽△BFC∽△AFB.③一线三直角变异型2:条件:如图3,∠ABD=∠ACE=∠BDE=90°.结论:△ABM∽△NDE∽△NCM.2、模块一三角齐见,模型自现——图形中已经存在“一线三等角”,直接应用模型解题.(一)典例精讲例1.如图,在菱形ABCD中,∠ABC=120°,将菱形折叠,使点A恰好落在对角线BD上的点G处(不与B、D重合),折痕为EF,若DG=2,BG=6,则BE的长为________.222111例1图例2图2.如图,△ABC中,∠B=∠C=30°,∠DEF=30°,且点E为边BC的中点.将∠DEF绕点E旋转,在旋转过程中,射线DE与线段AB相交于点P,射线EF与射线CA相交于点Q,连结PQ.(1)如图1,当点Q 在线段CA 上时,①求证:△BPE ∽△CEQ ;②线段BE ,BP ,CQ 之间存在怎样的数量关系?请说明理由;(2)当△APQ 为等腰三角形时,求BPCQ的值.3、模块二模型隐藏,及时添补——模型隐藏,及时添补,图形中存在“一线二等角”,补上“一等角”构造模型解题;图形中只有直线上一个角,补上“二等角”构造模型解题.(一)知识铺垫找角、定线、构相似如果直线上只有1个角,该角通常是特殊角(30°、45°、60°),就考虑构造同侧型一线三等角,当然只加这两条线通常是不够的,为了利用这个特殊角与线段的关系,过C、D 两点作直线l 的垂线是必不可少的.两条垂线通常情况下是为了“量化”的需要。
相似三角形的基本模型(一线三等角)

模型中的相似三角形(2)【基本模型】CBBC C BAAA1. 如图1,BDE EDF C B ∆⇒∠=∠=∠∽CFD ∆(一线三等角)如图2,ABD ADE C B ∆⇒∠=∠=∠∽DCE ∆(一线三直角)如图3,特别地,当D 是BC 中点时:BDE ∆∽DFE ∆∽CFD ∆⇒ED 平分BEF ∠,FD 平分EFC ∠。
2. 一线三等角辅助线添加:一般情况下,已知一条直线上有两个等角(直角)或一个直角时,可构造“一线三等角”型相似。
【巩固提高】1. 已知ABC ∆中,120,6︒=∠==BAC AC AB ,D 是BC 的中点,AB 边上有一点AC E ,延长线上有一点F ,使.C EDF ∠=∠ 已知4=BE ,则=CF427提示:,120,6︒=∠==BAC AC AB ,D 是BC 的中点∴33==CD BD 由BDE ∆∽CFD ∆∴CF DB DC BE =, 427=CF2. 如图,等边ABC ∆中,D 是边BC 上的一点,且3:1:=DC BD ,把ABC ∆折叠,使点A 落在BC 边上的点D 处.那么ANAM 的值为 75.ABC提示:由翻折可得:A MDN DN AN DM AM ∠=∠==,,设:,3,1==DC BD 则4,4=+=+DN CN DM BM ∵BDM ∆∽CND ∆, ∴753414=++===∆∆CND BDM C C DN DM AN AM 3. 在矩形ABCD 中,6=AB ,8=AD ,把矩形ABCD 沿直线MN 翻折,点B 落在边AD 上的E 点处,若AM AE 2=,那么EN 的长等于 FE提示:作AD NF ⊥于F ,则6==AB FN ∵MAE ∆∽EFN ∆,∴EFAMFN AE = ∵AM AE 2=∴53,321===EN FN EF4. 在矩形ABCD 中,15=AD ,点E 在边DC 上,联结AE ,△ADE 沿直线AE 翻折后点D 落到点F ,过点F 作AD FG ⊥,垂足为点G ,如果3:1:=AD DG ,那么=DEN M GGAABEBE提示:作过点F 作MN ∥BC ,分别交AB 、CD 于M 、N 。
部编数学九年级下册专题13一线三等角模型证相似(解析版)含答案

专题13 一线三等角模型证相似1.如图,在边长为9cm的等边ABCD中,D为BC上一点,且3BD cm=,E在AC上,60ADEÐ=°,则AE的长为( )cm.A.B.C.7D.6【解答】解:ABCDQ是等边三角形,9AB BC AC cm\===,60B CÐ=Ð=°,180120BAD ADB B\Ð+Ð=°-Ð=°,60ADEÐ=°Q,180120ADB EDC ADE\Ð+Ð=°-Ð=°,BAD EDC\Ð=Ð,ABD DCE\D D∽,\AB BD DC CE=,\9393CE=-,2CE\=,7()AE AC CE cm\===,故选:C.2.如图,边长为8cm的正方形ABCD中,有一个小正方形EFGH,其中E、F、G分别在AB、BC、FD上,若2BF cm=,则小正方形的面积等于2 .【解答】解:Q正方形ABCD的边长为8cm,2BF cm=,6CF cm\=Q 四边形ABCD 和EFGH 均为正方形90B C EFG \Ð=Ð=Ð=°90BEF BFE \Ð+Ð=°,90CFD BFE Ð+Ð=°BEF CFD\Ð=ÐBEF CFD\D D ∽\BE CF BF CD =\628BE =32BE \=\小正方形的面积等于:222EF BE BF =+944=+225()4cm =故答案为:2254cm .三.解答题(共15小题)3.已知等边ABC D ,E ,F 分别在边AB 、AC 上,将AEF D 沿EF 折叠,A 点落在BC 边上的D 处.(1)求证:BED CDF D D ∽;(2)若2CD BD =时,求ED DF.【解答】解:(1)证明:Q 等边ABCD 60A B C \Ð=Ð=Ð=°Q 将AEF D 沿EF 折叠,A 点落在BC 边上的D 处.60EDF A \Ð=Ð=°180********BED BDE B Ð+Ð=°-Ð=°-°=°Q 180********BDE CDF EDF Ð+Ð=°-Ð=°-°=°BED CDF\Ð=Ð又B CÐ=ÐQ BED CDF \D D ∽;(2)2CD BD=Q \设1BD =,则2CD =,Q 翻折,\设ED AE x ==,DF AF y==3AB BC AC \===,3BE x =-,3CF y=-BED CDFD D Q ∽\ED BD BE DF CF DC ==\1332x x y y -==-由13x y y=-得:31x y x =+①由32x x y -=得:23x y x=-②由①②解得:75x =,74y =\45x y =\45ED DF =.4.如图有一块三角尺,Rt ABC D ,90C Ð=°,30A Ð=°,6BC =,用一张面积最小的正方形纸片将这个三角尺完全覆盖.求出这个正方形的面积.【解答】解:90C Ð=°Q ,30A Ð=°,6BC =,212AB BC \==,AC \=,Q 四边形AFED 是正方形,90F E \Ð=Ð=°,AF FE =,90FAC FCA \Ð+Ð=°,90C Ð=°Q ,90FCA BCE \Ð+Ð=°,FAC BCE \Ð=Ð,AFC CEB \D D ∽,\AFACCE CB =,\AFCE =,设AF x =,则CE x =,FC \=,222AF AC Q ,222)x x \+=,2268237x \=+,答:这个正方形的面积为:226837.5.已知:如图,ABC D 是等边三角形,点D 、E 分别在边BC 、AC 上,60ADE Ð=°.(1)求证:ABD DCE D D ∽;(2)如果3AB =,23EC =,求DC 的长.【解答】(1)证明:ABC D Q 是等边三角形,60B C \Ð=Ð=°,AB AC =,B BAD ADE CDE Ð+Ð=Ð+ÐQ ,60B ADE Ð=Ð=°,BAD CDE \Ð=ÐABD DCE \D D ∽;(2)解:由(1)证得ABD DCE D D ∽,\BD CE AB DC=,设CD x =,则3BD x =-,\2333x x-=,1x \=或2x =,1DC \=或2DC =.6.如图,在矩形ABCD 中,3AB =,5AD =,P 是边BC 上的任意一点(P 与B 、C 不重合),作PE AP ^,交CD 于点E .(1)判断ABP D 与PCE D 是否相似,并说明理由.(2)连接BD ,若//PE BD ,试求出此时BP 的长.【解答】解:(1)ABP D 与PCE D 相似,理由如下:Q 四边形ABCD 是矩形,90B C \Ð=Ð=°,90BAP BPA \Ð+Ð=°,PE AP ^Q ,90CPE BPA \Ð+Ð=°,BAP CPE \Ð=Ð,ABP PCE \D D ∽;(2)连接BD,如图所示:由(1)知ABP PCE D D ∽,\AB BP PC CE =,\AB PC BP CE=,//PE BD Q ,\CP CE CB CD =,\PC CB CE CD =,\AB CB BP CD=,Q 在矩形ABCD 中,3AB =,5AD =,3CD AB \==,5CB AD ==,95AB CD BP CB ×\==.7.如图1,在ABC D 中,AB AC ==,cos B =,点D 在BC 边上从C 向B 运动.以D 为顶点作ADE B Ð=Ð,射线DE 交AB 边于点E ,过点A 作AF AD ^交射线DE 于点F ,连接CF .(1)求证:ACD DBE D D ∽.(2)当AD CD =时(如图2),求AD 和EF 的长.(3)设点D 在BC 边上从C 向B 运动的过程中,直接写出点F 运动的路径长.【解答】(1)证明:AB AC =Q ,B C \Ð=Ð,又ADE B Ð=ÐQ ,ADE B C \Ð=Ð=Ð,180B BDE BED Ð+Ð+Ð=°Q ,180ADC ADE BDE Ð+Ð+Ð=°,BED ADC \Ð=Ð,ACD DBE \D D ∽;(2)解:如图,过点D 作DH AC ^交AC 于点H ,AD CD =Q,AB AC ==,12CH AH AC \===,cos B =Q ,B C Ð=Ð,cos CH B CD\=,6cos CH CD B \===,6AD =,AF AD ^Q ,90FAD \Ð=°,ADE B Ð=ÐQ,6cos ADE DF \Ð==,DF \=,由(1)得ACD DBE D D ∽,\DE BD AD AC =,\6DE DE \=,过点A 作AM BC ^于点M ,cos BM B AB\=,\4BM \=,28BC BM \==,862BD BC CD \=-=-=,DE \==,EF DF DE \=-==,6AD \=,EF =(3)解:F Q 点随着D 点的运动而运动,D 在线段BC 上,F \点的轨迹也是一条线段,如图,当D 与C 点重合时,F 点在1F 的位置,190CAF Ð=°,当D 点与B 点重合时,F 点在2F 的位置,290BAF Ð=°,12F F 为F 点的运动路径,12F AF CAB \Ð=Ð,AC =Q,cos B =,ABC C Ð=Ð,1cos AC C CF \===,112CF \=,在1Rt ACF D中,1AF ==,ADF B Ð=ÐQ,2cos cos ABF B \Ð==22cos ABABF BF Ð==,=,212BF \=,2AF ==,21AF AF \=,△12AF F 是等腰三角形,12F AF CAB Ð=ÐQ ,△12AF F 与CAB D 都是等腰三角形,\△12AF F ACB D ∽,\121F F AF BC AC =,由(2)得8BC =,\128F F,12F F \=\点F运动的路径长为.8.在ABC D 中,点E 、F 在边BC 上,点D 在边AC 上,连接ED 、DF ,AB m AC =,120A EDF Ð=Ð=°(1)如图1,点E 、B 重合,1m =时①若BD 平分ABC Ð,求证:2CD CF CB =×;②若213CFBF =,则ADCD =(2)如图2,点E 、B 不重合.若BE CF =,ABDFm AC DE ==,37BEEF =,求m 的值.【解答】解:(1)①Q 1ABm AC ==,AB AC \=,BD Q 平分ABC Ð,ABD DBF \Ð=Ð,BDC A ABD BDF CDF Ð=Ð+Ð=Ð+ÐQ ,且120A BDF Ð=Ð=°,ABD CDF DBF \Ð=Ð=Ð,且C C Ð=Ð,CDF CBD \D D ∽,\CD CF BC CD=,2CD BC CF \=×;②如图1,过A 作AG BC ^于G ,过F 作FH BC ^,交AC 于H ,30C Ð=°Q ,2CH FH \=,设2FH a =,4CH a =,则CF =,Q 213CF BF =,BC \=,CG =Q ,152AG a \=,15AC a =,11AH a \=,120BAD BDF DHF Ð=Ð=Ð=°Q ,18012060ADB FDH ADB ABD \Ð+Ð=Ð+Ð=°-°=°,ABD FDH \Ð=Ð,ABD HDF \D D ∽,\AB AD HD FH =,即152a AD DH a=,设AD x =,则11DH a x =-,230(11)a x a x \=-,2211300x ax a -+=,(5)(6)0x a x a --=,5x a =或6a ,\51102AD a CD a ==或6293AD a CD a ==,故答案为:12或23;(2)如图2,过E 作//EH AB ,交AC 于H ,过D 作DM EH ^于M ,过F 作//FG ED ,交AC 于G ,BE CF =Q ,37BE EF =,\37CF EF =,//FG ED Q ,\37CF CG EF DG ==,\设3CG a =,7DG a =,Q AB DF m AC DE==,120A EDF Ð=Ð=°,ABC DFE \D D ∽,DEC C \Ð=Ð,10DE DC a \==,//FG DE Q ,GFC DEF C \Ð=Ð=Ð,3FG CG a \==,同理由(1)得:EHD DFG D D ∽,\ED DH DG FG =,即1073a DH a a=,307a DH =,Rt DHM D 中,60DHM Ð=°,30HDM \Ð=°,11527a HM DH \==,DM =,657EM a \===,651550777EH a a a \=-=,5017302107a AB EH m AC CH a a \====+.9.已知:在EFG D 中,90EFG Ð=°,EF FG =,且点E ,F 分别在矩形ABCD 的边AB ,AD 上.(1)如图1,填空:当点G 在CD 上,且1DG =,2AE =,则EG =(2)如图2,若F 是AD 的中点,FG 与CD 相交于点N ,连接EN ,求证:AEF FEN Ð=Ð;(3)如图3,若AE AD =,EG ,FG 分别交CD 于点M ,N ,求证:2MG MN MD =×.【解答】(1)解:90EFG Ð=°Q ,90AFE DFG \Ð+Ð=°,90AEF AFE Ð+Ð=°Q ,AEF DFG \Ð=Ð,又90A D Ð=Ð=°Q ,EF FG =,()AEF DFG AAS \D @D ,2AE FD \==,FG \==EG \==,;(2)证明:延长EA、NF 交于点M ,Q点F为AD的中点,\=,AF DFQ,AM CD//Ð=Ð,\Ð=Ð,MAD DM DNF\D@D,MAF NDF AAS()\=,MF FN^Q,EF MG\=,ME GE\Ð=Ð;MEF FEN(3)证明:如图,过点G作GP AD^交AD的延长线于P,\Ð=°,P90D@D,AEF PFG AAS同(1)同理得,()=,\=,PF AEAF PGQ,=AE AD\=,PF AD\=,AF PD\=,PG PDQ,Ð=°P9045PDG \Ð=°,45MDG \Ð=°,在Rt EFG D 中,EF FG =,45FGE \Ð=°,FGE GDM \Ð=Ð,GMN DMG Ð=ÐQ ,MGN MDG \D D ∽,\MG MN DM MG=,2MG MN MD \=×.10.在ABC D 中,BA BC =,(0180)ABC a a Ð=°<<°,点P 为直线BC 上一动点(不与点B 、C 重合),连接AP ,将线段AP 所在的直线绕点P 顺时针旋转a 得到直线PM ,再将线段AC 所在的直线绕点C 顺时针旋转a 得到直线CN ,直线PM 与直线CN 相交于点Q .(1)当点P 在线段BC 上,当60a =°时,如图1,直接判断BP CQ 的大小;(2)当点P 在线段BC 上,当BC k AC=时,如图2,试判断线段BP CQ 的大小,并说明理由;(3)当点P 在直线BC 上,当90a =°,AC =17AP =时,请利用备用图探究PCQ D 面积的大小(直接写出结果即可).【解答】解:(1)如图1,连接AQ ,BA BC =Q ,60ABC a Ð==°,ABC \D 是等边三角形,60BAC ACB ABC \Ð=Ð=Ð=°,Q 将线段AP 所在的直线绕点P 顺时针旋转a 得到直线PM ,再将线段AC 所在的直线绕点C 顺时针旋转a 得到直线CN ,60APQ ACQ \Ð=Ð=°,\点A ,点P ,点C ,点Q 四点共圆,60AQP ACB \Ð=Ð=°,APQ \D 是等边三角形,AP AQ \=,60PAQ Ð=°,BAC PAQ \Ð=Ð,BAP CAQ \Ð=Ð,()BAP CAQ SAS \D @D ,BP CQ \=,\1BP CQ=;(2)BP k CQ =,理由如下:如图2,连接AQ ,BA BC =Q ,ABC a Ð=,1802ACB BAC a °-\Ð=Ð=,QQ 将线段AP 所在的直线绕点P 顺时针旋转a 得到直线PM ,再将线段AC 所在的直线绕点C 顺时针旋转a 得到直线CN ,APQ ACQ a \Ð=Ð=,\点A ,点P ,点C ,点Q 四点共圆,1802AQP ACB a °-\Ð=Ð=,1802PAQ BAC a °-\Ð==Ð,BAP CAQ \Ð=Ð,又ABC ACQ a Ð=Ð=Q ,ABP ACQ \D D ∽,\AB BC BP k AC AC CQ===;(3)17AC AP =<=Q ,\点P 不在线段BC 上,当点P 在点C 的右侧时,如图3,过点Q 作QH BC ^于H ,AB BC =Q ,90ABC Ð=°,AC =8AB BC \==,45ACB Ð=°,15BP \===,7CP \=,90ACQ Ð=°Q ,45ACB Ð=°,45QCH \Ð=°,由(2)可知AB BP AC CQ =,\15CQ=,CQ \=,45QCH Ð=°Q ,QH BH ^,15CH QH \==,11105715222CPQ S CP QH D \=´´=´´=;当点P 在点B 的左侧时,如图4,过点Q 作QH BC ^于H ,AB BC =Q ,90ABC Ð=°,AC =8AB BC \==,45ACB Ð=°,15BP \===,23CP \=,90ACQ Ð=°Q ,45ACB Ð=°,45QCH \Ð=°,由(2)可知AB BP AC CQ =,\15CQ=,CQ \=,45QCH Ð=°Q ,QH BH ^,15CH QH \==,113452315222CPQ S CP QH D \=´´=´´=;综上所述:PCQ D 面积为1052或3452.11.如图,在ABC D 中,已知5AB AC ==,6BC =,且ABC DEF D @D ,将DEF D 与ABC D 重合在一起,ABC D 不动,DEF D 运动,并满足:点E 在边BC 上沿B 到C 的方向运动,且DE 始终经过点A ,EF 与AC 交于M 点.(1)求证:ABE ECM D D ∽;(2)当DE BC ^时,①求CM 的长;②直接写出重叠部分的面积;(3)在DEF D 运动过程中,当重叠部分构成等腰三角形时,求BE 的长.【解答】(1)证明:AB AC =Q ,B C \Ð=Ð,ABC DEF D @D Q ,AEF B \Ð=Ð,AEF CEM AEC B BAE Ð+Ð=Ð=Ð+ÐQ ,CEM BAE \Ð=Ð,ABE ECM \D D ∽;(2)①当DE BC ^时,AB AC =Q ,BAE EAM \Ð=Ð,ABC DEF D @D Q ,B DEF \Ð=Ð,ABE AEM \D D ∽,\AB AE AE AM=,90AME AEB Ð=Ð=°,5AB AC ==Q ,DE BC ^,6BC =,132BE EC BC \===,在Rt ABE D 中,4AE ===,\544AM=,165AM \=,169555CM AC AM \=-=-=;②在Rt AEM D 中,125EM ===,11161296225525AEM S AM EM D \=×=´´=,\重叠部分的面积为9625;(3)①当AE EM =时,ABE ECM D @D ,5CE AB ==Q ,651BE BC EC \=-=-=,②当AM EM =时,则MAE MEA Ð=Ð,MAE BAE MEC MEA \Ð+Ð=Ð+Ð,即CAB CEA Ð=Ð,C C Ð=ÐQ ,CAE CBA \D D ∽,\CE AC AC CB=,\2256AC CE CB ==,\2511666BE BC EC =-=-=;③当AE AM =时,点E 与点B 重合,即0BE =,此时重叠部分图形不能构成三角形;1BE \=或116.12.如图,直线y =+0)y x =>的交点为A ,与x 轴的交点为B .(1)求ABO Ð的度数;(2)求AB 的长;(3)已知点C 为双曲线0)y x =>上的一点,当60AOC Ð=°时,求点C 的坐标.【解答】解:(1)设直线y =+y 轴交于点D ,如图所示:当0x =时,y =.即点D .当0y =时,1x =-,即点(1,0)B -.\1OD BO ==.\tan DO ABO BOÐ==.60ABO \Ð=°.(2)过点A 作AE x ^轴,垂足为E ,如图所示.设点A 坐标为:(m .且0m >.OE m \=,AE =//DO AE Q .BDO BAE \D D ∽.\BO DOBE AE=.即:11m =+1m \=或2m =-(舍).\A .\4AB ==.即:4AB =.(3)过C 作60CFO Ð=°,点F 在x 轴上,再过点C 作CH OF ^于H 点,如图所示.设(C a,0a >.\OH \4CF a ==.\2HF a =.\2OF a a=+.AOF AOC COF Ð=Ð+ÐQ ,且AOF Ð是ABO D 一内角的外角.BAO COF \Ð=Ð.ABO OFC \D D ∽.\AB BOOF CF =即:4124a a a=+.\a=.Q.a>\a\C.^交BC 13.【感知】如图①,在正方形ABCD中,E为AB边上一点,连结DE,过点E作EF DE∽.(不需要证明)于点F.易证:AED BFED D^交BC于点【探究】如图②,在矩形ABCD中,E为AB边上一点,连结DE,过点E作EF DEF.D D∽.(1)求证:AED BFE(2)若10AD=,E为AB的中点,求BF的长.AB=,6AB=.E为AB边上一点(点E不与【应用】如图③,在ABCACB=,4D中,90Ð=°,AC BC点A、B重合),连结CE,过点E作45D为等腰三角形时,BECEFÐ=°交BC于点F.当CEF的长为 【解答】【探究】(1)证明:Q四边形ABCD是矩形,\Ð=Ð=°,90A B\Ð+Ð=°,ADE AED90^Q,DE EF\Ð=°,DEF90\Ð+Ð=°,BEF AED90\Ð=Ð,ADE BEFQ,又A BÐ=Ð\D D∽;AED BFEQ为AB的中点,(2)解:E\==,AE BE5∽,由(1)知AED BFED D\AD AEBE BF =,即655BF=,256BF \=;【应用】解:如果CE CF =,则45CEF CFE Ð=Ð=°,90ECF Ð=°,则点E 与点A 重合,点F 与点B 重合,不符合题意,②如果CE EF =,则1804567.52ECF EFC °-°Ð=Ð==°,EFC ÐQ 为BEF D 的外角,EFC B BEF \Ð=Ð+Ð,90ACB Ð=°Q ,AC BC =,45A B \Ð=Ð=°,67.54522.5BEF EFC B \Ð=Ð-Ð=°-°=°,909067.522.5ACE ECF Ð=°-Ð=°-°=°,ACF BEF \Ð=Ð,又A B Ð=ÐQ ,CE EF =,()AEC BFE AAS \D @D ,BE AC \=,90ACB Ð=°Q ,AC BC =,4AB =,AC \==,BE \=;如果CF EF =,则45CEF ECF Ð=Ð=°,90CFE \Ð=°,在BEC D 中,45B BCE Ð=Ð=°,90BEC \Ð=°,CE AB \^,又AC BC =Q ,\点E 为AB 的中点,122BE AB \==,综上,BE 的长为2,故答案为:2.14.如图1,已知正方形ABCD 在直线MN 的上方,BC 在直线MN 上,E 是射线BC 上一点,以AE 为边在直线MN 的上方作正方形AEFG .(1)连接FC ,观察并猜测tan FCN Ð的值,并说明理由;(2)如图2,将图1中正方形ABCD 改为矩形ABCD ,AB m =,(BC n m =,n 为常数),E 是射线BC 上一动点(不含端点)B ,以AE 为边在直线MN 的上方作矩形AEFG ,使顶点G 恰好落在射线CD 上,当点E 沿射线CN 运动时,请用含m ,n 的代数式表示tan FCN Ð的值.【解答】解:(1)tan 1FCN Ð=,理由是:如图1,作FH MN ^于H ,90AEF ABE Ð=Ð=°Q ,90BAE AEB \Ð+Ð=°,90FEH AEB Ð+Ð=°,FEH BAE \Ð=Ð,在EHF D 和ABE D 中EHF ABE FEH BAE EF AE Ð=ÐìïÐ=Ðíï=î,()EHF ABE AAS \D @D ,FH BE \=,EH AB BC ==,CH BE FH \==,90FHC Ð=°Q ,tan 1FHFCH CH\Ð==;(2)如图(2)作FH MN ^于H .由已知可得90EAG BAD AEF Ð=Ð=Ð=°,结合(1)易得FEH BAE DAG Ð=Ð=Ð,又G Q 在射线CD 上,90GDA EHF EBA Ð=Ð=Ð=°,在EFH D 和AGD D 中FHE GDA FEH DAG EF AG Ð=ÐìïÐ=Ðíï=î,()EFH AGD AAS \D @D ,BAE FEH Ð=ÐQ ,ABE FHE Ð=Ð,EFH AEB \D D ∽,EH AD BC n \===,CH BE \=,\EH FH FHAB BE CH==,\在Rt FEH D 中,tan FH EH nFCN CH AB mÐ===,\当点E 沿射线CN 运动时,tan n FCN mÐ=.15.如图1,在矩形ABCD 中,8AB =,10BC =,点M 是BC 边上的动点,点M 从点B 出发,运动到点C 停止,N 是CD 边上一动点,在运动过程中,始终保持AM MN ^,设BM x =,CN y =.(1)直接写出y 与x 的函数关系式,并写出自变量x 的取值范围 010x …… ;(2)先完善表格,然后在平面直角坐标系中(如图2)利用描点法画出此抛物线,直接写出m = ;x¼2345678¼y¼22183m32182¼(3)结合图象,指出M 、N 在运动过程中,当CN 达到最大值时,BM 的值是 ;并写出在整个运动过程中,点N 运动的总路程 .【解答】解:(1)Q 四边形ABCD 是矩形,908B C AB CD \Ð=Ð=°==,90BAM AMB \Ð+Ð=°,AM MN ^Q ,90AMN \Ð=°,90AMB CMN \Ð+Ð=°,BAM CMN \Ð=Ð,ABM MCN \D D ∽,\AB MCBM CN=,\810x x y-=,21584y x x \=-+,10BC =Q ,点M 是BC 边上的动点,点M 从点B 出发,运动到点C 停止,010x \……,故答案为:010x ……;(2)当5x =时,代入21584y x x =-+中得:2152555848y =-´+´=,故答案为:258,画出的抛物线如图所示:(3)21584y x x =-+Q ,2215125(5)8488y x x x \=-+=--+,108a =-<Q ,\当5x =时,y 最大258=,\当CN 达到最大值时,BM 的值是5;Q2525284´=,\在整个运动过程中,点N 运动的总路程为254,故答案为:5,254.16.【基础巩固】(1)如图1,在ABC D 中,90ACB Ð=°,直线l 过点C ,分别过A 、B 两点作AE l ^,BD l ^,垂足分别为E 、D .求证:BDC CEA D D ∽.【尝试应用】(2)如图2,在ABC D 中,90ACB Ð=°,D 是BC 上一点,过D 作AD 的垂线交AB 于点E .若BE DE =,4tan 5BAD Ð=,20AC =,求BD 的长.【拓展提高】(3)如图3,在平行四边形ABCD 中,在BC 上取点E ,使得90AED Ð=°,若AE AB =,43BE EC =,CD =ABCD 的面积.【解答】(1)证明:90ACB Ð=°Q ,90BCD ACE \Ð+Ð=°,AE CE ^Q ,90AEC \Ð=°,90ACE CAE \+Ð=°.BCD CAE \Ð=Ð.BD DE ^Q ,90BDC \Ð=°,BDC AEC \Ð=Ð.BDC CEA \D D ∽.(2)解:过点E 作EF BC ^于点F .由(1)得EDF DACD D∽.\DE DF DA AC=.AD DE^Q,4tan5BADÐ=,20AC=,\4520DF =,16 DF\=.BE DE=Q,BF DF\=.232BD DF\==.(3)解:过点A作AM BC^于点M,过点D作DN BC^的延长线于点N.90AMB DNC\Ð=Ð=°.Q四边形ABCD是平行四边形,//AB CD\,AB CD=.B DCN\Ð=Ð.()ABM DCN AAS\D@D.BM CN\=,AM DN=.AB AE=Q,AM BC^,BM ME\=,Q43 BEEC=,设AM b=,4BE a=,3EC a=.2BM ME CN a\===,5EN a=.90AEDÐ=°Q,由(1)得AEM EDN D D ∽.\AM ENME DN =,\25b aa b=,\b =,Q CD =22(2)14a b \+=,1a \=,b =.\平行四边形ABCD 的面积172BC DN a b =´´=´=.17.感知:(1)数学课上,老师给出了一个模型:如图1,90BAD ACB AED Ð=Ð=Ð=°,由12180BAD Ð+Ð+Ð=°,2180D AED Ð+Ð+Ð=°,可得1D Ð=Ð;又因为90ACB AED Ð=Ð=°,可得ABC DAE D D ∽,进而得到BC AC =我们把这个模型称为“一线三等角”模型.应用:(2)实战组受此模型的启发,将三等角变为非直角,如图2,如图,在ABC D 中,10AB AC ==,12BC =,点P 是BC 边上的一个动点(不与B 、C 重合),点D 是AC 边上的一个动点,且APD B Ð=Ð.①求证:ABP PCD D D ∽;②当点P 为BC 中点时,求CD 的长;拓展:(3)在(2)的条件下,如图2,当APD D 为等腰三角形时,请直接写出BP 的长.【解答】(1)解:ABC DAE D D Q ∽,\BC ACAE DE =,\BC AEAC DE=,故答案为:AEDE;(2)①证明:AB AC=Q,B C\Ð=Ð,APC B BAPÐ=Ð+ÐQ,APC APD CPDÐ=Ð+Ð,APD BÐ=Ð,BAP CPD\Ð=Ð,B CÐ=ÐQ,ABP PCD\D D∽;②解:12BC=Q,点P为BC中点,6BP PC\==,ABP PCDD DQ∽,\AB BPPC CD=,即1066CD=,解得: 3.6CD=;(3)解:当PA PD=时,ABP PCDD@D,10PC AB\==,12102BP BC PC\=-=-=;当AP AD=时,ADP APDÐ=Ð,ADP B CÐ=Ð=ÐQ,ADP C\Ð=Ð,不合题意,AP AD\¹;当DA DP=时,DAP APD BÐ=Ð=Ð,C CÐ=ÐQ,BCA ACP\D D∽,\BC ACAC CP=,即121010CP=,解得:253CP=,25111233BP BC CP\=-=-=,综上所述:当APDD为等腰三角形时,BP的长为2或113.。
初三相似三角形之一线三等角专题

相似三角形——“一线三等角型”一、知识梳理:一线三等角:两个等角的一边在同一直线上,另一边在该直线的同侧。
若有第三个与之相等的角、其顶点在该直线上,角的两边(或两边所在直线)分别与两等角的非共线边(或该边所在直线)相交,此时通过证明,一般都可以得到一组相似三角形,该组相似三角形习惯上被称为“一线三等角型”相似三角形.(图1)(图2)(1)如图1,已知三角形ABC中,AB=AC,∠ADE=∠B,那么一定存在的相似三角形有;(2)如图2,已知三角形ABC中,AB=AC,∠DEF=∠B,那么一定存在的相似三角形有 .二、【例题解析】【例1】如图,等边△ABC中,边长为4,D是BC上动点,∠EDF=60°,(1)求证:△BDE∽△CFD;(2)当BD=1,FC=52时,求BE.【变式1】在边长为4的等边ABC∆中,D是BC的中点,点E、F分别在AB、AC上,且保持ABCEDF∠=∠,连接EF.(1) 已知BE=1,DF=2,求DE的值;(2) 求证:∠BED=∠DEF.【变式2】在边长为4的等边ABC ∆中,若BD =1时,当△DEF 与△AEF 相似,求BE 的值.【变式3】如图,已知边长为3的等边ABC ∆,点F 在边BC 上,CF =1,点E 是射线BA 上一动点,以线段EF 为边向右侧作等边EFG ∆,直线EG ,FG 交直线AC 于点M ,N ,(1)写出图中与BEF ∆相似的三角形;(2)证明其中一对三角形相似;(3)设BE =x ,MN =y ,,求y 与x 之间的函数关系式,并写出自变量x 的取值范围.【例2】在ABC ∆中,O BC AC C ,3,4,90===∠o 是AB 上的一点,且52=AB AO ,点P 是AC 上的一个动点,OP PQ ⊥交线段BC 于点Q (不与点B ,C 重合),已知AP =2,求CQ .【变式1】 如图,在△ABC 中,8==AC AB ,10=BC ,D 是BC 边上的一个动点,点E 在AC 边上,且C ADE ∠=∠.(1) 求证:△ABD ∽△DCE ;(2) 如果x BD =,y AE =,求y 与x 的函数解析式,并写出自变量x 的定义域;(3) 当点D 是BC 的中点时,试说明△ADE 是什么三角形,并说明理由.QC P【变式2】在直角三角形ABC 中,D BC AB C ,,90==∠o是AB 边上的一点,E 是在AC 边上的一个动点(与A ,C 不重合),DF DE DF ,⊥与射线BC 相交于点F .(1) 如图1,当点D 是边AB 的中点时,求证:DF DE =;(2) 如图2,当m DB AD =,求DF DE 的值.图(2)图(1)F CF C A BB A D E D E【例3】已知在梯形ABCD 中,AD ∥BC ,AD <BC ,且AD =5,AB =DC =2,P 为AD 上的一点,满足∠BPC =∠A . ① 求证;△ABP ∽△DPC ; ② 求AP 的长.【变式1】如果点P 在AD 边上移动(点P 与点A 、D 不重合),且满足∠BPE =∠A ,PE 交直线BC 于点E ,同时交直线DC 于点Q ,那么①当点Q 在线段DC 的延长线上时,设AP =x ,CQ =y ,求y 关于x 的函数解析式,并写出函数的定义域;②当CE =1时,写出AP 的长.C B AD C B A D【变式2】在梯形ABCD 中,AD ∥BC ,6AB CD BC ===,3AD =.点M 为边BC 的中点,以M 为顶点作EMF B ∠=∠,射线ME 交腰AB 于点E ,射线MF 交腰CD 于点F ,联结EF .(1)求证:△MEF ∽△BEM ;(2)若△BEM 是以BM 为腰的等腰三角形,求EF 的长;(3)若EF CD ⊥,求BE 的长.【作业】1、如图,在ABC ∆中,90C ∠=︒,6AC =,43=BC AC ,D 是BC 边的中点,E 为AB 边上的一个动点,作90DEF ∠=︒,EF 交射线BC 于点F .设BE x =,BED ∆的面积为y .(1)求y 关于x 的函数关系式,并写出自变量x 的取值范围;(2)如果以B 、E 、F 为顶点的三角形与BED ∆相似,求BED ∆的面积.2、如图,已知在△ABC 中, AB =AC =6,BC =5,D 是AB 上一点,BD =2,E 是BC 上一动点,连结DE ,并作DEF B ∠=∠,射线EF 交线段AC 于F .(1)求证:△DBE ∽△ECF ;(2)当F 是线段AC 中点时,求线段BE 的长;(3)联结DF ,如果△DEF 与△DBE 相似,求FC 的长.3、已知在梯形ABCD 中,AD ∥BC ,AD <BC ,且BC =6,AB =DC =4,点E 是AB 的中点.(1)如图,P 为BC 上的一点,且BP =2.求证:△BEP ∽△CPD ;(2)如果点P 在BC 边上移动(点P 与点B 、C 不重合),且满足∠EPF =∠C ,PF 交直线CD于点F ,同时交直线AD 于点M ,那么:①当点F 在线段CD 的延长线上时,设BP =x ,DF =y ,求y 关于x 的函数解析式,并写出函数的定义域;②当BEP DMF S S ∆∆=49时,求BP 的长.。
2019年中考数学相似模型:一线三等角模型(经典,详细总结!!)

2019年中考数学相似模型:一线三等角模型(经典,详细总结!!)一.一线三等角概念“一线三等角”是一个常见的相似模型,指的是有三个等角的顶点在同一条直线上构成的相似图形,这个角可以是直角,也可以是锐角或钝角。
不同地区对此有不同的称呼,“K 形图”,“三垂直”,“弦图”等,以下称为“一线三等角”。
二.一线三等角的分类全等篇三、“一线三等角”的性质1.一般情况下,如图 3-1,由∠1=∠2=∠3,易得△AEC∽△BDE.2.当等角所对的边相等时,则两个三角形全等.如图3-1,若CE=ED,则△AEC≌△BDE.3.中点型“一线三等角”如图3-2,当∠1=∠2=∠3,且 D 是BC 中点时,△BDE∽△CFD∽△DFE.4.“中点型一线三等角“的变式(了解)如图 3-3,当∠1=∠2 且时,点 O 是△ABC 的内心.可以考虑构造“一线三等角”.如图3-4“中点型一线三等角”通常与三角形的内心或旁心相关,Ð这是内心的性质,反之未必是内心.在图 3-4(右图)中,如果延长 BE 与 CF,交于点 P,则点 D 是△PEF 的旁心.5.“一线三等角”的各种变式(图 3-5,以等腰三角形为例进行说明)其实这个第 4 图,延长 DC 反而好理解.相当于两侧型的,不延长理解,以为是一种新型的,同侧穿越型?不管怎么变,都是由三等角确定相似三角形来进行解题四、“一线三等角”的应用1.“一线三等角”应用的三种情况.a.图形中已经存在“一线三等角”,直接应用模型解题;b.图形中存在“一线二等角”,不上“一等角”构造模型解题;c.图形中只有直线上一个角,不上“二等角”构造模型解题.体会:感觉最后一种情况出现比较多,尤其是压轴题中,经常会有一个特殊角或指导该角的三角函数值时,我经常构造“一线三等角”来解题.2.在定边对定角问题中,构造一线三等角是基本手段,尤其是直角坐标系中的张角问题,在 x 轴或 y 轴(也可以是平行于 x 轴或 y 轴的直线)上构造一线三等角解决问题更是重要的手段.3.构造一线三等角的步骤:找角、定线、构相似坐标系中,要讲究“线”的特殊性如图 3-6,线上有一特殊角,就考虑构造同侧型一线三等角当然只加这两条线通常是不够的,为了利用这个特殊角导线段的关系,过 C、D 两点作直线 l 的垂线是必不可少的。
部编数学九年级下册专项33相似三角形一线三等角模型综合应用(解析版)含答案

专项33 相似三角形-一线三等角模型综合应用1.如图1,BDE EDF C B ∆⇒∠=∠=∠∽CFD ∆(一线三等角)如图2,ABD ADE C B ∆⇒∠=∠=∠∽DCE ∆(一线三直角)如图3,特别地,当D 是BC 中点时:BDE ∆∽DFE ∆∽CFD ∆⇒ED 平分BEF ∠,FD 平分EFC ∠。
2.一线三等角辅助线添加:一般情况下,已知一条直线上有两个等角(直角)或一个直角时,可构造“一线三等角”型相似。
【类型1:标准“K ”型图】【典例1】已知矩形ABCD 的一条边AD =8,将矩形ABCD 折叠,使得顶点B 落在CD 边上的P 点处.如图,已知折痕与边BC 交于点O ,连接AP 、OP 、OA .(1)求证:=;(2)若OP 与PA 的比为1:2,求边AB 的长.【解答】(1)证明:由折叠的性质可知,∠APO =∠B =90°,∴∠APD +∠OPC =90°,CB BC A A∵四边形ABCD为矩形,∴∠D=∠C=90°,∴∠POC+∠OPC=90°,∴∠APD=∠POC,∴△OCP∽△PDA,∴=;(2)解:∵△OCP∽△PDA,∴,∵OP与PA的比为1:2,AD=8,∴,∴PC=4,设AB=x,则DC=x,AP=x,DP=x﹣4,在Rt△APD中,AP2=AD2+PD2,∴x2=82+(x﹣4)2,解得:x=10,∴AB=10.【变式1-1】如图,正方形ABCD中,点E在BC边上,且AE⊥EF,若BE=2,CF=,求正方形ABCD的边长.【解答】解:∵∠AEB+∠CEF=90°,∠BAE+∠AEB=90°,∴∠BAE=∠CEF,又∵∠B=∠C=90°,∴△BAE∽△CEF,∴=,∵AB=BC,∴,∴,∴CE=4,∴BC=CE+BE=4+2=6,∴正方形ABCD的边长为6.【变式1-2】如图,在正方形ABCD中,M为BC上一点,ME⊥AM,ME交CD于F,交AD的延长线于点E.(1)求证:△ABM∽△MCF;(2)若AB=4,BM=2,求△DEF的面积.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=BC=CD,∠B=∠C=90°,BC∥AD,∴∠BAM+∠AMB=90°,∵ME⊥AM,∴∠AME=90°,∴∠AMB+∠FMC=90°,∴∠BAM=∠FMC,∴△ABM∽△MCF;(2)解:∵AB=4,∴AB=BC=CD=4,∵BM=2,∴MC=BC﹣BM=4﹣2=2,由(1)得:△ABM∽△MCF,∴=,∴=,∴CF=1,∴DF=CD﹣CF=4﹣1=3,∵BC∥AD,∴∠EDF=∠MCF,∠E=∠EMC,∴△DEF∽△CMF,∴=,∴=,∴DE=6,∴△DEF的面积=DE•DF=×6×3=9,答:△DEF的面积为9【类型2:做辅助线构造“K”型图】【典例2】已知:在△EFG中,∠EFG=90°,EF=FG,且点E,F分别在矩形ABCD的边AB,AD上.(1)如图1,填空:当点G在CD上,且DG=1,AE=2,则EG= ;(2)如图2,若F是AD的中点,FG与CD相交于点N,连接EN,求证:∠AEF=∠FEN;(3)如图3,若AE=AD,EG,FG分别交CD于点M,N,求证:MG2=MN•MD.【解答】(1)解:∵∠EFG=90°,∴∠AFE+∠DFG=90°,∵∠AEF+∠AFE=90°,∴∠AEF=∠DFG,又∵∠A=∠D=90°,EF=FG,∴△AEF≌△DFG(AAS),∴AE=FD=2,∴FG=,∴EG=FG=,故答案为:;(2)证明:延长EA、NF交于点M,∵点F为AD的中点,∴AF=DF,∵AM∥CD,∴∠M=∠DNF,∠MAD=∠D,∴△MAF≌△NDF(AAS),∴MF=FN,∵EF⊥MG,∴ME=GE,∴∠MEF=∠FEN;(3)证明:如图,过点G作GP⊥AD交AD的延长线于P,∴∠P=90°,同(1)同理得,△AEF≌△PFG(AAS),∴AF=PG,PF=AE,∵AE=AD,∴PF=AD,∴AF=PD,∴PG=PD,∵∠P=90°,∴∠PDG=45°,∴∠MDG=45°,在Rt△EFG中,EF=FG,∴∠FGE=45°,∴∠FGE=∠GDM,∵∠GMN=∠DMG,∴△MGN∽△MDG,∴,∴MG2=MN•MD.【变式2-1】(2021春•永川区期末)如图,在边长为6的正方形ABCD中,E为BC上一点,CE=2BE,将△ABE沿AE折叠得到△AFE,连接DF,则线段DF的长为 .【解答】解:过点F作FN⊥BC,垂足为N,延长NF交AD于点M,∵四边形ABCD是正方形,∴AB=BC=AD=6,∠B=90°,AD∥BC,∴FM⊥AD,∴∠AMF=∠FNE=∠DMF=90°,∴四边形ABNM是矩形,∴AM=BN,∵CE=2BE,∴BE=BC=2,由折叠得:BE=FE=2,AB=AF=6,∠B=∠AFE=90°,∴∠AFM+∠EFN=90°,∵∠FEN+∠EFN=90°,∴∠FEN=∠AFM,∴△ENF∽△FMA,∴===,设EN=x,则FM=3x,∴AM=BN=BE+EN=2+x,在Rt△AFM中,AM2+FM2=AF2,∴(2+x)2+(3x)2=36,∴x=或x=﹣2(舍去),∴AM=2+x=,FM=3x=,∴DM=AD﹣AM=,在Rt△DMF中,DF===,故答案为:.【变式2-2】(2022秋•皇姑区校级月考)已知,如图,矩形ABCD中,AB=5,AD=3,点E是射线BC上一动点,将矩形ABCD沿直线AE翻折,点B落在点F处.(1)若点F恰好落在CD边上,如图1,求线段BE的长;(2)若BE=1,如图2,直接写出点F到BC边的距离;(3)若△CEF为直角三角形,直接写出CE所有值.【解答】解:(1)∵四边形ABCD是矩形,∴CD=AB=5,BC=AD=3,∠B=∠C=∠D=90°,由折叠的性质得:BE=FE,AF=AB=5,∴DF===4,∴CF=CD﹣DF=5﹣4=1,设BE=FE=x,则CE=BC﹣BE=3﹣x,在Rt△CEF中,由勾股定理得:CF2+CE2=FE2,即12+(3﹣x)2=x2,解得:x=,即线段BE的长为;(2)如图2,过F作FG⊥BC于G,延长GF交AD于H,则∠FGE=90°,四边形ABGH是矩形,∴HG=AB=5,BG=AH,∠AHF=90°=∠FGE,由折叠的性质得:AF=AB=5,∠AFE=∠B=90°,FE=BE=1,∴∠AFH+∠EFG=90°,∵∠AFH+∠FAH=90°,∴∠EFG=∠FAH,∴△EFG∽△FAH,∴==,∴AH=5FG,设FG=x,则BG=AH=5x,∴EG=BG﹣BE=5x﹣1,在Rt△EFG中,由勾股定理得:x2+(5x﹣1)2=12,解得:x=或x=0(不符合题意舍去),∴FG=,即点F到BC边的距离为;(3)分三种情况:①∠CFE=90°时,如图3,∵∠AFE=90°,∴∠AFE+∠CFE=180°,∴A、F、C三点共线,∵四边形ABCD是矩形,∴CD=AB=5,∠B=∠D=90°,AD∥BC,∴∠ECF=∠CAD,AC===,由折叠的性质得:AF=AB=5,FE=BE,∠AFE=∠B=90°,∴∠CFE=90°=∠D,CF=AC﹣AF=﹣5,∴△CEF∽△ACD,∴=,即=,解得:CE=;②点F在CD上,∠ECF=90°时,如图4,由(1)可知,BE=,∴CE=BC﹣BE=3﹣=;③∠CEF=90°时,如图5,由折叠的性质得:∠AEB=∠AEF=45°,∴△ABE是等腰直角三角形,∴BE=AB=5,∴CE=BE﹣BC=5﹣3=2;④点F在CD延长线上,∠ECF=90°时,如图6,由折叠的性质得:AF=AB=5,∠AFE=∠B=90°,∵∠ADF=180°﹣∠ADC=90°,∴DF===4,∴CF=CD+DF=5+4=9,∵∠CFE+∠CEF=90°,∠CFE+∠DFA=90°,∴∠CEF=∠DFA,∵∠ECF=∠ADF=90°,∴△CEF∽△DFA,∴===3,∴CE=3DF=12;综上所述,若△CEF为直角三角形,则CE的值为或或2或12.【类型2:特殊“K”型图】【典例3】(2021秋•通许县期中)感知:(1)数学课上,老师给出了一个模型:如图1,∠BAD=∠ACB=∠AED=90°,由∠1+∠2+∠BAD=180°,∠2+∠D+∠AED=180°,可得∠1=∠D;又因为∠ACB=∠AED =90°,可得△ABC∽△DAE,进而得到= .我们把这个数学模型称为“一线三等角”模型.应用:(2)实战组受此模型的启发,将三等角变为非直角,如图2,在△ABC中,点D在边BC上,并且DA=DE,∠B=∠ADE=∠C.若BC=a,AB=b,求CE的长度(用含a,b的代数式表示).拓展:(3)创新组突发奇想,将此模型迁移到平行四边形中,如图3,在▱ABCD中,E为边BC上的一点,F为边AB上的一点.若∠DEF=∠B.求证:AB•FE=BE•DE.【解答】(1)解:∵△ABC∽△DAE,∴,故答案为:;(2)解:∵∠B=∠ADE=∠C,∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠EDC,∴∠EDC=∠BAD,∵DA=DE,在△ADB与△DEC中,,∴△ADB≌△DEC(AAS),∴EC=BD,AB=DC=b,∴BD=BC﹣DC=a﹣b,即CE=a﹣b;(3)解:∵∠DEF=∠B,∴∠BFE+∠BEF=∠BEF+∠DEC,∴∠BFE=∠DEC,作CG∥FE交DE于点G,如图:∴∠DEF=∠EGC,∴∠B=∠EGC,∴△FBE∽△EGC,∴,∵四边形ABCD是平行四边形,∴∠B+∠BCD=180°,∵∠EGC+∠DGC=180°,∵∠B=∠EGC,∴∠DGC=∠BCD,∵∠EDC=∠CDG,∴△DGC∽△DCE,∴,∴,∴DC•FE=BE•DE,∵四边形ABCD是平行四边形,∴AB=DC,∴AB•FE=•BE•DE.解法二:延长BC到M,使得DC=DM.∵DC=DM,∵DC∥AB,∴∠DCM=∠B,∴∠B=∠M,∵∠BFE=∠DEM,∴△BFE∽△MED.∴=,∵AB=CD=DM,∴AB•FE=•BE•DE.【变式3-1】如图,AB=9,AC=8,P为AB上一点,∠A=∠CPD=∠B,连接CD.(1)若AP=3,求BD的长;(2)若CP平分∠ACD,求证:PD2=CD•BD.【解答】(1)解:∵AB=9,AC=3,∴BP=AB﹣AP=9﹣3=6,∵∠A=∠CPD,∠ACP+∠APC=180°﹣∠A,∠APC+∠BPD=180°﹣∠CPD,∴∠ACP=∠BPD,∵∠A=∠B,∴△ACP∽△BPD,∴=,∴=,∴BD=,∴BD的长为;(2)证明:∵CP平分∠ACD,∴∠PCD=∠ACP,∴∠PCD=∠DPB,∵∠CPD=∠B,∴△CPD∽△PBD,∴=,∴PD2=CD•BD.【变式3-2】(2022春•定海区校级月考)【基础巩固】(1)如图1,在△ABC中,∠ACB=90°,直线l过点C,分别过A、B两点作AE⊥l,BD⊥l,垂足分别为E、D.求证:△BDC∽△CEA.【尝试应用】(2)如图2,在△ABC中,∠ACB=90°,D是BC上一点,过D作AD的垂线交AB 于点E.若BE=DE,,AC=20,求BD的长.【拓展提高】(3)如图3,在平行四边形ABCD中,在BC上取点E,使得∠AED=90°,若AE=AB,,CD=,求平行四边形ABCD的面积.【解答】(1)证明:∵∠ACB=90°,∴∠BCD+∠ACE=90°,∵AE⊥CE,∴∠AEC=90°,∴ACE+∠CAE=90°.∴∠BCD=∠CAE.∵BD⊥DE,∴∠BDC=90°,∴∠BDC=∠AEC.∴△BDC∽△CEA.(2)解:过点E作EF⊥BC于点F.由(1)得△EDF∽△DAC.∴.∵AD⊥DE,,AC=20,∴,∴DF=16.∵BE=DE,∴BF=DF.∴BD=2DF=32.(3)解:过点A作AM⊥BC于点M,过点D作DN⊥BC的延长线于点N.∴∠AMB=∠DNC=90°.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴∠B=∠DCN.∴△ABM≌△DCN(AAS).∴BM=CN,AM=DN.∵AB=AE,AM⊥BC,∴BM=ME,∵,设AM=b,BE=4a,EC=3a.∴BM=ME=CN=2a,EN=5a.∵∠AED=90°,由(1)得△AEM∽△EDN.∴,∴,∴,∵,∴(2a)2+b2=14,∴a=1,.∴平行四边形ABCD的面积=.1.(2021秋•南京期末)如图,在矩形ABCD中,E,F,G分别在AB,BC,CD上,DE ⊥EF,EF⊥FG,BE=3,BF=2,FC=6,则DG的长是( )A.4B.C.D.5【答案】B【解答】解:∵EF⊥FG,∴∠EFB+∠GFC=90°,∵四边形ABCD为矩形,∴∠A=∠B=∠C=90°,AB=CD,∴∠GFC+∠FGC=90°,∴∠EFB=∠FGC,∴△EFB∽△FGC,∴,∵BE=3,BF=2,FC=6,∴,∴CG=4,同理可得△DAE∽△EBF,∴,∴,∴AE=,∴BA=AE+BE=+3=,∴DG=CD﹣CG=﹣4=.故选:B.2.(2022秋•二道区月考)如图,在△ABC中,AB=AC=9,BC=12,D,E分别是BC,AB上的动点(点D与B,C不重合),且2∠ADE+∠BAC=180°,若BE=4,则CD 的长为 .【答案】6【解答】解:∵AB=AC,∴∠C=∠B,∴∠C+∠B+∠BAC=2∠C+∠BAC=180°,又∵2∠ADE+∠BAC=180°,∴∠C=∠ADE,又∵∠BDE+∠ADC=180°﹣∠ADE,∠CAD+∠ADC=180°﹣∠C,∴∠BDE=∠CAD,∴△BDE∽△CAD,∴=,即=,解得CD=6.故答案为:6.3.(2022•杭州模拟)如图,点E是矩形ABCD边BC上一点,沿AE折叠,点B恰好落在CD边上的点F处.设=x(x>1),(1)若点F恰为CD边的中点,则x= .(2)设=y,则y关于x的函数表达式是 .【解答】解:(1)∵点F为CD边的中点,∴DC=2DF,∵四边形ABCD是矩形,∴AB=DC,∠B=∠C=∠D=90°,∴∠FEC+∠EFC=90°,由折叠得:BE=EF,AB=AF,∠B=∠AFE=90°,∴AB=AF=DC=2DF,∵∠EFC+∠AFD=90°,∴∠AFD=∠FEC,∴△AFD∽△FEC,∴==2,∴=2,∴x=2,故答案为:2;(2)由(1)可得AB=AF=DC=DF+CF,∵△AFD∽△FEC,∴=,∴=,∴x=,∴x=1+,∴x=1+,∴y=,故答案为:y=.4.(2021•海州区校级二模)如图,△DEF的三个顶点分别在等边△ABC的三条边上,BC =4,∠EDF=90°,=,则DF长度的最小值是 .【答案】【解答】解:过点F作FH⊥BC,垂足为H,∵∠EDF=90°,tan∠EFD==,∴∠EFD=60°,∴∠AFE+∠DFC=120°,∵△ABC是等边三角形,∴∠C=∠A=60°,AC=BC=4,∴∠AFE+∠AEF=120°,∴∠AEF=∠DFC,∴△AEF∽△CFD,∴=,∵∠EDF=90°,∠EFD=60°,∴cos∠EFD==,∴=2,∴设CD=a,则AF=2a,∴CF=AC﹣AF=4﹣2a,在Rt△CFH中,∠C=60°,∴CH=CF=2﹣a,∴FH=CH=2﹣a,∴DH=CD﹣CH=a﹣(2﹣a)=2a﹣2,在Rt△DFH中,DF2=DH2+FH2=(2a﹣2)2+(2﹣a)2=7a2﹣20a+16=7(a﹣)2+,∴DF2的最小值为,∴DF的最小值为:.5.如图,在等边三角形ABC中,点E,D分别在BC,AB上,且∠AED=60°,求证:△AEC∽△EDB.【解答】证明:∵△ABC是等边三角形,∴∠B=∠C=60°,∴∠EDB+∠BED=120°,∠CAE+∠AEC=120°∵∠AED=60°,∴∠BED+∠AEC=180°﹣60°=120°,∴∠BED=∠CAE,∴△AEC∽△EDB.6.如图,在等腰直角△ABC中,∠BAC=90°,AB=AC,点D、E分别在边BC、AC上,连接AD、DE,有∠ADE=45°.(1)证明:△BDA∽△CED.(2)若BC=6,当AE=ED时,求BD的长.【解答】(1)证明:∵∠AED=∠C+∠EDC=45°+∠EDC,而∠ADC=∠ADE+∠EDC.∵∠ADE=45°,∴∠ADC=45°+∠EDC,∴∠AED=∠ADC.∴∠DEC=∠ADB(等角的补角相等).而∠B=∠C=45°,∴△ABD∽△DCE.故△ABD∽△DCE得证.(2)解:当AE=DE时,∴∠ADE=∠DAE,∵∠ADE=45°,∴∠ADE=∠DAE=45°,∵∠BAC=90°,∠BAD=∠EAD=45°,∴AD平分BAC,∴AD垂直平分BC,∴BD=3.7.(2022•安徽三模)如图,在四边形ABCD中,∠A=∠D=90°,AD=AB,以BC为直径的半⊙O与边AD相切于点E.(1)求证:∠BCE=∠DCE;(2)若,求DE的长.【解答】(1)证明:连接OE,∵半⊙O与边AD相切于点E,∴∠OEA=90°,∵∠D=90°,∴∠D=∠OEA=90°,∴OE∥CD,∴∠ECD=∠OEC,∵OE=OC,∴∠OEC=∠OCE,∴∠BCE=∠DCE;(2)解:连接BE,∵BA⊥AD,OE⊥AD,CD⊥AD,∴AB∥CD∥OE,∵OB=OC,∴AE=DE,设DE=AE=x,则AD=AB=2x,∵BC为⊙O的直径,∴∠BEC=90°,∴∠DEC+∠AEB=180°﹣∠BEC=90°,∵∠A=∠D=90°,∴∠ABE+∠AEB=90°,∴∠ABE=∠DEC,∴△ABE∽△DEC,∴,∴,解得:,∴DE的长为.8.(2022•钦州一模)已知下列各图中,△ABC是直角三角形,∠ABC=90°.【基本模型感知】如图1,分别过A,C两点作经过点B的直线的垂线,垂足分别为M、N.求证:△ABM∽△BCN;【基本模型应用】如图2,点P是边BC上一点,∠BAP=∠C,,求tan C的值;【灵活运用】如图3,点D是边CA延长线上一点,AE=AB,∠DEB=90°,,,请直接写出tan∠BEC的值.【解答】(1)证明:∵AM⊥MN,CN⊥MN,∴∠AMB=∠BNC=90°.∴∠BAM+∠ABM=90°.∵∠ABC=90°,∴∠ABM+∠CBN=90°.∴∠BAM=∠CBN.又∵∠AMB=∠CNB,∴△ABM∽△BCN.(2)解:如图2,过点P作PF⊥AP交AC于点F,过点F作FQ⊥BC交BC于点Q,在Rt△AFP中,tan∠PAC===,与(1)同理得,△ABP∽△PQF.∴===.设AB=a,PQ=2a(a>0),∵∠BAP=∠C=∠FPQ,∴PF=CF,且FQ⊥BC.∴PQ=CQ=2a.∴BC=BP+PQ+CQ=BP+2a+2a=4a+BP.∵∠BAP=∠C,∠B=∠B=90°,∴△ABP∽△CBA.∴=.∴BP⋅BC=AB2,即BP⋅(4a+BP)=.∴BP=a,BC=5a,在Rt△ABC中,tan C==.(3)解:在Rt△ABC中,sin∠BAC==,如图3,过点A作AG⊥BE于点G,过点C作CH⊥BE交EB的延长线于点H,∵∠DEB =90°,∴CH ∥AG ∥DE .∴==.与(1)同理得,△ABG ∽△BCH∴===.设BG =4m ,CH =3m ,AG =4n ,BH =3n ,∵AB =AE ,AG ⊥BE ,∴EG =BG =4m .∴GH =BG +BH =4m +3n .∴=.∴n =2m .∴EH =EG +GH =4m +4m +3n =8m +3n =8m +6m =14m .在Rt △CEH 中,tan ∠BEC ==.9.(2021•坪山区一模)如图,抛物线y =x 2+bx +c 与x 轴交于点A (﹣3,0)、B ,与y 轴交于点C (0,﹣3).(1)求抛物线的解析式;(2)在抛物线上求点P ,使S △BCP =2S △BCO ,求点P 的坐标;(3)如图2,直线y =x +3交抛物线于第一象限的点M ,若N 是抛物线y =x 2+bx +c 上一点,且∠MAN =∠OCB ,求点N 的坐标.【解答】解:(1)将C (0,﹣3)代入到抛物线解析式中得,c =﹣3,将B (﹣3,0)代入到抛物线解析式中得,9﹣3b ﹣3=0,∴b =2,∴抛物线解析式为:y =x 2+2x ﹣3;(2)令y =0,则x 2+2x ﹣3=0,解得x 1=﹣3,x 2=1,∴B (1,0),∴,∵S △BCP =2S △BCO ,∴S △BCP =3,如图1,过P 作PM ∥BC 交x 轴于M ,连接MC ,则S △MBC =S △BCP =3,∴,∴MB =2,∴M (﹣1,0),设直线BC 为y =k 1x ﹣3,代入点B (1,0)得,k 1=3,∴直线BC 为:y =3x ﹣3,则直线PM 设为:y =3x +b ,代入点M (﹣1,0)得,b =3,∴直线PM 为:y =3x +3,联立,解得,,∴P(3,12)或(﹣2,﹣3);(3)∵直线y=x+3交抛物线于第一象限的点M,∴联立,解得,,∴A(﹣3,0),M(2,5),在Rt△OBC中,tan∠OCB=,∴,①如图2,当N在AM下方时,过A作y轴平行线,过M作x轴平行线,两线交于点G过M作MQ⊥AM交AN于Q,过Q作y轴平行线交GM于H,∴∠AGM=∠MHQ=90°,∴∠AMG+∠GAM=90°,又AM⊥MQ,∴∠AMQ=90°,∴∠AMG+∠HMQ=90°,∴∠GAM=∠HMQ,又∠AGM=∠MHQ=90°,∴△AGM∽△MHQ,∴=,∵A(﹣3,0),M(2,5),∴AG=5,GM=5,∴MH=HQ=,∴Q(),设直线AQ为:y=k2(x+3),代入点Q,得,∴直线AQ为,联立,化简得,2x2+3x﹣9=0,解得x=或﹣3,当x=时,y=,∴N(),②当N在AM上方时,同理可得,N(3,12),∴N()或(3,12).。
专题“一线三等角”的相似模型教学设计

相关图表素材
几何图形解析
精心设计的图表,详细展示不同类型的几何图形及其相似性关系。
建筑模型对比
对比不同尺度的建筑物模型,形象说明相似模型的长度比、面积比等特征。
机械部件分析
利用工程图纸和细节截图,深入分析机械设备内部相似零件的设计。
教学评价
为了全面评估学生的学习效果,我们将采取多元化的教学评价方式,既包括学习过程中的观察和诊断,也涵盖期末的综合考核。通过这样的评价体系,我们可以及时发现学生的掌握程度,并针对性地提供帮助与反馈。
展示交流
1
小组展示
各小组将自己设计的相似模型进行展示,详细介绍模型的特点和设计思路。
2
师生点评
师生对小组展示的相似模型进行点评,提出建设性意见和建议。
3
交流讨论
师生就相似模型的应用、设计方法等进行讨论交流,互相学习。
小结反思
总结相似模型的重要性
通过本节课的学习,我们深入了解了相似模型的概念及其在生活中的广泛应用,极大地拓宽了视野。
动手制作自己的相似模型
为了巩固学习成果,我们将安排一系列的练习活动。首先,让学生在生活中寻找并识别各种相似模型,观察它们的共同特点。接下来,通过分析相似模型的长度比、面积比等指标,深化对相似模型概念的理解。最后,鼓励学生动手设计并制作自己独特的相似模型,运用所学知识将创意付诸实践。这些练习将帮助学生更好地掌握相似模型的本质内涵。
未来展望
1
融合创新
将相似模型概念与新兴技术如虚拟仿真、3D打印等深入融合,开拓更广阔的应用前景。
2
跨学科协作
与数学、物理、艺术等相关学科联手,探索跨界整合的教学模式,提升学生的综合素养。
3
持续优化
基于教学实践和反馈,不断优化教学内容、方法和资源,持续提高相似模型教学的质量和效果。
相似专题:一线三等角相似模型

注意事项:需要熟练掌握代数公式和定理以及灵活运用代数方法进行证明
三角函数证明法
利用三角函数的性质通过角度相等来证明三角形相似 利用三角函数的诱导公式将角度相等转化为边长比例相等 利用三角函数的和差公式将角度相等转化为边长比例相等 利用三角函数的倍角公式将角度相等转化为边长比例相等
一线三等角相似的判定条件
两个三角形中如果一个角分别与另两个角相等则这两个三角形相似。
在两个三角形中如果一个角的对边与另一个角的对边成比例则这两个三角形相似。 在两个三角形中如果一个角的对边与另一个角的邻边成比例则这两个三角形相似。
在两个三角形中如果一个角的对边与另一个角相等则这两个三角形相似。
一线三等角相似模型的 应用
单击添加标题
题目:在三角形BC中D是B上一点E是C上一点DE平行于BC且E:EC=1:2 则S△DE:S△BC=?
代数表达式简化:利用一线三等角 相似模型可以将复杂的代数表达式 进行简化。
代数应用实例
代数不等式证明:利用一线三等角 相似模型可以证明一些代数不等式。
添加标题
添加标题
添加标题
添加标题
代数方程求解:通过一线三等角相 似模型可以求解一些代数方程。
一线三等角相似模型的 应用实例
几何证明实例
单击添加标题
题目:已知三角形BC中D是B上一点E是C上一点DE平行于BC且D:DB=2: 1则S△DE:S△BC=?
单击添加标题
题目:在三角形BC中D是B上一点E是C上一点DE平行于BC且E:EC=2:1 则S△DE:S△BC=?
单击添加标题
题目:在三角形BC中D是B上一点E是C上一点DE平行于BC且BD:B=1:3 则S△DE:S△BC=?
2024年中考数学压轴题重难点知识剖析及训练—一线三等角相似、三垂直模型压轴题专题(含解析)

2024年中考数学压轴题重难点知识剖析及训练—一线三等角相似、三垂直模型压轴题专题(含解析)一线三等角概念“一线三等角”是一个常见的相似模型,指的是有三个等角的顶点在同一条直线上构成的相似图形,这个角可以是直角,也可以是锐角或钝角。
不同地区对此有不同的称呼,“K形图”,“三垂直”,“弦图”等,以下称为“一线三等角”。
“一线三等角”的两种基本类型1.三等角都在直线的同侧2.三等角分居直线的两侧3.在初三各学校的考试和中考试题中,一线三等角的相似属于压轴题的热点题型之一,本专题从中考试题和初三各名校的试题中,精选一线三等角相似模型的经典好体,并根据角度区别把一线三等角模型细分为三类题型:三垂直模型、一线三锐角、一线三钝角,适合于初三学生进行压轴题专项突破时使用。
类型一:三垂直模型1.(雅礼)如图,点A 是双曲线()80y x x=<上一动点,连接OA ,作OB OA ⊥,使2OA OB =,当点A 在双曲线()80y x x =<上运动时,点B 在双曲线ky x=上移动,则k 的值为.【解答】解:过A 作AC ⊥y 轴于点C ,过B 作BD ⊥y 轴于点D ,∵点A 是反比例函数y =(x <0)上的一个动点,点B 在双曲线y =上移动,∴S △AOC =×|﹣8|=4,S △BOD =|k |,∵OB ⊥OA ,∴∠BOD +∠AOC =∠AOC +∠OAC =90°,∴∠BOD =∠OAC ,且∠BDO =∠ACO ,∴△AOC ∽△OBD ,∵OA =2OB ,∴=()2=,∴=,∴|k |=2.∴k <0,∴k =﹣2,故答案为:﹣2.2.(青竹湖)如图,︒=∠90AOB ,反比例函数()04<-=x xy 的图象过点()a A ,1-,反比例函数xky =()0,0>>x k 的图象过点B ,且x AB //轴,过点B 作OA MN //,交x 轴于点M ,交y 轴于点N ,交双曲线x ky =于另一点,则OBC ∆的面积为.【解答】解:∵反比例函数的图象过点A (﹣1,a ),∴a =﹣=4,∴A(﹣1,4),过A作AE⊥x轴于E,BF⊥x轴于F,∴AE=4,OE=1,∵AB∥x轴,∴BF=4,∵∠AOB=90°,∴∠EAO+∠AOE=∠AOE+∠BOF=90°,∴∠EAO=∠BOF,∴△AEO∽△OFB,∴=,∴OF=16,∴B(16,4),∴k=16×4=64,∵直线OA过A(﹣1,4),∴直线AO的解析式为y=﹣4x,∵MN∥OA,∴设直线MN的解析式为y=﹣4x+b,∴4=﹣4×16+b,∴b=68,∴直线MN的解析式为y=﹣4x+68,∵直线MN交x轴于点M,交y轴于点N,∴M(17,0),N(0,68),解得,或,∴C(1,64),﹣S△OCN﹣S△OBM=﹣﹣=510,∴△OBC的面积=S△OMN故答案为510.3.(广益)如图,点A,B在反比例函数y=(k>0)的图象上,点A的横坐标为2,点B的纵坐标为1,OA⊥AB,则k的值为.【解答】解:过点A作AM⊥x轴于点M,过点B作BN⊥AM于N,∵∠OAB=90°,∴∠OAM+∠BAN =90°,∵∠AOM+∠OAM=90°,∴∠BAN=∠AOM,∴△AOM∽△BAN,∴=,∵点A,B在反比例函数y=(k>0)的图象上,点A的横坐标为2,点B的纵坐标为1,∴A(2,),B(k,1),∴OM=2,AM=,AN=﹣1,BN=k﹣2,∴=,解得k1=2(舍去),k2=8,∴k的值为8,故答案为:8.4.(长沙中考2020)在矩形ABCD 中,E 为DC 上的一点,把ADE ∆沿AE 翻折,使点D 恰好落在BC 边上的点F .(1)求证:ABF FCE∆∆:(2)若23,4AB AD ==,求EC 的长;(3)若2AE DE EC -=,记,BAF FAE αβ∠=∠=,求tan tan αβ+的值.【详解】(1)证明:∵四边形ABCD 是矩形,∴∠B=∠C=∠D=90°,∴∠AFB+∠BAF=90°,∵△AFE 是△ADE 翻折得到的,∴∠AFE=∠D=90°,∴∠AFB+∠CFE=90°,∴∠BAF=∠CFE ,∴△ABF ∽△FCE .(2)解:∵△AFE 是△ADE 翻折得到的,∴AF=AD=4,∴()22224232AF AB --,∴CF=BC-BF=AD-BF=2,由(1)得△ABF ∽△FCE ,∴CE CF BF AB =,∴2223CE =,∴EC=233(3)解:由(1)得△ABF ∽△FCE ,∴∠CEF=∠BAF=α,∴tan α+tan β=BF EF CE EFAB AF CF AF+=+,设CE=1,DE=x ,∵2AE DE EC -=,∴AE=DE+2EC=x+2,AB=CD=x+1,2244AE DE x -=+∵△ABF ∽△FCE ,∴AB CF AF EF =2144x x x x -=+(211121x x x xx ++-+ ,∴112x x +=,∴1x x =-x 2-4x+4=0,解得x=2,∴CE=1,213x -=,EF=x=2,AF=2244AE DE x -=+=23tan α+tan β=CE EF CF AF +33323.5.(广益)矩形ABCD中,8AB=,12AD=,将矩形折叠,使点A落在点P处,折痕为DE.(1)如图1,若点P恰好在边BC上.①求证:△EBP∽△PCD;②求AE的长;(2)如图2,若E是AB的中点,EP的延长线交BC于点F,求BF的长.图1图2【解答】解:(1)①∵四边形ABCD是矩形,∴∠B=∠C=∠BAD=90°,∴∠BPE+∠BEP=90°,由折叠知,∠DPE=∠BAD=90°,∴∠BPE+∠CPD=90°,∴∠BEP=∠CPD,∵∠B=∠C=90°,∴△EBP∽△PCD;②∵四边形ABCD是矩形,∴∠B=∠C=90°,CD=AB=8,BC=AD=12,由折叠知,PE=AE,DP=AD=12,在Rt△DPC中,CP==4,∴BP=BC﹣CP=12﹣4,在Rt△PBE中,PE2﹣BE2=BP2,∴AE2﹣(8﹣AE)2=(12﹣4)2,∴AE=18﹣6;(2)如图,过点P作GH∥BC交AB于G,交CD于H.则四边形AGHD是矩形,设EG=x,则BG=4﹣x,∵∠A=∠EPD=90°,∠EGP=∠DHP=90°,∴∠EPG+∠DPH=90°,∠DPH+∠PDH=90°,∴∠EPG=∠PDH,∴△EGP∽△PHD,∴====,∴PH=3EG=3x,DH=AG=4+x,在Rt△PHD中,PH2+DH2=PD2,∴(3x)2+(4+x)2=122,解得x=(负值已经舍弃),∴BG=4﹣=,在Rt△EGP中,GP==,∵GH∥BC,∴△EGP∽△EBF,∴=,∴=,∴BF=3.6.(长郡)如图,在平面直角坐标系中,O 为原点,已知点Q 是射线OC 上一点,182OQ =,点P 是x 轴正半轴上一点,tan 1POC ∠=,连接PQ ,A 经过点O 且与QP 相切于点P ,与边OC 相交于另一点D .(1)若圆心A 在x 轴上,求A 的半径;(2)若圆心A 在x 轴的上方,且圆心A 到x 轴的距离为2,求A 的半径;(3)在(2)的条件下,若10OP <,点M 是经过点O ,D ,P 的抛物线上的一个动点,点F 为x 轴上的一个动点,若满足1tan 2OFM ∠=的点M 共有4个,求点F 的横坐标的取值范围.【解答】解:(1)∵圆心A 在x 轴上,⊙A 经过点O 且与QP 相切于点P ,∴PQ ⊥x 轴,OP 为直径,∵tan ∠POC =1,,∴PQ =OP ,∵在Rt △OPQ 中,.∴OP =18.∴⊙A 的半径为9;(2)如图所示,过点A 作AM ⊥x 轴于点M ,过点Q 作QB ⊥x 轴于B ,连接AP ,∵PQ是⊙A的切线,∴AP⊥PQ,则∠APQ=90°,∵AM⊥x轴,QB⊥x轴,∴∠AMP=∠PBC=90°,∴∠PAM=90°﹣∠APM=∠QPB,∴△APM∽△PBQ,∴,∵tan∠POC=1,QB=18,∴OB=QB=18,∵AM=2,设MP=MO=x,∴PB=18﹣2x,∴,解得x=3或x=6,∴MO=3或MO=x,∴A(3,2)或A(6,2),∴AP==或AP==2.∴半径为或2.(3)∵OP<10,∴BO=3,P(6,0),∴A(3,2),∵tan∠POC=1,设D(a,a),∵,∴(3﹣a)2+(2﹣a)2=13,解得:a=0或a=5,∴D(5,5),设抛物线解析式为y=ax2+bx,将点P(6,0),D(5,5)代入得,,解得:,∴y=﹣x2+6x,∵点F可能在点O的左边或点P的右边,,则|K FM|=,设直线MF:或,联立,,得或,当或,解得:或,∴直线MF:或,令y=0,解得:或,∴或.7.(麓山国际)有一边是另一边的倍的三角形叫做智慧三角形,这两边中较长边称为智慧边,这两边的夹角叫做智慧角.(1)已知Rt△ABC为智慧三角形,且Rt△ABC的一边长为,则该智慧三角形的面积为;(2)如图①,在△ABC中,∠C=105°,∠B=30°,求证:△ABC是智慧三角形;(3)如图②,△ABC是智慧三角形,BC为智慧边,∠B为智慧角,A(3,0),点B,C在函数y=上(x>0)的图象上,点C在点B的上方,且点B的纵坐标为.当△ABC是直角三角形时,求k的值.=AC•AB,【解答】解:(1)如图1,设∠A=90°,AC≤AB,S△ABC①若AC=,i)AB=AC=2,∴S=,ii)BC=AC=2,则AB=,∴S=,②若AB=,i)AB=AC,即AC=,∴S=,ii)BC=AB=2,则AC=∴S=,③若BC=,若AB=AC==1,∴S=,若AB=AC,AB=,,S=××=,故答案为:或1或或或.(2)证明:如图2,过点C作CD⊥AB于点D,∴∠ADC=∠BDC=90°,在Rt△BCD中,∠B=30°,∴BC=2CD,∠BCD=90°﹣∠B=60°,∵∠ACB=105°,∴∠ACD=∠ACB﹣∠BCD=45°,∴Rt△ACD中,AD=CD,∴AC=,∴,∴△ABC是智慧三角形.(3)∵△ABC是智慧三角形,BC为智慧边,∠B为智慧角,∴BC=AB,∵△ABC是直角三角形,∴AB不可能为斜边,即∠ACB≠90°∴∠ABC=90°或∠BAC=90°①当∠ABC=90°时,过B作BE⊥x轴于E,过C作CF⊥EB于F,过C作CG⊥x轴于G,如图3,∴∠AEB=∠F=∠ABC=90°,∴∠BCF+∠CBF=∠ABE+∠CBF=90°,∴∠BCF=∠ABE,∴△BCF∽△ABE,∴,设AE=a,则BF=AE=a,∵A(3,0),∴OE=OA+AE=3+a,∵B的纵坐标为,即BE=,∴CF=BE=2,CG=EF=BE+BF=,B(3+a,),∴OG=OE﹣GE=OE﹣CF=3+a﹣2=1+a,∴C(1+a,),∵点B、C在在函数y=上(x>0)的图象上,∴(3+a)=(1+a)(+a)=k解得:a1=﹣2(舍去),a2=1,∴k=,②当∠BAC=90°时,过C作CM⊥x轴于M,过B作BN⊥x轴于N,如图4,∴∠CMA=∠ANB=∠BAC=90°,∴∠MCA+∠MAC=∠MAC+∠NAB=90°,∴∠MCA=∠NAB,∴△MCA∽△NAB,∵BC=,∴2AB2=BC2=AB2+AC2,∴AC=AB,∴△MCA≌△NAB(AAS),∴AM=BN=,∴OM=OA﹣AM=3﹣,设CM =AN =b ,则ON =OA +AN =3+b ,∴C (3﹣,b ),B (3+b ,),∵点B 、C 在在函数y =上(x >0)的图象上,∴(3﹣)b =(3+b )=k解得:b =,∴k =18+15,综上所述,k 的值为或。
“一线三等角”相似模型专题学习学案设计

B B §专题学习:“一线三等角”相似模型学案设计一.类比探究,问题导入:(1)如图,已知∠A=∠BCD=∠E=90°,图中有没有相似三角形?并说明理由。
(2)如图,已知∠A=∠BCD=∠E=60°,图中有没有相似三角形?并说明理由。
(3)如图,已知∠A=∠BCD=∠E=120°,图中有没有相似三角形?并说明理由。
思考:二、抽象模型,揭示实质如图,已知∠A=∠BCD=∠E=α°,图中有没有相似三角形,并写出证明过程。
总结规律:顺口溜:“一线三等角,两头对应好,外角导等角,相似轻易找。
”特别注意:在写相似三角形时,要找好对应点。
三、运用新知,看图作答E ED C B A 观察以上三个图形,同学们能否说说这三个图形的共同特点?归纳: E例1:下列每个图形中,∠1=∠2=∠3,请你快速找出“一线三等角”的基本图形所形成的相似三角形(对应顶点写在对应位置)。
四、典例解析 综合运用五、模型构造,综合提高例4:**友情提示:能不能构造“一线三等角”解题呢?六、小结收获 交流归纳七、分层作业1.(必做题)如图,在等腰Rt△ABC 和等腰Rt△ADE 中,△BAC=△DAE=90°,且点D 在BC 上,DE 与AC 相交于点F 。
(1)求证:△ABD△△DCF(2)若AB=1,BD= 22,求CF 的长。
2.(必做题)矩形ABCD 中,把DA 沿AF 对折,使D 与CB 边上的点E 重合,若AB=8, EC=4,求AD 的长。
3.(选做题)如图,在平面直角坐标系中,等腰直角三角形OAB 的一个顶点在原点处,△ABO=90°,OB=AB,已知点A(2,4),求点B 的坐标。
例2:如图,在边长为9的等边三角形ABC 中,BD=3,∠ADE=60°,求AE 的长. ADB EC 友情提示:要学会从复杂的几何图形中分离出“一线三等角”.例3:如图,将矩形ABCD 沿线段AE 翻折,使得点D 落在BC 上点F 处,若AB=3,BC=5. 求CE 的长. F D B C A E 思考:你们可以有几种方法求解?A F E DBC A B O yx。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.矩形ABCD中,把DA沿AF对折,使D与 CB边上的点E重合,若AD=10, AB= 8,
则EF=____5__
D
A
F
C
EE
B
2.已知:D为BC上一点, ∠B= ∠C= ∠EDF=60°,BE=6,CD=3,CF=4,
则AF=__7_____
A
E F
B
D
C
3.在平面直角坐标系中,A(0,1),B(2,0), AC⊥AB,AC=3y.求点C的坐标.
α
B
α
E
∠α,B∠=A∠ECF== ∠α,C∠, A当E∠FA=EF∠旋C转,连到 α C 结如吗A图?F位. 置时,上述关系还成立
①找出图中的相似三角形
②说出图中相等的角及
D
A
F
边之间的关系
G
善于运用类比、
α
α
α
迁移的数学方法
B
E
C
解决问题
A
A
①ቤተ መጻሕፍቲ ባይዱ
B
F
②
E
C
①
B
③
F
②
E
C
E为中点
D
A
F
①
α
B
α ②α
分别从点B、C出发,沿线段BC、CD以1m/s
的速度向终点C、D运动,运动时间为t秒.
(12)连当t接=A1P秒、时A,Q、连P接Q,AC试,判与断PQ△相A交PQ于的点形状
,K.并求说AK明的理长由。。
善于在复杂
A
D 图形中寻找
基本型
K
BP
CQ
(3) 当t=2秒时,连接AP、PQ,将∠APQ逆 时针旋转,使角的两边与AB、AD、AC分别 交于点E、N、F,连接EF.若AN=1,求S△EPF.
E
C
A
F
①
α
B
③
α②
α
E
C
变式:已知:△ABC中,AB=AC, ∠BAC= 120°,D为BC的中点, 且∠EDF =∠C,
(1) 若BE·CF=48,则AB=__8___
(2)在(1)的条件下,若E利F=用m转, 化的
则S△DEF =___3_m___ 数学思想
A EH
F
P
B
D
C
已知:菱形ABCD,AB=4m, ∠B=60°,点P、Q
系E还CF成的立关吗系?还成立吗?说
B
E
C 明A理由
A
A
FF F
α66α00°°
BBB
αα6600°°
EEE
6α6α00°°
CCC
一线三等角是一个常见的相似模型,指的是有三 个等角的顶点在同一条直线上构成的相似图形, 这个角可以是直角,也可以是锐角或钝角。不同 地区对此有不同的称呼,我们通常称为“K形图 ”,也可以统称为“一线三等角”。
A
E B
P
N F
Q C
D
注意运用转 化的数学思
想
A
D
B
E
C
AD
α
αα
B
E
C
A
D
B
E
C
A
D
B
E
C
A
α
B
F D
α
E
α
C
C
B
D
αα
α
OP
A
从复杂图形中分离出基本图形,对解决问题有 化繁为简的效果。一线三等角模型在解题中,可 以帮助我们快速找到解决问题的突破口。希望这 个模型能起到抛砖引玉的作用,让我们平时多总 结多归纳,出现更多的好方法!
D
C
A
x
O
B
已知:如图,AB⊥BC,AD∥BC,AB=3,AD=2,点 P在线段AB上,连接PD,过点D作PD的垂线,与BC 相交于点C;设线段AP的长为x, (1)当AP=AD时,求线段PC的长; (2)设△PDC的面积为y,求y关于x的函数关系;
构造一线三直角可以解决所有问题
(1)
2 45
2 45 2 2
A型
基本 8型 图形
K型
?
问题1: 如图,在正方形ABCD中,E为BC上任意一点(与 B、C不重合)∠AEF=90°.观察图形:
△ABE 与△ECF 是否相似?并证明你的结论。
A
D
△ABE∽ △ECF
F
B
E
C
A
△ABE∽ △ECF((21))点点EE为为BBCC上上任任意意一一点点
若,∠若B=∠B∠=C=∠Cα,=∠60A°EF, = ∠ F C∠,则AE△FA=B∠EC与,则△△EACBFE的与关△
3 45
32
26 1
5
3 45
2020/5/8
(2)
3x
2
2
x
x2 4
3
3 x2 4 2
3 x
y 1 x2 4 3 x2 4 3 x2 3 (0 x 3)
2
2
4
2020/5/8
问题2:
D
((12))延延长长BBAA、、CFC相F交相于交点于D点,
A
F
D且,且E为EB为CB的C中的点中,点若,∠B若=∠C=