2005年研究生入学考试数学一模拟试题参考答案

合集下载

2003年考研数学一试题及完全解析(Word版)

2003年考研数学一试题及完全解析(Word版)

2003年全国硕士研究生入学统一考试数学(一)试卷答案解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) )1ln(12)(cos lim x x x +→ =e1 .【分析】 ∞1型未定式,化为指数函数或利用公式)()(lim x g x f )1(∞=)()1)(lim(x g x f e -进行计算求极限均可.【详解1】 )1ln(12)(cos lim x x x +→=xx x ecos ln )1ln(1lim20+→,而 212cos sin lim cos ln lim )1ln(cos ln lim02020-=-==+→→→x x xx x x x x x x , 故 原式=.121ee=-【详解2】 因为 2121lim )1ln(1)1(cos lim 2202-=-=+⋅-→→xxx x x x , 所以 原式=.121ee=-【评注】 本题属常规题型(2) 曲面22y x z +=与平面042=-+z y x 平行的切平面的方程是542=-+z y x .【分析】 待求平面的法矢量为}1,4,2{-=n,因此只需确定切点坐标即可求出平面方程, 而切点坐标可根据曲面22y x z +=切平面的法矢量与}1,4,2{-=n平行确定.【详解】 令 22),,(y x z z y x F --=,则x F x 2-=',y F y 2-=', 1='z F .设切点坐标为),,(000z y x ,则切平面的法矢量为 }1,2,2{00y x --,其与已知平面042=-+z y x 平行,因此有11422200-=-=-y x , 可解得 2,100==y x ,相应地有 .520200=+=y x z故所求的切平面方程为0)5()2(4)1(2=---+-z y x ,即 542=-+z y x . 【评注】 本题属基本题型。

新东方在线考研数学_线性代数(09冲刺)

新东方在线考研数学_线性代数(09冲刺)

2009年研究生入学考试数学一模拟试题(一)一、选择题:1~8小题,每小题4分,共32分,在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内。

(1)设,,则当时,是的(A) 等价无穷小量。

(B) 同阶但非等价无穷小量。

(C) 高阶无穷小量。

(D) 低阶无穷小量。

[ ] (2)设具有一阶连续导数,,则是在处可导的(A) 必要但非充分条件。

(B) 充分但非必要条件。

(C) 充分且必要条件。

(D) 既非充分也非必要条件。

[ ](3)设有直线L:及平面:,则直线L(A) 平行于π。

(B) 在π上。

(C) 垂直于π。

(D) 与π斜交。

[ ](4)(A) 。

(B) 。

(C) 。

(D) 。

[ ](5)已知向量组α1=(a2,1,a),α2=(3a-2,1,2a-1),α3=(1,1,1),r(α1,α2,α3)=2,则a=.(A)-1. (B)1或1/2. (C) 1/2. (D) 1. [ ](6)设A,B,C,D都是n阶矩阵,满足ABCBD=E,则(A) DABC= CBDA. (B) (BCB)-1=AD .(C) ABC=BD. (D) A-1B-1C-1B-1D-1=E. [ ](7)假设随机变量X和Y独立同分布,记U=X-Y,V=X+Y,则随机变量U与V [ ] (A)独立(B)不独立(C)相关(D)不相关(8)随机变量X服从U (-1,1)分布,为随机变量Y的分布函数,为的联合分布函数。

已知=,=,则=[ ]A. B. C. D.二、填空题:9~14小题,每小题4分,共24分。

把答案填在题中横线上。

(9)设p>1则=__________________________。

(10)设,则=__________________________。

(11)微分方程的通解为__________________________。

(12)设方程确定,则=__________________________。

全国硕士研究生入学统一考试计算机科学与技术学科联考计算机网络-模拟试题【圣才出品】

全国硕士研究生入学统一考试计算机科学与技术学科联考计算机网络-模拟试题【圣才出品】

第3部分模拟试题全国硕士研究生入学统一考试计算机科学与技术学科联考计算机学科专业基础综合模拟试题及详解(一)一、单项选择题(1~40小题,每小题2分,共80分。

)1.下面关于算法说法正确的是()。

A.算法最终必须由计算机程序实现B.为解决某问题的算法同为该问题编写的程序含义是相同的C.算法的可行性是指指令不能有二义性D.以上几个都是错误的【答案】D【解析】A项,计算机程序只是实现算法的一种手段,手工也可以完成;B项,算法可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,程序是为实现特定目标或解决特定问题而用计算机语言编写的命令序列的集合。

两者显然是不同的概念;C项,明显错误,可行性是指算法描述的操作都可以通过已经实现的基本运算执行有限次来实现。

2.将长度为n的单链表链接在长度为m的单链表之后的算法的时间复杂度为()。

A.O(1)B.O(n)C.O(m)D.O(m+n)【答案】C【解析】将长度为n的单链表接到长度为m的单链表之后只需要定位到m链表的末尾,然后将末尾元素的指针指向n链表,故时间复杂度为O(m)。

3.若某线性表最常用的操作是存取任一指定序号的元素并在表尾进行插入和删除运算,则利用()存储方式最节省时间。

A.顺序表B.双链表C.带头结点的双循环链表D.单循环链表【答案】A【解析】只有顺序表才能存取任一指定序号的元素,其他存储方式都需要遍历才能访问相应元素。

顺序表在表尾进行插入和删除运算的时间复杂度也为O(1)。

4.执行以下()操作时,需要使用队列作为辅助存储空间。

A.散列表的查找B.图的广度优先遍历C.二叉树的先序遍历D.图的深度优先遍历【答案】B【解析】A项,散列表的查找不需要额外的空间;C、D项,二叉树的先序遍历和图的深度优先遍历使用堆栈而不使用队列作为辅助存储空间;B项,在图的广度优先遍历中,如果结点v i在v k之前被访问,则v i的所有未被访问的邻接点应在v k的所有未被访问的邻接点之前访问,需要使用队列作为辅助存储空间。

专科数学入学考试模拟题-试题及答案(B)

专科数学入学考试模拟题-试题及答案(B)

17.函数xxx f ln )(=的单调增区间为( ) A.[)+∞,e B.()+∞,0 C.[]e ,0 D.()e ,0 18.函数[]4,1,3223-∈-=x x x y 的最大值( ) A.-5 B.5 C.-80 D.8019.设在区间()b a ,内,0)(>'x f 0)(<''x f ,则在区间),(b a 内,曲线)(x f y =( ) A.沿x 轴正向上升且为凹的 B.沿x 轴正向下降且为凹的 C.沿x 轴正向上升且为凸的 D.沿x 轴正向下降且为凸的 20. 曲线()3112-+=x y 的拐点( )A. ()2,1B.()3,2C.()1,0D.()4,9 第Ⅱ卷(解答题 共50分)二、解答题:本大题共4小题,共50分,解答应写出推理,演算步骤。

1.某工厂每月生产x 台游戏机的收入为()206130942-+-=x x x R (百元),成本函数为()10050+=x x C (百元),当每月生产多少台时,获利润最大?最大利润为多少?(12分)2.设)(x f 为连续函数,且,1)1ln(3)(lim2=-+→x x f x 求由曲线)(x f y =在2=x 处的切线方程.(12分)3.讨论23)1(x x y -=的凸性和拐点.(13分)4.假设某商店一年销售某种商品10000kg ,一年内该商品的经营是平稳的,即一年内“进货—销售”成固定周期运行,每次进货的数量一定,手续费为40元,商品的进价2元/kg ,存储费是商品进价的10%。

进货后销售平稳,定期销售完后又立即进货。

问为了使商品的总成本最小,商店应该一年进货几次,每次进货多少,其总费用是多少?(13分)专科数学(B )参考答案一、选择题(共20题,每小题5份,共100分)1.C2.A3.C4.D5.D6.C7.B8.A9.A 10.C 11.D 12.C 13.B 14.A 15.C 16.B 17.D 18.D 19.C 20.A 二、解答题:本大题共4小题,共50分,解答应写出推理,演算步骤。

教师资格考试高级中学数学学科知识与教学能力2025年模拟试题与参考答案

教师资格考试高级中学数学学科知识与教学能力2025年模拟试题与参考答案

2025年教师资格考试高级中学数学学科知识与教学能力模拟试题与参考答案一、单项选择题(本大题有8小题,每小题5分,共40分)1、若集合A={x | x^2 - 5x + 6 = 0},集合B={x | x < 3},则A ∩ B等于什么?A. {2}B. {3}C. {2, 3}D. 空集答案:A. {2}解析:解方程x^2 - 5x + 6 = 0,我们得到这是一个二次方程,可以通过因式分解来解它。

方程可以分解为(x-2)(x-3)=0,从而解得x=2或x=3。

因此,集合A包含元素2和3。

而集合B定义为所有小于3的实数构成的集合。

故A ∩ B只包含2,因为3并不满足B中的条件(即不大于3)。

所以正确答案是A. {2}。

2、在平面直角坐标系中,已知直线l经过点P(2, 3),且斜率为-1/2。

那么直线l 的方程是什么?A. y - 3 = -1/2(x - 2)B. y - 3 = 1/2(x - 2)C. y + 3 = -1/2(x + 2)D. y + 3 = 1/2(x + 2)答案:A. y - 3 = -1/2(x - 2)解析:直线的点斜式方程形式为y - y₁ = m(x - x₁),其中m是直线的斜率,(x₁, y₁)是直线上的一点。

根据题目给出的信息,斜率m=-1/2,点P(2, 3)是直线上的一个点,代入上述公式可得直线l的方程为y - 3 = -1/2(x - 2)。

因此正确答案是A选项。

让我们验证一下第二个题目的答案是否正确。

看来在解释第二个题目时出现了技术上的展示错误。

不过,基于解析几何的知识,我们可以手动写出答案。

给定点P(2, 3)和斜率m = -1/2,直线的点斜式方程是 y - y₁ = m(x - x₁),代入得到 y - 3 = -1/2(x - 2)。

这证实了第二个题目的正确答案确实是:A. y - 3 = -1/2(x - 2)3、在下列数学概念中,属于类比推理的是:A. 集合的并集与交集B. 函数的单调性与周期性C. 向量的数量积与向量积D. 点的坐标与直线的斜率答案:D解析:类比推理是指通过比较两个或多个对象之间的相似之处,推导出它们之间可能存在的其他相似之处的推理方法。

大连理工1999-2005研究生考试自动控制原理真题

大连理工1999-2005研究生考试自动控制原理真题

大连理工大学二O O 五年硕士生入学考试《自动控制原理(含20%现代)》试题一、(15分)试求图1所示电路的传递函数U c (s) / U r (s) 。

二、(20分)给定系统结构如图2所示。

1.设r(t)=n 1(t)=n 2(t)=1(t), 试求系统的稳态误差e ss ;2.在r(t)=n 1(t)=n 2(t)=1(t)情况下,如何使稳态误差e ss =0。

三、(25分)已知负反馈系统的开环传递函数为1.试绘制以K 为参量的根轨迹图;2.试求系统处于临界稳定状态时的闭环极点。

四、(15分)已知负反馈系统的开环传递函数为G(s)H(s)=)1)(5()1(10-++s s s ,试绘制开环幅相特性曲线,并应用奈奎斯特判据判断系统的稳定性。

五、(15分)已知负反馈系统的开环传递函数为G(s)H(s)=)50)(5(2500++s s s ,并绘制开环频率特性对数坐标曲线,并计算相角裕度。

六、(15分)给定系统微分方程为,试确定奇点位置及类型,并绘制相平面草图。

七、(15分)设系统结构如图3所示。

试求C(z),并判断K=1时系统的稳定性。

八、(10分)已知离散系统的状态方程为a>0,试用李雅普诺夫第二方法确定使平衡点渐进稳定的a取值范围。

九、(20分)给定系统结构如图4所示。

1.试建立系统的状态空间描述;2.试设计状态反馈阵,使系统闭环极点位于-2,-2处;3.K是否可以取为0.5,为什么?大连理工大学二O O 四年硕士生入学考试《自动控制原理(含30%现代)》试题一、(15分)试求图1所示电路的结构图和传递函数。

二、(10分)已知系统的特征方程为: s 4+2.5s 3+2.5s 2+10s -6 = 0 试求特征根在S 平面上的分布。

三、(10分)试求系统的单位脉冲响应。

四、(20分)设系统的开环传递函数为:1. 试绘制根轨迹图(可能的分离点为:-1.2、-1.6、-2.6、-2.9、-3.5);2. 试求出分离点处的K 值。

四川省绵阳市2024年初中学业水平考试数学模拟试题一(含答案)

四川省绵阳市2024年初中学业水平考试数学模拟试题一(含答案)

绵阳市2024年初中学业水平考试模拟试题一一、单选题1.如图,在平面直角坐标系中,A、B两点在一次函数的图象上,其坐标分别为A(x,y),B(x+a,y+b),下列结论正确的是( )A.a<0,b=0B.a>0,b>0C.a<0,b<0D.ab<02.下列各式正确的是( )A.16=±4B.±16=4C.(−4)2=-4D.3−27=-33.根据等式的性质,下列等式变形中,不一定成立的是( )A.若x=y,则x+2=y+2B.若x=y,则1-x=1-yC.若ax=ay,则x=y D.若xa=ya,则x=y4.如图,在Rt △ABC中,∠C=90°,∠BAC的平分线A E 交B C 于点E,ED⊥AB于点D,若△ABC的周长为12 ,则△BDE的周长为 4 ,则 A C 为( )A.3B.4C.6D.85.下列各组数中,相等的一组是( )A.-(-1)与−|−1|B.-32与(-3)2C.(-4)3与-43D.223与(23)26.如图,是正方体的平面展开图,每个面上都标有一个汉字与“明”字相对的面上的字为( )A.法B.治C.诚D.信7.如图,将两块相同的三角板(含30°角)按图中所示位置摆放,若BE交CF于D,AC交BE于M,AB交CF于N,则下列结论中错误的是( )A.∠EAC=∠FAB B.∠EAF=∠EDFC.△ACN≅△ABM D.AM=AN8.求1+2+22+23+…+22012的值,可令S=1+2+22+23+…+22012,则2S=2+22+23+24+…+22013,因此2S-S=22013-1.仿照以上推理,计算出1+5+52+53+…+52012的值为( )A.52012﹣1B.52013﹣1C.52013−14D.52012−149.若abc≠0,则|a|a +|b|b+c|c|的值为( )A.±3或±1B.±3或0或±1C.±3或0D.0或±110.已知二次函数y=ax2+2ax+2a+5(其中x是自变量)图象上有两点(﹣2,y1),(1,y2),满足y1 y2.当﹣2 x 1时,y的最小值为﹣5,则a的值为( )A.-5B.-10C.-2D.511.如图,在正方形ABCD中,点P在对角线BD上,PE⊥BC,PF⊥CD,E,F分别为垂足,连结AP,EF,则下列命题:①若AP=5,则EF=5;②若AP⊥BD,则EF∥BD;③若正方形边长为4,则EF的最小值为2,其中正确的命题是( )A.①②B.①③C.②③D.①②③12.如图,抛物线y=a x2+bx+c的顶点坐标为(1,n).下列结论:①abc<0;②8a+c<0;③关于x的一元二次方程a x2+bx+c=n−1有两个不相等实数根;④抛物线上有两点P(x1,y1)和Q(x2,y2)若x1<1<x2且x1+x2>2,则y1>y2,其中正确的结论共有( )A.1个B.2个C.3个D.4个二、填空题13.已知点M到x轴的距离为3,到y轴距离为2,且在第四象限内,则点M的坐标为 .14.将命题“两个全等三角形的周长相等”改写成“如果…那么…”的形式 .15.有一人利用手机发短信,获得他信息的人也按他的发送人数发送该条短信,经历两轮短信的发送,共有110人的手机获得该条短信.设每人给y人发短信,则可列方程 .16.如图,在直角坐标系xOy中,边长为1的正方形A1B1C1D1(称为第1个正方形)的顶点A1在原点处,点B1在y轴上,点D1在x轴上,点C1在第一象限内,现以点C1为顶点做等边三角形C1A2B2,使得点A2落在x轴上,且A2B2⊥x轴;以A2B2为边做正方形A2B2C2D2(称为第2个正方形),且正方形的边A2D2落在x轴上…如此类推,则第2020个正方形的边长为 .17.如图,在正方形ABCD的边长为3,以A为圆心,2为半径作圆弧.以D为圆心,3为半径作圆弧.若图中阴影部分的面积分为S1、S2.则S1−S2= 。

2022年中考第一次模拟考试《数学试题》含答案解析

2022年中考第一次模拟考试《数学试题》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________ 一.选择题(共10小题)1.12-的倒数是( )A. B. C.12- D.122.据报道,2020年全国硕士研究生招生规模比去年增加18.9万左右,数据”18.9万”用科学记数法表示为( )A. 1.89×103B. 1.89×104C. 1.89×105D. 18.9×1033.一个几何体的三视图如图所示,该几何体是()A. 直三棱柱B. 长方体C. 圆锥D. 立方体4.如图,直线a,b被直线c,d所截,若∠1=∠2,∠3=115°,则∠4度数为()A. 55°B. 60°C. 65°D. 75°5.已知甲、乙两数的和是7,甲数比乙数的2倍少2,设甲数为x,乙数为y,根据题意列方程组正确的是( )A.722x yx y+=⎧⎨=-⎩B.722x yy x+=⎧⎨=-⎩C.722x yx y=+⎧⎨-=⎩D.722x yx y=+⎧⎨+=⎩6.关于”可能性是1%的事件在100次试验中发生的次数”,下列说法错误的是( )A. 可能一次也不发生B. 可能发生一次C. 可能发生两次D. 一定发生一次7.下列计算正确的是( )A. b3÷b3=bB. b3•b3=b6C. a2+a2=2a4D. (a3)3=a68.抽样调查某班10名同学身高(单位:厘米)如下:165,152,165,152,165,160,170,160,165,159.则这组数据的众数是( )A. 152B. 160C. 165D. 1709.如图,在△ABC中,点D、E分别在边AB、AC上,下列条件中不能判断△ABC∽△AED的是( )A. ∠AED=∠BB. ∠ADE=∠CC. AD ACAE AB= D.AD AEAB AC=10.关于二次函数y=﹣(x﹣m)2﹣m+1(m为常数),下列描述错误的是( )A. 当m=2时,函数的最大值是﹣1B. 函数图象的顶点始终在直线y=﹣x+1的图象上C. 当﹣1<x<2时,y随x的增大而增大,则m的取值范围为m≤2D. 当m=0时,函数图象的顶点及函数图象与x轴的两个交点构成的三角形是等腰直角三角形二.填空题(共6小题)11.因式分解:24ab a-=___________________.12.分别写有数字23、5、﹣4、0、﹣2五张大小和质地均相同的卡片,从中任意抽取一张,抽到无理数的概率是_____.13.在平面直角坐标系中,点P在直线y=x+b的图象上,且点P在第二象限,P A⊥x轴于点A,PB⊥y轴于点B,四边形OAPB是面积为25的正方形,则直线y=x+b的函数表达式是_____.14.如图,点A,B,C在同一个圆上,∠ACB<90°,弦AB的长度等于该圆半径的2倍,则cos∠ACB的值是_____.15.已知二次函数y=ax2+bx+c(a,b,c是常数)的图象如图所示,则反比例函数y=a b cx++的图象所在的象限是第_____象限.16.如图,菱形ABCD边长为10,sin A=45,点M为边AD上的一个动点且不与点A和点D重合,点A关于直线BM的对称点为点A',点N为线段CA'的中点,连接DN,则线段DN长度的最小值是_____.三.解答题(共9小题)17.计算:|﹣23|+(2020﹣1)0﹣4sin60°﹣(﹣2)2.18.某校为了做好”营造清洁生活环境”活动宣传,对本校学生进行了有关知识的测试,测试后随机抽取了部分学生的测试成绩,按”优秀、良好、及格、不及格”四个等级进行统计分析,并将分析结果绘制成如下两幅不完整的统计图:(1)求抽取的学生总人数;(2)抽取的学生中,等级为”优秀”的人数为人;扇形统计图中等级为”不合格”部分的圆心角的度数为°;(3)补全条形统计图;(4)若该校有学生3500人,请根据以上统计结果估计成绩等级为”优秀”和”良好”的学生共有多少人.19.如图,在▱ABCD中,AE平分∠BAD交BC边于点E,CE=2,BE=4,求▱ABCD的周长.20.学校组织学生开展志愿者服务活动,甲、乙两名学生从”图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,用字母A、B、C分别表示”图书馆”、”博物馆”、”科技馆”三个场馆,请用树状图或列表法求甲、乙两名学生恰好选择同一场馆的概率.21.某公司需要采购A、B两种笔记本,A种笔记本单价高出B种笔记本的单价10元,并且花费300元购买A种笔记本和花费100元购买B种笔记本的数量相等.(1)求A种笔记本和B种笔记本的单价各是多少元;(2)该公司准备采购A、B两种笔记本共80本,若A种笔记本的数量不少于60本,并且采购A、B两种笔记本的总费用不高于1100元,那么该公司有种购买方案.22.如图,点A、B、C在半径为8的⊙O上,过点B作BD∥AC,交OA延长线于点D.连接BC,且∠BCA =∠OAC=30°.(1)求证:BD是⊙O的切线;(2)图中线段AD、BD和AB围成的阴影部分的面积=.23.如图,在平面直角坐标系中,直线y=kx+b与x轴交于点A(5,0),与y轴交于点B;直线y═45x+6过点B和点C,且AC⊥x轴.点M从点B出发以每秒2个单位长度的速度沿y轴向点O运动,同时点N从点A 出发以每秒3个单位长度的速度沿射线AC向点C运动,当点M到达点O时,点M、N同时停止运动,设点M运动的时间为t(秒),连接MN.(1)求直线y=kx+b的函数表达式及点C的坐标;(2)当MN∥x轴时,求t的值;(3)MN与AB交于点D,连接CD,在点M、N运动过程中,线段CD的长度是否变化?如果变化,请直接写出线段CD长度变化的范围;如果不变化,请直接写出线段CD的长度.24.如图,已知△ABC中,AC=BC,∠ACB=90°,将△ABC绕点B逆时针方向旋转得到△PBQ,旋转角为α,且45°<α<90°.(1)连接AP,CQ,则APCQ=;(2)若QD⊥BC,垂足为点D,∠BQD=15°,QD与PB交于点E,∠BEQ的平分线EF交AB的延长线于点F.①求旋转角α的大小;②求∠F的度数;③求证:EQ+EB=EF.25.如图,在平面直角坐标系中,抛物线y=ax2+x+c与直线3344y x=+交于点A和点E,点A在x轴上.抛物线y=ax2+x+c与x轴另一个交点为点B,与y轴交于点C(0,43),直线3344y x=+与y轴交于点D.(1)求点D的坐标和抛物线y=ax2+x+c的函数表达式;(2)动点P从点B出发,沿x轴以每秒2个单位长度的速度向点A运动,动点Q从点A出发沿射线AE以每秒1个单位长度的速度向点E运动,当点P到达点A时,点P、Q同时停止运动.设运动时间为t秒,连接AC、CQ、PQ.①当△APQ是以AP为底边的等腰三角形时,求t的值;②在点P、Q运动过程中,△ACQ的面积记为S1,△APQ的面积记为S2,S=S1+S2,当S=602675时,请直接写出t的值.答案与解析一.选择题(共10小题)1.12-的倒数是( )A. B. C.12- D.12【答案】A【解析】【分析】根据倒数的概念求解即可.【详解】根据乘积等于1的两数互为倒数,可直接得到-12的倒数为.故选A2.据报道,2020年全国硕士研究生招生规模比去年增加18.9万左右,数据”18.9万”用科学记数法表示为( )A. 1.89×103B. 1.89×104C. 1.89×105D. 18.9×103【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将数据”18.9万”用科学记数法表示为1.89×105,故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.一个几何体的三视图如图所示,该几何体是()A 直三棱柱 B. 长方体 C. 圆锥 D. 立方体【答案】A【解析】【分析】根据三视图的形状可判断几何体的形状.【详解】观察三视图可知,该几何体是直三棱柱.故选A.本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.4.如图,直线a,b被直线c,d所截,若∠1=∠2,∠3=115°,则∠4的度数为()A. 55°B. 60°C. 65°D. 75°【答案】C【解析】【分析】根据平行线判定定理得出a∥b,再根据平行线的性质得到结果.【详解】如图:∵∠1=∠2,∴a∥b(同位角相等,两直线平行),∴∠3=∠5(两直线平行,同位角相等),∴∠4=180º-∠5=180º-∠3=180º-115º=65º.故选C.5.已知甲、乙两数的和是7,甲数比乙数的2倍少2,设甲数为x,乙数为y,根据题意列方程组正确的是( )A.722x yx y+=⎧⎨=-⎩B.722x yy x+=⎧⎨=-⎩C.722x yx y=+⎧⎨-=⎩D.722x yx y=+⎧⎨+=⎩【答案】A【解析】【分析】根据题意可得等量关系:①甲数+乙数=7,②甲数=乙数×2-2,根据等量关系列出方程组即可.【详解】设甲数为x,乙数为y,根据题意可列方程组:722 x yx y+=⎧⎨=-⎩,故选:A.【点睛】本题主要考查了由实际问题抽象出二元一次方程组,关键是把已知量和未知量联系起来,找出题目中的相等关系.6.关于”可能性是1%的事件在100次试验中发生的次数”,下列说法错误的是( )A. 可能一次也不发生B. 可能发生一次C. 可能发生两次D. 一定发生一次【答案】D【解析】【分析】直接利用概率的意义分别分析得出答案.【详解】关于”可能性是1%的事件在100次试验中发生的次数”,一定发生一次错误,符合题意.故选:D.【点睛】本题主要考查了概率意义,概率只表示可能性的大小,并不表示事件一定为必然事件.正确掌握概率的意义是解题关键.7.下列计算正确的是( )A. b3÷b3=bB. b3•b3=b6C. a2+a2=2a4D. (a3)3=a6【答案】B【解析】【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、积的乘方运算法则分别计算得出答案.【详解】解:A、b3÷b3=1,故此选项错误;B、b3•b3=b6,正确;C、a2+a2=2a2,故此选项错误;D、(a3)3=a9,故此选项错误.故选:B.【点睛】此题考查合并同类项以及同底数幂的乘除运算、积的乘方运算,正确掌握相关运算法则是解题关键.8.抽样调查某班10名同学身高(单位:厘米)如下:165,152,165,152,165,160,170,160,165,159.则这组数据的众数是( )A. 152B. 160C. 165D. 170【答案】C【解析】【分析】根据众数定义:一组数据中出现次数最多的数据叫众数,可知165出现的次数最多.【详解】这组数据中165出现次数最多,有4次,所以这组数据的众数为165,故选:C.【点睛】此题主要考查了众数,关键是把握众数定义,难度较小.9.如图,在△ABC中,点D、E分别在边AB、AC上,下列条件中不能判断△ABC∽△AED的是( )A. ∠AED=∠BB. ∠ADE=∠CC. AD ACAE AB= D.AD AEAB AC=【答案】D【解析】【分析】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.根据此,分别进行判断即可.【详解】解:由题意得∠DAE=∠CAB ,A 、当∠AED=∠B 时,△ABC ∽△AED ,故本选项不符合题意;B 、当∠ADE=∠C 时,△ABC ∽△AED ,故本选项不符合题意;C 、当AD AE =AC AB时,△ABC ∽△AED ,故本选项不符合题意; D 、当AD AB =AE AC 时,不能推断△ABC ∽△AED ,故本选项符合题意; 故选D .【点睛】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.10.关于二次函数y =﹣(x ﹣m )2﹣m +1(m 为常数),下列描述错误的是( )A. 当m =2时,函数的最大值是﹣1B. 函数图象的顶点始终在直线y =﹣x +1的图象上C. 当﹣1<x <2时,y 随x 的增大而增大,则m 的取值范围为m ≤2D. 当m =0时,函数图象的顶点及函数图象与x 轴的两个交点构成的三角形是等腰直角三角形【答案】C【解析】【分析】根据二次函数的图象与性质(最值、增减性、与x 轴的交点坐标)、等腰三角形的定义、勾股定理的逆定理逐项判断即可.【详解】∵二次函数2()1y x m m =---+(m 为常数)∴当x m =时,y 取得最大值,最大值为1m -+则当2m =时,最大值为211-+=-,选项A 正确∵此抛物线的顶点(,1)m m -+∴将x m =代入直线1y x =-+得:1y m =-+则顶点(,1)m m -+在直线1y x =-+上,选项B 正确由二次函数的性质可知,当x m ≤时,y 随x 的增大而增大;当x m >时,y 随x 的增大而减小则当12x -<<时,y 随x 的增大而增大,可得m 的取值范围为2m ≥,选项C 错误当0m =时,二次函数的解析式为21y x =-+此函数的顶点坐标为(0,1),与x 轴的交点分别为(1,0)-,(1,0)由等腰三角形的定义、勾股定理的逆定理得:这三个点构成等腰直角三角形,选项D 正确故选:C .【点睛】本题考查了二次函数的图象与性质(最值、增减性、与x 轴的交点坐标)、等腰三角形的定义、勾股定理的逆定理等知识点,熟练掌握二次函数的图象与性质是解题关键.二.填空题(共6小题)11.因式分解:24ab a - =___________________.【答案】(2)(2)a b b +-【解析】【分析】先提公因式a ,再利用平方差公式即可因式分解.【详解】解:224(4)(2)(2)ab a a b a b b -=-=+-,故答案为:(2)(2)a b b +-.【点睛】本题考查了提公因式法和公式法因式分解,解题的关键是灵活运用两种方法,熟悉平方差公式.12.分别写有数字23、4、0的五张大小和质地均相同的卡片,从中任意抽取一张,抽到无理数的概率是_____. 【答案】25 【解析】【分析】直接利用无理数的定义结合概率求法得出答案.【详解】解:∵在标有23﹣4、0、这2张, ∴从中任意抽取一张,抽到无理数的概率是25, 故答案为:25. 【点睛】此题主要考查了概率公式以及无理数的定义,正确把握相关定义是解题关键.13.在平面直角坐标系中,点P 在直线y =x +b 的图象上,且点P 在第二象限,P A ⊥x 轴于点A ,PB ⊥y 轴于点B ,四边形OAPB 是面积为25的正方形,则直线y =x +b 的函数表达式是_____.【答案】y =x +10.【解析】【分析】用正方形的面积,求得正方形的边长,得到PA ,PB 的长度,P 在第二象限,得点P 的坐标,代入直线解析式,可求得值,进而得到直线的表达式.【详解】解:∵四边形OAPB 是面积为25的正方形,P A ⊥x 轴于点A ,PB ⊥y 轴于点B ,∴P A =PB =5,∵点P 在第二象限,∴P (﹣5,5),∵点P 在直线y =x +b 的图象上,∴5=﹣5+b ,∴b =10,∴直线y =x +b 的函数表达式是y =x +10,故答案为:y =x +10.【点睛】本题考查了坐标系中线段长度与坐标之间的转化关系,待定系数法求解析式,求出点P 的坐标是解题的关键.14.如图,点A ,B ,C 在同一个圆上,∠ACB <90°,弦AB 的长度等于该圆半径的2倍,则cos ∠ACB 的值是_____.【答案】22. 【解析】【分析】 作直径AD ,连接BD ,通过同圆中同弧所对的圆周角相等,得ACB ADB ∠=∠,在Rt ABD ∆完成计算即可.【详解】解:作直径AD,连接BD,如图,∵AD为直径,∴∠ABD=90°,∵弦AB的长度等于该圆半径的2倍,∴22 ABAD=,在Rt△ADB中,sin∠ADB=22 ABAD=,∴∠ADB=45°,∴∠ACB=∠ADB=45°,∴cos∠ACB=22.故答案为22.【点睛】本题考查了圆周角定理的应用,直角三角形中三角函数值得计算,将ACB∠利用圆周角定理转化到直角三角形中,是解题的关键.15.已知二次函数y=ax2+bx+c(a,b,c是常数)的图象如图所示,则反比例函数y=a b cx++的图象所在的象限是第_____象限.【答案】二、四.【解析】【分析】根据函数图象,由1x =时,得到a b c ++的正负,即可得到答案.【详解】解:由二次函数的图象可知,当x =1时,y <0,即a +b +c <0,∴反比例函数y =a b c x++的图象所在的象限是第二、四象限, 故答案为:二、四.【点睛】本题考查了二次函数中a b c ++的正负判断,反比例函数系数对于图象象限的影响,熟练掌握这些知识点是解题的关键.16.如图,菱形ABCD 的边长为10,sin A =45,点M 为边AD 上的一个动点且不与点A 和点D 重合,点A 关于直线BM 的对称点为点A ',点N 为线段CA '的中点,连接DN ,则线段DN 长度的最小值是_____.【答案】65﹣5.【解析】【分析】通过构造三边关系来求DN 的最小值,根据A ,A'关于直线BM 对称,BA ′=10,取BC 的中点K ,NK 是A BC'∆的中位线,NK=5,作DH⊥BC,根据sin A =45可求出DH=8,CH=6,在Rt △DHK 中,由勾股定理求得DK 的值,看△DNK 根据三角形的三边关系即可求出答案.【详解】解:如图,连接BA ′,取BC 的中点K ,连接NK ,作DH ⊥BC 于H .∵四边形ABCD 是菱形,∴AB =BC =CD =AD =10,∠A =∠DCB ,∵A ,A ′关于BM 对称,∴BA′=BA=10,∵CN=NA′,CK=BK,∴NK=12BA′=5,∵sin∠A=sin∠DCH=45=DHCD,∴DH=8,∴CH6,∴CK=KB=5,∴HK=CH=CK=1,∴DK∵DN≥DK﹣NK,∴DN5,∴DN5,5.【点睛】本题考查了线段最值问题,属于压轴题,构造三角形三边关系方法是:①两边为定值,第三边是要求的线段;②往往取特殊点中点构造三角形,解决本题的关键是构造三角形,利用三角形三边关系.三.解答题(共9小题)17.计算:|﹣1)0﹣4sin60°﹣(﹣2)2.【答案】-3【解析】【分析】利用去绝对值,零指数幂,三角函数,乘方运算法则进行计算即可得到答案.【详解】解:|﹣1)0﹣4sin60°﹣(﹣2)2=﹣4×24= 3=﹣3.【点睛】本题考查实数的混合运算,熟练掌握运算法则是解题的关键.18.某校为了做好”营造清洁生活环境”活动的宣传,对本校学生进行了有关知识的测试,测试后随机抽取了部分学生的测试成绩,按”优秀、良好、及格、不及格”四个等级进行统计分析,并将分析结果绘制成如下两幅不完整的统计图:(1)求抽取的学生总人数;(2)抽取的学生中,等级为”优秀”的人数为人;扇形统计图中等级为”不合格”部分的圆心角的度数为°;(3)补全条形统计图;(4)若该校有学生3500人,请根据以上统计结果估计成绩等级为”优秀”和”良好”的学生共有多少人.【答案】(1)100;(2)20、7.2;(3)见解析;(4)2450人【解析】【分析】(1)根据”及格”人数及其所占百分比可得总人数;(2)总人数乘以”优秀”对应的百分比可得其人数,再求出”不及格”人数,继而用360°乘以”不合格”人数所占比例即可得;(3)根据以上所求结果即可补全图形;(4)用总人数乘以样本中”优秀”和”良好”人数和所占比例.【详解】(1)抽取的学生总人数为28÷28%=100(人);(2)抽取的学生中,等级为”优秀”的人数为100×20%=20(人),则”不及格”人数为100−(28+50+20)=2(人),所以扇形统计图中等级为”不合格”部分圆心角的度数为360°×2100=7.2°,故答案为:20、7.2;(2)补全条形图如下:(4)估计成绩等级为”优秀”和”良好”的学生共有3500×5020100=2450(人).【点睛】本题考查的是样本估计总体、条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.如图,在▱ABCD中,AE平分∠BAD交BC边于点E,CE=2,BE=4,求▱ABCD的周长.【答案】20【解析】【分析】根据角平分线的定义和平行四边形的性质证出∠BAE=∠BEA,得出AB=BE=4,求出BC=6,即可得出结论.【详解】解:∵AE平分∠BAD,∴∠BAE=∠DAE,∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE=4,∵BE=3,EC=2,∴BC=BE+EC=4+2=6,∴▱ABCD的周长=2(AB+BC)=2(4+6)=20.【点睛】本题考查了平行四边形的性质、平行线的性质、等腰三角形的判定等知识;熟练掌握平行四边形的性质和等腰三角形的判定是解题的关键.20.学校组织学生开展志愿者服务活动,甲、乙两名学生从”图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,用字母A、B、C分别表示”图书馆”、”博物馆”、”科技馆”三个场馆,请用树状图或列表法求甲、乙两名学生恰好选择同一场馆的概率.【答案】1 3【解析】【分析】画树状图(用A、B、C分别表示”图书馆,博物馆,科技馆”三个场馆)展示所有9种等可能的结果数,找出两人恰好选择同一场馆的结果数,然后根据概率公式求解.【详解】解:画树状图为:(用A、B、C分别表示”图书馆,博物馆,科技馆”三个场馆)共有9种等可能的结果数,其中甲、乙两名学生恰好选择同一场馆的结果数为3,所以甲、乙两名学生恰好选择同一场馆的概率=39=13.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.21.某公司需要采购A、B两种笔记本,A种笔记本的单价高出B种笔记本的单价10元,并且花费300元购买A种笔记本和花费100元购买B种笔记本的数量相等.(1)求A种笔记本和B种笔记本的单价各是多少元;(2)该公司准备采购A、B两种笔记本共80本,若A种笔记本的数量不少于60本,并且采购A、B两种笔记本的总费用不高于1100元,那么该公司有种购买方案.【答案】(1)A种笔记本和B种笔记本的单价各是15元和5元;(2)11.【解析】【分析】(1)设A种笔记本的单价是x元,则B种笔记本的单价是(x﹣10)元,根据题意列方程即可得到结论;(2)设该公司准备采购A种笔记本a本,采购B种笔记本(80﹣a)本,根据题意列不等式即可得到结论.【详解】解:(1)设A种笔记本的单价是x元,则B种笔记本的单价是(x﹣10)元,根据题意得,30010010 x x=-,解得:x=15,经检验:x=15是原方程的根,∴x﹣10=5,答:A种笔记本和B种笔记本的单价各是15元和5元;(2)设该公司准备采购A种笔记本a本,采购B种笔记本(80﹣a)本,根据题意得,15a+5(80﹣a)≤1100,解得:a≤70,∵A种笔记本的数量不少于60本,∴60≤a≤70,(a为正整数),∴该公司有11种购买方案.故答案为:11.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,正确的理解题意是解题的关键.22.如图,点A、B、C在半径为8的⊙O上,过点B作BD∥AC,交OA延长线于点D.连接BC,且∠BCA =∠OAC=30°.(1)求证:BD是⊙O的切线;(2)图中线段AD、BD和AB围成的阴影部分的面积=.【答案】(1)证明见解析;(2)32 3233π.【解析】【分析】(1)连接OB,交CA于E,,根据圆周角定理求出∠BOA=60°,根据∠BCA=∠OAC=30°和三角形内角和定理求出∠AEO=90°,即OB⊥AC,根据BD∥AC,得到∠DBE=∠AEO=90°,可得BD是⊙O的切线; (2)根据平行线的性质得到∠D=30°,解直角三角形求出BD,分别求出△BOD的面积和扇形AOB的面积,即可得出答案.【详解】(1)证明:如图示,连接OB ,交CA 于E ,∵∠C =30°,∠C =12∠BOA , ∴∠BOA =60°, ∵∠BCA =∠OAC =30°,∴∠AEO =90°,即OB ⊥AC ,∵BD ∥AC ,∴∠DBE =∠AEO =90°,∴BD 是⊙O 的切线;(2)解:∵AC ∥BD ,∠OCA =90°,∴∠D =∠CAO =30°,∵∠OBD =90°,OB =8,∴BD 3=3,∴S 阴影=S △BDO ﹣S 扇形AOB =12×8×3﹣2608360π⨯=3323π, 故答案为:323233π. 【点睛】本题考查了切线的判定,平行线的性质,圆周角定理,扇形的面积,三角形的面积,解直角三角形等知识点的综合运用,熟悉相关性质是解题的关键.23.如图,在平面直角坐标系中,直线y =kx +b 与x 轴交于点A (5,0),与y 轴交于点B ;直线y ═45x +6过点B 和点C ,且AC ⊥x 轴.点M 从点B 出发以每秒2个单位长度的速度沿y 轴向点O 运动,同时点N 从点A 出发以每秒3个单位长度的速度沿射线AC 向点C 运动,当点M 到达点O 时,点M 、N 同时停止运动,设点M 运动的时间为t (秒),连接MN .(1)求直线y=kx+b的函数表达式及点C的坐标;(2)当MN∥x轴时,求t的值;(3)MN与AB交于点D,连接CD,在点M、N运动过程中,线段CD的长度是否变化?如果变化,请直接写出线段CD长度变化的范围;如果不变化,请直接写出线段CD的长度.【答案】(1)y=﹣65x+6,点C的坐标为(5,10);(2)t=65;(3)线段CD的长度不变化,CD=12495由见解析【解析】【分析】(1)先求出点C和点B的坐标,再根据待定系数法,即可求得答案;(2)分别用含t的代数式表示OM和AN的长,列出关于t的方程,即可求解;(3)过点D作EF∥x轴,交OB于E,交AC于F,由△BDM∽△ADN,得23DE BMDF AN==,从而得DF的长,由△BDE∽△ADF,得EO=F A=185,从而得CF的长,进而即可求解.【详解】(1)∵AC⊥x轴,点A(5,0),∴点C的横坐标为5,对于y═45x+6,当x=5时,y=45×5+6=10,对于x=0,y=6,∴点C的坐标为(5,10),点B的坐标为(0,6),∵直线y=kx+b与x轴交于点A(5,0),与y轴交于点B(0,6),∴5k b0b6+=⎧⎨=⎩,解得,6k5b6⎧=-⎪⎨⎪=⎩,∴直线y=kx+b的函数表达式为:y=﹣65x+6,综上所述,直线y=kx+b的函数表达式为y=﹣65x+6,点C的坐标为(5,10);(2)由题意得,BM=2t,AN=3t,∴OM=6﹣2t,∵当OM=AN时,OM∥AN,∴四边形EOAF为平行四边形,∴MN∥x轴,∴6﹣2t=3t,解得,t=65,∴当MN∥x轴时,t=65;(3)线段CD的长度不变化,理由如下:过点D作EF∥x轴,交OB于E,交AC于F,∵EF∥x轴,BM∥AN,∠AOE=90°,∴四边形EOAF为矩形,∴EF=OA=5,EO=F A,∵BM∥AN,∴△BDM∽△ADN,∴23 DE BMDF AN==∵EF=5,∴DE=2,DF=3,∵BM∥AN,∴△BDE∽△ADF,∴23 BE DEFA DF==,∴23 BEEO=,∵OB=6,∴EO=F A=185,∴CF=AC﹣F A=325,∴CD=22DF CF=12495.【点睛】本题主要考查一次函数的图象和待定系数法,矩形的判定和性质,相似三角形的判定和性质,熟练掌握相似三角形的判定和性质,添加合适的辅助线,构造相似三角形,是解题的关键.24.如图,已知△ABC中,AC=BC,∠ACB=90°,将△ABC绕点B逆时针方向旋转得到△PBQ,旋转角为α,且45°<α<90°.(1)连接AP,CQ,则APCQ=;(2)若QD⊥BC,垂足为点D,∠BQD=15°,QD与PB交于点E,∠BEQ的平分线EF交AB的延长线于点F.①求旋转角α的大小;②求∠F的度数;③求证:EQ+EB=EF.【答案】22)①75°;②15°;③证明见解析【解析】【分析】(1)根据题意利用相似三角形的判定与性质通过证明△ABP ∽△CBQ ,可得AB AP BC CQ =; (2)①根据题意由直角三角形的性质可求∠CBQ=75°,即可求解;②根据题意直接由三角形的外角性质进行分析即可求解;③由题意在EF 上截取EH=EB ,连接BH ,由”AAS ”可证△BHF ≌△BEQ ,可得EQ=HF ,进而即可得出结论.【详解】解:(1)∵AC =BC ,∠ACB =90°,∴AB BC ,∠ABC =45°=∠BAC∵将△ABC 绕点B 逆时针方向旋转得到△PBQ ,∴∠ABC =∠PBQ =45°,AB =BP ,BC =BQ ,∴∠ABP =∠CBQ ,AB BP BC BQ==, ∴△ABP ∽△CBQ ,∴AB AP BC CQ=,;(2)①∵QD ⊥BC ,∴∠QDB =90°,且∠BQD =15°,∴∠CBQ =75°,∴旋转角α为75°;②∵∠DBE =∠CBQ ﹣∠PBQ =75°﹣45°=30°,∴∠DEB =60°,∠ABP =75°,∴∠BEQ =120°,∵EF 平分∠BEQ ,∴∠BEF =60°,∵∠ABP =∠F+∠BEF ,∴∠F =75°﹣60°=15°;③如图,在EF 上截取EH =EB ,连接BH ,∵EB=EH,∠BEF=60°,∴△BEH是等边三角形,∴BE=BH=EH,∠BHE=60°,∴∠BHF=∠BEQ=120°,且∠F=∠BQD=15°,BE=BH,∴△BHF≌△BEQ(AAS)∴EQ=HF,∴EQ+EB=HF+EH=EF.【点睛】本题是四边形综合题,考查全等三角形的判定和性质,相似三角形的判定和性质,等边三角形的判定和性质,直角三角形的性质,添加恰当辅助线构造全等三角形是解答本题的关键.25.如图,在平面直角坐标系中,抛物线y=ax2+x+c与直线3344y x=+交于点A和点E,点A在x轴上.抛物线y=ax2+x+c与x轴另一个交点为点B,与y轴交于点C(0,43),直线3344y x=+与y轴交于点D.(1)求点D的坐标和抛物线y=ax2+x+c的函数表达式;(2)动点P从点B出发,沿x轴以每秒2个单位长度的速度向点A运动,动点Q从点A出发沿射线AE以每秒1个单位长度的速度向点E运动,当点P到达点A时,点P、Q同时停止运动.设运动时间为t秒,连接AC、CQ、PQ.①当△APQ是以AP为底边的等腰三角形时,求t的值;②在点P、Q运动过程中,△ACQ的面积记为S1,△APQ的面积记为S2,S=S1+S2,当S=602675时,请直接写出t的值.【答案】(1)抛物线的函数表达式为21433y x x =-++;(2)①2518;②13159±. 【解析】【分析】 (1)根据题意首先求出A 、D 的坐标,再利用待定系数法即可解决问题;(2)①如图1,过点Q 作QF ⊥AP 于点F ,则AF =PF =12AP =12(5﹣2t ),AQ =t ,证得OD ∥QF ,得出AO AD AF AQ=,可求出t 的值; ②如图2,过点C 作CM ⊥AQ 于点M ,过点Q 作QN ⊥x 轴于点N ,证明△AOD ∽△CMD ,求出CM ,则S 1可用t 表示,证明△AOD ∽△AQN ,求出QN ,则S 2可用t 表示,则可得出t 的方程,解方程即可得出答案.【详解】解:(1)∵直线3344y x =+与y 轴交于点D , ∴x =0时,y =34, ∴D (0,34), ∵直线3344y x =+与x 轴交于点A , ∴y =0时,3344x +=0, ∴x =﹣1,∴A (﹣1,0),∵抛物线y =ax 2+x+c 经过点A (﹣1,0),C (0,43),∴1043a c c -+=⎧⎪⎨=⎪⎩, 解得:1343a c ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线的函数表达式为21433y x x =-++; (2)①如图1,过点Q 作QF ⊥AP 于点F ,若AQ =PQ ,则AF =PF =12AP =12(5﹣2t ),AQ =t , ∵OD ⊥AP ,QF ⊥AP ,∴OD ∥QF , ∴AO AD AF AQ=, ∵D (0,34),A (﹣1,0), ∴OD =34,AO =1, ∴AD 220A DO +22314⎛⎫+ ⎪⎝⎭54, ∴5141(52)2tt =-, 解得:t =2518.∴t=2518时,△APQ是以AP为底边的等腰三角形.②如图2,过点C作CM⊥AQ于点M,过点Q作QN⊥x轴于点N,∵∠ADO=∠CDM,∠AOD=∠CMD=90°,∴△AOD∽△CMD,∴AD AO CD CM=,∵CD=OC﹣OD=4373412-=,AD=54,OA=1,∴514712CM=,∴CM=7 15,∴S△ACQ=S1=12AQ×CM=17215t⨯⨯=730t,∵OD⊥x轴,QN⊥x轴,∴OD∥QN,∴△AOD∽△AQN,∴AD OD AQ ON=,∴5344t QN =,∴QN=35t,∴S△APQ=S2=12AP×QN=13(52)25t t-=23325t t-,∵S 1+S 2=602675, ∴27336023025675t t t +-=, ∴213395t ⎛⎫-= ⎪⎝⎭,解得:t =139即当S =602675时,t 的值为139±. 【点睛】本题考查二次函数综合题,考查待定系数求函数解析式,等腰三角形的性质,三角形的面积,相似三角形的判定与性质等知识,熟练掌握相似三角形的判定与性质及方程思想是解题的关键.。

GCT考试概要

GCT考试概要

GCT考试概要攻读工程硕士专业学位研究生的入学资格考试采取研究生入学资格考试(“Graduate Candidate Test,GCT ”)。

考试始于2003年,当时名为“工程硕士专业学位研究生入学资格考试”(简称GCT-ME),考试适用范围为报考工程硕士的考生。

2004年,适用范围增加了报考农业推广和兽医专业硕士的考生,考试名称去掉了“工程”二字。

2005年,国务院学位委员会办公室组织专家对2003版考试大纲进行了修订,同时考试适用范围又增加了报考风景园林硕士,以及中等职业学校教师在职攻读硕士学位的考生,考试名称改为“硕士学位研究生入学资格考试”。

试卷由四部分组成:知识表达能力、逻辑推理能力、分析判断能力、外语使用能力。

每部分为45分钟,共计3个小时。

试题均采用客观选择题,有阅读理解、分析判断、数理解题、逻辑推理等。

答题形式为问答、填空、改错等。

试题知识面覆盖哲学、经济学、法学、教育学、文学、历史学、理学、工学、农学、医学、军事学、管理学各门类。

“GCT”试卷四部分总计400分,每部分各占100分。

“GCT”成绩为各个高等学校在进行工程硕士研究生录取工作时提供一个参考,不规定全国统一的“GCT”合格分数线,各招生单位自主招生录取的办法进行。

GCT考试是一种资格考试,通过考试即具备了申请学校的资格。

考试成绩两年内有效。

GCT考试模式今年将以工程硕士入学考试为试点推行,之后将逐步走近中国考生,尤其是已经工作了一段时间后想要在职考研的。

工程硕士专业学位设立于1997年,是与工程师职业背景密切相关的硕士学位,旨在培养高层次的工程技术和工程管理人才。

往年的工程硕士入学考试包括三门科目:英语、数学和专业课。

引入GCT考试方法之后,一种全新的考试方式——两段制考试应运而生,工硕考试大纲也随之改变。

所谓两段制考试办法是将工程硕士入学考试分为两个阶段。

第一阶段,考生参加全国统一组织的工程硕士研究生入学资格考试(GCT),试卷由四个部分构成:语文表达能力测试、数学基础能力测试、逻辑推理能力测试、外语运用能力测试。

研究生计量经济学模拟试题及答案

研究生计量经济学模拟试题及答案

暨 南 大 学 考 试 试 卷一、单项选择题(将正确的选项填在括号内,共10小题,每小题2分,共20分)1.某商品需求函数为i i i u x b b y ++=10,其中y 为需求量,x 为价格。

为了考虑“地区”(农村、城市)和“季节”(春、夏、秋、冬)两个因素的影响,拟引入虚拟变量,则应引入虚拟变量的个数为【 B 】A 2B 4C 5D 62.假设某需求函数为i i i u x b b y ++=10,为了考虑“季节”因素(春、夏、秋、冬四个不同的状态),引入4个虚拟变量形式形成截距变动模型,则模型的【 D 】 A 参数估计量将达到最大精度 B 参数估计量是有偏估计量 C 参数估计量是非一致估计量 D 参数将无法估计3.设y 表示居民的消费支出,x 表示居民的可支配收入,二者之间的真实关系可表示为【 C 】A t t x y 10ˆˆˆββ+=B E t t x y 10)(ββ+=C ()t t t y f x u =+D t t x y 10ββ+= 4.下面属于时间序列数据的是【 A 】A 1991-2003年各年某地区20个镇的平均工业产值B 1991-2003年各年某地区20个镇的各镇工业产值C 某年某地区20个镇工业产值的合计数D 某年某地区20个镇各镇工业产值5.经验认为,某个解释变量与其他解释变量间多重共线性严重的情况是这个解释变量的VIF 【 C 】A 大于1B 小于1C 大于10D 小于106.下列哪种方法不是检验异方差的方法【 D 】 A 戈德菲尔特——匡特检验 B 怀特检验C 戈里瑟检验D 方差膨胀因子检验7.令1ˆθ和2ˆθ是参数θ的两个无偏的估计量,它们互相独立,其方差分别为2和4。

要使得2211ˆˆˆθθθc c +=是参数θ的无偏的方差最小的估计量,则【 C 】A 4/14/321==c cB 9/15/121==c cC 3/13/221==c cD 5/37/421==c c8.如果模型包含有随机解释变量,且与随机误差项不独立也不线性相关,则普通最小二乘估计量和工具变量估计量都是【 C 】 A 无偏估计量 B 有效估计量 C 一致估计量 D 最佳线性无偏估计量9.在小样本情况下,对回归模型t t t u x y ++=10ββ进行统计检验时,通常假定tu服从【 C 】A N (0,2i σ)B t(n-2)C N (0,2σ)D t(n)10.要使最小二乘法的估计量满足无偏性需要满足的条件是 【 D 】 A 正态性 B 无自相关 C 同方差 D 零均值二、判断题(对的打“√”,错的打“×”,共10小题,每小题2分,共20分)【 × 】2.在一个含有截距项的回归模型中,使用最小二乘法计算出的残差总和必定等于零。

考研方向

考研方向

一、考研方向:1.电路与系统,2.信号处理,3.通信,4.微电子,4.集成电路设计,5.微波(高频信号)电路设计与对抗,6.信息安全,7.嵌入式设计二、考研名校:1.中科大:一般只考信号系统吧,徐守时那本硕士研究方向硕士考试科目覆盖范围参考书目01智能信息处理02集成电路与系统设计03信息安全技术04计算机应用05复杂系统与复杂性研究①101政治理论②201英语一③301数学一④840电子线路或844信号与系统电子线路、数字电路;连续时间和离散时间信号与系统(包括在输入输出描述方式和状态描述方式下,以及时域、频域和复频域)的一整套概念、理论和方法及其在通信、信号处理中的主要应用,以及数字信号处理的基本概念和方法(DFT,FFT和数字滤波波器)《线性电子线路》戴蓓倩,中国科学技术大学出版社《数字电子基础基础》阎石、高等教育出版社,第4版;《信号与系统:理论、方法和应用》徐守时,中国科大出版社,2006修订版;《数字信号处理》3-5章王世一,北京理工大学出版社19972.中科大电子信息的考研专业080904电磁场与微波技术本专业主要从事电磁场理论、微波光波技术及其工程应用的研究,包括电磁场理论与应用、光波导理论与技术、微波毫米波技术与系统、微波毫米波集成技术、光波技术及其应用等几个主要研究方向。

研究课题主要涉及电磁理论中的辐射与散射、计算电磁学、微波毫米波器件与电路、微波毫米波通信与雷达系统、超宽带(UWB)技术、新型天线技术、复杂目标的散射特性和复杂环境的传播特性、光器件与光传感技术、空间光通信与量子密钥分配技术以及与相关学科交叉的理论与技术等。

研究方向与研究课题紧密结合国家重大需求和本学科的最新进展,具有创新思想活跃、理论与工程技术实践相结合的优势。

081001通信与信息系统本学科是国家重点学科。

主要研究方向为宽带无线通信、移动通信网、新型互联网、通信信号处理等。

本学科在无线通信和移动通信领域具有突出优势和地位,是中国3G、4G和超宽带通信的主要推动者之一。

数学思想与方法模拟测试题D形考

数学思想与方法模拟测试题D形考

数学思想与方法模拟测试题D形考一、填空题(每空格3分,共30分)1.算法的有效性是指()。

答案:如果使用该算法从它的初始数据出发,能够得到这一问题的正确解2.所谓数形结合方法,就是在研究数学问题时,()的一种思想方法。

答案是:由数思形、见形思数、数形结合考虑问题3.古代数学大体可分为两种不同的类型:一种是崇尚逻辑推理,以《几何原本》为代表;一种是长于计算和实际应用,以()为典范。

答案是:《九章算术》4.数学的统一性是客观世界统一性的反映,是数学中各个分支固有的内在联系的体现,它表现为()的趋势答案:数学的各个分支相互渗透相互结合5.学生理解或掌握数学思想方法的过程一般有三个主要阶段:()、()、()。

答案:①潜意识阶段,②明朗化阶段,③深刻理解阶段。

6.在数学中建立公理体系最早的是几何学,而这方面的代表著作是古希腊欧几里得的()。

答案:几何原本反馈7.随机现象的特点是()。

答案:在一定条件下,可能发生某种结果,也可能不发生某种结果。

8.演绎法与()被认为是理性思维中两种最重要的推理方法。

答案:归纳法二、判断题(每题4分,共20分。

1.数学史上著名的“哥尼斯堡七桥问题”最后由欧拉用一笔画方法解决了其无解。

选择一项:对错2.分类方法具有两要素:母项与子项。

选择一项:对错3.算法具有无限性、不确定性与有效性。

选择一项:对错4.理论方法、实验方法和计算方法并列为三种科学方法。

选择一项:对错5.最早使用数学模型方法的当数中国古人。

选择一项:对错三、简答题(每题10分,共50分)1.模型化的方法、开放性的归纳体系及算法化的内容之间的关系答案:模型化的方法与开放性的归纳体系及算法化的内容之间是互相适应并且互相促进的。

(2分)虽然,各个数学模型之间也有一定的联系,但是它们更具有相对独立性。

一个数学模型的建立与其它数学模型之间并不存在逻辑依赖关系。

正因为如此,所以可以根据需要随时从社会实践中提炼出新的数学模型(3分)。

考研数学免费资料大全

考研数学免费资料大全

考研数学高等数学复习资料汇总[考研数学][高等数学]2007年新东方考研数学基础班-高等数学-汪诚义[考研数学][高等数学]2007年新东方考研数学强化班-高等数学-汪诚义[考研数学][高等数学]陈文灯高数习题答案(新)[考研数学][高等数学]2008年考研-高数春季班讲义第一讲[考研数学][高等数学]2008年考研-高数春季班讲义第二讲[考研数学][高等数学]2008年考研-高数春季班讲义第三讲[考研数学][高等数学]考研高数数学公式_新排版[考研数学][高等数学]08考研数学全程规划(音频)-高数和微积分[考研数学][高等数学]同濟五版高数课本与答案[考研数学][高等数学]高数公式概率公式数学重点、难点归纳辅导[考研数学][高等数学]高数、线性、概率课后答案完整版[考研数学][高等数学]考研数学真题近十年考题路线分析(高数部分)[考研数学][高等数学]考研数学]2008高等数学复习--函数专题[考研数学][高等数学]清华基础班讲义(全)-高等数学部分[考研数学][高等数学]2007版--高等数学(强化)课程电子版教材1-2[考研数学][高等数学]高等数学简明公式[考研数学][高等数学]高等数学各部分常见的题型[考研数学][高等数学]高等数学知识点[考研数学][高等数学]考研数学高等数学部分公式手册[考研数学][高等数学]考研高等数学重点复习与典型题型[考研数学][高等数学]新东方在线考研数学基础班--高等数学讲义[考研数学][高等数学]2008陈文灯考研数学复习指南习题详解(理工)--高等数学[考研数学][高等数学]高等数学公式手册[考研数学][高等数学]《高等数学总复习图册》正文[考研数学][高等数学]龚冬保:高等数学典型题解法•技巧•注释(第2版)[考研数学][高等数学]高等数学试题精选与解答(蔡高厅)[考研数学][高等数学]高等数学基础知识网络图章[考研数学][高等数学]高等数学典型题解法•技巧•注释(龚冬保)[考研数学][高等数学]考研讲义-高等数学[考研数学][高等数学]李大华:高等数学、线性代数1200题[考研数学][高等数学]考研数学高等数学部分复习注意事项[考研数学][高等数学]高等数学二重积分专题[考研数学][高等数学]中值定理总结[考研数学][高等数学]实用三角函数公式总表[考研数学][高等数学]2007考研数学真题评析(水木版)-数一至数四全[考研数学][高等数学]高等数学易错、易忘、易漏问题备忘录[考研数学][高等数学]泰勒公式的应用[考研数学][高等数学]2008高等数学复习--函数专题[考研数学][高等数学]循环递推法积分计算[考研数学][高等数学]洛必达法则失效的种种情况及处理方法[考研数学][高等数学]求极限的方法和技巧[考研数学][高等数学]三角公式大全[考研数学][高等数学]三次函数图象性质的研究和应用[考研数学]考研数学线性代数复习资料汇总[考研数学][线性代数]2007年新东方考研数学强化班-线性代数-尤承业[考研数学][线性代数]2007年新东方考研数学基础班-线性代数-尤承业[考研数学][线性代数]李永乐线代辅导班冲刺笔记[考研数学][线性代数]08考研数学全程规划(音频)-线代[考研数学][线性代数]经济类数学——线代各章节复习题目及解答WORD[考研数学][线性代数]2008陈文灯考研数学复习指南习题详解(理工)--线代[考研数学][线性代数]李永乐线代辅导班冲刺笔记[考研数学][线性代数]考研数学真题近十年考题路线图(线代部分)[考研数学][线性代数]线性代数强化阶段的的复习方法[考研数学][线性代数]线性代数复习指导[考研数学][线性代数]2008考研数学-线性代数全攻略-张跃辉[考研数学][线性代数]线性代数复习指导[考研数学][线性代数]考研数学2008版--线性代数(2008强化) 课程电子版教材[考研数学][线性代数]2008考研数学线性代数辅导讲义(李永乐)[考研数学][线性代数]备考MBA联考线性代数冲关60题[考研数学][线性代数]线性代数知识网络图[考研数学][线性代数]2008年线性代数必考的知识点[考研数学][线性代数]2007版--线性代数(07强化)课程[考研数学][线性代数]2008考研数学基础班线性代数-曾祥金[考研数学][线性代数]线性代数超强总结[考研数学][线性代数]线性代数知识点[考研数学][线性代数]2008年考研-线性代数春季班讲义[考研数学][线性代数]李大华:高等数学、线性代数1200题[考研数学][线性代数]备考MBA联考线性代数冲关60题[考研数学]考研数学概率统计复习资料汇总[考研数学][概率统计]概率统计课本[浙三版][考研数学][概率统计]概率统计习题答案[浙三版][考研数学][概率统计]考研数学2008版--概率论与数理统计(2008强化)课程电子版教材[考研数学][概率统计]视频点睛习题详细解答(概率)[考研数学][概率统计]2008陈文灯考研数学复习指南习题详解(理工)--概率WORD [考研数学][概率统计]经济类数学——概率各章节复习题目及解答WORD[考研数学][概率统计]浙大概率习题全解[考研数学][概率统计]高数,线性,概率课后答案完整版[考研数学][概率统计]概率论与数理统计辅导讲义(主编:龚兆仁)[考研数学][概率统计]高数公式概率公式数学重点、难点归纳辅导[考研数学][概率统计]2007年新东方考研数学基础班-概率统计-费允杰[考研数学][概率统计]2007年新东方考研数学强化班-概率统计-费允杰[考研数学][概率统计]概率公式整理[考研数学][概率统计]概率统计知识点[考研数学][概率统计]2006年考研数学概率论基础笔记大全[考研数学][概率统计]概率与数理统计问题集[考研数学][概率统计]概率论与数理统计解题的九种思维定势[考研数学][概率统计]文都教育-2008考研数学强化班概率讲义-曹显兵pdf[考研数学][概率统计]文都教育-2008考研数学强化班概率讲义-曹显兵word[考研数学]考研数学历年真题复习资料汇总[考研数学][历年真题]2007考研数学真题评析(水木版)-数一至数四全[考研数学][历年真题]2006年硕士研究生入学统一考试数学一试题及答案[考研数学][历年真题]数一2005年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一2004年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一2003年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一2002年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一2001年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一2000年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一1999年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一1998年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一1997年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一1996年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一1995年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数二2006年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二2005年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二2004年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二2003年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二2002年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二2001年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二2000年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二1999全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二1998年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二1997年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二1996年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二1995年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数三2006年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三2005年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三2004年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三2003年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三2002年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三2001年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三2000年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三1999年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三1998年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三1997年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三1996年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三1995年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数四2007年全国硕士研究生入学考试数学四参考答案[考研数学][历年真题]数四2006年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四2005年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四2004年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四2003年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四2002年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四2001年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四2000年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四1999年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四1998年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四1997年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四1996年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四1995年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学]考研数学综合复习复习资料汇总[考研数学][综合复习]2008年考研大纲、大纲解析、考试分析电子书下载全集[英语、政治、数学][考研数学][综合复习]2008年全国硕士研究生入学统一考试-数学考试大纲[考研数学][综合复习]2008年全国硕士研究生入学统一考试-数学考试分析[考研数学][综合复习]2008年全国硕士研究生入学统一考试-数学考试大纲解析(数一和数二)[考研数学][综合复习]2008年全国硕士研究生入学统一考试-数学考试大纲解析(数三和数四)[考研数学][综合复习]2008年李永乐、李正元考研数学全真模拟经典400题(理工类数学一)[考研数学][综合复习]2008李永乐、李正元考研数学全真模拟经典400题(理工类数学二)[考研数学][综合复习]2008李永乐、李正元考研数学全真模拟经典400题(经济类数学三)[考研数学][综合复习]2008年陈文件灯、黄先开、曹显兵考研数学复习指南(经济类)[考研数学][综合复习]08年考研数学考试大纲变化解析与复习建议[考研数学][综合复习]2007年数学考试大纲(一、二、三、四)[考研数学][综合复习]陈文登考研数学辅导书(附详细答案)[考研数学][综合复习]经济数学四轮学习方略[考研数学][综合复习]文都考研数学公式手册[考研数学][综合复习]备考辅导:2008年考研数学三大纲变化对比分析[考研数学][综合复习]考研数学重点及难点归纳辅导笔记[考研数学][综合复习]2008考研数学复习指南100问专题串讲经济类.pdf[考研数学][综合复习]考研数学公式(整理版)[考研数学][综合复习]考研数学高等数学部分公式手册[考研数学][综合复习]李永乐冲刺笔记(网友整理版)[考研数学][综合复习]2007年考研数学轻巧手册(经济类)_陈文灯等[考研数学][综合复习]水木艾迪考研数学三十六计[考研数学][综合复习]陈文灯解读数学大纲:新增泰勒公式考点[考研数学][综合复习]考研数学复习过程中六大禁忌列举[考研数学][综合复习]数学复习多思考的复习事半功倍[考研数学][综合复习]陈文灯:数学复习应注意若干要点[考研数学][综合复习]数学考研讲义(完全版)[考研数学][综合复习]考研数学36技150杀伤力(考研凯旋营提供)[考研数学][综合复习]考研宝典——试题精粹之数学[考研数学][综合复习]高等数学试题精选与解答(蔡高厅)[考研数学][综合复习]数学符号和公式的英语读法[考研数学][综合复习]考研数学函数图像大全(1)[考研数学][综合复习]考研数学函数图像大全(2)[考研数学][综合复习]2008年考研公共课备考:数学首轮复习注意事项[考研数学][综合复习]2007考研数学考前必做三套题(附详细解答)[考研数学][综合复习]陈文登考研数学轻巧手册2008经济类(全)[考研数学][综合复习]陈文灯李永乐两位数学权威对08年数学大纲的分析[考研数学][综合复习]陈文灯数学提高班例题[考研数学][综合复习]清华大学谈08考研—考研数学要走对路找对点[考研数学][综合复习]08数学必过-考研数学重点及难点归纳辅导笔记下载[考研数学][综合复习]海天名师郝海龙权威解析2008年考研数学大纲[考研数学][综合复习]陈文灯考研数学笔记[考研数学][综合复习]2007年考研数学考试大纲下载[考研数学][综合复习]龚冬保教授解读近几年数学考研真题[考研数学][综合复习]理工类数学各部分复习-WORD[考研数学][综合复习]高联08 年考研基础班讲义详解[考研数学][综合复习]2007年考研数学必做客观题1500题精析[考研数学][综合复习]数学满分秘籍[考研数学][综合复习]2007年考研数学轻巧手册(经济类)[考研数学][综合复习]2008年考研数学必备知识点(最新更新)WORD打印版[考研数学][综合复习]数学近10年考题路线图[考研数学][综合复习]六个短语把握牢考研数学复习效率高。

人教版中考模拟考试数学试卷及答案(共七套)

人教版中考模拟考试数学试卷及答案(共七套)
∴ME=MC+EC= 。
19.(1) ;
(2)如下表:
小辰
A
A
A
B
B
B
C
C
C
小安
A
B
C
A
B
C
A
B
C
同一型号

√ቤተ መጻሕፍቲ ባይዱ

由表知:他们选择同一型号的概率为 。
20.(1)由两张图知:A有32人,占40%,所以样本容量是80人;
(2)求出B的人数是16人,补全条形图如图;
(3)D等占10%,扇形圆心角是36°;
(4)在被抽到的80人中,C等级24人,占30%,
以此估计全校2000人中评为C的可能有
2000×30%=600,即可能有600人。
21. 解:设增加了 行,则共有( )行,( )列,
根据题意: , ,
∵ ,∴ ,
答:增加了3列。
22. 提示(1)AB是直径,∠ACB=90°,∠B+∠2=90°;
DC=AC,那么∠D=∠1,而∠D=∠B,
(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是________;
(2)请你用列表法或画树状图法,求小辰和小安选择同一型号免洗洗手液的概率。
20.(本题8分)
学史明理,学史增信,学史崇德,学史力行。在建党100周年之际,某校对全校学生进行了一次党史知识测试,成绩评定共分为A,B,C,D四个等级,随机抽取了部分学生的成绩进行调查,将获得的数据整理绘制成如下两幅不完整的统计图:
则D(8,6),CD=5,
而A(5,0),OA=5,∴CD=OA,
∵CD∥OA,且CD=OA,∴四边形OADC是平行四边形;
(3)点C纵坐标为6,则CD与OA之间的距离为 ,

2024年中考数学模拟考试试卷(有参考答案)

2024年中考数学模拟考试试卷(有参考答案)
2024年中考数学模拟考试试卷(有参考答案)
(满分150分;考试时间:120分钟)
学校:___________班级:___________姓名:___________考号:___________
(全卷共三个大题,满分150分,考试时间120分钟)
注意事项:
1.试题的答案书写在答题卡上,不得在试题卷上直接作答
故答案为: .
【点睛】本题考查了一元二次方程的应用增长率问题根据题意列出方程是解题的关键.
15.如图在 中 点D为 上一点连接 .过点B作 于点E过点C作 交 的延长线于点F.若 则 的长度为___________.
【答案】3
【解析】
【分析】证明 得到 即可得解.
【详解】解:∵





在 和 中:
19.计算:
(1) ;
(2)
【答案】(1)
(2)
【解析】
【分析】(1)先计算单项式乘多项式平方差公式再合并同类项即可;
(2)先通分计算括号内再利用分式的除法法则进行计算.
【小问1详解】
解:原式

【小问2详解】
原式

【点睛】本题考查整式的混合运算分式的混合运算.熟练掌握相关运算法则正确的计算是解题的关键.
∴ 最大取 此时
∴这个最大的递减数为8165.
故答案为:8165.
【点睛】本题考查一元一次方程和二元一次方程的应用.理解并掌握递减数的定义是解题的关键.
三、解答题:(本大题8个小题第19题8分其余每题各10分共78分)解答时每小题必须给出必要的演算过程或推理步骤画出必要的图形(包括辅助线)请将解答过程书写在答题卡中对应的位置上.
A.39B.44C.49D.54

数一模拟题

数一模拟题

2010年全国硕士研究生入学考试数学一模拟试题2009.11注:本试卷共23小题,满分150分,答题时间180分钟考生姓名: 总成绩:一、选择题:1~8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项符合题目要求,请把选项前的字母填在题后的括号里.(1)设()f x 是连续的奇函数,则()Df x y dxdy -⎰⎰=(),其中D 为:01,01x y ≤≤≤≤ (A )102()xdx f x y dy -⎰⎰ (B ) 0(C )12()ydy f x y dx -⎰⎰ (D )1()ydy f x y dx -⎰⎰(2)设()f x 在0x =处二阶可导,'0()()lim 1ln(1)x f x f x x →+=+,且(0)0f =,则()(A )(0)f 是()f x 的极小值 (B )(0)f 是()f x 的极大值 (C )(0)f 不是()f x 的极值(D )不能确定()f x 在0x =处是否取得极值 (3)下列说法中正确的个数是(a) (,)z f x y =在0M 点任意方向的方向导数都存在,则z 在该点存在偏导数 (b )(,)z f x y =在0M 点可微,则它在0M 点的一阶偏导数连续(c )(,)z f x y =在0M 点存在二阶偏导数,则它在0M 处的一阶偏导数连续 (d )(,)z f x y =在0M 点不连续,则它在0M 点不可微 (A)0个 (B )1个 (C )2个 (D )3个(4)设{}n x 是无界数列,则下列结论中错误的个数是() (a )若{}n y 是有界数列,则{}n n x y +一定是无界数列(b )若{}n y 是无界数列,则{}n n x y 一定是无界数列(c )若{}n y 是有界数列,则{}n n x y 一定是无界数列(d )若{}n y 是无界数列,则{}n n x y +一定是无界数列、(A )0个 (B )1个 (C )2个 (D )3个(5)若n 阶非奇异阵A 的各行元素之和为2,则12A A -+必有一个特征值为() (A )92 (B )2 (C )52 (D )32(6)A 、B 均为n 阶方阵,00A C B ⎛⎫= ⎪⎝⎭,则C 的伴随矩阵C *=() (A )00A B **⎛⎫ ⎪⎝⎭(B )00B A **⎛⎫⎪⎝⎭(C )00A A B B **⎛⎫⎪ ⎪⎝⎭(D )00B A A B **⎛⎫ ⎪ ⎪⎝⎭(7)设X (2,2)N ,(1,2)Y N ,且X 、Y 不相关,aX Y +与X bY +也不相关,则一定有()(A )a b =- (B )a b = (C )a b =± (D )1a b =-(8)总体2(,2)X N μ ,12,,,n X X X 为简单随机样本,要使μ的置信度为0.95的置信区间长度不超过1,则至少取样本容量n 为()(A )8 (B )7 (C )64 (D )49二、填空题:9~14小题,每小题4分,共24分,把答案写在题中横线上(9)已知当0x →时,sin 0()ln(1)x xF x t dt -=+⎰是n x 的同阶无穷小,则n =_(10)设()y y x =在[0,)+∞可导,在(0,)x ∀∈+∞处的增量()()y y x x y x ∆=+∆-满足(1)1y xy y a x∆∆+∆=++,其中a 当0x →时是x ∆的等价无穷小,又(0)1y =,则()y x =_(11)(,,)ϕμνω有一阶连续偏导数,(,)z z x y =是由(,,)0bz cy cx az ay bx ϕ---=所确定的函数,且120b a ϕϕ''-≠,则z z a b x y∂∂+=∂∂_(12)将柱坐标系中的三重积分/23201sin cos I d z dz πθθ=⎰化为直角坐标系中的累次积分,则I =_(13)已知(1,2,1)T α=,(0,1,3)T β=-,100012001P ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,设1TA P P αβ-=,则2008A =_(14)甲、乙两人各自独立地向同一目标重复射击两次,已知每次射击甲命中目标的概率为(01)p p <<,乙命中目标的概率为0.6,则当p =_时,甲、乙两人命中目标次数相等的概率达到最大,其最大值为_三、解答题:16~23小题,共94分,每题必须写出必要的演算步骤和推理过程已知30sin 6(tan )()lim 0x x x f x x →-=,求206()lim x f x x →-设函数()f x 和()g x 在[,]a b 上二阶可导,()0g x ''≠,()()()()0f a f b g a g b ====, 试证:(I )在开区间(,)a b 内()0g x ≠;(II )在开区间(,)a b 内至少存在一点ξ,使()()()()f fg g ξξξξ''=''设()f t 在[1,)+∞上二阶导数连续,且(1)0f =,(1)1f '=,2222()()z x y f x y =++满足22220z zx y∂∂+=∂∂ 求:(I )()f t 的表达式;(II )()f t 在[1,)+∞上的最大值.求幂级数1211(1)1(21)n n n x n n ∞-=⎡⎤-+⎢⎥-⎣⎦∑的收敛区间与和函数()f x计算曲面积分2223/2()Sxdydz ydzdx zdxdyI x y z ++=++⎰⎰,其中S 是22(2)(1)1(0)72516z x y z ---=+≥的上侧.设随机变量X服从参数为λ的指数分布,且()2E X=,对X独立地重复观察六次,用Y表示观察值小于ln4的次数,又已知11142335A Y-⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦有重特征值:求:(I)求A可对角化的概率;(II)当A可对角化时,求可逆矩阵P,使1P AP-为对角阵(21)(本题满分11分)设二次型222123123121323(,,)33484T f x x x x Ax x ax x x x x x x x ==++---,其中2-是二次型矩阵A 的一个特征值.求:(I )试用正交变换将二次型f 化为标准型,并写出所用的正交变换;(II )求f 在条件2221231x x x ++=下的最小值,并求最小值点123(,,)x x x ;(III )如果*A kE +是正定矩阵,求k 的取值.(22)(本题满分11分)已知随机变量X的概率密度为,0()0,0xXxe xf xx-⎧>=⎨≤⎩,在(0)X x x=>的条件下,随机变量Y在区间()0,x上服从均匀分布.求:(I)随机变量X与Y的联合概率密度(,)f x y,X与Y是否独立,为什么?(II)计算条件概率112P X Y X⎧⎫+<>⎨⎬⎩⎭与1142P Y X⎧⎫<=⎨⎬⎩⎭;(III)求证:Z X Y=-服从参数1λ=的指数分布.(23)(本题满分11分)设总体X 服从正态分布(,1)N μ,Y 服从正态分布(,4)N μ,μ未知. 12,,,n X X X 和12,,,n Y Y Y 是分别来自总体X 和Y ,容量都是n 的两个相互独立的简单随机样本,样本均值分别为X ,Y .求:(I )a 与b 的值,使ˆaX bY μ=+为μ的无偏估计且方差达到最小; (II )对(I )中的,a b 求出ˆμ的分布; (III )如果16n =,样本均值4,5x y ==,试根据ˆμ的分布求μ的置信度为0.95的置信区间.。

2025年上半年教师资格考试高中数学学科知识与教学能力试题与参考答案

2025年上半年教师资格考试高中数学学科知识与教学能力试题与参考答案

2025年上半年教师资格考试高中数学学科知识与教学能力试题与参考答案一、单项选择题(本大题有8小题,每小题5分,共40分)1、以下哪个数学概念不是高中数学学科中的核心内容?A. 函数B. 微积分基础C. 几何证明D. 概率与统计答案:C. 几何证明解析:高中数学学科的核心内容通常包括函数、方程与不等式、数列与极限、微积分基础(如导数、定积分)、概率与统计等。

几何证明虽然在几何学中占有重要地位,但在高中数学课程中,尤其是针对“教师资格考试高中数学学科知识与教学能力”的考核,其重点更多放在函数、微积分基础、概率统计等应用更广泛、对后续学习影响更大的内容上。

几何证明虽然也是数学的一部分,但在高中数学教学中往往不是最核心的内容。

2、下列哪个选项中的函数图像不经过原点(0,0)?A. y = 2xB. y = x^2C. y = 1/xD. y = logₐx(a > 0, a ≠ 1)且定义域为(0, +∞)答案:B. y = x^2解析:对于选项A,y = 2x,当x = 0时,y = 0,所以图像经过原点。

对于选项B,y = x^2,当x = 0时,y = 0^2 = 0,但该函数图像是一个开口向上的抛物线,其顶点在原点,但并不表示所有图像都经过原点(除了顶点外,其他点都不经过原点)。

对于选项C,y = 1/x,在x接近0但x ≠ 0时,y的绝对值趋于无穷大,且图像关于原点对称,但不包括原点本身。

然而,由于题目问的是“不经过原点”的函数,我们主要关注B选项,因为B选项的图像除了顶点外确实不经过原点。

对于选项D,由于对数函数的定义域要求x必须大于0(且底数a > 0, a ≠ 1),所以其图像不经过原点。

但根据题目描述“且定义域为(0, +∞)”,我们实际上不需要考虑定义域外的点,因此这里主要关注B选项。

3、在复数范围内,方程 x^2 + 4 = 0 的解为 ( )A. x = ±2B. x = ±2iC. x = 2D. x = 2i答案:B. x = ±2i解析:对于方程 x^2 + 4 = 0,我们首先尝试在实数范围内求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2005年研究生入学考试数学一模拟试题参考答案一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题 (1) [解] 0()()()()lim x f x x f x f x x f x x x αβ∆→+∆---⎡⎤-⎢⎥∆∆⎣⎦0()()()()lim x f x x f x f x x f x x x αβαβαβ∆→⎡⎤+∆---=+⎢⎥∆-⎣⎦()()()()f x f x f x αβαβ'''=+=+(2)[解] ,01()1,1x x f x x x≤<⎧⎪=⎨≥⎪⎩ 100113()2eef x dx xdx dx x =+=⎰⎰⎰(3)[解]令,,y dy duu y ux u x x dx dx===+ 代入方程 1()du u x u dx uϕ+=+ln .1()du dx Cx x u ϕ⇒==⎰由通解1ln .ln x x y Cx Cx y u =⇒== 11()du u uϕ=⎰.两边取微分,得 2221111()().1()u x u u x uϕϕϕ=-⇒=-⇒=-(4) [解]22?4L xdy ydx x y -=+⎰22222224(,), 4(4)y P y x P x y x y y x y ∂-=-=+∂+ ()22222224(,), 44x Q y x Q x y x y x x y ∂-==+∂+L 包含(0,0)O 于其内,∴P Q y x∂∂≠∂∂. 作222*:4,((0,1))L x y εε+=∈ 则**22214LL L xdy ydx xdy ydx x y ε-==-+⎰⎰⎰**2212(11)D D dxdy dxdy εε=+=⎰⎰⎰⎰222επεπε==(5)[解] 2311(2)(5)0A A E A E A E E +-=-+-=(2)(5),A E A E E ⇒-+=∴1(2)5.A E A E --=+(6)[解] 22(234)(234)[(234)]E X Y D X y E X Y -+=-++-+24()9()2cov(2,3)(434)42593622(3)0.45625305D X D Y X Y =++-+-+=⨯+⨯+⨯⨯-⨯⨯+=二、选择题(本题共8小题,每小题4分,满分32分,每小题给出的四个选项中,只有一项符合要求,把所选项前的字母填在题后的括号内) (7)[解] 112lim ()n n n n n nI e→∞++=+ 11001ln 1dxx x ee⎰===. 选(A )(8)[解] 000210.()2()()10,y yy f x f x f x ''''''--=--= 00()0,()1f x f x '''=⇒= 选(A )(9)[解]11(1),(0)n n n n u u ∞-=->∑条件收敛.由条件收敛级数的所有正项与所有负项所构成的级数发散. ∴选 (C)(10 [解] 212,2()yy f f y C x '''==+ 由1(,0)()y f x x C x x '=⇒=222(,)()y f y x f x y y xy C x '⇒=+⇒=++由2(,0)1() 1.f x C x =⇒=故2(,)1f x y y xy =++ 选(B)(11) [解] 11121121322212n n m m mn m a a a b a a a b A aa ab ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭选 (B) 先考虑:行对行、列对列即可知(12)[解] 选 (C)(13)[解] 由题设(,)X Y 的联合分布密度21, 0,0(,)0, x b y bf x y b ⎧≤≤≤≤⎪=⎨⎪⎩其它(min(,))min(,)(,)X Y X Y f X Y +∞+∞-∞-∞E =⎰⎰dxdy22211=23y xy xb yxdxdy y dxdy b b b dy xdx b ><+==⎰⎰⎰⎰⎰⎰选(C)(14) [解] ∵0u 已知,拒绝域只能是(A),(B),又∵是单侧检验, ∴选(B)三、解答题(本题共9小题,满分94分,解答应写出文字说明、证明过程或演算步骤)(15) (本题满分12分)[解] 2201lim 1sin xx tI tdt xx→=-⎰220021200100202301lim 1sin 11lim 1sin lim (1)sin (1)sin 11cos 2sin 22sin lim 1cos 2sin 22sin lim 1tu xx x x x x u xu xduxu xudu u xudu u xudu x x x x x x x x x x x x x =→→→→→-⎡⎤=-=-+-⎢⎥⎣⎦--⎡⎤=+⎢⎥⎣⎦--⎛⎫=+= ⎪⎝⎭⎰⎰⎰⎰令(16) (本题满分11分)[解] 等式两边从0到2π积分 42220(()())cos xf t x f t dt dx xdx πππ-=⎰⎰⎰20()(())t I f t dt f t x dx π=-⎰⎰2220001()(())(())2tu t xf t dt f u du f u du ππ=-=⎰⎰⎰令又42031cos 422xdx ππ=⎰2202013(())216()f u du f u du πππ⇒=⇒=⎰⎰ ∵()f x 在0,2π⎡⎤⎢⎥⎣⎦上的平均值A. 2226()A f u du ππππ==±=⎰(17) (本题满分12分)[解] 设两旋转抛物面由xoy 平面上两抛物线22,y Ax y Bx a ==+,绕y 轴旋转而成,设1V 为被第二个抛物面所排开液体体积,则21()()2Hay a H a V dy Bππ--==⎰.设被挤上升的液体体积为2V ,则22222()()2h ah a HH y y a V dy dy A B h a H h H a AA B B πππ++-⎛⎫=- ⎪⎝⎭⎡⎤+-=--+⎢⎥⎣⎦⎰⎰由12V V =,得22222()()()[]22H a h a H h H a BA AB Bππ-+-=--+ 222().A h a H h B⇒+=+∵0h a +>.∴h a +=故液面上升高度h a H H +-= (18)(本题满分11分)[解] (1)由题设0()(),xF x f t dt =⎰又'()xxxy e xy e c =⇒=+0, lim 111()x x x c x xe c e c y y l x xe c y F x x→→++⇒===-⇒=-⇒==211()()(1.........)2!3!!x n d e d x x x f x dx x dx n --⇒==+++++321222211231..........2!3!4!!11(2)!!(1)!n n n n n n n n x x x n n nxx x n n n n --∞∞∞--===-=+++++-===-+∑∑∑ (2)即1211(1)(1)!n xx n nx e e n x x -∞==--++∑令1,x =得11(1)!n nn ∞==+∑ a(19)(本题满分12分)[解] (1)''202()2()2()22()LP Qx y y x y y y y xϕψψϕ∂∂=⇔≡⇒+=+-∂∂⎰○* 令'20()()x y y y ψϕ=⇒+= ①代入○*'()()y y ϕψ⇒= ② '''()()y y ϕψ= ③③代入① 得:''2()()y y y ϕϕ+= 特征方程210, i λλ+==±*222221()(1)21y y D y y D ϕ==-=-+ 故212()cos sin 2y c y c y y ϕ=++- 令0y =,得11220c c -=-⇒=22'2()sin 2()cos 2y c y y y c y yϕϕ⇒=+-=+令'20,(0)1y c ϕ===2'()sin 2()()cos 2y y y y y y yϕψϕ⇒=+-==+故 2()sin 2x x x ϕ=+-()cos 2x x x ψ=+(2)22002()()22()2()()2()2222OA AB I x dxx x ππππϕψππππϕψπϕπψ⎡⎤=+=++⎢⎥⎣⎦⎡⎤=+=+⎢⎥⎣⎦⎰⎰⎰x(20)[解] ① A =231112322223333234441111a a a a a a a a a a a a ⎛⎫ ⎪ ⎪⎪ ⎪ ⎪⎝⎭ 231112322223333234441111a a a a a a A a a a a a a ==14()j i i j a a π≤≤≤-由于1,2,3,4a a a a 两两不相等,从而0A ≠,于是()4,R A =而()3,R A ≤故方程组无解. ② 当1324,(0)a a k a a k k ====-≠时,方程组为23123231232312323123x kx k x k x kx k x k x kx k x k x kx k x k⎧++=⎪-+=-⎪⎨++=⎪⎪-+=-⎩ , 即 2312323123x kx k x k x kx k x k ⎧++=⎨-+=-⎩ ()()2,R A R A ==导出组的基础解系所含向量个数()321n R A -=-=12202ξββ⎛⎫⎪=-= ⎪ ⎪-⎝⎭ ,--------为导出组的基础解系,故原方程组的通解1111x k βξ-⎡⎤⎢⎥=+=⎢⎥⎢⎥⎣⎦+202k ⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦,(k 为任意常数)(21)(本题满分9分)[解]A 为正定矩阵,∴对任意的n 维非零列向量x ,有T x Ax >0,设m ∃个常数12,,,m k k k 使11220m m k x k x k x ++=两边左乘以A ,得 11220m m k Ax k Ax k Ax +++=两边左乘以(1,2,)Ti x i m =,由题设0,()0TTi j i i i x Ax i j k x Ax =≠⇒=由于0Ti i x Ax >, 则0 (1,2,)i k i m ==故1,2,,m x x x 线性无关。

(22)(本题满分9分)[解](3)1234563643636123636X E =⨯+⨯+⨯+⨯+⨯+⨯=222555()()1296D X X EX =E -=同理可得:1612555,361296Y DY E ==(23)(本题满分9分)[解] 由题设s 可知区域D 的面积S=2,于是(x,y )的联合分布密度为0.5, 01,02(,)0 x y f x y ≤≤≤≤⎧=⎨⎩,其它 Z E = 12min(,)0.50.5D D x y xdxdy ydxdy E =+⎰⎰⎰⎰12100.50.5xxdx xdy dx ydy =+⎰⎰⎰⎰[]12211001233022212112202220.5(2)0.521150.536120.50.510.50.541511.412144D D xx x x dx dxx x x Z x dxdy y dxdyx dx dy dx y dy DZ Z EZ =-+⎛⎫=-+=⎪⎝⎭E =+=+=⎛⎫=E -=-= ⎪⎝⎭⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰x。

相关文档
最新文档