2019年高考数学试题分项版—解析几何(原卷版)

合集下载

2019年高考数学试题分项版—解析几何(解析版)

2019年高考数学试题分项版—解析几何(解析版)

2019年高考数学试题分项版——解析几何(解析版)一、选择题1.(2019·全国Ⅰ文,10)双曲线C:-=1(a>0,b>0)的一条渐近线的倾斜角为130°,则C的离心率为()A.2sin 40°B.2cos 40° C. D.答案 D解析由题意可得-=tan 130°,所以e=====.2.(2019·全国Ⅰ文,12)已知椭圆C的焦点为F1(-1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.+y2=1B.+=1C.+=1D.+=1答案 B解析由题意设椭圆的方程为+=1(a>b>0),连接F1A,令|F2B|=m,则|AF2|=2m,|BF1|=3m.由椭圆的定义知,4m=2a,得m=,故|F2A|=a=|F1A|,则点A为椭圆C的上顶点或下顶点.令∠OAF2=θ(O为坐标原点),则sin θ==.在等腰三角形ABF1中,cos 2θ==,因为cos 2θ=1-2sin2θ,所以=1-22,得a2=3.又c2=1,所以b2=a2-c2=2,椭圆C的方程为+=1,故选B.3.(2019·全国Ⅱ文,9)若抛物线y2=2px(p>0)的焦点是椭圆+=1的一个焦点,则p等于()A.2 B.3 C.4 D.8答案 D解析由题意知,抛物线的焦点坐标为,椭圆的焦点坐标为(±,0),所以=,解得p=8,故选D.4.(2019·全国Ⅱ文,12)设F为双曲线C:-=1(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P,Q两点.若|PQ|=|OF|,则C的离心率为() A. B.C.2 D.答案 A解析如图,由题意知,以OF为直径的圆的方程为2+y2=①,将x2+y2=a2记为②式,①-②得x=,则以OF为直径的圆与圆x2+y2=a2的相交弦所在直线的方程为x =,所以|PQ|=2.由|PQ|=|OF|,得2=c,整理得c4-4a2c2+4a4=0,即e4-4e2+4=0,解得e =,故选A.5.(2019·全国Ⅲ文,10)已知F是双曲线C:-=1的一个焦点,点P在C上,O为坐标原点.若|OP|=|OF|,则△OPF的面积为()A. B. C. D.答案 B解析由F是双曲线-=1的一个焦点,知|OF|=3,所以|OP|=|OF|=3.不妨设点P在第一象限,P(x0,y0),x0>0,y0>0,则解得所以P,所以S△OPF=|OF|·y0=×3×=.6.(2019·北京文,5已知双曲线-y2=1(a>0)的离心率是,则a等于()A.B.4 C.2 D.答案 D解析由双曲线方程-y2=1,得b2=1,∴c2=a2+1.∴5=e2===1+.结合a>0,解得a=.7.(2019·天津文,6)已知抛物线y2=4x的焦点为F,准线为l.若l与双曲线-=1(a>0,b>0)的两条渐近线分别交于点A和点B,且|AB|=4|OF|(O为原点),则双曲线的离心率为()A. B.C.2 D.答案 D解析由题意,可得F(1,0),直线l的方程为x=-1,双曲线的渐近线方程为y=±x.将x=-1代入y=±x,得y=±,所以点A,B的纵坐标的绝对值均为.由|AB|=4|OF|可得=4,即b=2a,b2=4a2,故双曲线的离心率e===.8.(2019·浙江,2)渐近线方程为x±y=0的双曲线的离心率是()A.B.1C.D.2答案 C解析因为双曲线的渐近线方程为x±y=0,所以无论双曲线的焦点在x轴上还是在y轴上,都满足a=b,所以c=a,所以双曲线的离心率e==.9.(2019·全国Ⅰ理,10)已知椭圆C的焦点为F1(-1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.+y2=1B.+=1C.+=1D.+=1答案 B解析由题意设椭圆的方程为+=1(a>b>0),连接F1A,令|F2B|=m,则|AF2|=2m,|BF1|=3m.由椭圆的定义知,4m=2a,得m=,故|F2A|=a=|F1A|,则点A为椭圆C的上顶点或下顶点.令∠OAF2=θ(O为坐标原点),则sin θ==.在等腰三角形ABF1中,cos 2θ==,因为cos 2θ=1-2sin2θ,所以=1-22,得a2=3.又c2=1,所以b2=a2-c2=2,椭圆C的方程为+=1,故选B.10.(2019·全国Ⅱ理,8)若抛物线y2=2px(p>0)的焦点是椭圆+=1的一个焦点,则p 等于()A.2 B.3 C.4 D.8答案 D解析由题意知,抛物线的焦点坐标为,椭圆的焦点坐标为(±,0),所以=,解得p=8,故选D.11.(2019·全国Ⅱ理,11)设F 为双曲线C :-=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为( ) A. B. C .2 D. 答案 A 解析 如图,由题意知,以OF 为直径的圆的方程为2+y 2=①,将x 2+y 2=a 2记为②式,①-②得x = ,则以OF 为直径的圆与圆x 2+y 2=a 2的相交弦所在直线的方程为x =,所以|PQ |=2.由|PQ |=|OF |,得2=c ,整理得c 4-4a 2c 2+4a 4=0,即e 4-4e 2+4=0,解得e= ,故选A.12.(2019·全国Ⅲ理,10)双曲线C :-=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点.若|PO |=|PF |,则△PFO 的面积为( ) A.B.C .2D .3答案 A解析 不妨设点P 在第一象限,根据题意可知c 2=6, 所以|OF |= .又tan ∠POF ==,所以等腰△POF 的高h = ×=,所以S △PFO =× ×=. 13.(2019·北京理,4)已知椭圆22221(0)x y a b a b +=>>的离心率为12,则( )A .222a b =B .2234a b =C .2a b =D .34a b =【思路分析】由椭圆离心率及隐含条件222a b c =+得答案.【解析】:由题意,12c a =,得2214c a =,则22214a b a -=,22244a b a ∴-=,即2234a b =.故选:B .【归纳与总结】本题考查椭圆的简单性质,熟记隐含条件是关键,是基础题.14.(2019·北京理,8)数学中有许多形状优美、寓意美好的曲线,曲线22:1||C x y x y +=+就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是( )A .①B .②C .①②D .①②③【思路分析】将x 换成x -方程不变,所以图形关于y 轴对称,根据对称性讨论y 轴右边的图形可得.【解析】:将x 换成x -方程不变,所以图形关于y 轴对称, 当0x =时,代入得21y =,1y ∴=±,即曲线经过(0,1),(0,1)-;当0x >时,方程变为2210y xy x -+-=,所以△224(1)0x x =--…,解得(0x ∈, 所以x 只能取整数1,当1x =时,20y y -=,解得0y =或1y =,即曲线经过(1,0),(1,1), 根据对称性可得曲线还经过(1,0)-,(1,1)-, 故曲线一共经过6个整点,故①正确.当0x >时,由221x y xy +=+得222212x y x y xy ++-=…,(当x y =时取等),222x y ∴+…,∴C 上y ,根据对称性可得:曲线C在x 轴上图形面积大于矩形面积122=⨯=,x 轴下方的面积大于等腰直角三角形的面积12112=⨯⨯=,因此曲线C 所围成的“心形”区域的面积大于213+=,故③错误. 故选:C .【归纳与总结】本题考查了命题的真假判断与应用,属中档题.15.(2019·天津理,5)已知抛物线y2=4x的焦点为F,准线为l.若l与双曲线-=1(a >0,b>0)的两条渐近线分别交于点A和点B,且|AB|=4|OF|(O为原点),则双曲线的离心率为()A. B.C.2 D.答案 D解析由题意,可得F(1,0),直线l的方程为x=-1,双曲线的渐近线方程为y=±x.将x =-1代入y=±x,得y=±,所以点A,B的纵坐标的绝对值均为.由|AB|=4|OF|可得=4,即b=2a,b2=4a2,故双曲线的离心率e===.二、填空题1.(2019·全国Ⅲ文,15)设F1,F2为椭圆C:+=1的两个焦点,M为C上一点且在第一象限.若△MF1F2为等腰三角形,则M的坐标为________.答案(3,)解析不妨令F1,F2分别为椭圆C的左、右焦点,根据题意可知c==4.因为△MF1F2为等腰三角形,所以易知|F1M|=2c=8,所以|F2M|=2a-8=4.设M(x,y),则得所以M的坐标为(3,).2.(2019·北京文,11)设抛物线y2=4x的焦点为F,准线为l.则以F为圆心,且与l相切的圆的方程为________.答案(x-1)2+y2=4解析∵抛物线y2=4x的焦点F的坐标为(1,0),准线l为直线x=-1,∴圆的圆心坐标为(1,0).又∵圆与l相切,∴圆心到l的距离为圆的半径,∴r=2.∴圆的方程为(x-1)2+y2=4.3.(2019·浙江,12)已知圆C的圆心坐标是(0,m),半径长是r.若直线2x-y+3=0与圆C 相切于点A(-2,-1),则m=________,r=________.答案-2解析 方法一 设过点A (-2,-1)且与直线2x -y +3=0垂直的直线方程为l :x +2y +t =0,所以-2-2+t =0,所以t =4,所以l :x +2y +4=0,令x =0,得m =-2,则r = = .方法二 因为直线2x -y +3=0与以点(0,m )为圆心的圆相切,且切点为A (-2,-1),所以×2=-1,所以m =-2,r = = .4.(2019·浙江,15)已知椭圆+=1的左焦点为F ,点P 在椭圆上且在x 轴的上方.若线段PF 的中点在以原点O 为圆心 ,|OF |为半径的圆上,则直线PF 的斜率是________. 答案解析 依题意,设点P (m ,n )(n >0),由题意知F (-2,0),|OF |=2,所以线段FP 的中点M在圆x 2+y 2=4上,所以2+2=4,又点P (m ,n )在椭圆 +=1上,所以+=1,所以4m 2-36m -63=0,所以m =-或m =(舍去),当m =-时,n =,所以k PF == .5.(2019·江苏,7)在平面直角坐标系xOy 中,若双曲线x 2-=1(b >0)经过点(3,4),则该双曲线的渐近线方程是_________________. 答案 y =± x解析 因为双曲线x 2-=1(b >0)经过点(3,4),所以9-=1,得b = ,所以该双曲线的渐近线方程是y =±bx =± x .6.(2019·江苏,10)在平面直角坐标系xOy 中,P 是曲线y =x +(x >0)上的一个动点,则点P 到直线x +y =0的距离的最小值是________. 答案 4解析 设P,x >0,则点P 到直线x +y =0的距离d ==≥=4,当且仅当2x =,即x = 时取等号,故点P 到直线x +y =0的距离的最小值是4.7.(2019·全国Ⅰ理,16)已知双曲线C :-=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若 = , · =0,则C 的离心率为________. 答案 2解析 因为F 1B →·F 2B →=0,所以F 1B ⊥F 2B ,如图.因为=,所以点A为F1B的中点,又点O为F1F2的中点,所以OA∥BF2,所以F1B⊥OA,所以|OF1|=|OB|,所以∠BF1O=∠F1BO,所以∠BOF2=2∠BF1O.因为直线OA,OB为双曲线C的两条渐近线,所以tan∠BOF2=,tan∠BF1O=.因为tan∠BOF2=tan(2∠BF1O),所以=,所以b2=3a2,所以c2-a2=3a2,即2a=c,所以双曲线的离心率e==2.8.(2019·全国Ⅲ理,15)设F1,F2为椭圆C:+=1的两个焦点,M为C上一点且在第一象限.若△MF1F2为等腰三角形,则M的坐标为________.答案(3,)解析不妨令F1,F2分别为椭圆C的左、右焦点,根据题意可知c==4.因为△MF1F2为等腰三角形,所以易知|F1M|=2c=8,所以|F2M|=2a-8=4.设M(x,y),则=,=,,,得所以M的坐标为(3,).三、解答题1.(2019·全国Ⅰ文,21)已知点A,B关于坐标原点O对称,|AB|=4,⊙M过点A,B且与直线x+2=0相切.(1)若A在直线x+y=0上,求⊙M的半径;(2)是否存在定点P,使得当A运动时,|MA|-|MP|为定值?并说明理由.解(1)因为⊙M过点A,B,所以圆心M在AB的垂直平分线上.由已知A在直线x+y=0上,且A,B关于坐标原点O对称,所以M在直线y=x上,故可设M(a,a).因为⊙M与直线x+2=0相切,所以⊙M的半径为r=|a+2|.由已知得|AO|=2.又MO⊥AO,故可得2a2+4=(a+2)2,解得a=0或a=4.故⊙M的半径r=2或r=6.(2)存在定点P(1,0),使得|MA|-|MP|为定值.理由如下:设M(x,y),由已知得⊙M的半径为r=|x+2|,|AO|=2.由于MO⊥AO,故可得x2+y2+4=(x+2)2,化简得M的轨迹方程为y2=4x.因为曲线C:y2=4x是以点P(1,0)为焦点,以直线x=-1为准线的抛物线,所以|MP|=x+1.因为|MA|-|MP|=r-|MP|=x+2-(x+1)=1,所以存在满足条件的定点P.2.(2019·全国Ⅱ文,20)已知F1,F2是椭圆C:+=1(a>b>0)的两个焦点,P为C上的点,O为坐标原点.(1)若△POF2为等边三角形,求C的离心率;(2)如果存在点P,使得PF1⊥PF2,且△F1PF2的面积等于16,求b的值和a的取值范围.解(1)连接PF1.由△POF2为等边三角形可知在△F1PF2中,∠F1PF2=90°,|PF2|=c,|PF1|=c,于是2a=|PF1|+|PF2|=(+1)c,故C的离心率为e==-1.(2)由题意可知,若满足条件的点P(x,y)存在,则|y|·2c=16,·=-1,即c|y|=16,①x2+y2=c2,②又+=1.③由②③及a2=b2+c2得y2=.又由①知y2=,故b=4.由②③及a2=b2+c2得x2=(c2-b2),所以c2≥b2,从而a2=b2+c2≥2b2=32,故a≥4.当b=4,a≥4时,存在满足条件的点P.所以b=4,a的取值范围为[4,+∞).3.(2019·全国Ⅲ文,21)已知曲线C:y=,D为直线y=-上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点;(2)若以E为圆心的圆与直线AB相切,且切点为线段AB的中点,求该圆的方程.(1)证明设D,A(x1,y1),则=2y1.由于y′=x,所以切线DA的斜率为x1,故=x1,整理得2tx1-2y1+1=0.设B(x2,y2),同理可得2tx2-2y2+1=0.所以直线AB的方程为2tx-2y+1=0.所以直线AB过定点.(2)解由(1)得直线AB的方程为y=tx+.由可得x2-2tx-1=0,于是x1+x2=2t,y1+y2=t(x1+x2)+1=2t2+1.设M为线段AB的中点,则M.由于⊥,而=(t,t2-2),与向量(1,t)平行,所以t+(t2-2)t=0.解得t=0或t=±1.当t=0时,||=2,所求圆的方程为x2+2=4;当t=±1时,||=,所求圆的方程为x2+2=2.4.(2019·北京文,19)已知椭圆C:+=1的右焦点为(1,0),且经过点A(0,1).(1)求椭圆C的方程;(2)设O为原点,直线l:y=kx+t(t≠±1)与椭圆C交于两个不同点P,Q,直线AP与x轴交于点M,直线AQ与x轴交于点N.若|OM|·|ON|=2,求证:直线l经过定点.(1)解由题意,得b2=1,c=1,所以a2=b2+c2=2.所以椭圆C的方程为+y2=1.(2)证明设P(x1,y1),Q(x2,y2),则直线AP的方程为y=x+1.令y=0,得点M的横坐标x M=-.又y1=kx1+t,从而|OM|=|x M|=.同理,|ON|=.由得(1+2k2)x2+4ktx+2t2-2=0,则x1+x2=-,x1x2=.所以|OM|·|ON|=·===2.又|OM|·|ON|=2,所以2=2.解得t=0,所以直线l经过定点(0,0).5.(2019·天津文,19)设椭圆+=1(a>b>0)的左焦点为F,左顶点为A,上顶点为B.已知|OA|=2|OB|(O为原点).(1)求椭圆的离心率;(2)设经过点F且斜率为的直线l与椭圆在x轴上方的交点为P,圆C同时与x轴和直线l 相切,圆心C在直线x=4上,且OC∥AP.求椭圆的方程.解(1)设椭圆的半焦距为c,由已知有a=2b,又由a2=b2+c2,消去b得a2=2+c2,解得=.所以椭圆的离心率为.(2)由(1)知,a=2c,b=c,故椭圆方程为+=1.由题意,F(-c,0),则直线l的方程为y=(x+c).点P的坐标满足消去y并化简,得到7x2+6cx-13c2=0,解得x1=c,x2=-.代入到l的方程,解得y1=c,y2=-c.因为点P在x轴上方,所以P.由圆心C在直线x=4上,可设C(4,t).因为OC∥AP,且由(1)知A(-2c,0),故=,解得t=2.因为圆C与x轴相切,所以圆C的半径为2.又由圆C与l相切,得=2,可得c=2.所以,椭圆的方程为+=1.6.(2019·浙江,21)如图,已知点F(1,0)为抛物线y2=2px(p>0)的焦点.过点F的直线交抛物线于A,B两点,点C在抛物线上,使得△ABC的重心G在x轴上,直线AC交x轴于点Q,且Q在点F的右侧.记△AFG,△CQG的面积分别为S1,S2.(1)求p的值及抛物线的准线方程;(2)求的最小值及此时点G的坐标.解(1)由题意得=1,即p=2.所以,抛物线的准线方程为x=-1.(2)设A(x A,y A),B(x B,y B),C(x C,y C),重心G(x G,y G).令y A=2t,t≠0,则x A=t2.由于直线AB过点F,故直线AB的方程为x=y+1,代入y2=4x,得y2-y-4=0,故2ty B=-4,即y B=-,所以B.又由于x G=(x A+x B+x C),y G=(y A+y B+y C)及重心G在x轴上,故2t-+y C=0.即C,G.所以,直线AC的方程为y-2t=2t(x-t2),得Q(t2-1,0).由于Q在焦点F的右侧,故t2>2.从而====2-.令m=t2-2,则m>0,=2-=2-≥2-=1+.当且仅当m=时,取得最小值1+,此时G(2,0).7.(2019·江苏,17)如图,在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的焦点为F1(-1,0),F2(1,0).过F2作x轴的垂线l,在x轴的上方,l与圆F2:(x-1)2+y2=4a2交于点A,与椭圆C交于点D.连接AF1并延长交圆F2于点B,连接BF2交椭圆C于点E,连接DF1.已知DF1=.(1)求椭圆C的标准方程;(2)求点E的坐标.解(1)设椭圆C的焦距为2c.因为F1(-1,0),F2(1,0),所以F1F2=2,则c=1.又因为DF1=,AF2⊥x轴,所以DF2===.因此2a=DF1+DF2=4,所以a=2.由b2=a2-c2,得b2=3.所以椭圆C的标准方程为+=1.(2)方法一由(1)知,椭圆C:+=1,a=2.因为AF2⊥x轴,所以点A的横坐标为1.将x=1代入圆F2方程(x-1)2+y2=16,解得y=±4.因为点A在x轴上方,所以A(1,4).又F1(-1,0),所以直线AF1:y=2x+2.由得5x2+6x-11=0,解得x=1或x=-.将x=-代入y=2x+2,得y=-.因此B.又F2(1,0),所以直线BF2:y=(x-1).由得7x2-6x-13=0,解得x=-1或x=.又因为E是线段BF2与椭圆的交点,所以x=-1.将x=-1代入y=(x-1),得y=-.因此E.方法二由(1)知,椭圆C:+=1.如图,连接EF1.因为BF2=2a,EF1+EF2=2a,所以EF1=EB,从而∠BF1E=∠B.因为F2A=F2B,所以∠A=∠B.所以∠A=∠BF1E,从而EF1∥F2A.因为AF2⊥x轴,所以EF1⊥x轴.因为F1(-1,0),由得y=±.又因为E是线段BF2与椭圆的交点,所以y=-.因此E.8.(2019·江苏,18)如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P,Q,并修建两段直线型道路PB,QA,规划要求:线段PB,QA上的所有点到点O的距离均不小于圆O的半径.已知点A,B到直线l的距离分别为AC和BD(C,D为垂足),测得AB=10,AC=6,BD=12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)在规划要求下,若道路PB和QA的长度均为d(单位:百米),求当d最小时,P,Q两点间的距离.解方法一(1)过A作AE⊥BD,垂足为E.由已知条件得,四边形ACDE为矩形,DE=BE=AC=6,AE=CD=8.因为PB⊥AB,所以cos∠PBD=sin∠ABE===.所以PB===15.因此道路PB的长为15(百米).(2)①若P在D处,由(1)可得E在圆上,则线段BE上的点(除B,E)到点O的距离均小于圆O的半径,所以P选在D处不满足规划要求.②若Q在D处,连接AD,由(1)知AD==10,从而cos∠BAD==>0,所以∠BAD为锐角.所以线段AD上存在点到点O的距离小于圆O的半径.因此Q选在D处也不满足规划要求.综上,P和Q均不能选在D处.(3)先讨论点P的位置.当∠OBP<90°时,线段PB上存在点到点O的距离小于圆O的半径,点P不符合规划要求;当∠OBP≥90°时,对线段PB上任意一点F,OF≥OB,即线段PB上所有点到点O的距离均不小于圆O的半径,点P符合规划要求.设P1为l上一点,且P1B⊥AB,由(1)知,P1B=15,此时P1D=P1B sin∠P1BD=P1B cos∠EBA =15×=9;当∠OBP>90°时,在△PP1B中,PB>P1B=15.由上可知,d≥15.再讨论点Q的位置.由(2)知,要使得QA≥15,点Q只有位于点C的右侧,才能符合规划要求.当QA=15时,CQ===3.此时,线段QA上所有点到点O的距离均不小于圆O 的半径.综上,当PB⊥AB,点Q位于点C右侧,且CQ=3时,d最小,此时P,Q两点间的距离PQ=PD+CD+CQ=17+3.因此,d最小时,P,Q两点间的距离为17+3(百米).方法二(1)如图,过O作OH⊥l,垂足为H.以O为坐标原点,直线OH为y轴,建立如图所示的平面直角坐标系.因为BD=12,AC=6,所以OH=9,直线l的方程为y=9,点A,B的纵坐标分别为3,-3.因为AB为圆O的直径,AB=10,所以圆O的方程为x2+y2=25.从而A(4,3),B(-4,-3),直线AB的斜率为.因为PB⊥AB,所以直线PB的斜率为-,直线PB的方程为y=-x-.所以P(-13,9),PB==15.所以道路PB的长为15(百米).(2)①若P在D处,取线段BD上一点E(-4,0),则EO=4<5,所以P选在D处不满足规划要求.②若Q在D处,连接AD,由(1)知D(-4,9),又A(4,3),所以线段AD:y=-x+6(-4≤x≤4).在线段AD上取点M,因为OM=<=5,所以线段AD上存在点到点O的距离小于圆O的半径.因此Q选在D处也不满足规划要求.综上,P和Q均不能选在D处.(3)先讨论点P的位置.当∠OBP<90°时,线段PB上存在点到点O的距离小于圆O的半径,点P不符合规划要求;当∠OBP≥90°时,对线段PB上任意一点F,OF≥OB,即线段PB上所有点到点O的距离均不小于圆O的半径,点P符合规划要求.设P1为l上一点,且P1B⊥AB,由(1)知,P1B=15,此时P1(-13,9);当∠OBP>90°时,在△PP1B中,PB>P1B=15.由上可知,d≥15.再讨论点Q的位置.由(2)知,要使得QA≥15,点Q只有位于点C的右侧,才能符合规划要求.当QA=15时,设Q(a,9),由AQ==15(a>4),得a=4+3,所以Q(4+3,9).此时,线段QA上所有点到点O的距离均不小于圆O的半径.综上,当P(-13,9),Q(4+3,9)时,d最小,此时P,Q两点间的距离PQ=4+3-(-13)=17+3.因此,d最小时,P,Q两点间的距离为17+3(百米).9.(2019·全国Ⅰ理,19)已知抛物线C:y2=3x的焦点为F,斜率为的直线l与C的交点为A,B,与x轴的交点为P.(1)若|AF|+|BF|=4,求l的方程;(2)若=3,求|AB|.解设直线l:y=x+t,A(x1,y1),B(x2,y2).(1)由题设得F,故|AF|+|BF|=x1+x2+,由题设可得x1+x2=.由可得9x2+12(t-1)x+4t2=0,令Δ>0,得t<,则x1+x2=-.从而-=,得t=-.所以l的方程为y=x-.(2)由=3可得y1=-3y2,由可得y2-2y+2t=0,所以y1+y2=2,从而-3y2+y2=2,故y2=-1,y1=3,代入C的方程得x1=3,x2=,即A(3,3),B,故|AB|=.10.(2019·全国Ⅱ理,21)已知点A(-2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为-.记M的轨迹为曲线C.(1)求C的方程,并说明C是什么曲线;(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PE⊥x轴,垂足为E,连接QE 并延长交C于点G.(ⅰ)证明:△PQG是直角三角形;(ⅱ)求△PQG面积的最大值.(1)解由题设得·=-,化简得+=1(|x|≠2),所以C为中心在坐标原点,焦点在x轴上的椭圆,不含左右顶点.(2)(ⅰ)证明设直线PQ的斜率为k,则其方程为y=kx(k>0).由得x=±.记u=,则P(u,uk),Q(-u,-uk),E(u,0).于是直线QG的斜率为,方程为y=(x-u).由得(2+k2)x2-2uk2x+k2u2-8=0.①设G(x G,y G),则-u和x G是方程①的解,故x G=,由此得y G=.从而直线PG的斜率为=-,因为k PQ·k PG=-1.所以PQ⊥PG,即△PQG是直角三角形.(ⅱ)解由(ⅰ)得|PQ|=2u,|PG|=,所以△PQG的面积S=|PQ||PG|==.设t=k+,则由k>0得t≥2,当且仅当k=1时取等号.因为S=在[2,+∞)上单调递减,所以当t=2,即k=1时,S取得最大值,最大值为. 因此,△PQG面积的最大值为.11.(2019·全国Ⅲ理,21)已知曲线C:y=,D为直线y=-上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点;(2)若以E为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.(1)证明 设D,A (x 1,y 1),则=2y 1.由y ′=x ,所以切线DA 的斜率为x 1,故=x 1.整理得2tx 1-2y 1+1=0.设B (x 2,y 2),同理可得2tx 2-2y 2+1=0. 故直线AB 的方程为2tx -2y +1=0. 所以直线AB 过定点.(2)解 由(1)得直线AB 的方程为y =tx +. 由可得x 2-2tx -1=0,Δ=4t 2+4>0, 于是x 1+x 2=2t ,x 1x 2=-1,y 1+y 2 =t (x 1+x 2)+1=2t 2+1, |AB |= |x 1-x 2|= =2(t 2+1). 设d 1,d 2分别为点D ,E 到直线AB 的距离, 则d 1= ,d 2=,因此,四边形ADBE 的面积S =|AB |(d 1+d 2) =(t 2+3) .设M 为线段AB 的中点,则M. 由于⊥ ,而 =(t ,t 2-2),与坐标为(1,t )的向量平行,所以t +(t 2-2)t =0. 解得t =0或t =±1.当t =0时,S =3;当t =±1时,S =4 . 因此,四边形ADBE 的面积为3或4 .12.(2019·北京理,18)(14分)已知抛物线2:2C x py =-经过点(2,1)-. (Ⅰ)求抛物线C 的方程及其准线方程;(Ⅱ)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线1y =-分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.【思路分析】(Ⅰ)代入点(2,1)-,解方程可得p ,求得抛物线的方程和准线方程;(Ⅱ)抛物线24x y =-的焦点为(0,1)F -,设直线方程为1y kx =-,联立抛物线方程,运用韦达定理,以及直线的斜率和方程,求得A ,B 的坐标,可得AB 为直径的圆方程,可令0x =,解方程,即可得到所求定点.【解析】:(Ⅰ)抛物线2:2C x py =-经过点(2,1)-.可得42p =,即2p =, 可得抛物线C 的方程为24x y =-,准线方程为1y =; (Ⅱ)证明:抛物线24x y =-的焦点为(0,1)F -,设直线方程为1y kx =-,联立抛物线方程,可得2440x kx +-=, 设1(M x ,1)y ,2(N x ,2)y , 可得124x x k +=-,124x x =-, 直线OM 的方程为11y y x x =,即14xy x =-, 直线ON 的方程为22y y x x =,即24xy x =-, 可得14(A x ,1)-,24(B x ,1)-, 可得AB 的中点的横坐标为121142()224kk x x -+==-, 即有AB 为直径的圆心为(2,1)k -,半径为212||1441616||222AB k x x +=-==, 可得圆的方程为222(2)(1)4(1)x k y k -++=+, 化为224(1)4x kx y -++=, 由0x =,可得1y =或3-.则以AB 为直径的圆经过y 轴上的两个定点(0,1),(0,3)-.【归纳与总结】本题考查抛物线的定义和方程、性质,以及圆方程的求法,考查直线和抛物线方程联立,运用韦达定理,考查化简整理的运算能力,属于中档题.13.(2019·天津理,18)设椭圆+=1(a >b >0)的左焦点为F ,上顶点为B .已知椭圆的短轴长为4,离心率为. (1)求椭圆的方程;(2)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若|ON |=|OF |(O 为原点),且OP ⊥MN ,求直线PB 的斜率.解(1)设椭圆的半焦距为c,依题意,2b=4,=,又a2=b2+c2,可得a=,b=2,c =1.所以椭圆的方程为+=1.(2)由题意,设P(x P,y P)(x P≠0),M(x M,0),直线PB的斜率为k(k≠0),又B(0,2),则直线PB 的方程为y=kx+2,与椭圆方程联立得整理得(4+5k2)x2+20kx=0,可得x P=-,代入y=kx+2得y P=.所以直线OP的斜率为=.在y=kx+2中,令y=0,得x M=-.由题意得N(0,-1),所以直线MN的斜率为-.由OP⊥MN,得·=-1,化简得k2=,从解得k=±.所以直线PB的斜率为或-.。

2019年浙江省高考数学试卷(原卷答案解析版)

2019年浙江省高考数学试卷(原卷答案解析版)
A.当 B.当
C.当 D.当
【答案】A
【解析】
【分析】
本题综合性较强,注重重要知识、基础知识、运算求解能力、分类讨论思想的考查.本题从确定不动点出发,通过研究选项得解.
【详解】选项B:不动点满足 时,如图,若 ,
排除
如图,若 为不动点 则
选项C:不动点满足 ,不动点为 ,令 ,则 ,
排除
选项D:不动点满足 ,不动点为 ,令 ,则 ,排除.
(1)当 时,求函数 的单调区间;
(2)对任意 均有 求 的取值范围.
注: 为自然对数的底数.
2019年普通高等学校招生全国统一考试(浙江卷)数学
参考公式:
若事件 互斥,则
若事件 相互独立,则
若事件 在一次试验中发生的概率是 ,则 次独立重复试验中事件 恰好发生 次的概率
台体的体积公式
其中 分别表示台体的上、下底面积, 表示台体的高
(2)当 时,分三种情况,如图 与 若有三个交点,则 ,答案选D
下面证明: 时,
时 , ,则 ,才能保证至少有两个零点,即 ,若另一零点在
【点睛】遇到此类问题,不少考生会一筹莫展.由于方程中涉及 两个参数,故按“一元化”想法,逐步分类讨论,这一过程中有可能分类不全面、不彻底..
10.设 ,数列 中, , ,则( )
【详解】方法1:由分布列得 ,则
,则当 在 内增大时, 先减小后增大.
方法2:则
故选D.
【点睛】易出现的错误有,一是数学期望、方差以及二者之间的关系掌握不熟,无从着手;二是计算能力差,不能正确得到二次函数表达式.
8.设三棱锥 的底面是正三角形,侧棱长均相等, 是棱 上的点(不含端点),记直线 与直线 所成角为 ,直线 与平面 所成角为 ,二面角 的平面角为 ,则( )

2019高考试题《圆锥曲线》《导数》《解析几何》解析分类汇编19页

2019高考试题《圆锥曲线》《导数》《解析几何》解析分类汇编19页

2019高考试题解析分类汇编:圆锥曲线一、选择题1.1(2019年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))双曲线2214x y -=的顶点到其渐近线的距离等于 ( )A .25B .45 C .255D .4552214x y -=的顶点坐标为(2,0)±,渐近线为2204x y -=,即20x y ±=.带入点到直线距离公式20022Ax Bx C d A B++=+2222551(2)±=+±.2(2019年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))已知中心在原点的双曲线C 的右焦点为()3,0F ,离心率等于32,在双曲线C 的方程是( )A .22145x y -=B .22145x y -= C.22125x y -=D .22125x y -==. B ;依题意3c =,32e =,所以2a =,从而24a =,2225b c a =-=,故选B .3 3.(2019年高考新课标1(理))已知双曲线C :22221x y a b -=(0,0a b >>)的离心率为52,则C 的渐近线方程为 ( )A .14y x =±B .13y x =±C .12y x =±D .y x =±已知双曲线C :的离心率为,故有=,所以=,解得=.故C 的渐近线方程为,故选C .本题考查双曲线的方程以及,,a b c 的计算。

双曲线1C 中,2222cos ,sin a b θθ==,所以21c =,离心率为221c o s e θ=。

2C 中,22222s i n ,s i n t a n a b θθθ==,所以22222s i n s i nt a nt a nc θθθθ=+=。

离心率为2222tan 1sin cos e θθθ==,所以两个双曲线有相同的离心率,选D.4 4.(2019年高考四川卷(理))抛物线24y x =的焦点到双曲线2213yx -=的渐近线的距离是 ( )A .12B .32C .1D .3B因为抛物线方程为y 2=4x 。

2019年高考真题和模拟题分项汇编数学(理)专题05平面解析几何

2019年高考真题和模拟题分项汇编数学(理)专题05平面解析几何

专题05平面解析几何1.【2019年高考全国I 卷理数】已知椭圆C 的焦点为F 1( -1,0) , F",0),过F 2的直线与C 交于A , B两点•若| AF 2 | = 2|F 2B |, IABUIBF 」则C 的方程为2 2x y‘ 13 22 2x y ’C .14 3【答案】BF 2B = n ,贝U AF 2 = 2n , BF | = | AB = 3n ,由椭圆的定义有 2a = BF , + BF 2 = 4n j AF 1 =2a — AF 2 =2n .2 22a - 4 n = 2、3,. a — 3,. b - a - c =3-1=2,.所求椭圆方程为1,故选 B .3 2在△ AR F 2 和△ BF 1F 2 中,由余弦定理得 』{ + 4 _ 2 '2n 2 co# AF 2F 1 _、n +4-2,n 2 ■co^BF 2F 1 = 9n2 2x_丄5 4【解析】法一:如图,由已知可设在△ARB 中,由余弦定理推论得cos RAB 』匹 J在厶AFT ?中,由余弦定理得2 24n 4n1-2 2n 2n 4,解得 n =3 由椭圆的定义有 2a = BE * BF 2 = 4n ,二 AF 1 — 2^ - AF 2 — 2n .3又AF2R , BF2F-| 互补,cos AF2R cos BF2F^ 0,两式消去cos AF2F-| , cos BF2R,得OF 为直径的圆与圆x 2 y^a 2交于P , Q 两点.C . 23n 6=11^,解得n 订.2"曲厶3, a 『3b 2 二 a 2 -c 2 =3-1 =2,.所求椭圆方2 2程为y1,故选B .32【名师点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、 转化与化归的能力,很好地落 实了直观想象、逻辑推理等数学素养.22 .【2019年高考全国n 卷理数】若抛物线 y =2px(p>0)的焦点是椭圆2 2x y ‘ 1的一个焦点,贝U P=3p P【答案】D【解析】因为抛物线y 2 =2px(p 0)的焦点(卫,0)是椭圆 22y1的一个焦点,所以3p-p =3p PX 2解得P =8,故选D .【名师点睛】本题主要考查抛物线与椭圆的几何性质,渗透逻辑推理、运算能力素养•解答时,利用抛 物线与椭圆有共同的焦点即可列出关于P 的方程,从而解出P ,或者利用检验排除的方法, 如P = 2时,抛物线焦点为(1, 0),椭圆焦点为(塑,0),排除A ,同样可排除B , C ,从而得到选D .23.【2019年咼考全国n 卷理数】设F 为双曲线C : x-^a2=1(a 0,b 0)的右焦点,0为坐标原点,以b3【答案】A【解析】设PQ与X轴交于点A,由对称性可知PQ—X轴,又:,陀讣^门叭寺PA为以OF为直径的圆的半径,OF,贝U C的离心率为.52 2 2 2又P点在圆—上,专牛荷,即『汽宀詈2•避免代数法从头至尾运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.解答本题时,准确画图,由图形对称性得出P点坐2 24.【2019年高考全国川卷理数】双曲线C: - — =1的右焦点为F,点P在C的一条渐近线上,4 2坐标原点,若PO = PF,则APFO的面积为3.24 C. 2 23、.2 2【答案】A【解析】由a = 2, b = 2 , c : a2b2 =46, * PO| =|PF X p3【名师点睛】本题考查以双曲线为载体的三角形面积的求法,渗透了直观想象、逻辑推理和数学运算素又P 在C 的一条渐近线上,不妨设为在y 」x 上,则yp^ x p 二三乜aa 2 21…PFO = OFy p辽,故选A .4所以x可取的整数有0, -1, 1,从而曲线C : x 2y 2 =^1 xy 恰好经过(0, 1),(0, -1),(1, 0),(1,养•采取公式法,利用数形结合、转化与化归和方程思想解题•忽视圆锥曲线方程和两点间的距离公式 的联系导致求解不畅,采取列方程组的方式解出三角形的高,便可求三角形面积.5.【2019年高考北京卷理 数】 已知財椭圆 22x y 2 2 =1 (a > b > 0)ab的离心率为 1,则 2 2A • a =2bB • 3a =4bC • a=2bD • 3a=4b【答案】B【解析】椭圆的离心率 e c 1 2 ,c 二 a 2 -b 2,化简得 3a 2 二 4b 2 ,a 2故选B.【名师点睛】本题考查椭圆的标准方程与几何性质,属于容易题,注重基础知识 ?基本运算能力的考查由题意利用离心率的定义和 a,b,c 的关系可得满足题意的等式.6 .【2019年高考北京卷理数】数学中有许多形状优美、寓意美好的曲线,曲线① 曲线C 恰好经过6个整点(即横、纵坐标均为整数的点);② 曲线C 上任意一点到原点的距离都不超过,2 ;③曲线C 所围成的 心形”区域的面积小于3•其中,所有正确结论的序号是 A •① C .①② 【答案】C2 2C : x y =1|x|y 就B •② D .①②③是其中之一(如图)2 2【解析】由x +y =l + xy得,y 十x2, |x|J3x24,142 4,x3所以x可取的整数有0, -1, 1,从而曲线C : x2y2=^1xy恰好经过(0, 1),(0, -1),(1, 0),(1,1), (- 1, 0), (-1, 1),共6个整点,结论①正确.2 2「22 22X+V22 亠 由x +y =1 + x y 得,X 2 + V 2, 1十——匚,解得x 2 + y 2兰2,所以曲线C 上任意一点到原点的距2离都不超过 2 .结论②正确如图所示,易知 A 0,-1 ,B 1,0 ,C 1,1, ,D 0,1,13四边形ABCD 的面积S 四边形ABCD =丄1 11 仁3,很明显 心形”区域的面积大于2乐边形ABCD ,即心形22形”区域的面积大于 3,说法③错误.故选C.【名师点睛】本题考查曲线与方程 ?曲线的几何性质,基本不等式及其应用,属于难题,注重基础知识 ? 基本运算能力及分析问题、解决问题的能力考查,渗透 美育思想”将所给方程进行等价变形确定 x 的范 围可得整点坐标和个数,结合均值不等式可得曲线上的点到坐标原点距离的最值和范围,禾U 用图形的对 称性和整点的坐标可确定图形面积的范围27 .【2019年高考天津卷理数】已知抛物线V =4x 的焦点为F ,准线为I ,若I 与双曲线线的离心率为 A .22 x2a2占弘0,b0)的两条渐近线分别交于点A 和点B ,且|AB|=4|OF| ( O 为原点),则双曲【答案】D【解析】抛物线y = 4x 的准线I 的方程为x = -1,双曲线的渐近线方程为 y =x ,a 则有 A ( _1,b),B(_1_-),a—=4 , b =2a ,a故选D.【名师点睛】本题考查抛物线和双曲线的性质以及离心率的求解,解题关键是求出 只需把AB =4 0F 用a,b,c 表示出来,即可根据双曲线离心率的定义求得离心率 8 .【2019年高考浙江卷】渐近线方程为x±y=0的双曲线的离心率是C . .2【答案】C点 A(-2, -1),则 m = 【答案】-2 , , 51 1【解析】由题意可知k AC 八3 : AC : y • 1 (x 2),把(0, m)代入直线AC 的方程得m = -2,a • 5 2b --AB =—aAB 的长度•解答时,【解析】因为双曲线的渐近线方程为x_y =0,所以 a 二b ,则 c~ a2 ・b 2=2a ,所以双曲线的离【名师点睛】本题根据双曲线的渐近线方程可求得a 二b ,进一步可得离心率,属于容易题,注重了双曲线基础知识、基本计算能力的考查•理解概念,准确计算,是解答此类问题的基本要求•部分考生易出现理解性错误•9 .【2019年高考浙江卷】已知圆 C 的圆心坐标是(0, m),半径长是r 若直线2x - y • 3 = 0与圆C 相切于此时r =|AC 卜.F7 = . 5 .•首先通过确定直线AC的斜率,进一步得【名师点睛】本题主要考查圆的方程、直线与圆的位置关系到其方程,将(0,m )代入后求得m ,计算得解•解答直线与圆的位置关系问题,往往要借助于数与形的 结合,特别是要注意应用圆的几何性质•的中点在以原点 O 为圆心,OF 为半径的圆上,则直线 PF 的斜率是 【答案】,15【解析】方法1: 如图,设F 1为椭圆右焦点•由题意可知|OF|=|OM |= c= 2 ,由中位线定理可得PFj =2| OM |=4,设P (x, y ),可得(x —2)2 + y 2 =16 ,”厂、41又点P 在椭圆上且在x 轴的上方,求得 P , ,所以k pF =-= •, 15 . I 2 2 丿12方法2:(焦半径公式应用)由题意可知|OF |=|OM |= c= 2 ,3由中位线定理可得 PF 1 =2| OM |=4,即a —ex p =4n X p = --,f 厂)垂-从而可求得P i3,二5,所以k PF =—匸=15. I 2 2 丿 12【名师点睛】本题主要考查椭圆的标准方程、椭圆的几何性质、圆的方程与性质的应用,禾U 用数形结合10.【2019年高考浙江卷】 已知椭圆=1的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF2与方程—=1联立,可解得 321 x ,x =2 2(舍),思想,是解答解析几何问题的重要途径•结合图形可以发现,利用三角形中位线定理,将线段长度用圆的方程表示,与椭圆方程联立可进一步求解•也可利用焦半径及三角形中位线定理解决,则更为简洁2 211.【2019年高考全国川卷理数】设F i , F 2为椭圆C: - +—1的两个焦点,M 为C 上一点且在第一象3620限若△ MF 1F 2为等腰三角形,则 M 的坐标为 _______________ 【答案】3, 15【解析】由已知可得 a 2 =36, b 2 =20,. c 2 二a 2 - b 2 =16 ,. c =4 , 冷MFj = RF 2 =2c=8,••• MF 2 =4 .一J1设点 M 的坐标为(x o , y ° X x o A 0 , y ° A 0 ),则 S ^MF ’F 2 =? ' F 1F 2 -y 。

2019年全国高考理科数学数学分类汇编---解析几何

2019年全国高考理科数学数学分类汇编---解析几何

2019年全国高考理科数学分类汇编——解析几何1.(2019北京理科)已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则A. a 2=2b 2B. 3a 2=4b 2C. a =2bD. 3a =4b【答案】B 【解析】 【分析】由题意利用离心率的定义和,,a b c 的关系可得满足题意的等式. 【详解】椭圆的离心率2221,2c e c a b a ===-,化简得2234a b =, 故选B.【点睛】本题考查椭圆的标准方程与几何性质,属于容易题,注重基础知识、基本运算能力的考查.2.(2019北京理科)数学中有许多形状优美、寓意美好的曲线,曲线C :221||x y x y +=+就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C ; ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是 A. ① B. ②C. ①②D. ①②③【答案】C 【解析】 【分析】将所给方程进行等价变形确定x 的范围可得整点坐标和个数,结合均值不等式可得曲线上的点到坐标原点距离的最值和范围,利用图形的对称性和整点的坐标可确定图形面积的范围. 【详解】由221x y x y+=+得,221y x y x -=-,2222||3341,10,2443x x x y x ⎛⎫-=-- ⎪⎝⎭厔, 所以x 可为的整数有0,-1,1,从而曲线22:1C x y x y +=+恰好经过(0,1),(0,-1),(1,0),(1,1), (-1,0),(-1,1)六个整点,结论①正确.由221x y x y +=+得,222212x y x y +++…,解得222x y +≤,所以曲线C 上任意一点到. 结论②正确.如图所示,易知()()()()0,1,1,0,1,1,,0,1A B C D -, 四边形ABCD 的面积13111122ABCD S =⨯⨯+⨯=,很明显“心形”区域的面积大于2ABCD S ,即“心形”区域的面积大于3,说法③错误.故选C.【点睛】本题考查曲线与方程、曲线的几何性质,基本不等式及其应用,属于难题,注重基础知识、基本运算能力及分析问题解决问题的能力考查,渗透“美育思想”.3.(2019北京理科)已知抛物线C :x 2=−2py 经过点(2,−1).(Ⅰ)求抛物线C 的方程及其准线方程;(Ⅱ)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.【答案】(Ⅰ) 24x y =-,1y =;(Ⅱ)见解析. 【解析】 【分析】(Ⅰ)由题意结合点的坐标可得抛物线方程,进一步可得准线方程;(Ⅱ)联立准线方程和抛物线方程,结合韦达定理可得圆心坐标和圆的半径,从而确定圆的方程,最后令x =0即可证得题中的结论.【详解】(Ⅰ)将点()2,1-代入抛物线方程:()2221p =⨯-可得:2p =,故抛物线方程为:24x y =-,其准线方程为:1y =. (Ⅱ)很明显直线l 的斜率存在,焦点坐标为()0,1-,设直线方程为1y kx =-,与抛物线方程24x y =-联立可得:2440x kx +-=. 故:12124,4x x k x x +=-=-设221212,,,44x x M x N x ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,则12,44OM ON x x k k =-=-,直线OM方程为14x y x =-,与1y =-联立可得:14,1A x ⎛⎫- ⎪⎝⎭,同理可得24,1B x ⎛⎫- ⎪⎝⎭, 易知以AB 为直径的圆的圆心坐标为:1222,1x x ⎛⎫+- ⎪⎝⎭,圆的半径为:1222x x -, 且:()1212122222x x k x x x x ++==,12222x x -==则圆的方程为:()()()2222141x k y k -++=+,令0x =整理可得:2230y y +-=,解得:123,1y y =-=,即以AB 为直径的圆经过y 轴上的两个定点()()0,3,0,1-.【点睛】本题主要考查抛物线方程的求解与准线方程的确定,直线与抛物线的位置关系,圆的方程的求解及其应用等知识,意在考查学生的转化能力和计算求解能力.4.(2019全国1卷理科)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足.的,称为黄金分割比例),著名的“断臂维纳斯”便是.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A. 165 cmB. 175 cmC. 185 cmD. 190cm【答案】B 【解析】 【分析】理解黄金分割比例的含义,应用比例式列方程求解.【详解】设人体脖子下端至腿根的长为x cm ,肚脐至腿根的长为y cm ,则262611052x x y +==+,得42.07, 5.15x cmy cm ≈≈.又其腿长为105cm ,头顶至脖子下端的长度为26cm ,所以其身高约为42.07+5.15+105+26=178.22,接近175cm .故选B . 【点睛】本题考查类比归纳与合情推理,渗透了逻辑推理和数学运算素养.采取类比法,利用转化思想解题.5.(2019全国1卷理科)已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为A. 2212x y +=B. 22132x y +=C. 22143x y +=D.22154x y += 【答案】B【解析】 【分析】可以运用下面方法求解:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4,422cos 9n n AF F n n n BF F n ⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,A F F B F F ∠∠互补,2121c o s c o s 0A F F B F F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得2n =.22224312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B . 【详解】如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1A F B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得n =.22224312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养.6.(2019全国1卷理科)已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =,120F B F B ⋅=,则C 的离心率为____________. 【答案】2. 【解析】 【分析】通过向量关系得到1F A AB =和1OA F A ⊥,得到1AOB AOF ∠=∠,结合双曲线的渐近线可得21,BOF AOF ∠=∠02160,BOF AOF BOA ∠=∠=∠=从而由0tan 60ba==可求离心率. 【详解】如图,由1,F A AB =得1.F A AB =又12,OF OF =得OA 是三角形12F F B 的中位线,即22//,2.BF OA BF OA =由120F B F B =,得121,,F B F B OA F A ⊥⊥则1OB OF =有1AOB AOF ∠=∠,又OA 与OB 都是渐近线,得21,BOF AOF ∠=∠又21BOF AOB AOF π∠+∠+∠=,得02160,BOF AOF BOA ∠=∠=∠=.又渐近线OB 的斜率为0tan 60ba==所以该双曲线的离心率为2c e a ====. 【点睛】本题考查平面向量结合双曲线的渐进线和离心率,渗透了逻辑推理、直观想象和数学运算素养.采取几何法,利用数形结合思想解题.7.(2019全国1卷理科)已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若3AP PB =,求|AB |. 【答案】(1)12870x y --=;(2【解析】 【分析】(1)设直线l :3y =x m 2+,()11,A x y ,()22,B x y ;根据抛物线焦半径公式可得121x x =+;联立直线方程与抛物线方程,利用韦达定理可构造关于m 的方程,解方程求得结果;(2)设直线l :23x y t =+;联立直线方程与抛物线方程,得到韦达定理的形式;利用3AP PB =可得123y y =-,结合韦达定理可求得12y y ;根据弦长公式可求得结果.【详解】(1)设直线l 方程为:3y =x m 2+,()11,A x y ,()22,B x y 由抛物线焦半径公式可知:12342AF BF x x +=++= 1252x x ∴+=联立2323y x m y x⎧=+⎪⎨⎪=⎩得:()229121240x m x m +-+= 则()2212121440m m ∆=--> 12m ∴<121212592m x x -∴+=-=,解得:78m =-∴直线l 的方程为:3728y x =-,即:12870x y --= (2)设(),0P t ,则可设直线l 方程为:23x y t =+联立2233x y t y x⎧=+⎪⎨⎪=⎩得:2230y y t --= 则4120t ∆=+> 13t ∴>-122y y ∴+=,123y y t =-3AP PB = 123y y ∴=- 21y ∴=-,13y = 123y y ∴=-则AB ===【点睛】本题考查抛物线的几何性质、直线与抛物线的综合应用问题,涉及到平面向量、弦长公式的应用.关键是能够通过直线与抛物线方程的联立,通过韦达定理构造等量关系.8.(2019全国2卷理科)若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p = A. 2 B. 3 C. 4 D. 8【答案】D 【解析】 【分析】利用抛物线与椭圆有共同的焦点即可列出关于p 的方程,即可解出p ,或者利用检验排除的方法,如2p =时,抛物线焦点为(1,0),椭圆焦点为(±2,0),排除A ,同样可排除B ,C ,故选D .【详解】因为抛物线22(0)y px p =>的焦点(,0)2p是椭圆2231x y p p +=的一个焦点,所以23()2pp p -=,解得8p =,故选D .【点睛】本题主要考查抛物线与椭圆的几何性质,渗透逻辑推理、运算能力素养.9.(2019全国2卷理科)设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为A.B.C. 2D.【答案】A 【解析】【分析】准确画图,由图形对称性得出P 点坐标,代入圆的方程得到c 与a 关系,可求双曲线的离心率.【详解】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴,又||PQ OF c ==,||,2cPA PA ∴=∴为以OF 为直径的圆的半径,A ∴为圆心||2cOA =.,22c c P ⎛⎫∴ ⎪⎝⎭,又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a=∴==.e ∴=A .【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.10.(2019全国2卷理科)已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C . (1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G . (i )证明:PQG 是直角三角形;(ii )求PQG 面积的最大值.【答案】(1)详见解析(2)详见解析 【解析】 【分析】(1)分别求出直线AM 与BM 的斜率,由已知直线AM 与BM 的斜率之积为−12,可以得到等式,化简可以求出曲线C 的方程,注意直线AM 与BM 有斜率的条件;(2)(i )设出直线PQ 的方程,与椭圆方程联立,求出P ,Q 两点的坐标,进而求出点E 的坐标,求出直线QE 的方程,与椭圆方程联立,利用根与系数关系求出G 的坐标,再求出直线PG 的斜率,计算PQ PG k k 的值,就可以证明出PQG 是直角三角形;(ii )由(i )可知,,P Q G 三点坐标,PQG 是直角三角形,求出,PQ PG 的长,利用面积公式求出PQG 的面积,利用导数求出面积的最大值. 【详解】(1)直线AM 的斜率为(2)2y x x ≠-+,直线BM 的斜率为(2)2y x x ≠-,由题意可知:22124,(2)222y y x y x x x ⋅=-⇒+=≠±+-,所以曲线C 是以坐标原点为中心,焦点在x 轴上,不包括左右两顶点的椭圆,其方程为()221,242x yx +=≠±;(2)(i )设直线PQ 的方程为y kx =,由题意可知0k >,直线PQ 的方程与椭圆方程2224x y +=联立,即22,2 4.x y kx x y y ⎧=⎪=⎧⎪⇒⎨⎨+=⎩⎪=⎪⎩或x y ⎧=⎪⎪⎨⎪=⎪⎩,点P 在第一象限,所以P Q ,因此点E的坐标为直线QE 的斜率为2QE k k =,可得直线QE方程:2k y x =2222 4.k y x x y ⎧=⎪⎨⎪+=⎩,消去y得,22222128(2)021k k x k ++=+(*),设点11(,)G x y ,显然Q和1x 是方程(*)的解所以有222112128212k k x x k +-+=⇒=+,代入直线QE 方程中,得31y =G的坐标为23,直线PG 的斜率为; 3322222(2)1642(2)PGk k k k k k k -+===-+-+, 因为1()1,PQ PG k k k k=⋅-=-所以PQ PG ⊥,因此PQG 是直角三角形; (ii )由(i)可知:P Q ,G的坐标为23,PQ ==,PG ==,34218()2252PQGk k S k k ∆+==++ 42'4228(1)(1)(232)(252)k k k k S k k -+-++=++,因为0k >,所以当01k <<时,'0S >,函数()S k 单调递增,当1k >时,'0S <,函数()S k 单调递减,因此当1k =时,函数()S k 有最大值,最大值为16 (1)9 S=.【点睛】本题考查了求椭圆的标准方程,以及利用直线与椭圆的位置关系,判断三角形形状以及三角形面积最大值问题,考查了数学运算能力,考查了利用导数求函数最大值问题.11.(2019全国3卷理科)双曲线C:22 42x y-=1的右焦点为F,点P在C的一条渐近线上,O为坐标原点,若=PO PF,则△PFO的面积为A.B. C. 12xxD.【答案】A【解析】【分析】本题考查以双曲线为载体的三角形面积的求法,渗透了直观想象、逻辑推理和数学运算素养.采取公式法,利用数形结合、转化与化归和方程思想解题.详解】由2,,a b c===.,2PPO PF x=∴=,又P在C的一条渐近线上,不妨设为在2y x=上,11224PFO PS OF y∴=⋅==△,故选A.【点睛】忽视圆锥曲线方程和两点间的距离公式的联系导致求解不畅,采取列方程组的方式解出三角形的高,便可求三角形面积.12.(2019全国3卷理科)设12F F,为椭圆22:+13620x yC=的两个焦点,M为C上一点且在第一象限.若12MF F△为等腰三角形,则M 的坐标为___________.【答案】(【【解析】 【分析】根据椭圆的定义分别求出12MF MF 、,设出M 的坐标,结合三角形面积可求出M 的坐标. 【详解】由已知可得2222236,20,16,4a b c a b c ==∴=-=∴=,11228MF F F c ∴===.∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△,又12014,42MF F S y =⨯=∴=△,解得0y =, 22013620x ∴+=,解得03x =(03x =-舍去),M \的坐标为(.【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养.13.(2019全国3卷理科)已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B . (1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.【答案】(1)见详解;(2) 3或. 【解析】 【分析】(1)可设11(,)A x y ,22(,)B x y ,1(,)2D t -然后求出A ,B 两点处的切线方程,比如AD :1111()2y x x t +=-,又因为BD 也有类似的形式,从而求出带参数直线AB 方程,最后求出它所过的定点.(2)由(1)得带参数的直线AB 方程和抛物线方程联立,再通过M 为线段AB 的中点,EM AB ⊥得出t 的值,从而求出M 坐标和EM 的值,12,d d 分别为点,D E 到直线AB 的距离,则12d t d ==,结合弦长公式和韦达定理代入求解即可.【详解】(1)证明:设1(,)2D t -,11(,)A x y ,则21112y x =。

2019年高考数学试题分类汇编解析几何附答案详解

2019年高考数学试题分类汇编解析几何附答案详解

2019年高考数学试题分类汇编解析几何一、选择题.1、(2019年高考全国I 卷理科10)双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为 A .2sin40° B .2cos40°C .1sin50︒D .1cos50︒答案:C解析:由题可知,130tan ︒=-a b 即,50tan ︒=a b 则有︒︒=50cos 50sin 2222a b ,即︒︒=-50cos 50sin 22222a a c 所以︒︒=-50cos 50sin 1222e ,︒=50cos 12e ,故选D 2、(2019年高考全国I 卷理科10,文科12)已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=答案:B解析:设x B F =||2,则x B F B F AF AB B F 3||3||||||||2221==+== 由椭圆定义得x a B F B F 42||||21==+,故,23||,2||12aB F a B F ==a AF a AF a AF =-==||2||,||212在21F AF ∆和21F BF ∆中,由余弦定理得a c a a c a F AF 1224cos 22221=⨯⨯-+=∠ a a c a a c a F BF 2222212221249441cos -=⨯⨯-+=∠ 21F AF ∠、21F BF ∠互补得a a a 122=-,解得32=a ,22=b ,方程为12322=+y x 。

故选B 3、(2019年高考全国II 卷理科8,文科9)若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p=A .2B .3C .4D .8 答案:D解析:易知抛物线的焦点为)0,2(p,故椭圆焦点在x 轴上 由p p p b a c 23222=-=-=,则p p 2)2(2=,解得p=8。

2019高考数学试题汇编之平面解析几何(原卷版)

2019高考数学试题汇编之平面解析几何(原卷版)

2 B .12专题 05 平面解析几何1.【2019 年高考浙江卷】渐近线方程为 x ±y =0 的双曲线的离心率是A . 2C . 2D .22.【2019 年高考全国Ⅰ卷文数】双曲线 C :的离心率为 x 2 y 2 - a b 2= 1(a > 0, b > 0) 的一条渐近线的倾斜角为 130°,则 CA .2sin40°B .2cos40°C .1sin50︒D .1cos50︒3.【2019 年高考全国Ⅰ卷文数】已知椭圆 C 的焦点为 F 1( - 1,0),F 2(1,0),过 F 2 的直线与 C 交于 A ,B两点.若 | AF 2 |= 2 | F 2 B | , | AB |=| BF 1 | ,则 C 的方程为x 2A . + y 2 = 12x 2 y 2 C . + = 14 3x 2 y 2B . + = 13 2x 2 y 2D . + = 15 44.【2019 年高考全国Ⅱ卷文数】若抛物线 y 2=2p x (p >0)的焦点是椭圆 x 2 y 2+ = 1的一个焦点,则 p =3 p pA .2C .4B .3D .85.【2019 年高考全国Ⅱ卷文数】设 F 为双曲线 C : x 2 y 2 -a 2b 2= 1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆 x 2+y 2=a 2 交于 P ,Q 两点.若|PQ|=|OF|,则 C 的离心率为A . 2C .2B . 3D . 5x 2 y 26.【2019 年高考全国Ⅲ卷文数】已知 F 是双曲线 C : - = 1 的一个焦点,点 P 在 C 上,O 为坐标原4 5点,若 OP = OF ,则 △OPF 的面积为2 B . 52D . 92 10.【2019 年高考全国Ⅲ卷文数】设 F ,F 为椭圆 C: + = 1 的两个焦点,M 为 C 上一点且在第一象 36 20A . 32C .727.【2019 年高考北京卷文数】已知双曲线A . 6C .2x 2 a 2 - y 2= 1 (a >0)的离心率是 5 ,则 a =B .4D .128 . 【 2019 年 高 考 天 津 卷 文 数 】 已 知 抛 物 线 y 2 = 4 x 的 焦 点 为 F , 准 线 为 l. 若 l 与 双 曲 线x 2 y 2- a b 2= 1(a > 0, b > 0) 的两条渐近线分别交于点 A 和点 B ,且 |AB |= 4 | OF | (O 为原点),则双曲线的离心率为A . 2C .2B . 3D . 59.【2019 年高考北京卷文数】设抛物线 y 2=4x 的焦点为 F ,准线为 l .则以 F 为圆心,且与 l 相切的圆的方程为__________.x 2 y 21 2限.若 △MF 1F 2 为等腰三角形,则 M 的坐标为___________.11.【2019 年高考江苏卷】在平面直角坐标系 xOy 中,若双曲线 x 2 -双曲线的渐近线方程是 ▲ .y 2 b 2= 1(b > 0) 经过点(3,4),则该12.【2019 年高考江苏卷】在平面直角坐标系 xOy 中,P 是曲线 y = x +4 x( x > 0) 上的一个动点,则点 P到直线 x +y =0 的距离的最小值是 ▲.13.【2019 年高考浙江卷】已知圆 C 的圆心坐标是 (0, m ) ,半径长是 r .若直线 2 x - y + 3 = 0 与圆 C 相切于点 A(-2, -1) ,则 m =___________, r =___________.14.【2019年高考浙江卷】已知椭圆x2y2+=1的左焦点为F,点P在椭圆上且在x轴的上方,若线段PF 95的中点在以原点O为圆心,OF为半径的圆上,则直线PF的斜率是___________.15.【2019年高考全国Ⅰ卷文数】已知点A,B关于坐标原点O对称,│AB│=4,⊙M过点A,B且与直线x+2=0相切.(1)若A在直线x+y=0上,求⊙M的半径;(2)是否存在定点P,使得当A运动时,│MA│−│MP│为定值?并说明理由.16.【2019年高考全国Ⅱ卷文数】已知F,F是椭圆C:12x2y2+a2b2=1(a>b>0)的两个焦点,P为C上一点,O为坐标原点.(1)若△POF2为等边三角形,求C的离心率;(2)如果存在点P,使得PF1⊥PF2,且△F1PF2的面积等于16,求b的值和a的取值范围.x2117.【2019年高考全国Ⅲ卷文数】已知曲线C:y=,D为直线y=-上的动点,过D作C的两条切线,22切点分别为A,B.2(1)证明:直线 AB 过定点;(2)若以 E(0,52)为圆心的圆与直线 AB 相切,且切点为线段 AB 的中点,求该圆的方程.18.【2019 年高考北京卷文数】已知椭圆C : x 2 y 2+ a b 2= 1 的右焦点为 (1,0) ,且经过点 A(0,1) .(1)求椭圆 C 的方程;(2)设 O 为原点,直线 l : y = kx + t (t ≠ ±1) 与椭圆 C 交于两个不同点 P ,Q ,直线 AP 与 x 轴交于点M ,直线 AQ 与 x 轴交于点 N ,若|OM |·|ON |=2,求证:直线 l 经过定点.19.【2019 年高考天津卷文数】设椭圆知 3 | OA |= 2 | OB | (O 为原点).(1)求椭圆的离心率;x 2 y 2 + a 2 b 2= 1(a > b > 0) 的左焦点为 F ,左顶点为 A ,上顶点为 B.已1 l 0)(2)设经过点 F 且斜率为34的直线 l 与椭圆在 x 轴上方的交点为 P ,圆 C 同时与 x 轴和直线 l 相切,圆心 C 在直线 x =4 上,且 O C ∥AP ,求椭圆的方程.20.【2019 年高考江苏卷】如图,在平面直角坐标系 xOy 中,椭圆 C:x 2 y 2 + a 2 b 2= 1(a > b > 0) 的焦点为 F 1(–、0),F 2(1,0).过 F 2 作 x 轴的垂线 l ,在 x 轴的上方, 与圆 F 2: ( x - 1)2 + y 2 = 4a 2 交于点 A ,与椭圆 C 交于点 D .连结 AF 1 并延长交圆 F 2 于点 B ,连结 BF 2 交椭圆 C 于点 E ,连结 DF 1.已知 DF 1= 5 2.(1)求椭圆 C 的标准方程;(2)求点 E 的坐标.21.【2019 年高考浙江卷】如图,已知点 F (1, 为抛物线 y 2 = 2 px( p > 0) 的焦点,过点 F 的直线交抛物线于 A 、B 两点,点 C 在抛物线上,使得△ABC 的重心 G 在 x 轴上,直线 AC 交 x 轴于点 Q ,且 Q 在点 F 的右侧.记 △AFG, △CQG 的面积分别为 S 1 , S 2 .(1)求 p 的值及抛物线的准线方程;S】S(2)求 1 的最小值及此时点 G 的坐标.222.【辽宁省丹东市 2019 届高三总复习质量测试数学(二) 经过点 M (3,0) 作圆 x 2 + y 2 - 2 x - 4 y - 3 = 0的切线 l ,则 l 的方程为A . x + y - 3 = 0C . x - y - 3 = 0B . x + y - 3 = 0 或 x = 3D . x - y - 3 = 0 或 x = 32 3 B . y = ± 3x 2 D . y = ± 2x【4 B .9上存在点 P ,使 △PF 1F 2 是有一个内角为 2π 【23.【广东省深圳市深圳外国语学校 2019 届高三第二学期第一次热身考试数学试题】已知椭圆(a > b > 0) 的离心率为 5 ,椭圆上一点 P 到两焦点距离之和为 12,则椭圆短轴长为3A .8B .6C .5D .4x 2 y 2 + a 2 b 2= 124.【山东省德州市 2019 届高三第二次练习数学试题】已知椭圆x 2 y 2 + a b 2= 1 (a >b >0)与双曲线x 2 y 2 1- = (a >0,b >0)的焦点相同,则双曲线渐近线方程为 a 2 b 2 2A . y = ± 3xC . y = ± 2x25. 江西省新八校 2019 届高三第二次联考数学试题】如图,过抛物线 y 2 = 2 px( p > 0) 的焦点 F 的直线 l 交抛物线于点 A, B ,交其准线于点 C ,若 BC = 4 BF ,且 AF = 6 ,则 p 为A . 92C . 9D .1826.福建省厦门市厦门外国语学校 2019 届高三最后一模数学试题】双曲线 M 的焦点是 F , F ,若双曲线 M 1 2的等腰三角形,则 M 的离心率是______.3727. 重庆西南大学附属中学校 2019 届高三第十次月考数学试题】已知椭圆 C : +【 x 2 y 2 a 2 b 2= 1 (a > b > 0) 的左顶点为 M (-2,0) ,离心率为 2 2.(1)求椭圆 C 的方程;(2)过点 N (1,0) 的直线 l 交椭圆 C 于 A ,B 两点,当 MA ⋅ MB 取得最大值时,求△MAB 的面积.28.【黑龙江省大庆市第一中学 2019 届高三下学期第四次模拟(最后一卷 )考试数学试题】已知抛物线C : y 2=2 px ( p > 0) 的焦点为 F ,直线 y = 4 与 y 轴的交点为 P ,与抛物线 C 的交点为 Q ,且QF =2 PQ .(1)求 p 的值;(2)已知点T (t, -2) 为 C 上一点, M , N 是 C 上异于点 T 的两点,且满足直线TM 和直线 T N 的斜率之和为 - 8,证明直线 MN 恒过定点,并求出定点的坐标.3。

2019年高考真题数学(文)分项汇编之平面解析几何(选择题、填空题)(原卷版)

2019年高考真题数学(文)分项汇编之平面解析几何(选择题、填空题)(原卷版)

2 B .1专题 07 平面解析几何(选择题、填空题)1.【2019 年高考浙江卷】渐近线方程为 x ±y =0 的双曲线的离心率是A . 2C . 2D .22.【2019 年高考全国Ⅰ卷文数】双曲线 C : 的离心率为 x 2 y 2 - a 2 b 2= 1(a > 0, b > 0) 的一条渐近线的倾斜角为 130°,则 C A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒3.【2019 年高考全国Ⅰ卷文数】已知椭圆 C 的焦点为 F 1( - 1,0),F 2(1,0),过 F 2 的直线与 C 交于 A ,B两点.若 | AF 2 |= 2 | F 2 B | , | AB |=| BF 1 | ,则 C 的方程为x 2A . + y 2 = 12x 2 y 2 C . + = 14 3x 2 y 2B . + = 13 2x 2 y 2D . + = 15 44.【2019 年高考全国Ⅱ卷文数】若抛物线 y 2=2p x (p >0)的焦点是椭圆x 2 y 2+ = 1的一个焦点,则 p = 3 p pA .2C .4B .3D .85.【2019 年高考全国Ⅱ卷文数】设 F 为双曲线 C : x 2 y 2 -a 2b 2= 1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆 x 2+y 2=a 2 交于 P ,Q 两点.若|PQ|=|OF|,则 C 的离心率为A . 2C .2B . 3D . 5x 2 y 26.【2019 年高考全国Ⅲ卷文数】已知 F 是双曲线 C : - = 1 的一个焦点,点 P 在 C 上,O 为坐标原4 5点,若 OP = OF ,则 △OPF 的面积为12B.52D.9+=1的一个焦点为(2,0),则C的离心率为22B.2-32D.3-1A.32C.727.【2019年高考北京卷文数】已知双曲线A.6C.2x2a2-y2=1(a>0)的离心率是5,则a= B.4D.128.【2019年高考天津卷文数】已知抛物线y2=4x的焦点为F,准线为l.若l与双曲线x2y2-a2b2=1(a>0,b>0)的两条渐近线分别交于点A和点B,且|AB|=4|OF|(O为原点),则双曲线的离心率为A.2C.29.【2018年高考全国Ⅰ卷文数】已知椭圆C:A.13B.3D.5x2y2a4B.12 2C.D.222 310.【2018年高考全国Ⅱ卷文数】已知F,F是椭圆C的两个焦点,P是C上的一点,若PF⊥PF,且1212∠PF F=60︒,则C的离心率为21A.1-3C.3-111.【2018年高考全国Ⅱ卷文数】双曲线x2y2-a2b2=1(a>0,b>0)的离心率为3,则其渐近线方程为22D . y = ± ⎦⎦【 【A . y = ± 2 xB . y = ± 3xC . y = ± 2x3 2x12 .【 2018 年高考全国 Ⅲ 卷文数】直线 x + y + 2 = 0 分别与 x 轴, y 轴交于 A , B 两点,点 P 在圆( x - 2)2 + y 2 = 2 上,则 △ABP 面积的取值范围是A . [2 ,6]C . ⎡⎣ 2 ,3 2 ⎤B . [4 ,8]D . ⎡⎣2 2 ,3 2 ⎤13. 2018 年高考全国Ⅲ卷文数】已知双曲线 C :的渐近线的距离为A . 2x 2 y 2 - a 2 b 2B . 2= 1(a > 0, b > 0) 的离心率为 2 ,则点 (4,0) 到 CC .3 2 2D . 2 2x 214.【2018 年高考浙江卷】双曲线 - y 2 = 1的焦点坐标是3A .(− 2 ,0),( 2 ,0)B .(−2,0),(2,0)C .(0,− 2 ),(0, 2 )D .(0,−2),(0,2)15. 2018 年高考天津卷文数】已知双曲线 x 2 y 2- a 2 b 2= 1( a > 0, b > 0) 的离心率为 2 ,过右焦点且垂直于 x 轴的直线与双曲线交于 A ,B 两点.设 A ,B 到双曲线同一条渐近线的距离分别为 d 1 和 d 2 ,且 d 1 + d 2 = 6 ,则双曲线的方程为x 2 y 2A . - = 13 9x 2 y 2 C . - = 14 12x 2 y 2B . - = 19 3x 2 y 2D . - = 112 43C.D.1y216.【2017年高考全国Ⅰ卷文数】已知F是双曲线C:x2-=1的右焦点,P是C上一点,且PF与x3轴垂直,点A的坐标是(1,3)△,则APF的面积为A.C.1323B.D.1232x2y217.【2017年高考全国Ⅰ卷文数】设A,B是椭圆C:+=1长轴的两个端点,若C上存在点M满足3m∠AMB=120°,则m的取值范围是A.(0,1][9,+∞) C.(0,1][4,+∞)B.(0,3][9,+∞) D.(0,3][4,+∞)18.【2017年高考全国Ⅱ卷文数】若a>1,则双曲线x2a2-y2=1的离心率的取值范围是A.(2,+∞) C.(1,2)B.(2,2) D.(1,2)19.【2017年高考全国Ⅱ卷文数】过抛物线C:y2=4x的焦点F,且斜率为3的直线交C于点M(M 在x的轴上方),l为C的准线,点N在l上且MN⊥l,则M到直线NF的距离为A.5 C.23B.22 D.3320.【2017年高考全国Ⅲ卷文数】已知椭圆C:x2y2+a2b2=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx-ay+2ab=0相切,则C的离心率为A.63B.3323343B .3D . 524.【2019 年高考全国Ⅲ卷文数】设 F ,F 为椭圆 C: + = 1 的两个焦点,M 为 C 上一点且在第一象36 20+ = 1 的左焦点为 F ,点 P 在椭圆上且在 x 轴的上方,若线段 PF21.【2017 年高考天津卷文数】已知双曲线 x 2 y 2 - a 2 b 2= 1(a > 0, b > 0) 的右焦点为 F ,点 A 在双曲线的渐近线上, △OAF 是边长为 2 的等边三角形( O 为原点),则双曲线的方程为x 2 y 2 A . - = 14 12x 2C . - y 2 = 13x 2 y 2B . - = 112 4y 2D . x 2 - = 13x 2 y 222.【2017 年高考浙江卷】椭圆 + = 1 的离心率是9 4A . 135 3C .2923.【2019 年高考北京卷文数】设抛物线 y 2=4x 的焦点为 F ,准线为 l .则以 F 为圆心,且与 l 相切的圆的方程为__________.x 2 y 21 2限.若 △MF 1F 2 为等腰三角形,则 M 的坐标为___________.25.【2019 年高考江苏卷】在平面直角坐标系 xOy 中,若双曲线 x 2 -双曲线的渐近线方程是 ▲ .y 2 b 2= 1(b > 0) 经过点(3,4),则该26.【2019 年高考江苏卷】在平面直角坐标系 xOy 中,P 是曲线 y = x +4 x( x > 0) 上的一个动点,则点 P到直线 x +y =0 的距离的最小值是 ▲.27.【2019 年高考浙江卷】已知圆 C 的圆心坐标是 (0, m ) ,半径长是 r .若直线 2 x - y + 3 = 0 与圆 C 相切于点 A(-2, -1) ,则 m =___________, r =___________.28.【2019 年高考浙江卷】已知椭圆x 2 y 29 5的中点在以原点 O 为圆心, OF 为半径的圆上,则直线 PF 的斜率是___________.5【【0,1,0x2y25【29.2018年高考全国I卷文数】直线y=x+1与圆x2+y2+2y-3=0交于A,B两点,则AB=________.30.2018年高考天津卷文数】在平面直角坐标系中,经过三点(0,)(1,)(2,)的圆的方程为__________.31.【2018年高考浙江卷】已知点P(0,1),椭圆m=___________时,点B横坐标的绝对值最大.x24+y2=m(m>1)上两点A,B满足AP=2PB,则当32.【2018年高考北京卷文数】若双曲线a242-=1(a>0)的离心率为,则a=________________.33.【2018年高考北京卷文数】已知直线l过点(1,0)且垂直于轴,若l被抛物线y2=4ax截得的线段长为4,则抛物线的焦点坐标为_________.34.2018年高考江苏卷】在平面直角坐标系xOy中,若双曲线x2y2-a2b2=1(a>0,b>0)的右焦点F(c,0)到一条渐近线的距离为3c,则其离心率的值是________________.235.【2018年高考江苏卷】在平面直角坐标系x Oy中,A为直线l:y=2x上在第一象限内的点,B(5,0),以AB为直径的圆C与直线l交于另一点D.若AB⋅C D=0,则点A的横坐标为________.36.【2017年高考全国Ⅲ卷文数】双曲线x2y23-=1(a>0)的一条渐近线方程为y=x,则a=.a295y237.【2017年高考北京卷文数】若双曲线x2-=1的离心率为3,则实数m=_________.m38.【2017年高考天津卷文数】设抛物线y2=4x的焦点为F,准线为l.已知点C在l上,以C为圆心的圆与y轴的正半轴相切于点A.若∠FAC=120︒,则圆的方程为___________.39.【2017年高考山东卷文数】在平面直角坐标系xOy中,双曲线x2y2-a2b2=1(a>0,b>0)的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点.若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为.x23交于点P,Q,其焦点是F1,F2,则四边形F1PF2Q的面积是_______________.6 40.【2017年高考江苏卷】在平面直角坐标系x Oy中,双曲线-y2=1的右准线与它的两条渐近线分别7。

2019年高考数学试题分项版—立体几何(原卷版)

2019年高考数学试题分项版—立体几何(原卷版)

2019年高考数学试题分项版——立体几何(原卷版)一、选择题1.(2019·全国Ⅱ文,7)设α,β为两个平面,则α∥β的充要条件是()A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面2.(2019·全国Ⅲ文,8)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线3.(2019·浙江,4)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是()A.158 B.162 C.182 D.3244.(2019·浙江,8)设三棱锥V-ABC的底面是正三角形,侧棱长均相等,P是棱VA上的点(不含端点).记直线PB与直线AC所成的角为α,直线PB与平面ABC所成的角为β,二面角P-AC-B的平面角为γ,则()A.β<γ,α<γB.β<α,β<γC.β<α,γ<αD.α<β,γ<β5.(2019·全国Ⅰ理,12)已知三棱锥P-ABC的四个顶点在球O的球面上,P A=PB=PC,△ABC是边长为2的正三角形,E,F分别是P A,AB的中点,∠CEF=90°,则球O的体积为()A.8π B.4π C.2π D.π6.(2019·全国Ⅱ理,7)设α,β为两个平面,则α∥β的充要条件是()A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面7.(2019·全国Ⅲ理,8)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线二、填空题1.(2019·全国Ⅰ文,16)已知∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB 两边AC,BC的距离均为,那么P到平面ABC的距离为________.2.(2019·全国Ⅱ文,16)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为________.3.(2019·全国Ⅲ文,16)学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体ABCD-A1B1C1D1挖去四棱锥O-EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H分别为所在棱的中点,AB=BC=6 cm,AA1=4 cm,3D打印所用原料密度为0.9 g/cm3.不考虑打印损耗,制作该模型所需原料的质量为________g.4.(2019·北京文,12)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为________.5.(2019·北京文,13)已知l,m是平面α外的两条不同直线.给出下列三个论断:①l⊥m;②m∥α;③l⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________. 6.(2019·天津文,12)已知四棱锥的底面是边长为的正方形,侧棱长均为,若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为________.7.(2019·江苏,9)如图,长方体ABCD-A1B1C1D1的体积是120,E为CC1的中点,则三棱锥E-BCD的体积是________.8.(2019·全国Ⅱ理,16)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为________.9.(2019·全国Ⅲ理,16)学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体ABCD-A1B1C1D1挖去四棱锥O-EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H分别为所在棱的中点,AB=BC=6 cm,AA1=4 cm,3D打印所用原料密度为0.9 g/cm3.不考虑打印损耗,制作该模型所需原料的质量为________g.10.(2019·北京理,11)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为l,那么该几何体的体积为.11.(2019·北京理,12)已知l,m是平面α外的两条不同直线.给出下列三个论断:①l m⊥.mα;③lα⊥;②//以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:.12.(2019·天津理,11)已知四棱锥的底面是边长为的正方形,侧棱长均为,若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为________.三、解答题1.(2019·全国Ⅰ文,19)如图,直四棱柱ABCD-A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.2.(2019·全国Ⅱ文,17)如图,长方体ABCD-A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,AB=3,求四棱锥E-BB1C1C的体积.3.(2019·全国Ⅲ文,19)图①是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连接DG,如图②.(1)证明:图②中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图②中的四边形ACGD的面积.4.(2019·北京文,18)如图,在四棱锥P-ABCD中,P A⊥平面ABCD,底面ABCD为菱形,E为CD的中点.(1)求证:BD⊥平面P AC;(2)若∠ABC=60°,求证:平面P AB⊥平面P AE;(3)棱PB上是否存在点F,使得CF∥平面P AE?说明理由.5.(2019·天津文,17)如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,△PCD 为等边三角形,平面P AC⊥平面PCD,P A⊥CD,CD=2,AD=3.(1)设G,H分别为PB,AC的中点,求证:GH∥平面P AD;(2)求证:P A⊥平面PCD;(3)求直线AD与平面P AC所成角的正弦值.6.(2019·浙江,19)如图,已知三棱柱ABC-A1B1C1中,平面A1ACC1⊥平面ABC,∠ABC =90°,∠BAC=30°,A1A=A1C=AC,E,F分别是AC,A1B1的中点.(1)证明:EF⊥BC;(2)求直线EF与平面A1BC所成角的余弦值.7.(2019·江苏,16)如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB =BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.8.(2019·全国Ⅰ理,18)如图,直四棱柱ABCD-A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求二面角A-MA1-N的正弦值.9.(2019·全国Ⅱ理,17)如图,长方体ABCD-A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,求二面角B-EC-C1的正弦值.10.(2019·全国Ⅲ理,19)图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连接DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的二面角B—CG—A的大小.11.(2019·北京理,16)(14分)如图,在四棱锥P ABCD-中,PA⊥平面ABCD,AD CD⊥,//AD BC,2PA AD CD===,3BC=.E为PD的中点,点F在PC上,且13 PFPC=.(Ⅰ)求证:CD⊥平面PAD;(Ⅱ)求二面角F AE P--的余弦值;(Ⅲ)设点G在PB上,且23PGPB=.判断直线AG是否在平面AEF内,说明理由.12.(2019·天津理,17)如图,AE⊥平面ABCD,CF∥AE,AD∥BC,AD⊥AB,AB=AD =1,AE=BC=2.(1)求证:BF∥平面ADE;(2)求直线CE与平面BDE所成角的正弦值;(3)若二面角E-BD-F的余弦值为,求线段CF的长.。

专题07 解析几何-2019年高考数学(理)新课标全国卷Ⅰ考点讲评与真题分析(解析版)

专题07 解析几何-2019年高考数学(理)新课标全国卷Ⅰ考点讲评与真题分析(解析版)

2019年新课标全国卷1理科数学考点讲评与真题分析7.解析几何一、考试大纲1.直线与方程(1)在平面直角坐标系中,结合具体图形,确定直线位置的几何要素.(2)理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.(3)能根据两条直线的斜率判定这两条直线平行或垂直.(4)掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式), 了解斜截式与一次函数的关系.(5)能用解方程组的方法求两条相交直线的交点坐标.(6)掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.2.圆与方程(1)掌握确定圆的几何要素,掌握圆的标准方程与一般方程.(2)能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.(3)能用直线和圆的方程解决一些简单的问题.(4)初步了解用代数方法处理几何问题的思想.3.空间直角坐标系(1)了解空间直角坐标系,会用空间直角坐标表示点的位置.(2)会推导空间两点间的距离公式.3.圆锥曲线(1)了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用.(2)掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质.(3)了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质.(4)了解圆锥曲线的简单应用.(5)理解数形结合的思想.4.曲线与方程了解方程的曲线与曲线的方程的对应关系.二、新课标全国卷命题分析解析几何部分一般是2小1大,小题一般考查圆、圆锥曲线的性质,如离心率、渐近线,与圆、圆锥曲线有关的最值、取值范围问题,解答题一般考查直线与圆、圆锥曲线的位置关系,充分地考查了考生的逻辑思维能力、应用解析几何思想解决问题的能力和进行代数运算的能力.突出考查了用解析几何方法解决几何问题的能力,试题计算量较大,在计算的过程中,无论是公式记错了,用错了,还是算错了,都会由于一步的计算错误而导致整道试题的解答错误,因此,强调运算的准确性对于解析几何是十分必要的,充分应用解析几何基本知识与基本思想的通性通法.二、考点讲评与真题分析题型一 圆的标准方程例1 (2018·新课标1,理14)一个圆经过椭圆221164x y +=错误!未找到引用源。

2019届高考数学总复习分类试卷 平面解析几何

2019届高考数学总复习分类试卷 平面解析几何

2019届高考数学总复习分类试卷平面解析几何(时间:120分钟总分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知直线l的斜率为k(k≠0),它在x轴,y轴上的截距分别为k,2k,则直线l的方程为( )A.2x-y-4=0B.2x-y+4=0C.2x+y-4=0D.2x+y+4=02.当a为任意实数时,直线(a-1)x-y+a+1=0恒过定点C,则以C为圆心,√5为半径的圆的方程为( )A.x2+y2-2x+4y=0B.x2+y2+2x+4y=0C.x2+y2+2x-4y=0D.x2+y2-2x-4y=03.已知双曲线C:x 2a2-y2b2=1(a>0,b>0)的离心率e=54,且其右焦点为F(5,0),则双曲线C的方程为( )A.x 24-y23=1 B.x29-y216=1 C.x216-y29=1 D.x23-y24=14.若直线y=kx与圆(x-2)2+y2=1的两个交点关于直线2x+y+b=0对称,则k,b的值分别为( )A.k=12,b=-4 B.k=-12,b=4 C.k=12,b=4 D.k=-12,b=-45.已知直线x+y-2=0经过椭圆C:x 2a2+y2b2=1(a>b>0)的右焦点F和上顶点B,则椭圆C的离心率为( )A.12B.√2-1 C.√22D.√2-126.若双曲线x 2a2-y2b2=1(a>0,b>0)的离心率为√52,则其渐近线方程为( )A.y=±2xB.y=±4xC.y=±12x D.y=±14x7.过抛物线y2=4x的焦点F且倾斜角为60°的直线l与抛物线在第一象限交于点A,则|AF|=( )A.5B.4C.3D.28.设F是双曲线x 24-y212=1的左焦点,A(1,4),P是双曲线右支上的一动点,则|PF|+|PA|的最小值为( )A.5B.5+4√3C.7D.99.设椭圆x 24+y 23=1的左、右焦点分别为F 1、F 2,P 是椭圆上的一点,若△PF 1F 2是直角三角形,则△PF 1F 2的面积为( ) A.3B.3或32C.32D.6或310.已知抛物线C:y 2=8x,过点P(2,0)的直线与抛物线交于A,B 两点,O 为坐标原点,则OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ 的值为( )A.-16B.-12C.4D.211.点F 为椭圆x 2a2+y 2b2=1(a>b>0)的一个焦点,若椭圆上存在点A 使△AOF 为正三角形,那么椭圆的离心率为( ) A.√22B.√32C.√3-12D.√3-112.已知双曲线C:x 2a2-y 2b2=1(a>0,b>0)的右焦点为F,过F 作双曲线C 的一条渐近线的垂线,垂足为H,若FH 的中点M 在双曲线C 上,则双曲线C 的离心率为( ) A.√62B.2C.√3D.√21 2 3 4 5 6 7 8 9 10 11 12 得分二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上) 13.若圆C 的半径为1,圆心在第一象限,且与直线4x-3y=0和x 轴都相切,则该圆的标准方程为 .14.已知双曲线x 2a2-y 2b2=1(a>0,b>0)与椭圆x 215+y 26=1有共同的焦点,且一条渐近线方程为√3x+y=0,则双曲线的顶点坐标为 .15.设F 1、F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上一点,M 是线段F 1P 的中点,|OM|=3(O 为坐标原点),则|PF 1|= .16.已知抛物线C:y 2=2px(p>0)的焦点为F,M 为抛物线C 上一点,若△OFM 的外接圆与抛物线C 的准线相切(O 为坐标原点),且外接圆的面积为9π,则p= .三、解答题(本大题共6小题,共70分.解答时写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知圆C经过P(4,-2),Q(-1,3)两点,且在y轴上截得的线段长为4√3,半径小于5.(1)求直线PQ与圆C的方程;(2)若直线l∥PQ,l与圆C交于点A,B,且以线段AB为直径的圆经过坐标原点,求直线l的方程.18.(本小题满分12分)已知椭圆C:x2+2y2=4.(1)求椭圆C的离心率;(2)设O为原点,若点A在直线y=2上,点B在椭圆C上,且OA⊥OB,求线段AB长度的最小值.19.(本小题满分12分)已知椭圆C:x 2a2+y2b2=1(a>b>0),e=12,其中F是椭圆的右焦点,焦距为2,直线l与椭圆C交于点A,B,点A,B的中点横坐标为14,且AF⃗⃗⃗⃗⃗ =λFB⃗⃗⃗⃗⃗ (其中λ>1).(1)求椭圆C的标准方程;(2)求实数λ的值.20.(本小题满分12分)已知椭圆C:x 2a2+y 2b2=1(a>b>0)的顶点到直线l 1:y=x 的距离分别为√2,√22.(1)求C 的标准方程;(2)设平行于l 1的直线l 交C 于A,B 两点,若以AB 为直径的圆恰过坐标原点,求直线l 的方程.21.(本小题满分12分)已知抛物线C 的方程为y 2=2px(p>0),点R(1,2)在抛物线C 上. (1)求抛物线C 的方程;(2)过点Q(1,1)作直线交抛物线C 于不同于R 的两点A,B,若直线AR,BR 分别交直线l:y=2x+2于M,N 两点,求|MN|最小时直线AB 的方程.22.(本小题满分12分)椭圆x 2a2+y 2b2=1(a>b>0)的左,右焦点分别为F 1,F 2,且离心率为12,点P 为椭圆上一动点,△F 1PF 2面积的最大值为√3. (1)求椭圆的方程;(2)设椭圆的左顶点为A 1,过右焦点F 2的直线l 与椭圆相交于A,B 两点,连接A 1A,A 1B 并延长分别交直线x=4于R,Q 两点,问F 2R ⃗⃗⃗⃗⃗⃗⃗ ·F 2Q ⃗⃗⃗⃗⃗⃗⃗ 是否为定值?若是,求出此定值;若不是,请说明理由.平面解析几何一、选择题1.D 依题意得直线l 过点(k,0)和(0,2k),所以其斜率k=2k -00−k=-2,由点斜式得直线l 的方程为y=-2(x+2),化为一般式是2x+y+4=0.2.C 由(a-1)x-y+a+1=0得(x+1)a-(x+y-1)=0,由x+1=0且x+y-1=0,解得x=-1,y=2,即该直线恒过点 (-1,2),∴所求圆的方程为(x+1)2+(y-2)2=5,即x 2+y 2+2x-4y=0. 3.C ∵e=c a =54,F(5,0), ∴c=5,a=4,则b 2=c 2-a 2=9, ∴双曲线C 的方程为x 216-y 29=1.4.A 因为直线y=kx 与圆(x-2)2+y 2=1的两个交点关于直线2x+y+b=0对称,所以直线y=kx 与直线2x+y+b=0垂直,且直线2x+y+b=0过圆心,所以{k =12,2×2+0+b =0.即k=12,b=-4.5.C 由已知可得F(c,0),B(0,b),因为直线x+y-2=0经过点F 和点B,所以b=c=2.又a 2=b 2+c 2,故a=2√2,所以椭圆C 的离心率为e=c a =√22,选C. 6.C 因为e=ca =√1+b 2a 2=√52,所以b a =12,所以双曲线的渐近线方程为y=±12x.故选C.7.B 由题意知,F(1,0),因为直线l 过焦点F 且倾斜角为60°,所以直线l 的方程为y=√3(x-1),与抛物线方程联立,可得直线l 与抛物线交点的坐标为(13,-2√33),(3,2√3),又点A 在第一象限,故A(3,2√3),所以|AF|=√(3-1)2+(2√3-0)2=4.8.D 因为F 是双曲线x 24-y 212=1的左焦点,所以F(-4,0),设其右焦点为H(4,0),则由双曲线的定义可得|PF|+|PA|=2a+|PH|+|PA|≥2a+|AH|=4+√(4-1)2+(0−4)2=4+5=9.故选D.9.C 由题意可得该椭圆短轴端点与两焦点的连线的夹角是60°,所以点P 不可能是直角顶点,只能是焦点为直角顶点,则P (±c,b 2a ),故△PF 1F 2的面积为12×2c×b 2a =32.10.B 当直线AB 的斜率不存在时,直线方程为x=2,不妨设A(2,4),B(2,-4),则OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =4-16=-12;当直线AB 的斜率存在时,设直线方程为y=k(x-2),代入抛物线方程得k 2(x-2)2=8x,即k 2x 2-(4k 2+8)x+4k 2=0,设A(x 1,y 1),B(x 2,y 2),则x 1+x 2=4k 2+8k 2,x 1x 2=4,故OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2=x 1x 2+k 2[x 1x 2-2(x 1+x 2)+4]=(1+k 2)x 1x 2-2k 2(x 1+x 2)+4k 2=(1+k 2)×4-2k 2×4k 2+8k 2+4k 2=-12,综上,OA⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =-12,故选B. 11.D 不妨设F 为椭圆的右焦点,A 在第一象限,则点A 的坐标为(12c,√32c),代入椭圆方程得c 24a 2+3c 24b 2=1,即b 2c 2+3a 2c 2=4a 2b 2,再将b 2=a 2-c 2代入上式得c 4-8a 2c 2+4a 4=0,又e=ca ,得e 4-8e 2+4=0,解得e 2=4±2√3=(1±√3)2,注意到椭圆的离心率范围为(0,1),故e=√3-1.故选D. 12.D 由题意可知,双曲线C 的一条渐近线的方程为y=ba x,则FH 的方程为y-0=-ab (x-c),即y=-ab(x-c),联立{y =bax,y =−a b (x -c),可得点H 的坐标为(a 2c ,ab c ),故FH 的中点M 的坐标为(c 2+a 22c,ab 2c ),又点M 在双曲线C 上,所以(c 2+a 2)24a 2c 2-a 2b 24b 2c 2=1,整理得c 2a 2=2,故e=ca =√2.故选D.二、填空题13.答案 (x-2)2+(y-1)2=1解析 ∵圆C 的半径为1,圆心在第一象限,且与直线4x-3y=0和x 轴都相切,∴圆心的纵坐标是1,设圆心坐标为(a,1)(a>0),则1=|4a -3|5,∴a=2(舍负),故该圆的标准方程为(x-2)2+(y-1)2=1.14.答案 (±32,0)解析 因为椭圆x 215+y 26=1的焦点为(±3,0),所以双曲线x 2a 2-y 2b 2=1中,c=3,a 2+b 2=9,又双曲线的一条渐近线方程为√3x+y=0,所以ba =√3,所以a=32,所以双曲线的顶点坐标为(±32,0).15.答案 4解析 因为椭圆方程为x 225+y 216=1,所以a 2=25,故2a=10.又P 为椭圆上一点,M 是线段F 1P 的中点,|OM|=3,所以|PF 2|=6,故|PF 1|=4. 16.答案 4解析 因为△OFM 的外接圆与抛物线C 的准线相切,所以△OFM 的外接圆的圆心到准线的距离等于圆的半径,由外接圆的面积为9π,得外接圆半径为3,又圆心在线段OF 的垂直平分线上,|OF|=p2,所以p 2+p4=3,解得p=4.三、解答题17.解析 (1)设圆心C(a,b),半径为r.易知直线PQ 的方程为x+y-2=0, 则线段PQ 的垂直平分线的方程是y-12=x-32,即y=x-1, 易知圆心在线段PQ 的垂直平分线上, 所以b=a-1.①由圆C 在y 轴上截得的线段长为4√3, 知(a+1)2+(b-3)2=12+a 2.② 由①②得a=1,b=0或a=5,b=4. 当a=1,b=0时,r 2=13,满足题意, 当a=5,b=4时,r 2=37,不满足题意, 故圆C 的方程为(x-1)2+y 2=13. (2)设直线l 的方程为y=-x+m(m ≠2), A(x 1,m-x 1),B(x 2,m-x 2), 将y=-x+m 代入(x-1)2+y 2=13, 可得2x 2-2(m+1)x+m 2-12=0,∴x 1+x 2=1+m,x 1x 2=m 2-122,Δ=-4(m 2-2m-25)>0,由题意可知OA ⊥OB,即OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =0, 所以x 1x 2+(m-x 1)(m-x 2)=0, 整理得m 2-m(x 1+x 2)+2x 1x 2=0, 即m 2-m ·(1+m)+m 2-12=0, ∴m=4或m=-3,满足Δ>0,∴直线l 的方程为y=-x+4或y=-x-3.18.解析 (1)由题意可得,椭圆C 的标准方程为x 24+y 22=1,所以a 2=4,b 2=2,从而c 2=a 2-b 2=4-2=2,故a=2,c=√2, 故椭圆C 的离心率为√22.(2)设点A,B 的坐标分别为(t,2),(x 0,y 0),其中x 0≠0. 因为OA ⊥OB,所以OA⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =0,即tx 0+2y 0=0,则t=-2y 0x 0. 又x 02+2y 02=4,所以|AB|2=(x 0-t)2+(y 0-2)2=(x 0+2y 0x 0)2+(y 0-2)2=x 02+y 02+4y 02x 02+4 =x 02+4−x 022+2(4−x 02)x 02+4=x 022+8x 02+4(0<x 02≤4).因为x 022+8x 02≥4(0<x 02≤4),当且仅当x 02=4时等号成立,所以|AB|2≥8.故线段AB 长度的最小值为2√2.19.解析 (1)由条件可知c=1,a=2,故b 2=a 2-c 2=3, 则椭圆C 的标准方程是x 24+y 23=1.(2)由AF ⃗⃗⃗⃗⃗ =λFB ⃗⃗⃗⃗ ,可知A,B,F 三点共线,设点A(x 1,y 1),B(x 2,y 2). 若直线AB ⊥x 轴,则λ=1,不合题意.当直线l 的斜率k 存在时,设其方程为y=k(x-1). 由{y =k(x -1),x 24+y 23=1消去y 得(3+4k 2)x 2-8k 2x+4k 2-12=0.①Δ=(-8k 2)2-4(4k 2+3)(4k 2-12)=144(k 2+1)>0, x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3,因为点A 、B 的中点横坐标为14,所以x 1+x 2=8k 24k 2+3=12,所以k 2=14.将k 2=14代入方程①,得4x 2-2x-11=0, 解得x=1±3√54. 又因为AF ⃗⃗⃗⃗⃗ =(1-x 1,-y 1),FB ⃗⃗⃗⃗ =(x 2-1,y 2),AF ⃗⃗⃗⃗⃗ =λFB ⃗⃗⃗⃗ (其中λ>1),所以λ=1−x 1x 2-1=3+√52(λ=3−√52舍去). 综上,λ=3+√52.20.解析 (1)由直线l 1的方程知,直线l 1与两坐标轴的夹角均为45°, 故长轴端点到直线l 1的距离为√2a 2,短轴端点到直线l 1的距离为√2b2, 可求得a=2,b=1.所以C 的标准方程为x 24+y 2=1.(2)依题意设直线l:y=x+t(t ≠0). 由{y =x +t,x 24+y 2=1得5x 2+8tx+4t 2-4=0, 由Δ=64t 2-80(t 2-1)>0,解得-√5<t<√5. 设A(x 1,y 1),B(x 2,y 2), 则{x 1+x 2=−8t5,x 1x 2=4t 2-45,故y 1y 2=(x 1+t)(x 2+t)=x 1x 2+(x 1+x 2)t+t 2=t 2-45.因为以AB 为直径的圆恰过坐标原点,故OA ⊥OB, 所以OA⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =0,即x 1x 2+y 1y 2=4t 2-45+t 2-45=0, 解得t=±2√105,满足-√5<t<√5且t ≠0,故所求直线l 的方程为y=x+2√105或y=x-2√105. 21.解析 (1)∵点R(1,2)在抛物线C:y 2=2px(p>0)上, ∴4=2p,解得p=2,∴抛物线C 的方程为y 2=4x.(2)设A(x 1,y 1),B(x 2,y 2),直线AB 的方程为x=m(y-1)+1,m ≠0,且易知m ≠1,由{x =m(y -1)+1,y 2=4x 消去x 并整理得y 2-4my+4(m-1)=0, ∴y 1+y 2=4m,y 1·y 2=4(m-1), 设直线AR 的方程为y=k 1(x-1)+2,由{y =k 1(x -1)+2,y =2x +2解得点M 的横坐标x M =k 1k 1-2,又k 1=y 1-2x 1-1=y 1-2y 124-1=4y1+2,∴x M =k 1k 1-2=-2y1,同理,点N 的横坐标x N =-2y 2,|y 2-y 1|=√(y 2+y 1)2-4y 1y 2=4√m 2-m +1,∴|MN|=√5·|x M -x N |=√5·|-2y 1+2y 2|=2√5·|y 2-y 1y 1y2|=8√5·√m 2-m+14|m -1|=2√5·√m 2-m+1|m -1|,令m-1=t,t ≠0,则m=t+1,∴|MN|=2√5·√(1t +12)2+34≥√15,当t=-2,即m=-1时,|MN|取得最小值√15,此时直线AB 的方程为x+y-2=0.22.解析 (1)已知椭圆的离心率为12,不妨设c=t,a=2t,则b=√3t,其中t>0,当△F 1PF 2面积取最大值√3时,点P 为短轴端点,因此12·2t ·√3t=√3,解得t=1(舍负),则椭圆的方程为x 24+y 23=1.第 11 页 共 11 页 (2)是.设直线AB 的方程为x=my+1,A(x 1,y 1),B(x 2,y 2),联立{x =my +1,x 24+y 23=1可得(3m 2+4)y 2+6my-9=0, 则y 1+y 2=-6m 4+3m 2,y 1y 2=-94+3m 2,直线AA 1的方程为y=y 1x 1+2(x+2),直线BA 1的方程为y=y 2x 2+2(x+2),则R (4,6y 1x 1+2),Q (4,6y 2x 2+2),所以F 2R ⃗⃗⃗⃗⃗⃗⃗ =(3,6y 1x 1+2),F 2Q ⃗⃗⃗⃗⃗⃗⃗ =(3,6y 2x 2+2),则F 2R ⃗⃗⃗⃗⃗⃗⃗ ·F 2Q ⃗⃗⃗⃗⃗⃗⃗=9+6y 1x 1+2·6y 2x 2+2=36y 1y 2m 2y 1y 2+3m(y 1+y 2)+9+9=0,即F 2R ⃗⃗⃗⃗⃗⃗⃗ ·F 2Q ⃗⃗⃗⃗⃗⃗⃗ 为定值0.。

2019年高考理科数学真题分类汇编立体几何、平面解析几何

2019年高考理科数学真题分类汇编立体几何、平面解析几何

2019年高考理科数学真题分类汇编立体几何、平面解析几何第一节立体几何全国Ⅰ卷已知三棱锥P−ABC的四个顶点在球O的球面上,P A=PB=PC,△ABC是边长为2的正三角形,E,F分别是P A,AB的中点,∠CEF=90°,则球O的体积为A.B.C.D.【答案】D【解析】解法一:为边长为2的等边三角形,为正三棱锥,,又,分别为,的中点,,,又,平面,∴平面,,为正方体的一部分,,即,故选D.解法二:设,分别为的中点,,且,为边长为2的等边三角形,,又,,中,由余弦定理可得,作于,,为的中点,,,,,又,两两垂直,,,,故选D.【名师点睛】本题主要考查学生的空间想象能力,补体法解决外接球问题.可通过线面垂直定理,得到三棱两两互相垂直关系,快速得到侧棱长,进而补体成正方体解决.全国Ⅱ卷设α,β为两个平面,则α∥β的充要条件是A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:内两条相交直线都与平行是的充分条件,由面面平行性质定理知,若,则内任意一条直线都与平行,所以内两条相交直线都与平行是的必要条件,故选B.【名师点睛】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,则”此类的错误.全国Ⅲ卷如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线【答案】B【解析】如图所示,作于,连接,BD,易得直线BM,EN是三角形EBD的中线,是相交直线.过作于,连接,平面平面,平面,平面,平面,与均为直角三角形.设正方形边长为2,易知,,,故选B.【名师点睛】本题考查空间想象能力和计算能力,解答本题的关键是构造直角三角形.解答本题时,先利用垂直关系,再结合勾股定理进而解决问题.浙江卷祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是A.158 B.162C.182 D.324【答案】B【解析】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为.故选B.【名师点睛】本题首先根据三视图,还原得到几何体——棱柱,根据题目给定的数据,计算几何体的体积,常规题目.难度不大,注重了基础知识、视图用图能力、基本计算能力的考查.易错点有二,一是不能正确还原几何体;二是计算体积有误.为避免出错,应注重多观察、细心算.浙江卷设三棱锥V–ABC的底面是正三角形,侧棱长均相等,P是棱VA上的点(不含端点).记直线PB与直线AC所成的角为α,直线PB与平面ABC所成的角为β,二面角P–AC–B的平面角为γ,则A.β<γ,α<γB.β<α,β<γC.β<α,γ<αD.α<β,γ<β【答案】B【解析】如图,为中点,连接VG,在底面的投影为,则在底面的投影在线段上,过作垂直于于E,连接PE,BD,易得,过作交于,连接BF,过作,交于,则,结合△PFB,△BDH,△PDB均为直角三角形,可得,即;在Rt△PED中,,即,综上所述,答案为B.【名师点睛】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半.常规解法下易出现的错误有,不能正确作图得出各种角,未能想到利用“特殊位置法”,寻求简便解法.全国Ⅲ卷学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体挖去四棱锥O—EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H分别为所在棱的中点,,3D打印所用原料密度为0.9 g/cm3,不考虑打印损耗,制作该模型所需原料的质量为___________g.【答案】118.8【解析】由题意得,,∵四棱锥O−EFGH的高为3cm,∴.又长方体的体积为,所以该模型体积为,其质量为.【名师点睛】本题考查几何体的体积问题,理解题中信息联系几何体的体积和质量关系,从而利用公式求解.根据题意可知模型的体积为长方体体积与四棱锥体积之差进而求得模型的体积,再求出模型的质量即可.北京卷某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.【答案】40【解析】如图所示,在棱长为4的正方体中,三视图对应的几何体为正方体去掉棱柱之后余下的几何体,则几何体的体积.【名师点睛】本题首先根据三视图,还原得到几何体,再根据题目给定的数据,计算几何体的体积.属于中等题.(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.北京卷已知l,m是平面外的两条不同直线.给出下列三个论断:①l⊥m;②m∥;③l⊥.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.【答案】如果l⊥α,m∥α,则l⊥m.【解析】将所给论断,分别作为条件、结论,得到如下三个命题:(1)如果l⊥α,m∥α,则l⊥m,正确;(2)如果l⊥α,l⊥m,则m∥α,不正确,有可能m在平面α内;(3)如果l⊥m,m∥α,则l⊥α,不正确,有可能l与α斜交、l∥α.故答案为:如果l⊥α,m∥α,则l⊥m.【名师点睛】本题主要考查空间线面的位置关系、命题、逻辑推理能力及空间想象能力.将所给论断,分别作为条件、结论加以分析即可.天津卷已知四棱锥的底面是边长为的正方形,侧棱长均为.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_____________.【答案】【解析】由题意,四棱锥的底面是边长为的正方形,侧棱长均为,借助勾股定理,可知四棱锥的高为.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,一个底面的圆心为四棱锥底面的中心,故圆柱的高为,圆柱的底面半径为,故圆柱的体积为.【名师点睛】根据棱锥的结构特点,确定所求的圆柱的高和底面半径.注意本题中圆柱的底面半径是棱锥底面对角线长度的一半、不是底边棱长的一半.江苏卷如图,长方体的体积是120,E为的中点,则三棱锥E−BCD的体积是▲ .【答案】10【解析】因为长方体的体积为120,所以,因为为的中点,所以,由长方体的性质知底面,所以是三棱锥的底面上的高,所以三棱锥的体积.【名师点睛】本题蕴含“整体和局部”的对立统一规律.在几何体面积或体积的计算问题中,往往需要注意理清整体和局部的关系,灵活利用“割”与“补”的方法解题.由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积.全国Ⅰ卷如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求二面角A−MA1−N的正弦值.【答案】(1)见解析;(2).【解析】(1)连结B1C,ME.因为M,E分别为BB1,BC的中点,所以ME∥B1C,且ME=B1C.又因为N为A1D的中点,所以ND=A1D.由题设知A1B1DC,可得B1C A1D,故ME ND,因此四边形MNDE为平行四边形,MN∥ED.又MN平面EDC 1,所以MN∥平面C1DE.(2)由已知可得DE⊥DA.以D为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系D−xyz,则,A1(2,0,4),,,,,,.设为平面A1MA的法向量,则,所以可取.设为平面A1MN的法向量,则所以可取.于是,所以二面角的正弦值为.【名师点睛】本题考查线面平行关系的证明、空间向量法求解二面角的问题.求解二面角的关键是能够利用垂直关系建立空间直角坐标系,从而通过求解法向量夹角的余弦值来得到二面角的正弦值,属于常规题型.全国Ⅱ卷如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,求二面角B–EC–C1的正弦值.【答案】(1)证明见解析;(2).【解析】(1)由已知得,平面,平面,故.又,所以平面.(2)由(1)知.由题设知≌,所以,故,.以为坐标原点,的方向为x轴正方向,为单位长,建立如图所示的空间直角坐标系D–xyz,则C(0,1,0),B(1,1,0),(0,1,2),E(1,0,1),,,.设平面EBC的法向量为n=(x,y,x),则即所以可取n=.设平面的法向量为m=(x,y,z),则即所以可取m=(1,1,0).于是.所以,二面角的正弦值为.【名师点睛】本题考查了利用线面垂直的性质定理证明线线垂直以及线面垂直的判定,考查了利用空间向量求二角角的余弦值,以及同角的三角函数关系,考查了数学运算能力.全国Ⅲ卷图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°,将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的二面角B−CG−A的大小.【答案】(1)见解析;(2).【解析】(1)由已知得AD BE,CG BE,所以AD CG,故AD,CG确定一个平面,从而A,C,G,D四点共面.由已知得AB BE,AB BC,故AB平面BCGE.又因为AB平面ABC,所以平面ABC平面BCGE.(2)作EH BC,垂足为H.因为EH平面BCGE,平面BCGE平面ABC,所以EH平面ABC.由已知,菱形BCGE的边长为2,∠EBC=60°,可求得BH=1,EH=.以H为坐标原点,的方向为x轴的正方向,建立如图所示的空间直角坐标系H–xyz,则A(–1,1,0),C(1,0,0),G(2,0,),=(1,0,),=(2,–1,0).设平面ACGD的法向量为n=(x,y,z),则即所以可取n=(3,6,–).又平面BCGE的法向量可取为m=(0,1,0),所以.因此二面角B–CG–A的大小为30°.【名师点睛】本题是很新颖的立体几何考题,首先是多面体折叠问题,考查考生在折叠过程中哪些量是不变的,再者折叠后的多面体不是直棱柱,最后通过建系的向量解法将求二面角转化为求二面角的平面角问题,突出考查考生的空间想象能力.北京卷如图,在四棱锥P–ABCD中,PA⊥平面ABCD,AD⊥CD,AD∥BC,PA=AD=CD=2,BC=3.E为PD的中点,点F在PC上,且.(1)求证:CD⊥平面PAD;(2)求二面角F–AE–P的余弦值;(3)设点G在PB上,且.判断直线AG是否在平面AEF内,说明理由.【答案】(1)见解析;(2);(3)见解析.【解析】(1)因为PA⊥平面ABCD,所以PA⊥CD.又因为AD⊥CD,所以CD⊥平面PAD.(2)过A作AD的垂线交BC于点M.因为PA⊥平面ABCD,所以PA⊥AM,PA⊥AD.如图建立空间直角坐标系A−xyz,则A(0,0,0),B(2,1,0),C(2,2,0),D(0,2,0),P(0,0,2).因为E为PD的中点,所以E(0,1,1).所以.所以.设平面AEF的法向量为n=(x,y,z),则即令z=1,则.于是.又因为平面PAD的法向量为p=(1,0,0),所以.由题知,二面角F−AE−P为锐角,所以其余弦值为.(3)直线AG在平面AEF内.因为点G在PB上,且,所以.由(2)知,平面AEF的法向量.所以.所以直线AG在平面AEF内.【名师点睛】(1)由题意利用线面垂直的判定定理即可证得题中的结论;(2)建立空间直角坐标系,结合两个半平面的法向量即可求得二面角F−AE−P的余弦值;(3)首先求得点G的坐标,然后结合平面的法向量和直线AG的方向向量即可判断直线是否在平面内.天津卷如图,平面,,.(1)求证:平面;(2)求直线与平面所成角的正弦值;(3)若二面角的余弦值为,求线段的长.【答案】(1)见解析;(2);(3).【解析】依题意,可以建立以为原点,分别以的方向为轴,轴,轴正方向的空间直角坐标系(如图),可得,.设,则.(1)依题意,是平面的法向量,又,可得,又因为直线平面,所以平面.(2)依题意,.设为平面的法向量,则即不妨令,可得.因此有.所以,直线与平面所成角的正弦值为.(3)设为平面的法向量,则即不妨令,可得.由题意,有,解得.经检验,符合题意.所以,线段的长为.【名师点睛】本小题主要考查直线与平面平行、二面角、直线与平面所成的角等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力.江苏卷如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.【答案】(1)见解析;(2)见解析.【解析】(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC−A1B1C1中,AB∥A1B1,所以A1B1∥ED.又因为ED⊂平面DEC 1,A1B1平面DEC1,所以A1B1∥平面DEC1.(2)因为AB=BC,E为AC的中点,所以BE⊥AC.因为三棱柱ABC−A1B1C1是直棱柱,所以CC1⊥平面ABC.又因为BE⊂平面ABC,所以CC1⊥BE.因为C1C⊂平面A1ACC1,AC⊂平面A1ACC1,C1C∩AC=C,所以BE⊥平面A1ACC1.因为C1E⊂平面A1ACC1,所以BE⊥C1E.【名师点睛】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.浙江卷如图,已知三棱柱,平面平面,,分别是AC,A1B1的中点.(1)证明:;(2)求直线EF与平面A1BC所成角的余弦值.【答案】(1)见解析;(2).【解析】方法一:(1)连接A1E,因为A1A=A1C,E是AC的中点,所以A1E⊥AC.又平面A1ACC1⊥平面ABC,A1E平面A1ACC1,平面A1ACC1∩平面ABC=AC,所以,A1E⊥平面ABC,则A1E⊥BC.又因为A1F∥AB,∠ABC=90°,故BC⊥A1F.所以BC⊥平面A1EF.因此EF⊥BC.(2)取BC中点G,连接EG,GF,则EGFA1是平行四边形.由于A1E⊥平面ABC,故A1E⊥EG,所以平行四边形EGFA1为矩形.由(1)得BC⊥平面EGFA1,则平面A1BC⊥平面EGFA1,所以EF在平面A1BC上的射影在直线A1G上.连接A1G交EF于O,则∠EOG是直线EF与平面A1BC所成的角(或其补角).不妨设AC=4,则在Rt△A1EG中,A1E=2,EG=.由于O为A1G的中点,故,所以.因此,直线EF与平面A1BC所成角的余弦值是.方法二:(1)连接A1E,因为A1A=A1C,E是AC的中点,所以A1E⊥AC.又平面A1ACC1⊥平面ABC,A1E平面A1ACC1,平面A1ACC1∩平面ABC=AC,所以,A1E⊥平面ABC.如图,以点E为原点,分别以射线EC,EA1为y,z轴的正半轴,建立空间直角坐标系E–xyz.不妨设AC=4,则A1(0,0,2),B(,1,0),,,C(0,2,0).因此,,.由得.(2)设直线EF与平面A1BC所成角为θ.由(1)可得.设平面A1BC的法向量为n,由,得,取n,故,因此,直线EF与平面A1BC所成的角的余弦值为.【名师点睛】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.第二节平面解析几何全国Ⅰ卷已知椭圆C的焦点为,过F2的直线与C交于A,B两点.若,,则C的方程为A.B.C.D.【答案】B【解析】法一:如图,由已知可设,则,由椭圆的定义有.在中,由余弦定理推论得.在中,由余弦定理得,解得.所求椭圆方程为,故选B.法二:由已知可设,则,由椭圆的定义有.在和中,由余弦定理得,又互补,,两式消去,得,解得.所求椭圆方程为,故选B.【名师点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好地落实了直观想象、逻辑推理等数学素养.全国Ⅱ卷若抛物线y2=2px(p>0)的焦点是椭圆的一个焦点,则p=A.2 B.3C.4 D.8【答案】D【解析】因为抛物线的焦点是椭圆的一个焦点,所以,解得,故选D.【名师点睛】本题主要考查抛物线与椭圆的几何性质,渗透逻辑推理、运算能力素养.解答时,利用抛物线与椭圆有共同的焦点即可列出关于的方程,从而解出,或者利用检验排除的方法,如时,抛物线焦点为(1,0),椭圆焦点为(±2,0),排除A,同样可排除B,C,从而得到选D.全国Ⅱ卷设F为双曲线C:的右焦点,为坐标原点,以为直径的圆与圆交于P,Q两点.若,则C的离心率为A.B.C.2 D.【答案】A【解析】设与轴交于点,由对称性可知轴,又,为以为直径的圆的半径,∴,,又点在圆上,,即.,故选A.【名师点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.解答本题时,准确画图,由图形对称性得出P 点坐标,代入圆的方程得到c与a的关系,可求双曲线的离心率.全国Ⅲ卷双曲线C:=1的右焦点为F,点P在C的一条渐近线上,O为坐标原点,若,则△PFO的面积为A.B.C.D.【答案】A【解析】由,又P在C的一条渐近线上,不妨设为在上,则,,故选A.【名师点睛】本题考查以双曲线为载体的三角形面积的求法,渗透了直观想象、逻辑推理和数学运算素养.采取公式法,利用数形结合、转化与化归和方程思想解题.忽视圆锥曲线方程和两点间的距离公式的联系导致求解不畅,采取列方程组的方式解出三角形的高,便可求三角形面积.北京卷已知椭圆(a>b>0)的离心率为,则A.a2=2b2B.3a2=4b2C.a=2b D.3a=4b【答案】B【解析】椭圆的离心率,化简得,故选B.【名师点睛】本题考查椭圆的标准方程与几何性质,属于容易题,注重基础知识、基本运算能力的考查.由题意利用离心率的定义和的关系可得满足题意的等式.北京卷数学中有许多形状优美、寓意美好的曲线,曲线C:就是其中之一(如图).给出下列三个结论:①曲线C恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C上任意一点到原点的距离都不超过;③曲线C所围成的“心形”区域的面积小于3.其中,所有正确结论的序号是A.①B.②C.①②D.①②③【答案】C【解析】由得,,,所以可取的整数有0,−1,1,从而曲线恰好经过(0,1),(0,−1),(1,0),(1,1),(−1,0),(−1,1),共6个整点,结论①正确.由得,,解得,所以曲线上任意一点到原点的距离都不超过. 结论②正确.如图所示,易知,四边形的面积,很明显“心形”区域的面积大于,即“心形”区域的面积大于3,说法③错误.故选C.【名师点睛】本题考查曲线与方程、曲线的几何性质,基本不等式及其应用,属于难题,注重基础知识、基本运算能力及分析问题、解决问题的能力考查,渗透“美育思想”.将所给方程进行等价变形确定x的范围可得整点坐标和个数,结合均值不等式可得曲线上的点到坐标原点距离的最值和范围,利用图形的对称性和整点的坐标可确定图形面积的范围.天津卷已知抛物线的焦点为,准线为,若与双曲线的两条渐近线分别交于点和点,且(为原点),则双曲线的离心率为A.B.C.D.【答案】D【解析】抛物线的准线的方程为,双曲线的渐近线方程为,则有,∴,,,∴.故选D.【名师点睛】本题考查抛物线和双曲线的性质以及离心率的求解,解题关键是求出AB的长度.解答时,只需把用表示出来,即可根据双曲线离心率的定义求得离心率.浙江卷渐近线方程为x±y=0的双曲线的离心率是A. B.1C.D.2【答案】C【解析】因为双曲线的渐近线方程为,所以,则,所以双曲线的离心率.故选C.【名师点睛】本题根据双曲线的渐近线方程可求得,进一步可得离心率,属于容易题,注重了双曲线基础知识、基本计算能力的考查.理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.浙江卷已知圆的圆心坐标是,半径长是.若直线与圆C相切于点,则=___________,=___________.【答案】,【解析】由题意可知,把代入直线AC的方程得,此时.【名师点睛】本题主要考查圆的方程、直线与圆的位置关系.首先通过确定直线的斜率,进一步得到其方程,将代入后求得,计算得解.解答直线与圆的位置关系问题,往往要借助于数与形的结合,特别是要注意应用圆的几何性质.浙江卷已知椭圆的左焦点为,点在椭圆上且在轴的上方,若线段的中点在以原点为圆心,为半径的圆上,则直线的斜率是___________.【答案】【解析】方法1:如图,设F1为椭圆右焦点.由题意可知,由中位线定理可得,设,可得,与方程联立,可解得(舍),又点在椭圆上且在轴的上方,求得,所以.方法2:(焦半径公式应用)由题意可知,由中位线定理可得,即,从而可求得,所以.【名师点睛】本题主要考查椭圆的标准方程、椭圆的几何性质、圆的方程与性质的应用,利用数形结合思想,是解答解析几何问题的重要途径.结合图形可以发现,利用三角形中位线定理,将线段长度用圆的方程表示,与椭圆方程联立可进一步求解.也可利用焦半径及三角形中位线定理解决,则更为简洁.全国Ⅲ卷设为椭圆C:的两个焦点,M为C上一点且在第一象限.若为等腰三角形,则M的坐标为___________.【答案】【解析】由已知可得,,∴.设点的坐标为,则,又,解得,,解得(舍去),的坐标为.【名师点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好地落实了直观想象、逻辑推理等数学素养.解答本题时,根据椭圆的定义分别求出,设出的坐标,结合三角形面积可求出的坐标.全国Ⅰ卷已知双曲线C:的左、右焦点分别为F1,F2,过F1的直线与C的两条渐近线分别交于A,B两点.若,,则C的离心率为____________.【答案】2【解析】如图,由得又得OA是三角形的中位线,即由,得∴,,又OA与OB都是渐近线,得又,∴又渐近线OB的斜率为,∴该双曲线的离心率为.【名师点睛】本题结合平面向量考查双曲线的渐近线和离心率,渗透了逻辑推理、直观想象和数学运算素养,采取几何法,利用数形结合思想解题.解答本题时,通过向量关系得到和,从而可以得到,再结合双曲线的渐近线可得进而得到从而由可求离心率.江苏卷在平面直角坐标系中,若双曲线经过点(3,4),则该双曲线的渐近线方程是▲ .【答案】【解析】由已知得,解得或,因为,所以.因为,所以双曲线的渐近线方程为.【名师点睛】双曲线的标准方程与几何性质,往往以小题的形式考查,其难度一般较小,是高考必得分题.双曲线渐近线与双曲线标准方程中的密切相关,事实上,标准方程中化1为0,即得渐近线方程.江苏卷在平面直角坐标系中,P是曲线上的一个动点,则点P到直线x+y=0的距离的最小值是▲ .【答案】4【解析】当直线x+y=0平移到与曲线相切位置时,切点Q即为点P,此时到直线x+y=0的距离最小.由,得,,即切点,则切点Q到直线x+y=0的距离为,故答案为.【名师点睛】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法和公式法,利用数形结合和转化与化归思想解题.全国Ⅰ卷已知抛物线C:y2=3x的焦点为F,斜率为的直线l与C的交点为A,B,与x轴的交点为P.(1)若|AF|+|BF|=4,求l的方程;(2)若,求|AB|.【答案】(1);(2).【解析】设直线.(1)由题设得,故,由题设可得.由,可得,则.从而,得.所以的方程为.(2)由可得.由,可得.所以.从而,故.代入的方程得.故.【名师点睛】本题考查抛物线的几何性质、直线与抛物线的综合应用问题,涉及平面向量、弦长的求解方法,解题关键是能够通过直线与抛物线方程的联立,利用根与系数的关系构造等量关系.全国Ⅱ卷已知点A(−2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为−.记M的轨迹为曲线C.(1)求C的方程,并说明C是什么曲线;(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PE⊥x轴,垂足为E,连结QE并延长交C于点G.(i)证明:是直角三角形;(ii)求面积的最大值.【答案】(1)见解析;(2).【解析】(1)由题设得,化简得,所以C为中心在坐标原点,焦点在x轴上的椭圆,不含左右顶点.(2)(i)设直线PQ的斜率为k,则其方程为.由得.记,则.于是直线的斜率为,方程为.由得.①设,则和是方程①的解,故,由此得.从而直线的斜率为.所以,即是直角三角形.(ii)由(i)得,,所以△PQG的面积.设t=k+,则由k>0得t≥2,当且仅当k=1时取等号.因为在[2,+∞)单调递减,所以当t=2,即k=1时,S取得最大值,最大值为.因此,△PQG面积的最大值为.【名师点睛】本题考查了求椭圆的标准方程,以及利用直线与椭圆的位置关系,判断三角形形状以及三角形面积最大值问题,考查了数学运算能力,考查了求函数最大值问题.全国Ⅲ卷已知曲线C:y=,D为直线y=上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点:(2)若以E(0,)为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.。

2019全国二卷解析几何

2019全国二卷解析几何

2019全国二卷解析几何
对于2019年全国二卷的解析几何题目,可以通过以下方式解答:
首先,对于第一小问,需要求出M的轨迹方程。

由于动点M(x, y)满足直线AM与BM的斜率之积为-1/2,根据椭圆的第三定义,即斜率乘积为定值,可以推导出M的轨迹是一个椭圆。

进一步利用椭圆的性质和几何关系,可以求出椭圆的方程。

其次,对于第二小问的第一部分,需要证明一个给定的结论。

可以通过代入法将已知条件代入到需要证明的结论中,然后进行化简和推导,最终得出证明结果。

最后,对于第二小问的第二部分,需要求出最值。

可以通过观察和利用已知条件,发现最值出现在某个特定的点上。

然后通过代入法将该点的坐标代入到需要求最值的表达式中,得出最值的结果。

总的来说,对于2019年全国二卷的解析几何题目,需要熟练掌握椭圆的性质和几何关系,以及灵活运用代入法和推导法进行求解。

同时,还需要具备一定的观察能力和运算能力。

2019年高考全国Ⅰ卷解析几何试题评析及备考建议

2019年高考全国Ⅰ卷解析几何试题评析及备考建议
以下就通过分析 2019 年高考的解析几何试题, 总结近 年来全国卷的解析几何命题特点, 明确备考方向, 提出备考 建议.
1. 3
在 △AF1F2 √
中, 由余弦定理得 −4n2 +4n2 −2·2n·2n· 1 3
=
3


4, 得 n = . 所以 2a = 4n = 2 3, 所以 a = 3, 所以
22
据椭圆定义列出方程, 得到 A 点的特殊位置; 再根据图形的 特殊性解题, 如解法 1 利用共线向量坐标运算或者用相似三 角形确定 B 的坐标, 再由方程思想迅速求解. 若没有关注到 特殊图形, 还可用余弦定理, 借助同角或互为补角的余弦关 系列方程求解, 如解法 2 在两个三角形中对同一个角 A 运算 (也可对角 B), 体现了算两次的思想方法; 解法 3 在两个三角 形中对互补的两个角运算, 巧妙消去余弦, 充满了整体与对 称的美感. 解法 4 则高屋建瓴, 运用极坐标方程处理焦半径, 颇有牛刀杀鸡的意味, 供学有余力的学生参考.
=
−−→ 3F B,

k
=(
)
A. 1
√ B. 2
√ C. 3
D. 2
题源 3 (2010 年全国 I 卷理 16) 已知 F 是椭圆 C 的一 个焦点, B 是短轴的一个端点, 线段 BF 的延长线交 C 于点
解法 4 因为点 B 在渐进线 y = b x 上, 可设 B(am, bm),
−−→ −−→
2
b2 = a2 − c2 = 3 − 1 = 2, 所以选 B.
解 法3 在 △AF1F2 和 △BF1F2 中, 由 余 弦
定理

4n2 + 4 − 2 · 2n · 2 · cos ∠AF2F1 = 4n2, n2 + 4 − 2 · n · 2 · cos ∠BF2F1 = 9n2,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年高考数学试题分项版——解析几何(原卷版)一、选择题1.(2019·全国Ⅰ文,10)双曲线C:-=1(a>0,b>0)的一条渐近线的倾斜角为130°,则C的离心率为()A.2sin 40°B.2cos 40° C. D.2.(2019·全国Ⅰ文,12)已知椭圆C的焦点为F1(-1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.+y2=1B.+=1C.+=1D.+=13.(2019·全国Ⅱ文,9)若抛物线y2=2px(p>0)的焦点是椭圆+=1的一个焦点,则p等于()A.2 B.3 C.4 D.84.(2019·全国Ⅱ文,12)设F为双曲线C:-=1(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P,Q两点.若|PQ|=|OF|,则C的离心率为() A. B.C.2 D.5.(2019·全国Ⅲ文,10)已知F是双曲线C:-=1的一个焦点,点P在C上,O为坐标原点.若|OP|=|OF|,则△OPF的面积为()A. B. C. D.6.(2019·北京文,5已知双曲线-y2=1(a>0)的离心率是,则a等于()A.B.4 C.2 D.7.(2019·天津文,6)已知抛物线y2=4x的焦点为F,准线为l.若l与双曲线-=1(a>0,b>0)的两条渐近线分别交于点A和点B,且|AB|=4|OF|(O为原点),则双曲线的离心率为()A. B.C.2 D.8.(2019·浙江,2)渐近线方程为x±y=0的双曲线的离心率是()A.B.1C.D.29.(2019·全国Ⅰ理,10)已知椭圆C的焦点为F1(-1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.+y2=1B.+=1C.+=1D.+=110.(2019·全国Ⅱ理,8)若抛物线y 2=2px (p >0)的焦点是椭圆+ =1的一个焦点,则p 等于( )A .2B .3C .4D .811.(2019·全国Ⅱ理,11)设F 为双曲线C :-=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为( ) A. B. C .2 D.12.(2019·全国Ⅲ理,10)双曲线C :-=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点.若|PO |=|PF |,则△PFO 的面积为( ) A.B.C .2D .313.(2019·北京理,4)已知椭圆22221(0)x y a b a b +=>>的离心率为12,则( )A .222a b =B .2234a b =C .2a b =D .34a b =14.(2019·北京理,8)数学中有许多形状优美、寓意美好的曲线,曲线22:1||C x y x y +=+就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是( )A .①B .②C .①②D .①②③15.(2019·天津理,5)已知抛物线y 2=4x 的焦点为F ,准线为l .若l 与双曲线-=1(a >0,b >0)的两条渐近线分别交于点A 和点B ,且|AB |=4|OF |(O 为原点),则双曲线的离心率为( )A. B. C .2 D. 二、填空题1.(2019·全国Ⅲ文,15)设F1,F2为椭圆C:+=1的两个焦点,M为C上一点且在第一象限.若△MF1F2为等腰三角形,则M的坐标为________.2.(2019·北京文,11)设抛物线y2=4x的焦点为F,准线为l.则以F为圆心,且与l相切的圆的方程为________.3.(2019·浙江,12)已知圆C的圆心坐标是(0,m),半径长是r.若直线2x-y+3=0与圆C 相切于点A(-2,-1),则m=________,r=________.4.(2019·浙江,15)已知椭圆+=1的左焦点为F,点P在椭圆上且在x轴的上方.若线段PF的中点在以原点O为圆心,|OF|为半径的圆上,则直线PF的斜率是________.5.(2019·江苏,7)在平面直角坐标系xOy中,若双曲线x2-=1(b>0)经过点(3,4),则该双曲线的渐近线方程是_________________.6.(2019·江苏,10)在平面直角坐标系xOy中,P是曲线y=x+(x>0)上的一个动点,则点P到直线x+y=0的距离的最小值是________.7.(2019·全国Ⅰ理,16)已知双曲线C:-=1(a>0,b>0)的左、右焦点分别为F1,F2,过F1的直线与C的两条渐近线分别交于A,B两点.若=,·=0,则C的离心率为________.8.(2019·全国Ⅲ理,15)设F1,F2为椭圆C:+=1的两个焦点,M为C上一点且在第一象限.若△MF1F2为等腰三角形,则M的坐标为________.三、解答题1.(2019·全国Ⅰ文,21)已知点A,B关于坐标原点O对称,|AB|=4,⊙M过点A,B且与直线x+2=0相切.(1)若A在直线x+y=0上,求⊙M的半径;(2)是否存在定点P,使得当A运动时,|MA|-|MP|为定值?并说明理由.2.(2019·全国Ⅱ文,20)已知F1,F2是椭圆C:+=1(a>b>0)的两个焦点,P为C上的点,O为坐标原点.(1)若△POF2为等边三角形,求C的离心率;(2)如果存在点P,使得PF1⊥PF2,且△F1PF2的面积等于16,求b的值和a的取值范围.3.(2019·全国Ⅲ文,21)已知曲线C:y=,D为直线y=-上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点;(2)若以E为圆心的圆与直线AB相切,且切点为线段AB的中点,求该圆的方程.4.(2019·北京文,19)已知椭圆C:+=1的右焦点为(1,0),且经过点A(0,1).(1)求椭圆C的方程;(2)设O为原点,直线l:y=kx+t(t≠±1)与椭圆C交于两个不同点P,Q,直线AP与x轴交于点M,直线AQ与x轴交于点N.若|OM|·|ON|=2,求证:直线l经过定点.5.(2019·天津文,19)设椭圆+=1(a>b>0)的左焦点为F,左顶点为A,上顶点为B.已知|OA|=2|OB|(O为原点).(1)求椭圆的离心率;(2)设经过点F且斜率为的直线l与椭圆在x轴上方的交点为P,圆C同时与x轴和直线l 相切,圆心C在直线x=4上,且OC∥AP.求椭圆的方程.6.(2019·浙江,21)如图,已知点F(1,0)为抛物线y2=2px(p>0)的焦点.过点F的直线交抛物线于A,B两点,点C在抛物线上,使得△ABC的重心G在x轴上,直线AC交x轴于点Q,且Q在点F的右侧.记△AFG,△CQG的面积分别为S1,S2.(1)求p的值及抛物线的准线方程;(2)求的最小值及此时点G的坐标.7.(2019·江苏,17)如图,在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的焦点为F1(-1,0),F2(1,0).过F2作x轴的垂线l,在x轴的上方,l与圆F2:(x-1)2+y2=4a2交于点A,与椭圆C交于点D.连接AF1并延长交圆F2于点B,连接BF2交椭圆C于点E,连接DF1.已知DF1=.(1)求椭圆C的标准方程;(2)求点E的坐标.8.(2019·江苏,18)如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P,Q,并修建两段直线型道路PB,QA,规划要求:线段PB,QA上的所有点到点O的距离均不小于圆O的半径.已知点A,B到直线l的距离分别为AC和BD(C,D为垂足),测得AB=10,AC=6,BD=12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)在规划要求下,若道路PB和QA的长度均为d(单位:百米),求当d最小时,P,Q两点间的距离.9.(2019·全国Ⅰ理,19)已知抛物线C:y2=3x的焦点为F,斜率为的直线l与C的交点为A,B,与x轴的交点为P.(1)若|AF|+|BF|=4,求l的方程;(2)若=3,求|AB|.10.(2019·全国Ⅱ理,21)已知点A(-2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为-.记M的轨迹为曲线C.(1)求C的方程,并说明C是什么曲线;(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PE⊥x轴,垂足为E,连接QE 并延长交C于点G.(ⅰ)证明:△PQG是直角三角形;(ⅱ)求△PQG面积的最大值.11.(2019·全国Ⅲ理,21)已知曲线C :y =,D 为直线y =-上的动点,过D 作C 的两条切线,切点分别为A ,B . (1)证明:直线AB 过定点;(2)若以E为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.12.(2019·北京理,18)(14分)已知抛物线2:2C x py =-经过点(2,1)-. (Ⅰ)求抛物线C 的方程及其准线方程;(Ⅱ)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线1y =-分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.13.(2019·天津理,18)设椭圆+=1(a >b >0)的左焦点为F ,上顶点为B .已知椭圆的短轴长为4,离心率为. (1)求椭圆的方程;(2)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若|ON |=|OF |(O 为原点),且OP ⊥MN ,求直线PB 的斜率.。

相关文档
最新文档