ANSYSMPC连接梁壳单元实例

合集下载

ANSYS中杆单元和壳单元的单元耦合问题

ANSYS中杆单元和壳单元的单元耦合问题

ANSYS中杆单元和壳单元的单元耦合问题在比较复杂的结构的有限元分析中,不同的结构部件通常使用不同类型的单元来模拟。

通常情况下,不同类型的单元的各个节点的自由度数目是不同的,不同类型单元的连接节点处的自由度的耦合问题,是一个比较令人头疼的问题。

在ANSYS中通常可以用耦合命令CP来耦合不同类型单元在连接节点处的自由度(DOF)。

也可以用CE命令来认为添加自由度之间的约束方程来达到耦合的目的。

下面是一个简单的算例,使用了CE命令来耦合连接节点处的自由度。

模型是航天器的机翼的一个Section的某一个隔框。

上下表皮是薄壳结构,用Shell63单元来模拟,在上下表皮之间有起支撑作用的杆件,用link8单元来模拟。

建模的时候,link8单元和shell63单元在连接有各自独立的节点。

即:link8单元和shell63单元的节点在连接处是重合的,但是,节点编号是各自独立的。

link8单元在每个节点有ux,uy,uz3个平动自由度;shell63在每个节点有ux,uy,uz这3个平动自由度和rotx,roty,rotz这3个转个自由,共6个自由度。

在耦合节点处,两个耦合节点的ux,uy,uz自由度应该是相等的。

这个等式可以用CE命令来描述。

完整的命令流如下:finish/clear,start/prep7!定义第一种材料属性;mp,ex,1,30e6mp,prxy,1,0.3!定义shell63单元和实常数;et,1,shell63r,1,1e-3!建立几何模型;rectng,31.8,33.2,0,0.3556agen,2,1,1,1,0,0,1a,1,4,8,5a,6,7,3,2KL,7,0.5, ,KL,3,0.5, ,在关键点处生成节点;nkpt,100,4 !与编号为117的节点耦合nkpt,101,9 !与编号为169的节点耦合nkpt,102,10 !与编号为120的节点耦合nkpt,103,7 !与编号为160的节点耦合mat,1type,1real,1lesize,1,,,6lesize,3,,,6lesize,5,,,6lesize,7,,,6lesize,9,,,6lesize,10,,,6lesize,11,,,6lesize,12,,,6lesize,2,,,6lesize,4,,,6lesize,6,,,6lesize,8,,,6MSHAPE, 0, 2DMSHKEY, 1allselamesh,all!定义第二种材料属性;mp,ex,2,30e4mp,prxy,2,0.3!定义link8单元和实常数;et,2,link8r,2,28.26e-6mat,2type,2real,2e,101,102e,100,101e,102,103!CE, NEQN, CONST, NODE1, Lab1, C1, NODE2, Lab2, C2, NODE3, !Lab3, C3ce,1,0,100,ux,1,117,ux,-1 !节点100的ux=节点117的ux;ce,2,0,100,uy,1,117,uy,-1 !节点100的uy=节点117的uy;ce,3,0,100,uz,1,117,uz,-1 !节点100的uz=节点117的uz;ce,4,0,101,ux,1,169,ux,-1 !同上;ce,5,0,101,uy,1,169,uy,-1ce,6,0,101,uz,1,169,uz,-1ce,7,0,102,ux,1,120,ux,-1ce,8,0,102,uy,1,120,uy,-1ce,9,0,102,uz,1,120,uz,-1ce,10,0,103,ux,1,160,ux,-1ce,11,0,103,uy,1,160,uy,-1ce,12,0,103,uz,1,160,uz,-1!施加约束,底面约束所有的自由度;DA,1,all!施加分布载荷;SFA,2,1,PRES,-1e4finish/solusolve !求解;finish/post1PLNSOL, S,X, 0,1.0finishPLNSOL, S,X, 0,1.0 对应的结果云图PLNSOL, S,EQV, 0,1.0对应的结果云图。

总结一下ANSYS中不同单元之间的连接问题

总结一下ANSYS中不同单元之间的连接问题

论坛里常有人问不同单元之间的连接问题,我自己也一直被这个问题所困绕,最近从ANSYS工程分析进阶实例上知道了ANSYS中不同单元之间的连接原则。

感觉收收获不小,现把它上传与大家共享。

一般来说,按“杆梁壳体”单元顺序,只要后一种单元的自由度完全包含前一种单元的自由度,则只要有公共节点即可,不需要约束方程,否则需要耦合自由度与约事方程。

例如:(1)杆与梁、壳、体单元有公共节点即可,不需要约束方程。

ﻫ(2)梁与壳有公共节点怒可,也不需要约束写约束方程;壳梁自由度数目相同,自由度也相同,尽管壳的rotz是虚的自由度,也不妨碍二者之间的关系,这有点类同于梁与杆的关系。

(3)梁与体则要在相同位置建立不同的节点,然后在节点处耦合自由度与施加约束方程。

(4)壳与体则也要相同位置建立不同的节点,然后在节点处耦合自由度与施加约束方程。

上面所述的不同单元之间的接连方法主要是用耦合自由度和约束方程来实现的,有一定的局限性,只适用于小位移,下面介绍一种支持大位移算法的方法,MPC法。

MPC即Multipoint Constraint,多点约束方程,其原理与前面所说的方程的技术几乎一致,将不连续、自由度不协调的单元网格连接起来,不需要连接边界上的节点完全一一对应。

MPC能够连接的模型一般有以下几种。

ﻫsolid 模型-solid模型ﻫshell模型-shell模型solid模型-shell 模型solid 模型-beam模型shell模型-beam模型ﻫ在ANSYS中,实现上述MPC技术有三种途径。

ﻫ(1)通过MPC184单元定义模型的刚性或者二力杆连接关系。

定义MPC184单元模型与定义杆的操作完全一致,而MPC单(2)利用约束元的作用可以是刚性杆(三个自由度的连接关系)或者刚性梁(六个自由度的连接关系)。

ﻫ方程菜单路径Main Menu>preprocessor>Coupling/Ceqn>shell/solid Interface创建壳与实体模型之间的装配关系。

AnsysWorkbench工程实例之——梁单元静力学分析

AnsysWorkbench工程实例之——梁单元静力学分析

AnsysWorkbench工程实例之——梁单元静力学分析本文可能是您能在网络上搜索到的关于Ansys Workbench梁单元介绍最详细全面的文章之一。

梁单元常用于简化长宽比超过10的梁与杆模型,比如建筑桁架、桥梁、螺栓、杠杆等。

Workbench中的梁单元有Beam188(默认)与Beam189两种,Beam188无中节点,Beam189有中节点。

在全局网格设置下,梁单元的中节点设置Element MIdside Nodes默认为dropped(无中节点),即默认使用Beam188单元,如果改为kept(有中节点),则将改变为Beam189单元。

类型单元形状中节点自由度形函数Beam188 3D梁无 6 线性Beam189 3D梁有 6 二次Beam188Beam1891 梁单元分析概要1.1 建模与模型导入线框模型可在DM中创建,也可导入stp/igs等模型。

以下分别介绍通过DM创建与通过CAD软件创建导入过程。

1.1.1 梁线体的创建方法1,简单的线体模型可以在DM中创建,一般在XY平面绘制草图或点,再通过Concept——Lines From Sketches、Lines From Points或3D Curve等创建。

区别在于Lines From Sketches是提取草图所有的线条,如果线条是相连接的,提取的结果为一个线几何体。

Lines From Points或3D Curve用于将草图的点(可以是草图线条的端点)连接成为线体,结合Add Frozen选项,可以创建多个线几何体。

操作3次后多个线条可以通过From New Part功能组合为一个几何体,组合后两条线共节点,相当于焊接在一起。

选中后右击方法2,通过CAD软件创建后导入。

如果读者使用的是creo建模,可在草图中创建点,退出草图后选择基准——曲线——通过点的曲线。

操作3次后输出时需要注意,可另存为stp或igs格式,在输出对话框中必须勾选基准曲线和点选项。

总结一下ANSYS中不同单元之间的连接问题

总结一下ANSYS中不同单元之间的连接问题

ANSYS工程分析进阶实例上知道了ANSYS中不同单元之间的连接原则。

一般来说,按“杆梁壳体”单元顺序,只要后一种单元的自由度完全包含前一种单元的自由度,则只要有公共节点即可,不需要约束方程,否则需要耦合自由度与约束方程。

例如:(1)杆与梁、壳、体单元有公共节点即可,不需要约束方程。

(2)梁与壳有公共节点怒可,也不需要约束写约束方程;壳梁自由度数目相同,自由度也相同,尽管壳的rotz是虚的自由度,也不妨碍二者之间的关系,这有点类同于梁与杆的关系。

(3)梁与体则要在相同位置建立不同的节点,然后在节点处耦合自由度与施加约束方程。

(4)壳与体则也要相同位置建立不同的节点,然后在节点处耦合自由度与施加约束方程。

上面所述的不同单元之间的接连方法主要是用耦合自由度和约束方程来实现的,有一定的局限性,只适用于小位移,下面介绍一种支持大位移算法的方法,MPC法。

MPC即Multipoint Constraint,多点约束方程,其原理与前面所说的方程的技术几乎一致,将不连续、自由度不协调的单元网格连接起来,不需要连接边界上的节点完全一一对应。

MPC能够连接的模型一般有以下几种。

solid 模型-solid 模型shell模型-shell模型solid 模型-shell 模型solid 模型-beam 模型shell 模型-beam模型在ANSYS中,实现上述MPC技术有三种途径。

(1)通过MPC184单元定义模型的刚性或者二力杆连接关系。

定义MPC184单元模型与定义杆的操作完全一致,而MPC单元的作用可以是刚性杆(三个自由度的连接关系)或者刚性梁(六个自由度的连接关系)。

(2)利用约束方程菜单路径Main Menu>preprocessor>Coupling/Ceqn>shell/solid Interface创建壳与实体模型之间的装配关系。

(3)利用ANSYS接触向导功能定义模型之间的装配关系。

ANSYS中不同单元之间的连接问题总结

ANSYS中不同单元之间的连接问题总结
MP,EX,1,3E4 !定义材料的弹性模量
MP,PRXY,1,0.3 !定义泊松比
R,1 !定义实体单元实常数
R,2,10.0,10/12.0,1000/12.0,10.0,1.0 !定义梁单元实常数
BLC4,,,20,7,10 !创建矩形块为实体模型
WPOFFS,0,3.5 !将工作平面向Y方向移动3.5
ANSYS中不同单元之间的连接问题
总结一下不同单元之间的连接问题
论坛里常有人问不同单元之间的连接问题,我自己也一直被这个问题所困绕,最近从ANSYS工程分析进阶实例上知道了ANSYS中不同单元之间的连接原则。感觉收收获不小,现把它上传与大家共享。
一般来说,按“杆梁壳体”单元顺序,只要后一种单元的自由度完全包含前一种单元的自由度,则只要有公共节点即可,不需要约束方程,否则需要耦合自由度与约事方程。例如:
MPC即Multipoint Constraint,多点约束方程,其原理与前面所说的方程的技术几乎一致,将不连续、自由度不协调的单元网格连接起来,不需要连接边界上的节点完全一一对应。
MPC能够连接的模型一般有以下几种。
solid模型-solid模型
shell模型-shell模型
solid模型-shell模型
单元类型的选择问题
初学ANSYS的人,通常会被ANSYS所提供的众多纷繁复杂的单元类型弄花了眼,如何选择正确的单元类型,也是新手学习时很头疼的问题。
单元类型的选择,跟你要解决的问题本身密切相关。在选择单元类型前,首先你要对问题本身有非常明确的认识,然后,对于每一种单元类型,每个节点有多少个自由度,它包含哪些特性,能够在哪些条件下使用,在ANSYS的帮助文档中都有非常详细的描述,要结合自己的问题,对照帮助文档里面的单元描述来选择恰当的单元类型。

ANSYS_MPC连接梁壳单元实例

ANSYS_MPC连接梁壳单元实例

2010-05-21 22:12:04 作者:zhz2004 来源:机械CADl论坛浏览次数:621 网友评论0 条近日在论坛看到些用ansys的坛友问及beam单元和shell单元、beam单元和solid单元、shell单元和solid单元的连接问题。

其实解决此类问题的方法不只一种,耦合约束方程、绑定接触都是有效的方法。

其中耦合约束方程适用于小变形,而绑定接触即可用于小变形,也可用于大变形的几何非线性分析。

下面,我将本人所做的用MPC方法连接shell单元和b eam单元的详细步骤提供给大家,与各位共勉。

添加shell单元(略)添加beam单元(略)添加shell实常数添加shell实常数:shell厚度添加beam截面:圆钢内经、外径及网格密度预览网格开始建模:转动工作平面工作平面z轴向上建立圆面继续:将面拉伸成体定义拉伸高度:0.5m删除体,留面显示面删除空圆柱的顶面和底面创建点:用于建立梁单元的第一个点。

两点之间创建(正中)。

复制点:用于建立梁单元的第二个点。

复制:Y方向0.5m连接两点,用于创建梁单元。

继续定义材料属性,有点晚^_^准备划分壳单元划分壳,映射方法准备划分梁单元划分梁单元选中要划分梁单元的线完成,定义mpc接触GUI:MainMenu→Pre-processor→Modeling→Create→ContactPair,进入接触向导,然后按照提示与帮助说明进行选择目标面接触面等操作[4]。

在创建接触对前,单击Optionalsetting按钮弹出Cotactproperties对话框,将Basic选项卡中的Contactalgorithm即接触算法设置为MPCalgorithm即可。

操作完成后,ANSYS自动定义目标单元与接触单元类型,并生成接触对。

定义主控点选择梁单元的下面一个关键点(当然也可以选择梁单元的最下一个node,相应选项要选pick existing node...)选择梁单元的下面一个关键点继续下一个:施加集中力x方向10000n计算结果,位移云图显示梁截面的位移云图显示梁单元形状显示梁单元形状应力云图(整体)应力云图(梁壳连接处放大显示)全为壳单元的计算结果的位移云图全为壳单元的计算结果的应力云图这只是shell单元和beam单元连接的示例,beam和solid、shell和solid大同小异。

总结一下ANSYS中不同单元之间的连接问题

总结一下ANSYS中不同单元之间的连接问题

论坛里常有人问不同单元之间的连接问题,我自己也一直被这个问题所困绕,最近从ANSYS工程分析进阶实例上知道了ANSYS中不同单元之间的连接原则。

感觉收收获不小,现把它上传与大家共享。

一般来说,按“杆梁壳体”单元顺序,只要后一种单元的自由度完全包含前一种单元的自由度,则只要有公共节点即可,不需要约束方程,否则需要耦合自由度与约事方程。

例如:(1)杆与梁、壳、体单元有公共节点即可,不需要约束方程。

(2)梁与壳有公共节点怒可,也不需要约束写约束方程;壳梁自由度数目相同,自由度也相同,尽管壳的rotz是虚的自由度,也不妨碍二者之间的关系,这有点类同于梁与杆的关系。

(3)梁与体则要在相同位置建立不同的节点,然后在节点处耦合自由度与施加约束方程。

(4)壳与体则也要相同位置建立不同的节点,然后在节点处耦合自由度与施加约束方程。

上面所述的不同单元之间的接连方法主要是用耦合自由度和约束方程来实现的,有一定的局限性,只适用于小位移,下面介绍一种支持大位移算法的方法,MPC法。

MPC即Multipoint Constraint,多点约束方程,其原理与前面所说的方程的技术几乎一致,将不连续、自由度不协调的单元网格连接起来,不需要连接边界上的节点完全一一对应。

MPC能够连接的模型一般有以下几种。

solid 模型-solid 模型shell模型-shell模型solid 模型-shell 模型solid 模型-beam 模型shell 模型-beam模型在ANSYS中,实现上述MPC技术有三种途径。

(1)通过MPC184单元定义模型的刚性或者二力杆连接关系。

定义MPC184单元模型与定义杆的操作完全一致,而MPC单元的作用可以是刚性杆(三个自由度的连接关系)或者刚性梁(六个自由度的连接关系)。

(2)利用约束方程菜单路径Main Menu>preprocessor>Coupling/Ceqn>shell/solid Interface创建壳与实体模型之间的装配关系。

8.利用MPC技术对solid-shell单元进行连接实例:简支梁

8.利用MPC技术对solid-shell单元进行连接实例:简支梁

利用MPC技术对solid-shell单元进行连接实例----------简支梁一、问题描述⨯表面上作用有大小为1MPa的压力,两端φ150圆柱面为支撑表面,梁的尺寸如下图所示,在梁的2000300分析其应力和变形情况。

由于梁的形状和载荷都对称于梁跨度中点处横截面,分析时可取梁长度的一半。

二、步骤分析1.选择单元类型通过Preprocessor>Element Typle>Add/Edit/Delete出现如图1-1左所示对话框,单击Add;弹出如图1-1右所示对话框,在左侧列表中选“Structural Solid”,在右侧列表中选”Brick 20node 95”,然后单击Apply按钮;再在左侧列表中选“Structural Shell”,在右侧列表中选”Elastic 4node 63”,然后单击Apply按钮;再在左侧列表中选“Contact”,在右侧列表中选”3D target 170”,然后单击Apply按钮;再在左侧列表中选“Contact”,在右侧列表中选”pt-to-surf175”,单击OK按钮。

返回到”Eiement type”对话框,在列表中选择”Type3TARGET170”,单击option按钮,弹出1-1右对话框,选择K5为”SLD/SLD”(SLD/SLD约束),单击OK按钮;在列表中选择”Type4CONTA175”单击option按钮,弹出1-2对话框,选择K2为” MPCalgorithm”(MPC算法),选择K12为”Bonded(always)”(接触面行为为绑定)单击OK按钮,单击”Element type”对话框的close按钮。

图1-1图1-22.定义实常数通过Preprocessor>Material Props> Material Models,弹出Real Constants对话框,单击Add按钮,弹出如图2-1左所示对话框,选择Type2SHELL 163,单击OK按钮,弹出如图2-1右所示对话框,在TK(I)文本框中输入0.02,单击OK按钮,于是定义了实常数1。

MPC法解决不同单元之间的连接问题

MPC法解决不同单元之间的连接问题

论坛里常有人问不同单元之间的连接问题,我自己也一直被这个问题所困绕,最近从ANSYS工程分析进阶实例上知道了ANSYS中不同单元之间的连接原则。

感觉收收获不小,现把它上传与大家共享。

一般来说,按“杆梁壳体”单元顺序,只要后一种单元的自由度完全包含前一种单元的自由度,则只要有公共节点即可,不需要约束方程,否则需要耦合自由度与约事方程。

例如:(1)杆与梁、壳、体单元有公共节点即可,不需要约束方程。

(2)梁与壳有公共节点怒可,也不需要约束写约束方程;壳梁自由度数目相同,自由度也相同,尽管壳的rotz是虚的自由度,也不妨碍二者之间的关系,这有点类同于梁与杆的关系。

(3)梁与体则要在相同位置建立不同的节点,然后在节点处耦合自由度与施加约束方程。

(4)壳与体则也要相同位置建立不同的节点,然后在节点处耦合自由度与施加约束方程。

上面所述的不同单元之间的接连方法主要是用耦合自由度和约束方程来实现的,有一定的局限性,只适用于小位移,下面介绍一种支持大位移算法的方法,MPC法。

MPC即Multipoint Constraint,多点约束方程,其原理与前面所说的方程的技术几乎一致,将不连续、自由度不协调的单元网格连接起来,不需要连接边界上的节点完全一一对应。

MPC能够连接的模型一般有以下几种。

solid 模型-solid 模型shell模型-shell模型solid 模型-shell 模型solid 模型-beam 模型shell 模型-beam模型在 ANSYS中,实现上述MPC技术有三种途径。

(1)通过MPC184单元定义模型的刚性或者二力杆连接关系。

定义MPC184单元模型与定义杆的操作完全一致,而MPC单元的作用可以是刚性杆(三个自由度的连接关系)或者刚性梁(六个自由度的连接关系)。

(2)利用约束方程菜单路径Main Menu>preprocessor>Coupling/Ceqn>shell/solid Interface 创建壳与实体模型之间的装配关系。

Ansys梁单元和板壳单元仿真实验报告

Ansys梁单元和板壳单元仿真实验报告

梁单元和板单元Ansys 仿真报告一 已知条件如图所示是一个方台的模型,台面是边长为1m 的正方形,厚度是0.1m ,四个支柱是高度为0.6m ,横截面是边长为0.04m 的正方形,台面和支柱的材料参数都是206E GPa =,0.3μ=,现在台面上向下施加10MPa 的均布压强,支柱的下面的点施加所有自由度的约束。

二 实验目的和要求学会使用梁单元和板壳单元,同时掌握不同类型单元如何在一起使用,要求用ANSYS 软件建立相应的实体模型和有限元离散模型,同时说明所采用的单元的种类。

三 实验过程概述(1) 定义文件名(2) 根据要求建立模型:通过关键点建模,建立四个梁结构和一个板壳结构(3) 设置单元类型及属性,设置材料属性(4) 离散几何模型,进行网格划分(5) 施加位移约束(6) 施加载荷(7) 提交计算求解及后处理(8) 分析结果四 实验内容分析(1)了解如何使用梁单元和板壳单元。

对于板壳单元,要定义它的厚度。

对于梁单元要定义它的截面形状。

(2)了解不同类型单元在同一个模型中一同使用时需要注意的问题。

不同类型的单元在同一个模型中要注意网格划分问题,应该分开划分网格,而不能对整个模型进行划分,并且划分时要有侧重点,对于想要研究的部分网格划分要细致一点,而不重要的部分划分时可以粗略一点。

(3)在这样一个平台受力问题中出现的应力集中的问题。

由图2看出,应力集中主要出现在方台与支柱接触处。

图 1 位移云图图 2 应力云图五实验小结和体会对于一个复杂的实际问题,在进行有限元分析时要注意对复杂模型进行基本模型分解,并选用合适的单元类型进行简化。

对于约束载荷部分应根据实际情况进行模型的简化和等效处理。

另外在定义单元属性时要考虑全面,不要遗漏,例如对于梁单元需要设置截面参数等,对于板壳单元需要设置其厚度参数等;以及不同类型单元在同一个模型中一同使用时,需要注意设置不同的单元以及采用不同的离散方法,要采用合适的单元设置模式。

[转载]ansys中实体单元与壳单元的连接处理方法

[转载]ansys中实体单元与壳单元的连接处理方法

[转载]ansys中实体单元与壳单元的连接处理⽅法原⽂地址:ansys中实体单元与壳单元的连接处理⽅法作者:埃及⽂字2010为简化模型,在有些模型中采⽤壳和实体混合的单元类型,由于壳单元节点表⽰的是⼀个截⾯,因此除平动⾃由度外,⼀般具有转动⾃由度;⽽实体单元节点表⽰的是⼀个点,因此只有平动⾃由度。

因此在这些模型中,壳单元与实体单元过渡处的节点由于⾃由度的不同,不能单纯的进⾏节点耦合。

⽬前实体单元与壳单元连接常⽤的处理使⽤MPC⽅法(SHSD命令)定义两者之间的装配关系,这种⽅法⼀般可理解为绑定接触形式。

尽管采⽤了接触模块,采⽤MPC⽅法在⼩变形时不需要平衡迭代,在⼤变形中在每个平衡迭代中不断进⾏更新,⼜克服了传统约束⽅程只适⽤于⼩应变的限制。

该⽅法是处理节点⾃由度耦合较为理想的形式。

本⽂分别采⽤混合单元与纯实体单元两种⽅式进⾏建模,分析,结果及命令流如下:采⽤混合单元进⾏分析时的应⼒分布云图(第三应⼒强度理论):单纯采⽤实体单元进⾏分析时应⼒分布云图(第三应⼒强度理论):采⽤混合单元分析的命令流如下:/CLEAR/FILNAME, EXAMPLE26/PREP7ET, 1, SOLID95ET, 2, SHELL63ET, 3, TARGE170KEYOPT, 3, 5, 1ET, 4, CONTA175KEYOPT, 4, 2, 2KEYOPT, 4, 12, 5R, 1, 0.02R, 2R, 3R, 4R, 5MP, EX, 1, 2E11MP, PRXY, 1, 0.3/VIEW, 1, 1, 1, 1BLOCK, -0.14, 0.14, -0.14, 0.14, 0,0.98VDELE, 1,,,0ADELE, 1, 2, 1, 1BLOCK, -0.15, 0.15, -0.15, 0.15, 0.98, 1K, 20, 0, 0, 0.98K, 21, 0, 0.1, 0.98K, 22, 0, 0.1, 1K, 23, 0, 0.075, 1K, 24, 0, 0.075, 1.3 K, 25, 0, 0, 1.3 LSEL, NONEL, 20, 21L, 21, 22L, 22, 23L, 23, 24L, 24, 25L, 25, 20LFILLT, 27, 28, 0.025 AL, ALL VROTAT, 11,,,,,,20, 25 ALLS VOVLAP, ALL AATT, 1, 1, 2 ESIZE, 0.02 MSHAPE, 0 MSHKEY, 1 AMESH, 3, 6, 1 VATT, 1, 1, 1 ESIZE, 0.0175 SMRTSIZE, 5 MSHAPE, 1 MSHKEY, 0 VMESH, ALLALLSASEL, S,,,47 NSLA, S, 1TYPE, 3REAL, 2ESURFALLSLSEL, S,,,5ESURF ALLS ASEL, S,,,47 NSLA, S, 1 TYPE, 3 REAL, 3 ESURF ALLS LSEL, S,,,6 NSLL, S, 1 TYPE, 4 REAL,3 ESURF ALLS ASEL, S,,,47 NSLA, S, 1 TYPE, 3 REAL, 4 ESURF ALLS LSEL, S,,,7 NSLL, S, 1 TYPE, 4 REAL, 4 ESURF ALLS ASEL, S,,,47 NSLA, S, 1 TYPE, 3 REAL, 5 ESURF ALLSREAL, 5ESURFALLSSHSD, 2, CREATE SHSD, 3, CREATESHSD, 4, CREATESHSD, 5, CREATEFINISH/SOLUASEL, S,,,21, 27, 6ASEL,A,,,15,33,18NSLA, S, 1D, ALL, ALLALLSNSEL, S, LOC, Z, 0D, ALL, UZALLSSFA, 4,2, PRES, -1E6*3/2.804 SFA, 8, 1, PRES, -1E6*3/2.804 SOLVEFINISH/POST1PLNSOL, S, EQV, 0, 1 FINISH。

利用MPC技术对SOLID和SHELL单元进行连接

利用MPC技术对SOLID和SHELL单元进行连接

处理方法. 实例 运 用表 明 , 方 法 过 程 简 单 、 用 方 便 , 该 使 具有 较 高 的推 广 价 值 .
Th s fm u tp i tc n t a n e h o o y f r S e u e o li o n o s r i tt c n l g o OLI D
作者简介 : 周
艳 ( 98一 ) 女 , 蒙 海 拉 尔 人 , 蒙 古科 技 大学 本 科 . 18 , 内 内
22 4
内 蒙 古 科 技 大 学 学 报
2 1 年 9月 第 3 01 0卷 第 3期
利 用 它 可 以不 需 要 连 接 处 的节 点 一 一 对 应 就 能 将 不
由度 ; N为方 程项 中的 编号.
为建 立 有 限元 模 型并 构 建 约束 方 程 , 要 对 实 需 体部 分与壳 部分 分 别进 行 单 元 划 分 , 要 注 意 的 是 需
应 使 连接处 实体 单 元 与板 壳 单 元 的 节 点 位置 重 合 ,
1 A S S所 提 供 的 方 法 NY
1 1 使 用 约束 方 程 .
使用 约束 方 程 ’ 传 统 的办 法 , 是 把 一 个 纠是 就
节点的某 个 自由度 与其 他一个 节点 或 多个 节点 的 自
女 收 稿 日期 :0 1 6—1 2 1 —0 1
1 2 MP 法 . C
MP C即多 点 约 束 方 程 ( hp itC nt i ) Mu i n o s a t , o rn
第3 O卷 第 3期
文章 编 号 :0 5— 2 5 2 1 ) 3—0 4 — 3 2 9 2 9 ( 0 0 1 2 1 0
利 用 M C技 术 对 S LD和 S E L单 元 进 行连 接 P OI HL

ANSYS_MPC连接梁壳单元实例

ANSYS_MPC连接梁壳单元实例

ANSYS MPC方法连接shell单元和beam单元详细教程2010-05-21 22:12:04 作者:zhz2004 来源:机械CADl论坛浏览次数:621 网友评论 0 条近日在论坛看到些用ansys的坛友问及beam单元和shell单元、beam单元和solid单元、shell单元和solid单元的连接问题。

其实解决此类问题的方法不只一种,耦合约束方程、绑定接触都是有效的方法。

其中耦合约束方程适用于小变形,而绑定接触即可用于小变形,也可用于大变形的几何非线性分析。

下面,我将本人所做的用MPC方法连接shell单元和b eam单元的详细步骤提供给大家,与各位共勉。

添加shell单元(略)添加beam单元(略)添加shell实常数添加shell实常数:shell厚度0.005添加beam截面:圆钢经、外径及网格密度预览网格开始建模:转动工作平面工作平面z轴向上建立圆面继续:将面拉伸成体定义拉伸高度:0.5m删除体,留面显示面删除空圆柱的顶面和底面创建点:用于建立梁单元的第一个点。

两点之间创建(正中)。

复制点:用于建立梁单元的第二个点。

复制:Y方向0.5m连接两点,用于创建梁单元。

继续定义材料属性,有点晚^_^准备划分壳单元划分壳,映射方法准备划分梁单元划分梁单元选中要划分梁单元的线完成,定义mpc接触GUI:MainMenu→Pre-processor→Modeling→Create→ContactPair,进入接触向导,然后按照提示与帮助说明进行选择目标面接触面等操作[4]。

在创建接触对前,单击Optionalsetting按钮弹出Cotactproperties对话框,将Basic选项卡中的Contactalgorithm即接触算法设置为MPCalgorithm即可。

操作完成后,ANSYS自动定义目标单元与接触单元类型,并生成接触对。

定义主控点选择梁单元的下面一个关键点(当然也可以选择梁单元的最下一个node,相应选项要选pick existing node...)选择梁单元的下面一个关键点?继续下一个:施加集中力x方向10000n计算结果,位移云图显示梁截面的位移云图显示梁单元形状显示梁单元形状应力云图(整体)应力云图(梁壳连接处放大显示)全为壳单元的计算结果的位移云图全为壳单元的计算结果的应力云图这只是shell单元和beam单元连接的示例,beam和solid、shell和solid小异。

ANSYS Mechanical 连接功能(三)

ANSYS  Mechanical 连接功能(三)

•如果没有建立初始接触状态,静力分析时会发生刚体运动。

•静力分析中的刚体运动会造成系统刚度矩阵的奇异,因此导致求解失败。

•上图中,存在初始间隙,施加力载荷,在最初的时间步,由于接触体可以无抵抗的自由运动,所以发生刚体运动。

接触面•对于线性接触(绑定(Bonded)或无分离(No Separation)),设置足够大的球体半径(Pinball Radius),就可以忽略在接触面和目标面之间存在初始间隙。

•对于非线性接触(摩擦(Frictional)、粗糙(Rough)或无摩擦(Frictionless)),不能够自动的忽略初始间隙。

•当接触面和目标面存在间隙时,在界面处理(Interface Treatment)中有两个选项用于偏移接触面,并封闭该间隙。

•左下图所示为初始网格,红色网格表示接触面,蓝色网格表示目标面。

•在计算中,可以将接触面偏移一定距离,如下图绿色所示。

这个调整可以有效的闭合间隙并且将接触对的初始状态变成闭合。

•界面处理时需要注意:•该方法仅是数学上的调整,仅对接触单元进行调整。

网格(节点和单元)和几何不发生改变。

通过接触检测算法,将该操作简单地解释为接触面的位置偏移。

•然而,本功能只在接触面的几何上添加了一个变化,即在真实的网格和偏移得到的接触面之间,添加了一个小的“刚性”区域。

•对计算结果产生的影响可以忽略不计。

•本功能用于在静力分析中创建初始接触,而且不需要修改CAD 几何体。

•调整到接触使Mechanical 决定并添加偏移,使间隙闭合,并且将接触区域修改为“刚刚接触”的状态。

注意,接触状态必须为近场分离(即,球形区域必须覆盖间隙)才有效果。

如果所有接触单元都处于远场分离状态,不•添加偏移允许用户指定接触面的偏移距离,该值可以为正值或负值。

正值表示减小间隙,负值表示增大间隙。

•该方法可以用于对初始的过盈配合进行建模,此方法不需要修改几何体:模型中的几何体处于刚刚接触的状态,使用一个正的偏移量,可以实现过盈配合。

ANSYS_MPC连接梁壳单元实例

ANSYS_MPC连接梁壳单元实例

ANSYS MPC方法连接shell单元和beam单元详细教程2010-05-21 22:12:04 作者:zhz2004 来源:机械CADl论坛浏览次数:621 网友评论 0 条近日在论坛看到些用ansys的坛友问及beam单元和shell单元、beam单元和solid单元、shell单元和solid单元的连接问题。

其实解决此类问题的方法不只一种,耦合约束方程、绑定接触都是有效的方法。

其中耦合约束方程适用于小变形,而绑定接触即可用于小变形,也可用于大变形的几何非线性分析。

下面,我将本人所做的用MPC方法连接shell单元和b eam单元的详细步骤提供给大家,与各位共勉。

添加shell单元(略)添加beam单元(略)添加shell实常数添加shell实常数:shell厚度0.005添加beam截面:圆钢内经、外径及网格密度预览网格开始建模:转动工作平面工作平面z轴向上建立圆面继续:将面拉伸成体定义拉伸高度:0.5m删除体,留面显示面删除空圆柱的顶面和底面创建点:用于建立梁单元的第一个点。

两点之间创建(正中)。

复制点:用于建立梁单元的第二个点。

复制:Y方向0.5m连接两点,用于创建梁单元。

继续定义材料属性,有点晚^_^准备划分壳单元划分壳,映射方法准备划分梁单元划分梁单元选中要划分梁单元的线完成,定义mpc接触GUI:MainMenu→Pre-processor→Modeling→Create→ContactPair,进入接触向导,然后按照提示与帮助说明进行选择目标面接触面等操作[4]。

在创建接触对前,单击Optionalsetting按钮弹出Cotactproperties对话框,将Basic选项卡中的Contactalgorithm即接触算法设置为MPCalgorithm即可。

操作完成后,ANSYS自动定义目标单元与接触单元类型,并生成接触对。

定义主控点选择梁单元的下面一个关键点(当然也可以选择梁单元的最下一个node,相应选项要选pick existing node...)选择梁单元的下面一个关键点?继续下一个:施加集中力x方向10000n计算结果,位移云图显示梁截面的位移云图显示梁单元形状显示梁单元形状应力云图(整体)应力云图(梁壳连接处放大显示)全为壳单元的计算结果的位移云图全为壳单元的计算结果的应力云图这只是shell单元和beam单元连接的示例,beam和solid、shell和solid大同小异。

ANSYS 中 MPC 的应用3

ANSYS 中 MPC 的应用3

ANSYS 中MPC 的应用(3)
ANSYS 一般2010-11-16 07:40:43 阅读173 评论2 字号:大中小订阅
5. MPC 约束用于SOLID-BEAM 和SHELL-BEAM
过程:
1) 将实体表面和/或壳体边界作为接触面,将梁节点作为目标的pilot 节点,不需要
添加目标面。

2) 设置接触单元选项:
KEYOPT(2) = 2 激活MPC 方法
KEYOPT(12) = 5 或6设置为绑定接触
KEYOPT(4) = 1力- 分布表面
KEYOPT(4) = 2刚性约束表面
3) 执行分析
示例1:实体结果与实体-梁连接结果的比较,下面右图中间分为实体和梁两段,用
MPC 连接到一起:
1. 刚性约束表面工况
2. 表面分布力工况
示例2:
示例3:实体结果与壳体-梁连接结果的比较,下面右图中间分为壳体和梁两段,用
MPC 连接到一起:
工况1:刚性约束面
工况2:表面分布力
6. 用MPC 连接FE 模型和加载点
过程:
1)1)将FE 表面和/或边界作为接触面,加载节点作为目标pilot 节点,不需要添加
目标面。

2)2)设置接触单元选项:
KEYOPT(2)=2 激活MPC 方法
KEYOPT(12)=5 or 6设置为绑定接触 KEYOPT(4)=1力–分布表面 KEYOPT(4)=2刚性约束表面
3) 执行分析
示例:
工况1:刚性约束表面
工况2:表面分布力
MPC 应用。

ANSYS_MPC_cn

ANSYS_MPC_cn
KEYOPT(9)=0
KEYOPT(9)=1
如果几何上有间隙: 如果几何上有间隙: 1) 设置 PINBALL 以捕获接触 2) 使用 KEYOPT(9)=1 以忽略穿透
Mx -2: 间隙以及 KEYOPT(9)=1 SMAX=1.73
2004 ANSYS, Inc.
ANSYS, Inc. Proprietary
mpcmpc应用应用新虚拟壳体单元shell181方法shellshell约束mpc方程平移转动自由度壳体边界虚拟壳体ftoln影响距离壳体单元厚度实体单元接触单元以前的初始fea模型目标单元targ170在实体顶部虚拟壳体由shsdid产生keyopt52mpc连接用于solidshellansysinc
3)
注意:如果接触面和目标面的网格相似, 注意:如果接触面和目标面的网格相似,MPC 方法给出与连续网格相同 的结果。 的结果。 如果接触面和目标面的网格相差较大, 如果接触面和目标面的网格相差较大,MPC 方法给出的界面处的 应力梯度将受到影响,网格越接近,结果越好。 应力梯度将受到影响,网格越接近,结果越好。
1. 介绍:为什么需要 MPC? 介绍:
连接不同的网格: 连接不同的网格:
– 如果几何在拓扑上是不连接的,可以分别划分网格,然后用 MPC 进行连接各 FE 模型:
几何
用 MPC 连接 不同的网格
应力分布
2004 ANSYS, Inc.
ANSYS, Inc. Proprietary
MPC 应用
接触表面的节点自由度将被自动消除: :
– 这可以提高求解效率。
不需要输入接触刚度: 不需要输入接触刚度:
– 不再需要通过多次尝试来保证求解精度;
对于小变形问题,它表现为 “真线性接触 特性: 对于小变形问题, 真线性接触” 真线性接触 特性: – 求解系统方程时不需要迭代; 对于大变形问题,在每一步迭代时更新 MPC 方程。 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ANSYS MPC方法连接shell单元和beam单元详细教程
2010-05-21 22:12:04 作者:zhz2004 来源:机械CADl论坛浏览次数:621 网友评论0 条
近日在论坛看到些用ansys的坛友问及beam单元和shell单元、beam单元和solid单元、sh ell单元和solid单元的连接问题。

其实解决此类问题的方法不只一种,耦合约束方程、绑定接触都是有效的方法。

其中耦合约束方程适用于小变形,而绑定接触即可用于小变形,也可用于大变形的几何非线性分析。

下面,我将本人所做的用MPC方法连接shell单元和beam 单元的详细步骤提供给大家,与各位共勉。

添加shell单元(略)
添加beam单元(略)
添加shell实常数
添加shell实常数:shell厚度0.005添加beam截面:圆钢
内经、外径及网格密度预览网格
开始建模:转动工作平面工作平面z轴向上
建立圆面
继续:
将面拉伸成体
定义拉伸高度:0.5m 删除体,留面
显示面
删除空圆柱的顶面和底面
创建点:用于建立梁单元的第一个点。

两点之间创建(正中)。

复制点:用于建立梁单元的第二个点。

复制:Y方向0.5m
连接两点,用于创建梁单元。

继续
定义材料属性,有点晚^_^
准备划分壳单元划分壳,映射方法
准备划分梁单元划分梁单元
选中要划分梁单元的线
完成,定义mpc接触
GUI:MainMenu→Pre-processor→Modeling→Create→ContactPair,进入接触向导,然后按照提示与帮助说明进行选择目标面接触面等操作[4]。

在创建接触对前,单击Optionalsetting按钮弹出Cotactproperties对话框,将Basic选项卡中的Contactalgorithm即接触算法设置为MPCalgorithm即可。

操作完成后,ANSYS自动定义目标单元与接触单元类型,并生成接触对。

定义主控点
选择梁单元的下面一个关键点(当然也可以选择梁单元的最下一个node,相应选项要选pick existing node...)
选择梁单元的下面一个关键点
继续下一个:
施加集中力x方向10000n
计算结果,位移云图显示梁截面的位移云图
显示梁单元形状显示梁单元形状
应力云图(整体)
应力云图(梁壳连接处放大显示)
全为壳单元的计算结果的位移云图全为壳单元的计算结果的应力云图
这只是shell单元和beam单元连接的示例,beam和solid、shell和solid大同小异。

做出此例希望大家广开言论,发表一下自己的见解,例中如有谬误,还请大家指正。

相关文档
最新文档