物联网智能浇灌控制系统
基于物联网的智能农田灌溉系统设计与实现
![基于物联网的智能农田灌溉系统设计与实现](https://img.taocdn.com/s3/m/1a251020a55177232f60ddccda38376baf1fe006.png)
基于物联网的智能农田灌溉系统设计与实现智能农田灌溉系统是基于物联网技术的一种智能化农田灌溉管理系统。
它利用各种传感器和网络通信技术,通过实时监测和分析土壤湿度、气象条件等相关参数,自动调节灌溉设备的运行,实现对农田的精细化管理和优化灌溉。
一、系统设计与实现的背景在传统的农田灌溉中,人工判断灌溉时机和灌溉量,效率低下且存在资源浪费的问题。
而智能农田灌溉系统的出现,能够实现对农田水分状况的实时监测和高效的水资源利用,解决了传统灌溉方式的不足之处。
二、系统设计与实现的关键技术1. 传感器技术:智能农田灌溉系统需要采集土壤湿度、气象状况等参数,选择合适的传感器并将其安装在农田中,能够准确地感知农田水分情况。
2. 网络通信技术:系统通过物联网技术,实现传感器和控制器之间的数据传输和实时交互,确保农田状况的及时监测和控制。
同时,通过云平台将数据传输到农田管理者的移动设备上,提高农田管理的便捷性。
3. 数据分析和决策算法:系统通过对传感器采集到的数据进行分析和处理,利用决策算法判断灌溉时机和水量,以最优的方式满足农作物的灌溉需求。
三、系统的工作流程1. 数据采集:系统中的传感器实时监测农田土壤湿度、气温、降水量等参数,并将数据传输给控制器。
2. 数据传输:控制器通过物联网技术将传感器采集的数据传输给云平台,并将数据推送到农田管理者的移动设备上。
3. 数据分析和决策:云平台对传输的数据进行分析和处理,根据决策算法判断灌溉时机和灌溉量。
4. 控制指令下发:云平台将灌溉时机和灌溉量的决策结果发送给控制器,控制器通过执行相应的控制指令调节灌溉设备的运行。
5. 反馈与监测:系统通过传感器实时监测灌溉过程中的水分状况,并将反馈信息传输给云平台和农田管理者的移动设备,实现对灌溉过程的实时控制和监测。
四、系统的优势和应用效果智能农田灌溉系统的出现,能够极大地提高农田的灌溉效率和农作物的生长质量。
它具有以下优势和应用效果:1. 自动化控制:系统能够根据决策算法自动调节灌溉设备的运行,有效降低人工干预的需求,提高工作效率。
基于物联网技术的智能灌溉系统设计
![基于物联网技术的智能灌溉系统设计](https://img.taocdn.com/s3/m/a58fdab703d276a20029bd64783e0912a2167ca3.png)
基于物联网技术的智能灌溉系统设计近年来,随着科技的不断进步和人们对环境保护意识的不断加强,农业生产的方式也在不断升级。
其中,基于物联网技术的智能灌溉系统越来越受到人们的关注。
本文就为大家介绍一种基于物联网技术的智能灌溉系统设计。
一、智能灌溉系统的需求和功能灌溉是现代农业生产中不可或缺的一环,但传统的人工灌溉方式效率低下、浪费水资源,不能满足现代农业生产的要求。
因此,需要一种能够自动感知土壤湿度、温度、光照强度等参数,并根据这些参数调节灌溉水量和时间的系统,即智能灌溉系统。
本文所设计的智能灌溉系统需要具备的功能包括:1、实时感知环境参数2、分析数据,自主控制灌溉量3、与农业管理系统和农业物联网平台进行数据交互,实现远程监测和控制二、智能灌溉系统的技术方案1、传感器技术方案传感器是智能灌溉系统中最基础的部分,常用的传感器包括土壤水分传感器、温湿度传感器、光照传感器等。
土壤水分传感器可以通过接触土壤来检测土壤的含水量,进而判断灌溉水量。
温湿度传感器可以感知空气温度和相对湿度,调整灌溉时间。
光照传感器可以感知光照强度,调整灌溉时间和水量。
2、控制中心技术方案控制中心是智能灌溉系统的核心,负责收集传感器数据、分析数据并进行智能控制。
可以采用单片机和传感器模块进行集成设计,也可以采用现成的开发板进行快速搭建。
在控制中心的控制算法中,应该根据实时的环境参数和作物生长周期不同阶段的要求来制定灌溉策略。
同时,为了保证稳定性,控制器也应该具备电压稳定、过电流保护和EMC电磁兼容等主要特征。
3、数据交互技术方案为了实现远程的监控和控制,智能灌溉系统需要部署到云端,通过农业物联网平台进行数据交互。
其中,数据交互包含数据采集和数据展示两个环节。
数据采集主要是通过传感器将数据上传到云端,并使用农业物联网平台实现存储和管理。
数据展示体现在人机界面上,可通过农业管理系统实现对数据的分析、可视化展示和智能预警。
三、智能灌溉系统的应用智能灌溉系统可以应用于众多地方,其中以灌溉耕地为主。
基于物联网的智慧农业精准灌溉系统设计
![基于物联网的智慧农业精准灌溉系统设计](https://img.taocdn.com/s3/m/c15b6d3cf56527d3240c844769eae009591ba250.png)
基于物联网的智慧农业精准灌溉系统设计一、引言随着物联网技术的不断发展,智能农业应用也成为农业发展的新趋势。
智慧农业精准灌溉系统作为物联网在农业领域的应用之一,旨在提高农业生产效率、减少资源浪费。
本文将基于物联网技术,设计一套智慧农业精准灌溉系统。
二、基于物联网的智慧农业精准灌溉系统设计原理智慧农业精准灌溉系统的设计原理主要包括传感器数据采集、数据传输、云端数据分析与处理、智能灌溉控制等环节。
1. 传感器数据采集系统通过使用各类传感器,如土壤湿度传感器、气象传感器、光照传感器等,对农田环境进行数据采集。
土壤湿度传感器可以感知土壤湿度状况,气象传感器可以感知环境温度、湿度、风速等数据,光照传感器可以感知光照强度。
通过这些传感器的数据采集,可以了解到农田各要素的情况。
2. 数据传输采集到的传感器数据需要通过物联网技术进行传输。
可以利用低功耗无线通信技术(如LoRaWAN、NB-IoT等)将数据传输到云端。
在传输数据时,可以通过数据压缩、数据加密等方式保证数据的可靠传输。
数据传输的稳定性和高效性对于系统的正常运行至关重要。
3. 云端数据分析与处理传输到云端的数据需要进行分析和处理,以得出精准灌溉的策略。
通过使用大数据技术和机器学习算法,对传感器数据进行实时分析和处理,从而获得土壤湿度、气象条件等的变化趋势,为灌溉决策提供依据。
同时,通过数据的比对和分析,可以为不同作物的生长需求提供相应的灌溉水量和灌溉频率。
4. 智能灌溉控制在分析和处理数据后,系统会根据灌溉策略进行智能灌溉控制。
根据所监测到的土壤湿度和环境条件,系统可以自动地通过执行器(如电磁阀、水泵等)来控制灌溉水量和灌溉时间。
智能控制可以准确地满足作物的灌溉需求,避免了过度灌溉或不足灌溉的问题。
三、基于物联网的智慧农业精准灌溉系统设计实现基于以上设计原理,下面将介绍智慧农业精准灌溉系统的具体实现。
1. 硬件设施在现实中,可以在农田中部署传感器节点,并与一个或多个基站进行通信。
面向智慧农业的远程灌溉监控与控制系统设计
![面向智慧农业的远程灌溉监控与控制系统设计](https://img.taocdn.com/s3/m/882bb9828ad63186bceb19e8b8f67c1cfbd6ee67.png)
面向智慧农业的远程灌溉监控与控制系统设计智慧农业的迅猛发展对农田灌溉提出了新的要求。
传统的农田灌溉方式存在诸多问题,例如资源浪费、效率低下、操作不便等。
远程灌溉监控与控制系统的设计应运而生,通过远程监控和控制技术的应用,实现智能化的农田灌溉,提高农田水资源的利用效率,降低人工成本,促进农业的可持续发展。
一、系统设计概述远程灌溉监控与控制系统是基于物联网技术实现的,其主要功能包括监测农田灌溉水位、土壤湿度以及环境温湿度等信息,实时控制灌溉设备开关,以及远程管理和控制系统的运行。
系统由传感器、控制器、通信模块、服务器和手机应用等组成。
传感器用于实时采集农田环境和水文信息,并将数据传输给控制器。
控制器根据接收到的数据,决定是否需要进行灌溉操作,并控制灌溉设备的开启和关闭。
通信模块负责将采集到的数据和控制指令通过无线网络传输到服务器。
服务器上搭建的数据库用于存储和管理数据,并提供数据查询和分析功能。
手机应用则是农民和管理者通过手机实现对远程灌溉监控与控制系统的操作和管理。
二、传感器选择与布局合适的传感器选择和布局对于系统的正常运行至关重要。
首先,选择可靠稳定的传感器,能够准确地监测农田灌溉所需的各项参数。
例如,水位传感器用于监测水源河流或水库的水位,土壤湿度传感器用于监测农田土壤湿度,环境传感器用于监测环境温湿度。
其次,合理布局传感器,确保其能够充分覆盖整个农田区域,并避免受到其他人为因素的影响。
传感器通常需安装在经过精确测量的位置,并通过专用线缆或者现场无线网络与控制器连接。
三、控制器设计与功能控制器是系统的核心,主要负责采集传感器数据、进行数据处理和决策、控制灌溉设备的开启和关闭。
为了提高控制的精准度和效率,控制器需要具备以下功能:1. 数据采集和处理:实时采集传感器数据,并进行筛选和处理,依据设定的阈值进行判断和决策;2. 远程控制:支持远程灌溉设备的开关,通过与服务器建立的连接,接收控制指令并执行;3. 报警功能:当系统检测到异常情况时,及时发送报警信息给农民或管理者,以便进行及时处理;4. 数据存储和分析:控制器需要具备一定的存储能力,将采集到的数据存储在本地,方便以后的分析和查询。
智能灌溉控制系统的工作原理
![智能灌溉控制系统的工作原理](https://img.taocdn.com/s3/m/0f5d987f182e453610661ed9ad51f01dc2815786.png)
智能灌溉控制系统的工作原理大家好,今天我们来聊聊智能灌溉控制系统。
别看名字挺高大上的,其实它的工作原理一点都不复杂,通俗点说,就是用聪明的办法来给植物浇水。
走,咱们一起看看这套系统是怎么运作的吧!1. 智能灌溉系统的基本概念1.1 什么是智能灌溉系统?简而言之,智能灌溉系统就是一种能自动根据土壤湿度、天气情况等因素来给植物浇水的装置。
你可以把它想象成一个勤劳的小助手,帮你照顾植物,省去你不少麻烦。
就像老话说的“省心省力”,它就是为了这个目的而诞生的。
1.2 它的核心组件是什么?智能灌溉系统通常有几个重要的部分:传感器、控制器和执行器。
传感器就像是植物的“语言翻译器”,它能检测土壤的湿度和环境的变化;控制器是系统的大脑,负责分析数据并决定什么时候需要浇水;执行器就是“行动派”,按照控制器的指示实际进行浇水操作。
2. 智能灌溉系统的工作原理2.1 数据采集一切的开始,都是从传感器采集数据开始的。
比如说,土壤湿度传感器会测量土壤的湿润程度,一旦湿度低于预设值,它就会发出信号。
就像你手机上收到了一条消息,提醒你该喝水了,植物也是这样,通过传感器来“告诉”系统它需要水分了。
2.2 数据分析接下来,控制器就要登场了。
控制器会把传感器收集到的数据进行分析,像是一位细心的老师,审视学生的表现。
如果系统检测到土壤干燥,它就会决定启动灌溉系统,开始给植物浇水。
说白了,控制器就是植物的“贴心管家”。
2.3 执行灌溉最后,就是执行器的工作了。
执行器负责把水送到植物的根部。
它的工作可以是自动的,也可以是远程控制的。
比如,你可以在手机上设置一个浇水计划,系统就会按时自动完成灌溉。
这样一来,植物喝水就像吃饭一样定时定量,健康又省心。
3. 智能灌溉系统的优势3.1 节水环保智能灌溉系统的一大优点就是节水。
传统的灌溉方式常常因为过量或不够精确,浪费了大量的水资源。
而智能系统则根据植物的实际需求来调节水量,既能保证植物健康,又能节约水资源。
农业现代化农业物联网智能灌溉方案
![农业现代化农业物联网智能灌溉方案](https://img.taocdn.com/s3/m/7f6149e21b37f111f18583d049649b6648d70939.png)
农业现代化农业物联网智能灌溉方案第一章引言 (2)1.1 农业现代化概述 (2)1.2 物联网智能灌溉的意义 (2)1.3 研究目的与意义 (2)第二章物联网智能灌溉技术概述 (3)2.1 物联网技术简介 (3)2.2 智能灌溉技术原理 (3)2.3 系统架构与功能 (4)第三章硬件设备选型与配置 (4)3.1 传感器选型 (4)3.2 控制器与执行器选型 (5)3.3 通信设备选型 (5)第四章数据采集与处理 (5)4.1 数据采集方法 (6)4.1.1 传感器采集 (6)4.1.2 视觉采集 (6)4.1.3 其他采集方法 (6)4.2 数据传输与存储 (6)4.2.1 数据传输 (6)4.2.2 数据存储 (6)4.3 数据分析与处理 (7)4.3.1 数据预处理 (7)4.3.2 数据分析 (7)4.3.3 数据处理 (7)第五章智能灌溉决策模型 (7)5.1 灌溉策略制定 (7)5.2 模型建立与优化 (7)5.2.1 模型建立 (8)5.2.2 模型优化 (8)5.3 灌溉决策执行 (8)第六章系统集成与测试 (8)6.1 硬件集成 (8)6.2 软件集成 (9)6.3 系统测试与调试 (9)第七章经济效益分析 (10)7.1 投资成本分析 (10)7.2 运营成本分析 (10)7.3 效益评价 (11)第八章环境影响评估 (11)8.1 水资源利用效率 (11)8.2 土壤改良效果 (11)8.3 环境保护措施 (12)第九章推广应用与前景展望 (12)9.1 推广策略 (12)9.2 技术发展趋势 (12)9.3 市场前景分析 (13)第十章结论与建议 (13)10.1 研究结论 (13)10.2 存在问题与改进方向 (13)10.3 发展建议 (14)第一章引言1.1 农业现代化概述农业现代化是指在现代科技、管理、信息等要素的支持下,对传统农业进行改造,使之逐步走向规模化、集约化、标准化、智能化的发展过程。
基于NB-IoT的智能灌溉系统设计
![基于NB-IoT的智能灌溉系统设计](https://img.taocdn.com/s3/m/3d2aa5276fdb6f1aff00bed5b9f3f90f76c64d1c.png)
44 集成电路应用 第 38 卷 第 6 期(总第 333 期)2021 年 6 月
否符合要求,若LED闪烁则说明超出限度应停止灌 溉。最后对湿度数据进行转换并储存。
2.3 灌溉控制模块程序设计 本系统的灌溉控制方式由手动和自动两种构
成。手动控制是通过操作上位机界面或手机端界面 的浇灌按钮来执行对继电器的操作。自动控制则是 收集到的土壤湿度数据与设置的阈值比较,当土壤 湿度值低于设定值时就自动执行程序控制继电器打 开,开始灌溉,当设定的灌溉量达到时,程序自动 控制继电器关闭,停止灌溉。
[18] 周岩,江冰,邬智俊,胡钢.提水式泵站农业灌 溉用水全智能化计量系统研究[J].测控技术, 2020,39(05):107-111.
[19] 张明.基于物联网的农田灌溉系统设计——以 甘肃省张掖市甘州区沿山灌区为例[J].甘肃 科技纵横,2021,50(04):8-11.
集成电路应用 第 38 卷 第 6 期(总第 333 期)2021 年 6 月 45
册状态信息并进行上报; (5)复位NB模块,查询网络的注册状态,若
为“1”,表示正在联网运行,若为“2”,表示正 在搜索网络。
(6)AT寻查默认IP地址是否为默认PDN,若是 默认的PDN,则查询IMEI号,然后发送数据,入网 配置完成。
2.5 电信云平台配置 进入电信云平台,根据步骤注册用户并开通
基于NB-IoT智能灌溉系统硬件终端主要由MCU 主控模块、NB-IoT无线传输模块、数据采集模块、 灌溉控制模块、以及电源供电电路组成。
(1)MCU主控模块:从功耗、性能、价格和开 发难度这四个方面考虑。使用STM32单片机作为本 系统的MCU主控芯片。
(2)NB无线传输模块:采用移远公司的 BC95-B5模块。
智能灌溉农田灌溉控制系统
![智能灌溉农田灌溉控制系统](https://img.taocdn.com/s3/m/1276ffeb85868762caaedd3383c4bb4cf7ecb722.png)
智能灌溉农田灌溉控制系统系统简介智能灌溉一种现代高效节水的灌溉方式,智能灌溉自动化控制系统是集自动控制技术和专家系统技术,传感器技术、通讯技术、计算机技术等于一体的灌溉管理系统。
随着农业及园林业的发展,水资源的不断升值,传统灌溉方式正在被现代智能型微机控制灌溉系统所取代并得以推广,是有效解决灌溉节水问题的必要措施之一。
金斗云自主研发的智能灌溉系统是集传感器技术、自动控制技术、计算机技术、无线通信技术等多种高新技术于一体的智能灌溉控制系统,该系统的应用使我国的农业由传统的劳动密集型向技术密集型转变奠定了重要的基础。
系统既可以根据植物和土壤种类,光照数量来优化用水量,也可以在雨後监控土壤的湿度。
据研究统计显示,金斗云智能灌溉系统和传统灌溉系统的成本差不多,却可实现节水16%到30%。
智能灌溉系统-软件设计软件是控制系统的灵魂,需要与硬件配合,将实时数据与专家系统的设定值进行比较判断,来控制电磁阀的开启和延续时间的长短,实现智能控制。
中央控制室的计算机系统使用了大型关系数据库,能对各种数据进行分类存储和自动备份,并能根据定制条件进行查询。
本系统能够实现全自动、无人值守的数据处理,并预留WEB接口,远程用户可以通过浏览器查询有关的灌溉信息。
本系统采用了图形用户界面,用户操作简单方便。
实时或定时采集的田间土壤水分、土壤温度、空气温湿度等数据,均可以实时地以图形或者表格方式在中央控制计算机上显示。
用户可以通过图形界面设定每个地块的灌溉策略,实现定时、定量的无人值守的自动灌溉。
智能灌溉系统-系统组成智能灌溉系统-优点与传统灌溉方式相比,金斗云智能灌溉控制系统有如下优点:1.微机控制喷灌和滴灌,大大节省日趋宝贵的水资源,具有巨大的社会效益和经济效益。
2.根据植物对土壤水份的需求特点设定不同的灌溉方式,使植物按最佳生长周期生长, 达到增产增收的目的。
3.自动灌溉,大大节省人力资源,提高劳动生产率。
智能灌溉系统-功能为了最大限度地节约喷灌用水和实现智能控制,灌溉系统具备以下功能:1.数据采集功能:可接收土壤湿度传感器采集的模拟量。
基于物联网技术的智慧灌溉系统设计
![基于物联网技术的智慧灌溉系统设计](https://img.taocdn.com/s3/m/f98e86642e60ddccda38376baf1ffc4fff47e276.png)
基于物联网技术的智慧灌溉系统设计智慧灌溉系统是基于物联网技术的一种新型农业灌溉系统,通过传感器、数据网络和智能控制算法实现对农田灌溉的远程监控和自动化调节。
本文将会介绍智慧灌溉系统的设计原理、关键技术以及应用前景。
一、设计原理智慧灌溉系统的设计原理是通过物联网技术将传感器、执行器、数据网络和控制算法相互连接,实现对农田灌溉过程的远程监测和智能控制。
首先,系统会安装一系列感知节点,如温度、湿度、土壤湿度等传感器,用于实时感知农田的环境参数。
感知节点会将采集到的数据通过无线网络传输给云服务器。
其次,云服务器会接收并处理感知节点上传的数据,通过分析和建模,确定最优的灌溉策略。
例如,根据土壤湿度和天气预报数据来预测农田的水分需求,进而控制水泵的开关以实现精确灌溉。
最后,执行器部分会根据云服务器下发的指令,自动控制水泵、阀门等设备的开关,实现对农田灌溉设备的自动化控制。
此外,系统还可以通过手机APP或者网页端进行远程控制和监测。
二、关键技术智慧灌溉系统设计需要应用如下关键技术:1. 传感器技术:根据农田的需求,选择合适的传感器来感知环境参数,比如土壤湿度、温度、湿度等,并确保传感器的精度和稳定性。
2. 通信技术:系统中的感知节点需要通过无线网络将数据传输给云服务器,因此需要选择合适的通信技术,如WiFi、LoRa、NB-IoT等,来实现数据的稳定传输。
3. 数据处理和分析技术:云服务器需要对传感器上传的大量数据进行处理和分析,以获取有用的信息,并通过机器学习和算法建模来确定最优的灌溉策略。
4. 控制算法:根据数据分析的结果,制定出灌溉的控制策略,使得灌溉系统能够实现高效的灌溉,节约水资源的同时提高农作物的生长质量。
5. 自动化控制技术:智慧灌溉系统需要实现对水泵、阀门等设备的自动化控制,因此需要采用合适的自动化控制技术,例如PLC控制器、单片机等。
三、应用前景智慧灌溉系统在现代农业中具有广阔的应用前景。
首先,智慧灌溉系统能够有效地提高农田的灌溉效率和水资源利用率。
基于物联网技术的智能农田灌溉系统研究
![基于物联网技术的智能农田灌溉系统研究](https://img.taocdn.com/s3/m/3235c26e580102020740be1e650e52ea5418ce12.png)
基于物联网技术的智能农田灌溉系统研究智能农田灌溉系统是利用物联网技术来监测和控制农田的灌溉过程,旨在实现农业生产的高效性和可持续性。
本文将深入研究基于物联网技术的智能农田灌溉系统,并探讨其应用的优势和挑战。
1. 引言智能农田灌溉系统是通过采集和分析农田的环境数据,如土壤湿度、气温、降雨量等,实现精确的农田灌溉控制。
该系统利用物联网技术和传感器网络,实时监测土壤湿度和气象数据,并根据预设的灌溉方案,实现灌溉系统的自动化和智能化。
2. 物联网技术在智能农田灌溉系统中的应用物联网技术在智能农田灌溉系统中发挥了不可忽视的作用。
首先,通过传感器网络,物联网技术可以实时获取农田的环境数据。
这些数据可以包括土壤湿度、温度、湿度、光照等。
传感器节点将这些数据传输到中央控制中心,实时显示和分析数据。
其次,物联网技术可以实现农田灌溉系统的远程监控和控制。
农民可以通过智能手机等移动设备,随时随地监控农田的灌溉情况,并进行相应的调整和控制。
此外,物联网技术还可以将农田灌溉系统与气象预报等外部资源进行集成,从而更准确地决定农田灌溉方案。
3. 基于物联网技术的智能农田灌溉系统的优势基于物联网技术的智能农田灌溉系统相比传统的农田灌溉系统具有以下优势。
3.1 精确灌溉智能农田灌溉系统可以实时监测土壤湿度,并根据农田的实际需求进行精确灌溉。
通过物联网技术,系统可以及时掌握土壤湿度的变化情况,并根据预设的阈值和灌溉方案,自动调整灌溉的时间、强度和频率,从而避免灌溉过量或不足的情况。
3.2 节约资源传统的农田灌溉系统普遍存在水资源浪费的问题。
而基于物联网技术的智能农田灌溉系统可以根据土壤湿度的变化情况,精确计算出农田所需的灌溉水量。
通过灌溉水量的精确控制,系统可以显著减少对水资源的浪费,实现资源的节约和可持续利用。
3.3 提高生产效率智能农田灌溉系统通过自动化和智能化的灌溉控制,可以减轻农民的劳动强度,提高农田灌溉的效率。
农民无需手动监测和调整灌溉过程,系统将根据实时的环境数据和灌溉方案,自动控制灌溉设备的运行,实现农田灌溉的自动化和智能化。
基于物联网技术的智能浇水系统设计与实现
![基于物联网技术的智能浇水系统设计与实现](https://img.taocdn.com/s3/m/491a920eff4733687e21af45b307e87101f6f816.png)
基于物联网技术的智能浇水系统设计与实现一、前言随着科技的不断发展和进步,物联网技术已经逐渐进入人们的生活。
智能家居也成为了智慧城市建设的重要组成部分。
智能浇水系统是智能家居领域中的一个重要应用,它能够帮助我们实现高效节水、智能排班等功能。
本文将针对智能浇水系统的设计和实现进行详细讲解,主要介绍物联网技术在智能浇水系统中的应用。
二、智能浇水系统的设计1. 系统需求智能浇水系统需要满足以下需求:(1)能够监测植物的生长状态,包括土壤湿度、温度等信息。
(2)能够根据植物的需求自动控制浇水。
(3)能够通过手机等移动设备实现远程操控。
2. 系统架构图智能浇水系统的架构主要包括以下几个部分:传感器节点、数据传输模块、云平台、服务器和移动APP。
其中,传感器节点负责监测植物的生长状态并将数据上传至云平台,数据传输模块用于传输数据,服务器负责处理数据并发送控制指令给浇水设备,移动APP用于用户远程操控设备。
3. 系统实现技术智能浇水系统的实现主要利用物联网技术,包括传感器网络、云计算、数据传输技术和远程控制技术等。
(1)传感器网络:传感器节点通过无线网络连接至云平台,将所得数据传输到云端,实现数据共享和云计算。
(2)云计算:通过云计算技术,能够实现海量数据的存储和处理,从而更好地为用户提供服务。
(3)数据传输技术:数据传输技术是实现数据传输的重要技术手段之一,它能够实现快速、高效而稳定的数据传输。
(4)远程控制技术:远程控制技术使用户能够通过手机等移动设备远程操控设备,增加系统的可用性和灵活性。
三、智能浇水系统的实现1. 硬件实现智能浇水系统的硬件主要包括:传感器节点、数据传输模块、控制模块和浇水设备。
传感器节点用于监测植物的生长状态,包括土壤湿度、温度等信息,数据传输模块用于将数据上传至云平台,控制模块负责处理云平台发送的控制指令,并控制浇水设备实现自动浇水。
2. 软件实现智能浇水系统的软件主要包括:云平台后台程序、服务器程序和移动APP,其中云平台后台程序负责处理数据,为系统提供服务;服务器程序负责控制浇水设备,实现自动浇水功能;移动APP则用于用户远程控制设备,实现更加智能化的操作。
2024年水稻自动灌溉控制系统设计论文
![2024年水稻自动灌溉控制系统设计论文](https://img.taocdn.com/s3/m/01d4d2472379168884868762caaedd3383c4b53d.png)
2024年水稻自动灌溉控制系统设计论文一、系统总体设计方案本设计旨在开发一种基于物联网技术的水稻自动灌溉控制系统,通过传感器采集水稻田间的环境信息,如土壤湿度、温度等,并根据这些信息智能地控制灌溉设备的开关,实现精准灌溉。
系统主要由硬件和软件两部分组成。
硬件部分包括传感器节点、控制节点和执行机构。
传感器节点负责采集环境信息,通过无线通信将数据发送至控制节点;控制节点根据接收到的数据进行分析处理,并发出相应的控制指令;执行机构根据控制指令执行灌溉操作。
软件部分包括数据处理模块、控制模块和人机交互模块,负责实现数据的处理、分析和显示,以及控制指令的生成和发送。
二、系统硬件设计传感器节点设计传感器节点是系统的感知层,负责采集水稻田间的环境信息。
本设计选用土壤湿度传感器和温度传感器作为主要的感知元件,通过模数转换电路将传感器输出的模拟信号转换为数字信号,并通过无线通信模块将数据发送至控制节点。
为了保证数据传输的可靠性和稳定性,传感器节点采用低功耗设计,采用休眠唤醒机制降低能耗。
同时,节点还具备自组织网络能力,能够自动形成稳定的通信网络,实现数据的可靠传输。
控制节点设计控制节点是系统的核心部分,负责接收传感器节点发送的数据,并进行处理和分析。
控制节点采用高性能微处理器作为核心控制器,具备强大的数据处理能力。
通过算法对接收到的数据进行处理,可以实现对水稻生长状态的实时监测和预测。
控制节点还具备无线通信功能,能够与传感器节点和执行机构进行通信。
通过发送控制指令,可以控制执行机构的动作,实现对灌溉设备的智能控制。
执行机构设计执行机构负责根据控制节点的指令执行灌溉操作。
本设计采用电磁阀作为主要的执行元件,通过控制电磁阀的开关状态来实现灌溉设备的启停。
为了保证灌溉的精准性和可靠性,执行机构还配备了流量计和压力传感器等辅助设备,用于实时监测灌溉水量和管道压力等参数。
这些数据可以反馈至控制节点,用于进一步优化灌溉策略。
基于物联网的智能农业灌溉系统设计与实现
![基于物联网的智能农业灌溉系统设计与实现](https://img.taocdn.com/s3/m/638e9c3e8f9951e79b89680203d8ce2f01666514.png)
基于物联网的智能农业灌溉系统设计与实现智能农业灌溉系统是基于物联网技术的一种新型农业灌溉系统,它通过传感器、控制器和网络通信等技术手段,实现对灌溉设备的实时监控、数据采集和智能控制,从而实现农田的精准灌溉,提高农业生产效益。
本文将围绕智能农业灌溉系统的设计与实现进行阐述。
首先,智能农业灌溉系统的设计需要考虑到农田土壤的湿度、温度、光照和气象等因素,以便根据实际情况调控灌溉设备。
为此,需要部署土壤湿度传感器、温度传感器、光照传感器和气象传感器等,用于实时采集这些参数的数据。
这些传感器可以通过有线或无线方式与控制器相连,将数据传输给控制器。
其次,控制器是智能农业灌溉系统的核心部件,负责数据的处理和决策。
控制器需要具备一定的算法和智能算法,能够通过对采集到的数据进行分析和处理,判断农田的灌溉状态,并做出相应的灌溉决策。
例如,当土壤湿度过低时,控制器可以自动打开灌溉设备进行补水。
同时,控制器还要能够与传感器进行通信,接收传感器的数据,并向灌溉设备发送控制命令。
此外,智能农业灌溉系统还需要与互联网相连,以实现远程监控和控制。
这样,农田的灌溉状态和数据可以随时随地被农民通过手机或电脑进行监控,对灌溉设备进行远程控制。
同时,通过云端平台的数据存储和分析,还可以对农田的灌溉情况进行统计和分析,帮助农民做出科学决策。
在实现方面,智能农业灌溉系统需要根据实际情况选择适合的硬件设备和软件平台。
例如,可以选择低功耗的传感器和高性能的控制器,以减少能耗和提高系统的响应速度。
同时,可以选择基于云计算和大数据技术的软件平台,以实现数据的存储、分析和可视化。
总结起来,基于物联网的智能农业灌溉系统是一个集数据采集、控制决策和远程监控于一体的综合系统。
通过合理设计和实施,可以实现农田的精准灌溉,提高农业生产效益。
未来,随着物联网技术的不断发展和普及,智能农业灌溉系统有望在农业生产中发挥更大的作用。
基于物联网的智能灌溉系统设计与研究
![基于物联网的智能灌溉系统设计与研究](https://img.taocdn.com/s3/m/81cf67a3e109581b6bd97f19227916888486b980.png)
基于物联网的智能灌溉系统设计与研究智能灌溉系统在农业生产中的应用越来越受到关注。
基于物联网的智能灌溉系统能够实时监测和控制土壤湿度、气象数据、植物生长状况等信息,从而实现精确、高效的灌溉,提高农作物生产的稳定性和产量。
一、智能灌溉系统的介绍智能灌溉系统是将物联网技术与传统灌溉系统相结合,通过传感器、数据采集模块、通信模块、控制器等设备,实现对灌溉设备的自动控制和监测。
该系统能够根据土壤湿度、气象条件、作物需水量等信息,自动调节灌溉设备的工作,从而达到节水、节能、高效的灌溉效果。
二、基于物联网的智能灌溉系统的原理与设计基于物联网的智能灌溉系统主要由传感器、数据采集模块、通信模块和控制器四部分组成。
1. 传感器:利用土壤湿度传感器、气象传感器等,实时感知土壤湿度、环境温度、大气湿度、风速等信息,将这些数据采集传输给数据采集模块。
2. 数据采集模块:将传感器获取的数据进行采集、处理和存储,同时接收控制器发出的指令,将处理后的数据传输给控制器。
3. 通信模块:通过无线通信方式将数据采集模块采集的数据传输给控制器,同时接收控制器发出的指令,传输给数据采集模块。
4. 控制器:接收数据采集模块采集的数据和通信模块传输的指令,根据预设的灌溉策略和作物需水量,自动控制灌溉设备的开启和关闭,同时将灌溉情况等信息反馈给用户。
三、基于物联网的智能灌溉系统的优势相比传统的定时灌溉系统,基于物联网的智能灌溉系统具有以下优势:1. 精确灌溉:通过实时监测土壤湿度和气象数据,系统能够根据作物需水量和环境条件智能控制灌溉设备的开启和关闭,实现精确的灌溉,避免了过度或不足灌溉的问题。
2. 节水节能:智能灌溉系统能够根据实时的土壤湿度和气象条件,合理控制灌溉设备的运行时间和水量,从而避免了灌溉过程中的水浪费和能源浪费。
3. 高效管理:通过物联网技术实现对灌溉系统的远程监测和控制,农户可以随时随地通过手机或电脑查看灌溉情况,及时调整灌溉策略,提高管理效率。
物联网技术在农业领域的应用
![物联网技术在农业领域的应用](https://img.taocdn.com/s3/m/24141780fc0a79563c1ec5da50e2524de418d042.png)
物联网技术在农业领域的应用随着科技的不断进步,物联网技术也越来越成熟和普及。
物联网技术的应用可以让各行各业的工作更加高效和智能化。
在农业领域,物联网技术也有着广泛的应用。
本文将介绍物联网技术在农业领域的应用,以及如何将物联网技术应用于农业生产中,提高农民的生产效率、减少浪费和提高农产品的质量。
一、物联网技术在农业领域的应用1.智能灌溉系统物联网技术可以用于智能灌溉系统中。
智能灌溉系统可以通过物联网技术监测土壤湿度、光线、气温等因素,从而智能地控制灌溉系统的启动和关闭,实现对农田的精确浇灌。
这种智能灌溉系统可以帮助农民节约用水,提高灌溉效率,同时还能够避免过量浇水导致的浪费和产生的其他负面影响。
2.智能养殖系统物联网技术还可以应用于智能养殖系统中。
智能养殖系统可以通过物联网技术实时监测养殖场内的温度、湿度、气体浓度等环境因素,从而控制养殖系统的运转,提高养殖效率。
同时,智能养殖系统还可以通过物联网技术对动物行为进行监测和分析,提高养殖场的管理水平和动物养殖的生产效率。
3.智能植保系统物联网技术还可以应用于智能植保系统中。
智能植保系统可以通过物联网技术实时监测农田内的害虫和病菌的情况,从而在需要时及时启动相应的植保措施,提高农作物的防虫防病能力。
同时,智能植保系统还可以通过物联网技术监测天气变化,适时进行施肥等作物管理工作,提高农作物的产量和质量。
4.智能物流系统物联网技术还可以应用于智能物流系统中。
智能物流系统可以通过物联网技术实时监测农产品的运输情况,包括温度、湿度等环境因素,从而保证农产品的安全运输。
同时,物联网技术还可以帮助农民和物流企业对产品进行追溯管理,提高食品安全的保障水平。
二、如何将物联网技术应用于农业生产中要将物联网技术应用于农业生产中,需要从以下几个方面进行考虑和实施:1.技术选型针对不同的生产需求,需要选择适合的物联网技术方案。
比如,针对农田的灌溉管理,可以选择土壤水分传感器、气象站、网络控制系统等技术;针对动物养殖管理,可以选择体温传感器、光控器、智能饲喂器等技术;针对植物保护管理,可以选择害虫诱捕器、环境监测器、喷雾系统等技术。
基于物联网的智能灌溉系统设计及研发
![基于物联网的智能灌溉系统设计及研发](https://img.taocdn.com/s3/m/29dc841259fb770bf78a6529647d27284b733799.png)
基于物联网的智能灌溉系统设计及研发近年来,随着物联网技术的不断发展,智能化已经成为了我们生活中不可或缺的一部分。
智能化的应用覆盖了各个领域,而在农业领域中,基于物联网的智能灌溉系统更是成为农民们眼中的宝贵财富。
本文将围绕这一主题,探讨基于物联网的智能灌溉系统的设计及研发。
一、智能灌溉系统的意义在农业生产中,灌溉是农民不可或缺的一员工作。
传统的灌溉方式存在诸多问题:如浪费水资源、施肥不均、工作效率不高等。
这些问题已经成为了影响农业生产的重要因素之一。
然而,基于物联网的智能灌溉系统将会改变这一局面。
通过传感器、计算机、网络等技术,将水、土、环境等信息进行实时监测和分析,实现智能化的灌溉,以达到优化资源利用、提高农业生产效率的目的。
二、智能灌溉系统的构成智能灌溉系统由多个部分组成:传感器、数据采集模块、信息处理与控制模块、执行器等。
其中,传感器扮演着重要的角色:它们可以收集土壤温度、湿度、水分密度、环境温度等重要信息,并将这些信息传输到数据采集模块。
数据采集模块对传感器采集到的数据进行处理和分析,并将结果发送给信息处理与控制模块。
信息处理与控制模块根据分析结果,进行灌溉计划的制定和执行,控制执行器对土地进行灌溉。
此外,系统中还需要设置人机交互界面,便于管理人员对系统的监控和管理。
三、智能灌溉系统的设计1. 传感器的选择与布置传感器是智能灌溉系统的重要组成部分,其选择和布置直接关系到系统的最终效果。
首先,需要考虑所选择的传感器是否能准确反映土壤、水分、气象等情况。
同时,在传感器的布置上,需要考虑每个传感器所监测到的信息区域以及覆盖范围,并根据灌溉区域之间的相互关系,确定每个传感器的具体位置,以达到最佳的监测效果。
2. 数据的处理与分析数据处理是智能灌溉系统中最为关键的一步。
在数据处理过程中,需要根据不同的数据进行各种比较、计算和分析,并根据分析结果,制定出最优的灌溉方案。
在实际处理过程中,需要遵循高效、准确、可靠等原则,保证数据处理的结果可以真正地反映土地、水分、气象等实际情况。
基于物联网技术的智能灌溉系统设计
![基于物联网技术的智能灌溉系统设计](https://img.taocdn.com/s3/m/a7b024ac03d276a20029bd64783e0912a2167ce1.png)
第11卷第2期农业工程Vol. 11No. 2 2021 年 2 月Agricultural Engineering Feb. 2021基于物联网技术的智能灌溉系统设计毛敏(陕西国防工业职业技术学院,陕西西安710300)摘要:为了实时监测土壤湿度,通过Wi-Fi技术、土壤湿度传感器、Arduino Un。
微处理器和W eb服务器设计出基于物联网技术的智能灌溉系统,搭建了以土壤湿度传感器和Arduino Um>微处理器为核心的硬件体系,并通过Java语言编写JS P程序完成软件设计。
通过试验,该系统可实时监测土壤水分,当测量数据小于设定的阈值时,自动开启浇灌设备,对土壤水分进行智能调节。
采用此方法,可使用简单的电路完成复杂的功能,大大降低设计成本,适用于需要实时监测土壤水分的场合。
关键词:W i-Fi技术;灌溉;W eb服务器;土壤水分传感器;Arduino中图分类号:S126 文献标识码:A文章编号:2095-1795(2021 )02-0056-03Design on Intelligent Irrigation System Based on Internet ofThings TechnologyMAO M in(Shaanxi Institute o f Technology,X i’an Shaanxi 7 W300,China)Abstract:In order to monitor soil moisture in real time, an intelligent irrigation system based on Internet of Things technology was designed through Wi-Fi technology, soil moisture sensor, Arduino Uno microprocessor and Web server. Hardware system with soil moisture sensor and Arduino Uno microprocessor as the core was built, and software design was completed by writing JSP program in Java language. Through experiment, the system could monitor soil moisture in real time. When measured data was less than the set threshold value,irrigation equipment would be opened automatically to adjust soil moisture intelligently. U- sing this method, simple circuit could complete complex funclions, greatly reduce design cost, and was suitable for occasion of real-time monitoring of soil moisture.Keywords:Wi-Fi technology, irrigation, Web server, soil moisture sensor, Arduino〇引言随着社会生产力的提升,我国农业得到较大的发 展,对水资源的需求量逐步上升,我国农业用水量约 占全国总用水量的70%,但农业灌溉用水的利用率比较低下,用水方式不当造成农业用水紧张,农业灌 溉方式直接影响农业发展。
基于物联网的智能灌溉自动控制系统的研究与设计
![基于物联网的智能灌溉自动控制系统的研究与设计](https://img.taocdn.com/s3/m/f9c89e4ea200a6c30c22590102020740be1ecda2.png)
基于物联网的智能灌溉自动控制系统的研究与设计第一章绪论1.1 研究背景与意义灌溉是农业生产中至关重要的一环,灌溉自动化能够提高灌溉效率、减少用水成本、节约人力资源,已经成为现代农业生产的趋势。
物联网技术为智能灌溉自动控制系统的发展提供了新的可能性,可以通过连接各种传感器和执行器实现对灌溉设备的远程监控和控制,提高灌溉效率和农作物的产量。
1.2 国内外研究现状随着物联网技术的不断发展,智能农业也得到了快速发展。
国外已经出现了许多基于物联网的智能灌溉自动控制系统,如以色列的Netafim公司开发的“数字农业”,通过传感器监测土壤温度、湿度、光照等参数,实现精准定量灌溉;美国的CropX公司通过传感器和数据分析技术,为农民提供决策支持和优化方案。
国内也有众多类似的产品和研究,但仍存在一定的技术瓶颈和应用局限性,需要进一步探索和改进。
1.3 研究目的和意义本研究将以物联网技术为基础,设计并实现一套全自动化的智能灌溉系统,其主要目的是提高农作物的产量和品质,为农业生产提供科学、高效、可持续的解决方案。
同时,本研究将探讨物联网技术在灌溉自动化中的应用,为技术发展和农业现代化提供参考依据。
第二章系统设计2.1 系统需求分析智能灌溉系统是由多个组成部分组成的系统,包括传感器、执行器、控制器、通信模块等。
系统需要满足以下需求:1. 精准感知:能够对土壤温度、湿度、光照等参数进行监测和感知,实现精准定量灌溉。
2. 自动控制:根据感知结果自动调整灌溉设备的运行状态,实现全自动化的灌溉控制。
3. 远程控制和监测:通过无线网络或互联网实现对系统的远程控制和监测。
4. 数据分析和决策支持:对采集到的数据进行分析和处理,提供决策支持和优化方案。
2.2 系统框架设计智能灌溉系统的框架如下图所示:系统由三大模块组成:感知模块、控制模块和通信模块。
感知模块包括土壤温度、湿度传感器和光照传感器,用于实时监测环境参数;控制模块包括水泵、灌溉管道等执行器,控制水流的流量和灌溉时间;通信模块通过无线网络和互联网实现对系统的远程监控和控制,并将采集到的数据传输到云端。
农业物联网智能灌溉系统操作指南
![农业物联网智能灌溉系统操作指南](https://img.taocdn.com/s3/m/e70fd54f6d175f0e7cd184254b35eefdc8d315b1.png)
农业物联网智能灌溉系统操作指南第一章概述 (3)1.1 系统简介 (3)1.2 系统组成 (3)2.1 传感器模块 (3)2.2 数据采集与传输模块 (3)2.3 数据处理与分析模块 (3)2.4 控制模块 (4)2.5 用户界面 (4)2.6 灌溉设备 (4)2.7 通信网络 (4)2.8 电源系统 (4)第二章系统安装与调试 (4)2.1 硬件安装 (4)2.1.1 准备工作 (4)2.1.2 安装步骤 (4)2.2 软件配置 (5)2.2.1 系统软件安装 (5)2.2.2 参数设置 (5)2.2.3 系统调试 (5)2.3 系统调试 (5)2.3.1 传感器调试 (5)2.3.2 执行器调试 (5)2.3.3 通信设备调试 (5)2.3.4 监控中心调试 (6)2.3.5 系统整体调试 (6)第三章用户注册与登录 (6)3.1 用户注册 (6)3.1.1 注册流程 (6)3.1.2 注意事项 (6)3.2 用户登录 (6)3.2.1 登录流程 (6)3.2.2 注意事项 (6)3.3 用户权限管理 (6)3.3.1 权限等级 (7)3.3.2 权限分配 (7)3.3.3 权限变更 (7)3.3.4 注意事项 (7)第四章基础信息设置 (7)4.1 土地信息录入 (7)4.2 设备信息录入 (7)4.3 农作物信息录入 (8)第五章系统参数配置 (8)5.1 灌溉策略设置 (8)5.2 水源管理 (9)5.3 自动报警设置 (9)第六章数据监测与管理 (9)6.1 数据采集 (10)6.2 数据展示 (10)6.3 数据分析 (10)第七章灌溉操作与管理 (11)7.1 灌溉任务创建 (11)7.1.1 登录系统 (11)7.1.2 选择作物与地块 (11)7.1.3 设置灌溉参数 (11)7.1.4 提交灌溉任务 (11)7.2 灌溉任务执行 (11)7.2.1 系统自动执行 (11)7.2.2 手动调整 (12)7.3 灌溉任务监控 (12)7.3.1 实时监控 (12)7.3.2 异常处理 (12)7.3.3 灌溉效果评估 (12)第八章系统维护与升级 (12)8.1 硬件维护 (12)8.1.1 维护周期 (12)8.1.2 维护内容 (13)8.1.3 维护方法 (13)8.2 软件升级 (13)8.2.1 升级周期 (13)8.2.2 升级内容 (13)8.2.3 升级方法 (13)8.3 故障处理 (13)8.3.1 故障分类 (13)8.3.2 故障处理方法 (14)第九章安全与隐私 (14)9.1 数据安全 (14)9.1.1 数据加密 (14)9.1.2 数据备份 (14)9.1.3 数据访问权限控制 (14)9.2 用户隐私保护 (15)9.2.1 用户信息加密存储 (15)9.2.2 用户数据隔离 (15)9.2.3 用户隐私政策 (15)9.3 安全防护措施 (15)9.3.1 系统安全防护 (15)9.3.2 网络安全防护 (15)9.3.3 设备安全防护 (15)第十章常见问题与解答 (16)10.1 硬件问题 (16)10.1.1 传感器故障 (16)10.1.2 控制器无法启动 (16)10.1.3 灌溉设备损坏 (16)10.2 软件问题 (16)10.2.1 系统登录异常 (16)10.2.2 数据显示异常 (16)10.2.3 系统升级失败 (16)10.3 使用技巧 (17)10.3.1 合理设置灌溉策略 (17)10.3.2 定期检查设备运行状态 (17)10.3.3 数据分析与优化 (17)第一章概述1.1 系统简介农业物联网智能灌溉系统是集物联网、传感技术、自动控制技术及云计算等现代信息技术于一体的智能化农业管理系统。
基于物联网技术的农业智能灌溉系统设计
![基于物联网技术的农业智能灌溉系统设计](https://img.taocdn.com/s3/m/f63af49c29ea81c758f5f61fb7360b4c2f3f2a56.png)
基于物联网技术的农业智能灌溉系统设计农业智能灌溉系统设计及其应用随着科技的快速发展,物联网技术也逐渐在各行各业得到广泛应用。
在农业领域,基于物联网技术的农业智能灌溉系统设计为农作物的生长与发展提供了更加可靠和高效的灌溉解决方案。
本文将介绍农业智能灌溉系统的设计原理、功能特点以及其在农业生产中的应用。
一、农业智能灌溉系统的设计原理农业智能灌溉系统基于物联网技术,通过传感器、网络和数据处理等技术手段,实现对农田土壤水分、气象条件和农作物生长状况的实时监测并进行智能控制。
主要包括以下几个方面的设计原理。
1. 传感器技术:利用土壤湿度、温度和光照等传感器实时监测农田的环境参数,并将获取的数据传输到云端服务器。
2. 数据分析与处理:云端服务器对传输的数据进行分析和处理,通过算法判断当前的灌溉需求,进而实现对灌溉系统的智能控制。
3. 控制策略优化:基于农作物的生长需求和环境条件,通过优化控制策略,实现对灌溉系统的精确控制和节约水资源。
二、农业智能灌溉系统的功能特点1. 实时监测:通过物联网技术,可以对农田的土壤湿度、温度、光照等参数进行实时监测和数据采集,提供农田环境状态的信息。
2. 智能控制:基于传感器数据和云端服务器的数据分析处理,实现对灌溉系统的智能控制,精确调整灌溉水量和灌溉时间,提高农作物生长效果。
3. 节约资源:通过控制策略优化和精确灌溉控制,减少了不必要的灌溉水量,达到节约水资源的目的。
4. 远程监控与控制:农田环境和灌溉系统的数据可以通过手机应用或云端平台进行远程监控和控制,提供了便捷的管理方式。
三、农业智能灌溉系统在农业生产中的应用1. 减轻农民劳动强度:传统的农业灌溉需要农民长时间观察农田环境并手动控制灌溉系统,而智能灌溉系统可以自动采集数据并实现智能控制,减轻了农民的劳动强度。
2. 提高农作物产量和品质:农业智能灌溉系统通过精确控制灌溉水量和灌溉时间,可以满足农作物的生长需求,提高产量和品质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Computer Science and Application 计算机科学与应用, 2017, 7(4), 329-335 Published Online April 2017 in Hans. /journal/csa https:///10.12677/csa.2017.74040文章引用: 冯雨轩, 王圣玥, 杨丹丹, 郭仁春, 赵立杰, 邢杰. 物联网智能浇灌控制系统[J]. 计算机科学与应用, 2017, Intelligent Irrigation Control System Using Internet of ThingsYuxuan Feng, Shengyue Wang, Dandan Yang, Renchun Guo, Lijie Zhao, Jie XingCollege of Information Engineering, Shenyang University of Chemical Engineering, Shenyang LiaoningReceived: Apr. 4th , 2017; accepted: Apr. 17th , 2017; published: Apr. 27th , 2017AbstractTraditional orchard cultivation is inefficient and heavy work, and the Internet of Things technol-ogy + traditional orchard cultivation mode is conducive to improving the efficiency of the orchard management. In this paper, with STM32 series of single-chip microcomputer, 2.4 G wireless mod-ule, and Unity3D engine mobile development platform, we design and develop an orchard planting remote monitoring and control system of Internet of Things + Unity3D interactive intelligent vir-tual reality. The system consists of the bottom part and the top part of the composition. The bot-tom part of the design uses soil moisture sensors and air temperature and humidity sensors to detect the soil temperature and outdoor environment temperature and humidity information. According to different fruit soil moisture settings, the controller adjusts the solenoid valve and controls the amount of irrigation. The top part of the design establishes three-dimensional virtual scene to achieve roaming, real-time monitoring, and information display. The bottom part estab-lishes protocols with the top part, then we can investigate fruit tree farming professional informa-tion to set the intelligent watering, and establish remote manual control watering, which facilitate the management staff at any time to view the data and remotely control watering, thus reducing the difficulty of orchards maintenance. KeywordsSmart Orchards, Remote Control and Detection, Internet of Things, Virtual Reality物联网智能浇灌控制系统冯雨轩,王圣玥,杨丹丹,郭仁春,赵立杰,邢 杰沈阳化工大学信息工程学院,辽宁 沈阳*通讯作者。
冯雨轩等收稿日期:2017年4月4日;录用日期:2017年4月17日;发布日期:2017年4月27日摘要传统果园种植低效且工作繁重,物联网技术+传统果园种植的模式有利于提高果园管理效率。
本文采用STM32系类单片机、2.4 G无线模块,结合Unity3D引擎移动开发平台,设计和开发了一种物联网+Unity3D可交互智能化虚拟现实果园种植远程监控控制系统。
该系统由底层部分和顶层部分组成,底层部分设计使用土壤湿度传感器和空气温湿度传感器检测果园土壤温度和外部环境温度和湿度信息,控制器根据不同果树土壤湿度设定值,调节电磁阀,控制浇水量。
顶层部分设计建立三维虚拟场景,实现场景漫游、实时监视、信息显示功能。
底层部分与顶层部分建立协议,通过查询果树养殖专业信息设定智能浇灌,同时也建立远程手动控制浇灌,方便管理人员随时查看数据和远程控制浇灌,降低果园养护难度。
关键词智慧果园,远程控制与监测,物联网,虚拟现实Copyright © 2017 by authors and Hans Publishers Inc.This work is licensed under the Creative Commons Attribution International License (CC BY)./licenses/by/4.0/1. 引言传统果园种植手工劳动方式造成果园养护效率低下,果农劳动强度大。
由于专业养护人员的缺乏、果树养护不及时,常常导致果树营养不良甚至死亡,给果农造成极大的损失。
随着信息时代的高速发展,传统产业迎来了物联网时代。
如何让电脑客户端和手机APP应用程序自动检测控制果树的生长情况,在果树缺失水分时自动通知果农,并进行自动浇水。
通过远程监控控制功能实现智能管理,越来越受到关注,因此迫切需要一种可交互智能化果园种植虚拟现实监控控制系统。
文[1]设计的基于PC机和单片机智能灌溉系统无智能终端即智能手机APP操控,极大的限制了远程操作的距离。
文[2]设计开发了一种基于ZigBee技术实现农田节水灌溉、施肥以及信息采集与处理的系统数据只能通过路由器传输,限制了数据传输和控制的范围。
文[3]发明的基于无线传感器网络智能灌溉系统仅仅可通过无线网络对果园进行浇水控制,但无法检测到果树周围环境的具体信息,同时需要大量的接线不利于在果园安装和维护。
虚拟现实作为一种高度逼真的交互式视景仿真技术,在军事、医学、设计和娱乐等领域得到广泛应用[4]。
但是,基于虚拟现实技术的可交互远程智能果园浇灌系统尚未见报道。
针对以上已有研究中出现的问题,本文设计和开发了一种物联网+ Unity3D可交互智能化虚拟现实果园种植远程监控控制系统。
该系统具有数字化、网络化、虚拟与现实的深度融合的特点。
系统硬件采用STM32系类单片机、2.4 G无线模块,虚拟仿真应用程序的开发选用Unity3D引擎移动开发平台。
整个系统包括底层部分和顶层部分。
其中,底层部分的功能是:对果树进行实时信息采集和控制,顶层部分的功能是实现虚拟漫游、实时信息显示、远程控制功能。
顶层部分和顶层部分通过GPRS模块进行数据交换和传输。
冯雨轩等2. 系统总体结构和功能设计2.1. 总体结构设计本文提出一种可交互智能化果园种植虚拟现实监控控制系统,该系统由底层部分和顶层部分组成,如图1所示。
底层部分包括:核心控制器STM32系类单片机、2.4 G无线模块、土壤湿度传感器、空气温湿度传感器、485通信模块、GPRS模块、继电器模块、水泵、水管、喷头。
顶层部分包括:PC端和手机APP。
土壤和空气环境信息采集部分采集部分:采用主—从机模式,主从机均采用STM32F103系列单片机,主机采集空气环境的温湿度和其所在区域的土壤湿度信息,从机负责采集其他区域的土壤湿度信息,并且通过2.4 G通信模块[5]与主机通信,实现一主机多从机的模式,主机收集到各区域的环境信息后将数据发送给上位机。
底层控制系统的设计与开发:电磁阀一端通过水管连接水泵,另一端通过水管连接到土壤,将单片机信号线与继电器接口相连,继电器触点和电磁阀连接,通过改变I/O口的高低电平就可完成对浇灌动作的控制。
下位机与上位机之间通信系统的设计开发:STM32通过串口将数据发送到485模块上,再传输到USR-GPRS-730上,上位机通过TCP/IP协议与GPRS进行通信,使得上位机与下位机可通过物联网相互传送数据。
同时,上位机与下位机建立协议,上位机可根据下位机发出的信息进行处理并反馈数据到下位机,下位机根据反馈数据后进行对应的控制处理。
客户端三纬虚拟人机交互APP设计与开发[6]:采用3D Max进行场景建模、渲染和加工,生成3D 模型文件后导入Unity3D,后台c#.net脚本语言进行场景漫游、信息显示和远程控制实现[7]。
底层部分封装进一个独立设计的包装中,底层部分都是无线进行相互连接,方便安装和使用;顶层部分开发APP,可以让使用者方便操作和远程监测。
最终结合成一个完善的3D数字化智慧果园管理系统。
Figure 1.System global structure chart图1.系统总体结构图冯雨轩等2.2. 系统功能设计本系统将传感器采集到的信息通过2.4 G无线网络同意发送至主核心控制器STM32系类单片机,对果树信息进行实时采集,采用Unity3D引擎开发移动平台实现虚拟现实应用程序开发。
通过三维虚拟场景漫游,与果树浇灌设备交互实现远程开启停止控制,应用虚拟现实VR技术,实现智能浇灌控制,手自动工作切换模式功能。
具体包括:1) 信息监测:PC端和手机APP信息显示面板自动显示果树品种、当前环境温湿度、土壤温度和浇灌湿度控制系统设定值。