液晶屏显示数字电压表

合集下载

稳压器0-500v交流数显电压表原理

稳压器0-500v交流数显电压表原理

稳压器0-500v交流数显电压表原理
稳压器是一种常见的电子元件,用于将不稳定的电压转换为稳定的输出电压。

它在许多电子设备中起到了至关重要的作用,尤其是在需要稳定电压的场合。

稳压器的工作原理是将输入电压调整为稳定的输出电压。

其中,0-500V交流数显电压表是一种用于显示电压的仪器。

它通过测量输入电压的大小,并将其显示在数码显示屏上,以便用户能够及时了解电压的情况。

具体来说,稳压器的原理是通过反馈控制实现的。

它包括一个反馈电路和一个控制电路。

反馈电路负责检测输出电压的变化,并将这个变化信号送回到控制电路中。

控制电路根据反馈信号来调整电压的大小,使其保持在一个稳定的水平。

在稳压器中,0-500V交流数显电压表起到了显示电压的作用。

它通过测量输入电压的大小,并将其转换为数字信号,然后显示在数码显示屏上。

这样,用户就可以方便地了解电压的大小,从而对电子设备的工作状态有一个清晰的了解。

稳压器0-500V交流数显电压表的原理是通过反馈控制实现的。

它能够将不稳定的输入电压转换为稳定的输出电压,并通过数码显示屏将电压的大小直观地展示给用户。

这种技术在电子设备中被广泛应用,为设备的稳定运行提供了重要支持。

ADC0832的数字电压表设计说明

ADC0832的数字电压表设计说明

目录1.引言 (1)2.方案设计 (1)2.1设计要求 (1)2.2设计方案 (1)3.硬件设计 (2)3.1单片机最小系统 (2)3.2显示驱动部分 (2)3.3转换电路 (3)3.4单片机驱动部分 (3)4.软件设计 (4)4.1软件流程 (4)4.2子程序模板 (5)5实验结果与讨论 (5)5.1实验仿真 (5)5.2结果讨论 (5)6心得体会 (6)7参考文献 (13)8附录8.1程序 (7)8.2 原理图 (7)1.引言随着片机技术的飞速发展,,现代的电子产品几乎渗透到了社会的各个领域,有力地推动了社会生产力的发肢和社会信息化程度的提商,人们为了寻求最好的科技,为了方便人类在使用科技产品的快速性,准确性。

例如数字电压表能够准确的,快速的量出电压。

利用ADC0832和AT89C52的结合再通过LCD来显示出来。

ADC0832是一个8位D/A转换器。

单电源供电,从+5V~+15V均可正常工作。

基准电压的围为±10V;电流建立时间为1μS;CMOS工艺,低功耗20mW。

ADC0832转换器芯片为20引脚,双列直插式封装。

该转换器由输入寄存器和DAC寄存器构成两级数据输入锁存。

使用时数据输入可以采用两级锁存(双锁存)形式,或单级锁存(一级锁存,一级直通)形式,或直接输入(两级直通)形式。

2.方案设计2.1设计要求按系统要实现功能,设计必须达到以下的几个步骤的要求(1)主电路系统是由ADC0832,单片机AT89C52和LCD显示屏组成。

(2)ADC0832是模拟数字转换芯片,是将外侧电压信号转换成数字信号再通过AT89C52处理,再通过LCD显示出来(3)能测量0-5V的数字电压(4)测量误差不大于0.1V2.2设计方案2.1.1单片机的选择本设计选用单片机AT89C52它是一种带8K字节闪烁可编程可擦除只读存储器的低电压,足够本设计之用,高性能CMOS8位微处理器该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令系统及8052产品引脚兼容,功能强大、使用方便的AT80C52单片机适用于许多较为复杂的应用场合。

单片机毕业论文基于LCD显示技术的数字电压表设计

单片机毕业论文基于LCD显示技术的数字电压表设计

单片机毕业论文基于LCD显示技术的数字电压表设计基于LCD显示技术的数字电压表设计基于LCD显示技术的数字电压表设计摘要:本报告介绍了基于AT89S52单片机为核心的、以AD0809数模转换芯片采样、以1602液晶屏显示的具有电压测量功能的具有一定精度的数字电压表。

在实现基础功能要求之上扩展了串口通讯、时钟功能、高压报警、短路测试、电阻测量、交流电压峰峰值和周期测试等功能,使系统达到了良好的设计效果和要求。

关键词:AT89S52单片机模数转换液晶显示扩展功能Based on the LCD display technologyof digital voltmeter designAbstract: The report describes the AT89S52 based on the microcontroller as the core, AD0809 digital-to-analog converter chip sampling, to 1602 LCD display with voltage measurement function with a certain precision of digital voltage meter. In achieving functional requirements based upon the expansion of serial communications, high-pressure alarm, short circuit, electrical resistivity measurement, AC voltage and the peak of cycle testing and other functions, allowing the system to achieve good results and the design requirements.Keywords: AT89S52 SCM analog-to-digital conversion functions LCD expansion1基于LCD显示技术的数字电压表设计目录绪论.......................................................................................3 1数字电压表简介........................................................................4 1.1数字电压表的介绍 (4)1.2数字电压表的基本结构及工作原理…………………………………………4 1.3数字电压表的发展趋势……………………………………………………5 2单片机的概述………………………………………………………………62.1单片机简介………………………………………………………………6 2.2单片机的特点……………………………………………………………7 2.3单片机的应用……………………………………………………………7 3 方案论证..............................................................................8 3.1 CPU的选择...........................................................................8 3(2 液晶显示器的选择 (11)3.2.1液晶显示原理………………………………………………………………11 3.2.2液晶显示器各种图形的显示原理………………………………………11 4系统硬件设计……………………………………………………………………184.1硬件电路系统框图.....................................................................18 4.2软件设计流程图........................................................................18 4.3电源电路设计 (20)4.4 CPU系统设计………………………………………………………………20 4.5 CPU与显示器接口电路设计…………………………………………………21 4.6数字电压表硬件电路………………………………………………………23 总结体会....................................................................................24 致谢.......................................................................................25 参考文献 (26)附录 (27)附录1: 部分系统源程序附录2:运行图片及部分数据2基于LCD显示技术的数字电压表设计0绪论单片微型计算机简称单片机,又称微控制器,特别适用于控制领域。

数字电压表的介绍

数字电压表的介绍

数字电压表的介绍数字电压表是一种用于测量电压的电子仪器,它可以将电压转换为数字信号,并显示在数字显示屏上。

数字电压表具有精度高、测量范围广、易于读数等优点,因此在电子工程、电力工程、通信工程等领域得到了广泛应用。

一、数字电压表的分类数字电压表按照测量范围和精度的不同,可以分为模拟式数字电压表和数字式数字电压表两种。

模拟式数字电压表是一种将电压信号转换为模拟信号,再通过模拟电路进行处理,最终显示在指针式表盘上的电压表。

它的优点是测量范围广,但精度相对较低。

数字式数字电压表是一种将电压信号直接转换为数字信号,并通过数字电路进行处理,最终显示在数字显示屏上的电压表。

它的优点是精度高、测量范围广、易于读数等。

二、数字电压表的工作原理数字电压表的工作原理是将待测电压信号通过电路转换为数字信号,再通过数字电路进行处理,最终显示在数字显示屏上。

数字电压表的输入电路通常由一个电阻分压器和一个运算放大器组成。

电阻分压器将待测电压信号分压为适合于运算放大器输入的电压信号,运算放大器将输入信号放大并转换为数字信号,再通过数字电路进行处理,最终显示在数字显示屏上。

三、数字电压表的使用方法数字电压表的使用方法相对简单,只需将待测电压信号接入数字电压表的输入端,选择合适的测量范围和测量模式,即可读取电压值。

在使用数字电压表时,需要注意以下几点:1.选择合适的测量范围和测量模式,避免超出数字电压表的测量范围和精度。

2.在测量直流电压时,需要注意电压的正负极性,避免误读电压值。

3.在测量交流电压时,需要选择合适的测量模式,避免误读电压值。

4.在测量高电压时,需要使用专门的高压探头,避免电击危险。

四、数字电压表的应用领域数字电压表广泛应用于电子工程、电力工程、通信工程等领域,常用于测量电路中的电压、电流、电阻等参数。

在电子工程中,数字电压表常用于测量电路中的电压、电流、电阻等参数,以确保电路的正常工作。

在电力工程中,数字电压表常用于测量电力系统中的电压、电流、功率等参数,以确保电力系统的正常运行。

数字电压表ICL7106

数字电压表ICL7106

数字电压表ICL7106/7107的应用2011年09月29日 14:06 本站整理作者:叶子用户评论(0)关键字:数字电压表(15)ICL7106(1)ICL7107(1)数字电压表(数字面板表)是当前电子、电工、仪器、仪表和测量领域大量使用的一种基本测量工具有关数字电压表的书籍和应用已经非常普及了。

这里展示的一份由 ICL7106 A/D 转换电路组成的数字电压表(数字面板表)电路,就是一款最通用和最基本的电路。

与 ICL7106 相似的是 ICL7107 ,前者使用 LCD 液晶显示,后者则是驱动 LED 数码管作为显示,除此之外,两者的应用基本是相通的。

电路图中,仅仅使用一只 DC9V 电池,数字电压表就可以正常使用了。

按照图示的元器件数值,该表头量程范围是±200.0mV。

当需要测量±200mV 的电压时,信号从 V-IN 端输入,当需要测量±200mA 的电流时,信号从 A-IN 端输入,不需要加接任何转换开关,就可以得到两种测量内容。

也有许多场合,希望数字电压表(数字面板表)的量程大一些,那么,只需要更改 2 只元器件的数值,就可以实现量程为±2.000V 了。

更改的元器件具体位置和数值见下图的 28 和 29 两只引脚:在有了一只数字电压表(数字面板表)之后,按照下面的图示,给它配置一组分流电阻,就可以实现多量程数字电流表,分档从±200uA 到±20A 。

但是要注意:在使用 20A 大电流档的时候,不能再有开关来切换量程,应该专门配置一只测量插孔,以防烧毁切换开关。

与多量程电流表对应的是经常需要使用多量程电压表,按照下图配置一组分压电阻,就可以得到量程从±200.0mV 至±1000V 的多量程电压表。

测量电阻与测量电流或者电压一样重要,俗称“三用表”,利用数字电压表做成的多量程电阻表,采用的是“比例法”测量,因此,它比起指针万用表的电阻测量来具有非常准确的精度,而且耗电很小,下图示中所配置的一组电阻就叫“基准电阻”,就是通过切换各个接点得到不同的基准电阻值,再由 Vref 电压与被测电阻上得到的 Vin 电压进行“比例读数”,当 Vref = Vin 时,显示就是 Vin/Vref*1000=1000 ,按照需要点亮屏幕上的小数点,就可以直接读出被测电阻的阻值来了。

基于ICL7107数字电压表

基于ICL7107数字电压表

西安电子科技大学长安学院课程设计设计题目:数字电压表的仿真与设计学院:长安学院系别:电子工程专业:电子科学与技术:班级:06521学号:06521002姓名:***指导老师:王勇目录一. 摘要 (2)二.课程设计任务与要求 (2)2.1设计目的 (2)2.2设计要求 (2)三.总体设计思路 (3)3.1方案选择 (3)3.2系统框图 (3)四.课程设计框图及工作原理 (4)4.1 工作原理 (4)4.2 ICL7107的工作原理 (5)4.3 ICL7107 安装电压表头时的一些要点 (8)4.4 关于多量程电路部分 (10)五.电路设计与仿真 (12)六.系统调试及结果分析 (13)6.1调试仪器 (13)6.2 调试方法 (13)6.3 测试结果分析 (13)6.4 硬件实物图 (13)七.元器件清单 (14)八.设计心得体会 (14)九.参考文献 (14)一.摘要数字电压表(Digital Voltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。

目前,由各种单片A/D 转换器构成的数字电压表,已被广泛用于电子及电工测量、工业自动化仪表、自动测试系统等领域,显示出强大的生命力。

与此同时,由DVM扩展而成的各种通用及专用数字仪器仪表,也把电量及非电量测量技术提高到崭新水平。

本章重点介绍单片A/D 转换器以及由它们构成各种新型数字电压表的工作原理。

数字电压表具有以下九大特点:1. 显示清晰直观,读数准确2. 准确度高3. 分辨率高4. 测量范围宽5. 扩展能力强6. 测量速率快7.输入阻抗高8. 集成度高,微功耗9. 抗干扰能力强二.课程设计任务与要求2.1、设计目的1、了解双积分式A/D转换器的工作原理2、熟悉A/D转换器ICL7107的性能及其引脚功能3、掌握用ICL7107构成直流数字电压表的方法2.2、设计要求1、设计一个数字电压表电路。

MSP430数字电压表0-20V资料

MSP430数字电压表0-20V资料
_NOP();
H_CLK;
_NOP();
L_CLK;
_NOP();
H_CLK;
_NOP();
L_CLK;
_NOP();
H_Conv;
_NOP();
ADCdata &= 0x0fff;
return (ADCdata);
}
While(1)函数部分
while(1)
{
//LCD_write_hanzi(1,1,0);
IrDA 编码器和解码器
同步 SPI
I2C™
Nokia5110
5110液晶显示屏(PCD8544芯片),是通过发送指令和写入数据RAM来控制和显示数据的。
指令格式分为两种模式:
1、如果D/C(模式选择)置为低(为0),即位变量 dc = 0,为发送指令模式,那么接下来发送的8位字节解释为命令字节。
2、如果D/C置为高,即dc = 1; 为写入数据RAM模式,接下来的字节将存储到显示数据RAM。
L_CLK;
_NOP();
H_CLK;
_NOP();
for(i=0; i<12; i++)
{
L_CLK;
_NOP();
H_CLK;
_NOP();
ADCdata <<= 1;
if(P2IN & 0x02)
{
ADCdata |= 0x0001;
}
else
{
ADCdata &= 0xfffe;
}
}
L_CLK;
01risc架构625ns指令周期时间高达16mhz的内部频率具有4种校准频率内部超低功耗低频lf振荡器32khz晶体个捕获比较寄存器的两个16多达24个支持触摸感测的增强型uart可支持自动波特率检测linirda编码器和解码器同步spii2cnokia51105110液晶显示屏pcd8544芯片是通过发送指令和写入数据ram来控制和显示数据的

数字电压表(两路)

数字电压表(两路)

数字电压表(两路)前⾔数字电压表具有测量电压的特点特点,在⽣活中已经得到⼴泛的应⽤。

另外数字电压表还具备电压准确测量的功能,且电压表可⾃选,使⼀款电⼦表具备了多媒体的⾊彩。

单⽚机AT89C51在Proteus软件中实现数字电压表的显⽰功能。

具有体积⼩、功能强可靠性⾼、价格低廉等⼀系列优点,不仅已成为⼯业测控领域普遍采⽤的智能化控制⼯具,⽽且已渗⼊到⼈们⼯作和和⽣活的各个⾓落,有⼒地推动了各⾏业的技术改造和产品的更新换代,应⽤前景⼴阔。

数字电压表在计算机系统中起着⾮常重要的作⽤,是保证系统正常⼯作的基础。

本⽂主要介绍⽤单⽚机来实现数字电压表的⽅法,本设计由单⽚机ADC0832芯⽚和LED1602液晶显⽰屏为核⼼,辅以必要的电路,构成了⼀个单⽚机的两路电压表。

⽬录1. 数字电压表的简介 (2)1.1. 数字电压表的特点 (2)1.1.1. 准确度⾼: (2)1.1.2. 灵敏度⾼: (2)1.1.3. 输⼊阻抗⾼: (2)1.1.4. 测量速度快: (2)1.1.5. 读数准确: (2)1.1.6. 使⽤⽅便⽤途⼴: (2)1.2. 数字电压表的⼯作原理 (2)2. 数字电压表的设计 (3)2.1. ADC0832芯⽚ (3)2.1.1. 特点: (3)2.1.2. 引脚及功能: (3)3. Protues仿真电路 (5)3.1. 绘制数字时钟电路Protues仿真原理图: (5)3.1.1. 两路数字电压原理图 (5)3.1.2. 电路检测 (5)3.1.3. 程序的运⾏效果 (5)3.1.4. 调整后的运⾏效果 (6)3.1.5. 运⾏keil软件编写程序 (7)3.1.6. 程序: (7)4. 总结 (11)5. 参考资料 (11)1.数字电压表的简介1.1. 数字电压表的特点数字电压表(DVM )是将被测的电压模拟量⾃动转换成开关量,然后进⾏数字编码、译码,以数字形式显⽰出来的⼀种电测仪表,它具有如下主要特点:1.1.1.准确度⾼:⽬前可达到10^-6数量级,因此⽤它代替直读仪表,可⼤⼤提⾼测量精度。

51单片机的数字电压表设计

51单片机的数字电压表设计

51单片机的数字电压表设计随着科技的快速发展,单片机在许多领域得到了广泛应用。

51单片机作为一种常见的单片机,具有功能强大、易于编程等优点,因此在数字电压表设计中具有独特优势。

本文将介绍如何利用51单片机设计数字电压表。

数字电压表的电源电路通常采用直流电源,可以通过变压器将交流电转换为直流电,再经过滤波和稳压电路,将电压稳定在单片机所需的电压范围内。

数字电压表的信号采集电路可以采用电阻分压的方式,将待测电压分压后送入单片机进行测量。

为了提高测量精度,可以采用差分放大器对信号进行放大和差分输出。

51单片机内置ADC模块,可以将模拟信号转换为数字信号。

在数字电压表中,可以使用ADC模块对放大后的模拟信号进行转换,得到数字信号后进行处理和显示。

数字电压表的显示电路可以采用液晶显示屏或LED数码管,将测量结果以数字形式显示出来。

液晶显示屏具有显示清晰、亮度高、视角广等优点,但价格较高;LED数码管价格便宜、亮度高、寿命长,但显示内容有限。

数字电压表的主程序主要完成电压的采集、A/D转换和显示等功能。

主程序首先进行系统初始化,包括设置ADC模块参数、初始化显示等;然后不断循环采集电压信号,将采集到的模拟信号转换为数字信号后进行处理和显示。

51单片机的ADC模块可以通过特殊功能寄存器进行配置和控制。

在数字电压表的软件设计中,需要编写ADC模块驱动程序,以控制ADC 模块完成模拟信号到数字信号的转换。

具体实现可以参考51单片机的ADC模块寄存器定义和操作指南。

数字电压表的显示程序需要根据显示硬件选择合适的显示库或驱动程序。

在编写显示程序时,需要将采集到的数字信号转换为合适的数值,并将其显示在显示屏上。

具体实现可以参考所选显示库或驱动程序的文档说明。

精度问题:数字电压表的精度直接影响到测量结果的质量。

为了提高测量精度,可以采用高精度的ADC模块和合适的信号处理技术。

同时,需要注意信号采集电路中电阻的精度和稳定性。

基于STC89C52单片机的简易数字电压表设计【毕业设计】

基于STC89C52单片机的简易数字电压表设计【毕业设计】

基于STC89C52单片机的简易数字电压表设计【毕业设计】存档编号华北水利水电大学North China University of Water Resources and Electric Power 毕业设计题目基于单片机的数字电压表设计学院信息工程学院专业通信工程姓名学号200912303指导教师完成时间2013年5月20日教务处制目录摘要 (I)Abstract (I)绪论 ...................................................................................................................... I I 一设计背景 .. (III)二设计意义 (IV)第一章数字电压表 (5)1.1 数字电压表的优点 (5)1.2 数字电压表发展趋势 (6)1.3 设计平台 (6)1.3.1 KEIL C51开发平台 (6)1.3.2 Proteus 7 Professional设计软件 (7)第二章总体设计方案 (8)2.1数字电压设计的两种方案 (8)2.1.1 由数字电路及芯片构建 (9)2.1.2 由单片机系统及A/D 转换芯片构建 (9)2.2 设计要求 (9)2.3 技术要求 (10)2.4 设计方案 (10)第三章硬件简介 (11)3.1 本设计单片机的选择 (11)3.1.1常用单片机的特点比较 (11)3.1.2 单片机的选择 (12)3.1.3 STC89C52单片机介绍 (13)3.2 本设计显示器件选择 (18)3.2.1 常用显示器件简介 (18)3.2.2 显示器件的选择 (19)3.2.3 1602字符型LCD简介 (19)3.3A/D芯片 (24)3.3.1常用的A/D芯片 (24)3.3.2 ADC0809芯片 (25)第四章接口电路 (28)4.1 显示电路 (28)4.2 ADC0809与单片机接口电路 (29)第五章硬件电路系统模块设计 (30)5.1 总电路模块 (30)5.2 硬件系统电路简介 (30)第六章系统软件设计 (31)6.1 主程序 (31)6.2 A/D转换子程序 (32)6.3 显示子程序 (32)第七章调试及性能分析 (33)7.1 调试与测试 (33)7.2 性能分析 (34)总结 (35)参考文献 (36)致谢 (38)附录 (39)附录I(外文翻译) (39)外文译文 (49)附录II(任务书) (57)附录III(开题报告) (59)附录IV(图表) (62)I Proteus仿真图 (62)II 硬件总电路图 (63)III 实物图 (64)附录V(程序清单) (66)摘要随着时代的进步,用指针式万用表测量小幅度直流电压已经显得有些不太方便。

单片机课程设计(直流数字电压表)

单片机课程设计(直流数字电压表)

课程设计总结与展 望
课程设计目标:掌握单片机基础知识,学会设计直流数字电压表 课程设计内容:包括硬件设计、软件设计、调试和测试等 课程设计成果:成功设计并制作出直流数字电压表 课程设计收获:提高了单片机应用能力,增强了团队合作和沟通能力
课程设计展望:未来将继续深入学习单片机技术,提高实践能力,为未来就业做好准备
实际应用:可用于测量直流电压,广泛应用于电子、电力等领域 市场前景:随着电子技术的发展,市场需求不断增长 技术更新:需要不断更新技术,提高测量精度和稳定性 市场竞争:面临国内外竞争对手的压力,需要提高产品质量和降低成本
智能化:单片机技术在智能设备中的应用越来越广泛,未来发展方向将更加智能化。
物联网:单片机技术在物联网中的应用越来越广泛,未来发展方向将更加注重物联网技术的应用。
单片机课程设计(直 流数字电压表)
汇报人:
目录
添加目录标题
单片机课程设计概 述
硬件电路设计
软件程序设计
系统调试与测试
课程设计总结与展 望
添加章节标题
单片机课程设计概 述
掌握单片机的基本原理和编程方法 提高动手实践能力和创新能力 培养团队合作精神和解决问题的能力 为未来的学习和工作打下坚实的基础
电源测试:检查电源电压是 否稳定,是否符合要求
信号测试:检查信号输入、 输出是否正常,是否符合要 求
功能测试:检查系统功能是 否正常,是否符合设计要求
性能测试:检查系统性能是 否满足设计要求,如响应时 间、精度等
稳定性测试:检查系统在 长时间运行下的稳定性, 如温度、湿度等环境因素 对系统的影响
软件调试:通过运行程序,发现并修复程序中的错误 软件测试:通过测试程序,验证程序的功能和性能是否符合预期 测试方法:包括单元测试、集成测试、系统测试等 测试工具:可以使用自动化测试工具,如JUnit、Selenium等

液晶显示数字电压表的设计

液晶显示数字电压表的设计

第 5期
翟蓓蓓 , : 晶显 示数 字 电压表 的设计 等 液
■ —工
T 0 F 3 P T 0 F 3P
Ul
中心 , 实现 电压 的远 程检 测。本 系统采 用 的是 R -3 S2 2串行 接 口 ,S2 2是 由美 国电子工 业协会( I 正式公 布 的串行 R -3 EA) 总线标 准 , 是 目前 最常 用 的串行接 口标准 , 也 用来 实现计 算 机与计算机之间 , 计算 机与外设之 间的数据通信 。在 R - 2 S2 3 中任何一条信号线的电压均为负逻辑关系。
中图 分 类 号 :P3 T 32 文献标识码 : A
O 引言
随着电子科学技术 的 日益发展 , 电子测量也变得越 来越
行对最低待测量值的测量 。 ( )成本及功耗问题 3 由于输入值量程判断器所判断 出的值不 是用来测量 , 而 是用于转换量程档位 , 所转 换 出的数值 不需要 十分 精确 , 故 其 电路功耗可按仪表需要选择适 当的芯片。
数字电压表整体结构设计 如图 1 所示 , 主要分 为微 控制 器 、/ A D转换 模块 、 量程 自动转换模块 、C L D液 晶显示模块 、 串口通信模块 、 时钟电路和复位 电路等部分来设计 。主要用
软件编程 的方式检测 输入信 号 的大小来 实现数字 电压 表 的
量程 自动转换功 能。
12 电压表 的整体设 计 .
普遍, 并且对 测量的功 能要 求也越 来越 高 , 以数 字 电压表 所
就成为一种必不可少 的测 量仪器。数字 电压表( i t o ・ Dg a V l il t
mt) e r 简称 D M, e V 它是采用数 字化测 量技术 , 连续 的模拟 把 量( 直流输 入电压 ) 转换 成 不连续 、 散 的数字 形 式并 加 以 离

单片机数字电压表设计LED显示含C源代码

单片机数字电压表设计LED显示含C源代码

1. 绪论............................... 错误!未定义书签。

1.1 课程设计规定...................... 错误!未定义书签。

1.2 数字电压表简介.................... 错误!未定义书签。

2. 硬件单元电路设计................... 错误!未定义书签。

2.1数字电压表构造框图................. 错误!未定义书签。

2.1.1 AT89C51单片机简介............ 错误!未定义书签。

2.1.2 ADC0832转换器简介............ 错误!未定义书签。

2.1.3 时钟电路..................... 错误!未定义书签。

2.1.4 复位电路..................... 错误!未定义书签。

2.1.5 LED显示电路.................. 错误!未定义书签。

3. 软件单元电路设计................... 错误!未定义书签。

3.1 主程序流程图...................... 错误!未定义书签。

3.2显示子程序流程图................... 错误!未定义书签。

3.3 A/D转换子程序流程图............... 错误!未定义书签。

3.4 数据解决子程序流程图.............. 错误!未定义书签。

4. 数字电压表仿真设计图与实物图....... 错误!未定义书签。

4.1 仿真图............................ 错误!未定义书签。

4.2 器件清单.......................... 错误!未定义书签。

4.3 硬件电路实物图.................... 错误!未定义书签。

5. 程序代码.............................. 错误!未定义书签。

液晶屏显示数字电压表

液晶屏显示数字电压表

1 引言数字电压表的基本工作原理是利用A/D转换电路将待测的模拟信号转换成数字信号,通过相应换算后将测试结果以数字形式显示出来的一种电压表。

较之于一般的模拟电压表,数字电压表具有精度高、测量准确、读数直观、使用方便等优点。

电压表的数字化测量,关键在于如何把随时连续变化的模拟量转化成数字量,完成这种转换的电路叫模数转换器]1[(A/D)。

数字电压表的核心部件就是A/D转换器,由于各种不同的A/D转换原理构成了各种不同类型的DVM。

一般说来,A/D 转换的方式可分为两类:积分式和逐次逼近式。

积分式A/D转换器是先用积分器将输入的模拟电压转换成时间或频率,再将其数字化。

根据转化的中间量不同,它又分为U-T(电压-时间)式和U-F(电压-频率)式两种。

逐次逼近式A/D转换器分为比较式和斜坡电压式,根据不同的工作原理,比较式又分为逐次比较式及零平衡式等。

斜坡电压式又分为线性斜坡式和阶梯斜坡式两种。

在高精度数字电压表中,常采用由积分式和比较式相结合起来的复合式A/D转换器。

本设计以AT89C51单片机为核心,以逐次比较型A/D转换器ADC0808、液晶显示器LCD1602为主体,构造了一款简易的数字电压表,能够测量1路0~5V 直流电压,最小分辨率0.02V。

2 仿真软件介绍2.1 仿真软件简介2.1.1 Proteus 6 ProfessionalISIS 6 Professiona软件是它不仅具有其它EDA工具软件的仿真]2[功能,还能仿真单片机及外围器件。

它是目前最好的仿真单片机及外围器件的工具。

虽然目前国内推广刚起步,但已受到单片机爱好者、从事单片机教学的教师、致力于单片机开发应用的科技工作者的青睐。

它从原理图布图、代码调试到单片机与外围电路协同仿真,一键切换到PCB设计,真正实现了从概念到产品的完整设计。

是目前将电路仿真软件、PCB设计软件和虚拟模型仿真软件三合一的设计平台,其处理器模型支持8051、HC11、PIC10/12/16/18/24/30/DsPIC33、A VR、ARM、8086和MSP430等,2010年即将增加Cortex和DSP系列处理器,并持续增加其他系列处理器模型。

数字电压表的工作原理

数字电压表的工作原理

数字电压表的工作原理
数字电压表是一种测量电压的仪器,它的工作原理基于电压的比较和转换。

工作原理如下:
1. 输入电压被传感器感知:当待测电压被引入数字电压表中时,它首先被传感器(如电阻或电容)感知。

传感器将待测电压转换为与其相关的电信号。

2. 电信号转换为数字信号:传感器输出的电信号通常是模拟信号(连续变化的电压或电流)。

为了将模拟信号转换为数字信号,数字电压表使用模数转换器(ADC),将连续的电信号
转换为离散的数字量。

3. 数字信号处理:转换后的数字信号可以通过数字信号处理器(DSP)进行处理和分析。

这些信号可以被转换为所需的单位(例如伏特、毫伏等)并显示在显示屏上。

4. 数字信号显示:数字电压表通常配备了液晶显示屏或LED
显示屏,用于显示经过处理的数字电压值。

这些数字通常以高精度显示,以便用户可以准确读取电压值。

需要注意的是,不同型号的数字电压表可能具有略微不同的工作原理和元件配置,但总体上,以上述工作原理为基础。

数显电压表原理

数显电压表原理

数显电压表原理
数显电压表原理是基于电压-频率转换技术的测量仪器。

它由信号输入、数字转换和显示部分组成。

在信号输入部分,电压表通过电阻分压原理将待测电压转换为与之成比例的低电压信号。

这一转换过程中通常会使用电阻分压网络来缩小待测电压的幅值,使得电压范围可以适应广泛的测量需求。

该低电压信号会被连接到数字转换器的输入端。

数字转换器是电压表的核心部分,其功能是将模拟输入信号转换为数字化的输出。

这一转换过程包括取样、量化和编码三个步骤。

取样通过使用时钟信号周期性地采集输入信号的幅值,并将其存储在采样保持电路中。

量化通过比较输入信号与参考电压的大小关系,将其分为若干个离散的电平值。

编码将量化结果转换为二进制数字,以便于后续处理和显示。

在显示部分,数字转换器输出的二进制数据会经过一系列的处理和解码,最终被转换为数码管或液晶显示屏上的数字形式。

为了提高显示的稳定性和可读性,通常还会采用滤波技术、数字校正和亮度调节等措施。

总结起来,数显电压表原理是通过电压-频率转换技术将待测电压转换为数字信号,并经过一系列的处理和解码最终显示在数码管或液晶屏上。

LED显示数字电压表电路

LED显示数字电压表电路

LED显示数字电压表电路,Led display digital Voltmeterfront sideCopyright of this circuit belongs to smart kit electronics. In this page we will use this c ircuit to discuss for improvements and we will introduce some changes based on original schematic.General DescriptionThis is an easy to build, but nevertheless very accurate and useful digital voltmeter. It has been designed as a panel meter and can be used in DC power supplies or anywh ere else it is necessary to have an accurate indication of the voltage present. The circu it employs the ADC (Analogue to Digital Converter) I.C. CL7107 made by INTERSIL. Th is IC incorporates in a 40 pin case all the circuitry necessary to convert an analogue si gnal to digital and can drive a series of four seven segment LED displays directly. The circuits built into the IC are an analogue to digital converter, a comparator, a clock, a decoder and a seven segment LED display driver. The circuit as it is described here ca n display any DC voltage in the range of 0-1999 Volts.Technical Specifications - CharacteristicsSupply Voltage: ............. +/- 5 V (Symmetrical)Power requirements: ..... 200 mA (maximum)Measuring range: .......... +/- 0-1,999 VDC in four rangesAccuracy: ....................... 0.1 %FEATURES- Small size- Easy construction- Low cost.- Simple adjustment.- Easy to read from a distance.- Few external components.How it WorksIn order to understand the principle of operation of the circuit it is necessary to explai n how the ADC IC works. This IC has the following very important features:- Great accuracy.- It is not affected by noise.- No need for a sample and hold circuit.- It has a built-in clock.- It has no need for high accuracy external components.Schematic (fixed 16-11-09)7-segment display pinout MAN6960An Analogue to Digital Converter, (ADC from now on) is better known as a dual slope converter or integrating converter. This type of converter is generally preferred over ot her types as it offers accuracy, simplicity in design and a relative indifference to noise which makes it very reliable. The operation of the circuit is better understood if it is de scribed in two stages. During the first stage and for a given period the input voltage is integrated, and in the output of the integrator at the end of this period, there is a vol tage which is directly proportional to the input voltage. At the end of the preset period the integrator is fed with an internal reference voltage and the output of the circuit is gradually reduced until it reaches the level of the zero reference voltage. This second phase is known as the negative slope period and its duration depends on the output of the integrator in the first period. As the duration of the first operation is fixed and th e length of the second is variable it is possible to compare the two and this way the in put voltage is in fact compared to the internal reference voltage and the result is coded and is send to the display.back sideAll this sounds quite easy but it is in fact a series of very complex operations which ar e all made by the ADC IC with the help of a few external components which are used to configure the circuit for the job. In detail the circuit works as follows. The voltage t o be measured is applied across points 1 and 2 of the circuit and through the circuit R 3, R4 and C4 is finally applied to pins 30 and 31 of the IC. These are the input of the IC as you can see from its diagram. (IN HIGH & IN LOW respectively). The resistor R1 together with C1 are used to set the frequency of the internal oscillator (clock) which is set at about 48 Hz. At this clock rate there are about three different readings per second. The capacitor C2 which is connected between pins 33 and 34 of the IC has be en selected to compensate for the error caused by the internal reference voltage and a lso keeps the display steady. The capacitor C3 and the resistor R5 are together the cir cuit that does the integration of the input voltage and at the same time prevent any di vision of the input voltage making the circuit faster and more reliable as the possibility of error is greatly reduced. The capacitor C5 forces the instrument to display zero wh en there is no voltage at its input. The resistor R2 together with P1 are used to adjust the instrument during set-up so that it displays zero when the input is zero. The resis tor R6 controls the current that is allowed to flow through the displays so that there is sufficient brightness with out damaging them. The IC as we have already mentioned a bove is capable to drive four common anode LED displays. The three rightmost display s are connected so that they can display all the numbers from 0 to 9 while the first fr om the left can only display the number 1 and when the voltage is negative the «-«si gn. The whole circuit operates from a symmetrical ρ 5 VDC supply which is applied at pins 1 (+5 V), 21 (0 V) and 26 (-5 V) of the IC.ConstructionFirst of all let us consider a few basics in building electronic circuits on a printed circuit board. The board is made of a thin insulating material clad with a thin layer of condu ctive copper that is shaped in such a way as to form the necessary conductors betwee n the various components of the circuit. The use of a properly designed printed circuit board is very desirable as it speeds construction up considerably and reduces the possi bility of making errors. To protect the board during storage from oxidation and assure it gets to you in perfect condition the copper is tinned during manufacturing and cove red with a special varnish that protects it from getting oxidised and also makes soldering easier.Soldering the components to the board is the only way to build your circuit and from t he way you do it depends greatly your success or failure. This work is not very difficul t and if you stick to a few rules you should have no problems. The soldering iron that you use must be light and its power should not exceed the 25 Watts. The tip should b e fine and must be kept clean at all times. For this purpose come very handy specially made sponges that are kept wet and from time to time you can wipe the hot tip on t hem to remove all the residues that tend to accumulate on it.DO NOT file or sandpaper a dirty or worn out tip. If the tip cannot be cleaned, replace it. There are many different types of solder in the market and you should choose a g ood quality one that contains the necessary flux in its core, to assure a perfect joint every time.DO NOT use soldering flux apart from that which is already included in your solder. To o much flux can cause many problems and is one of the main causes of circuit malfun ction. If nevertheless you have to use extra flux, as it is the case when you have to ti n copper wires, clean it very thoroughly after you finish your work.In order to solder a component correctly you should do the following: - Clean the component leads with a small piece of emery paper.- Bend them at the correct distance from the component’s body and insert the component in its place on the board.- You may find sometimes a component with heavier gauge leads than usual, that are too thick to enter in the holes of the p.c. board. In this case use a mini drill to enlarg e the holes slightly. Do not make the holes too large as this is going to make soldering difficult afterwards.Parts placementPCB dimensions: 77,6mm x 44,18mm or scale it at 35%- Take the hot iron and place its tip on the component lead while holding the end of t he solder wire at the point where the lead emerges from the board. The iron tip musttouch the lead slightly above the p.c. board.- When the solder starts to melt and flow wait till it covers evenly the area around the hole and the flux boils and gets out from underneath the solder. The whole operation should not take more than 5 seconds. Remove the iron and allow the solder to cool na turally without blowing on it or moving the component. If everything was done properl y the surface of the joint must have a bright metallic finish and its edges should be s moothly ended on the component lead and the board track. If the solder looks dull, cr acked, or has the shape of a blob then you have made a dry joint and you should rem ove the solder (with a pump, or a solder wick) and redo it.- Take care not to overheat the tracks as it is very easy to lift them from the board and break them.- When you are soldering a sensitive component it is good practice to hold the lead fro m the component side of the board with a pair of long-nose pliers to divert any heat that could possibly damage the component.- Make sure that you do not use more solder than it is necessary as you are running t he risk of short-circuiting adjacent tracks on the board, especially if they are very close together.- When you finish your work, cut off the excess of the component leads and clean the board thoroughly with a suitable solvent to remove all flux residues that may still remain on it.As it is recommended start working by identifying the components and separating them in groups. There are two points in the construction of this project that you should observe:First of all the display IC’s are placed from the copper side of the board and second th e jumper connection which is marked by a dashed line on the component side at the s ame place where the displays are located is not a single jumper but it should be changed according to the use of the instrument. This jumper is used to control the decimalpoint of the display.If you are going to use the instrument for only one range you can make the jumper c onnection between the rightmost hole on the board and the one corresponding to the desired position for the decimal point for your particular application. If you are plannin g to use the voltmeter in different ranges you should use a single pole three position s witch to shift the decimal point to the correct place for the range of measurement sele cted. (This switch could preferably be combined with the switch that is used to actuallychange the sensitivity of the instrument).Apart from this consideration, and the fact that the small size of the board and the gre at number of joints on it which calls for a very fine tipped soldering iron, the construction of the project is very straightforward.Insert the IC socket and solder it in place, solder the pins, continue with the resistors the capacitors and the multi-turn trimmer P1. Turn the board over and very carefully s older the display IC’s from the copper side of the board. Remember to inspect the join ts of the base of the IC as one row will be covered by the displays and will be impossi ble to see any mistake that you may have made after you have soldered the displays into place.The value of R3 controls in fact the range of measurement of the voltmeter and if you provide for some means to switch different resistors in its place you can use the instrument over a range of voltages.For the replacement resistors follow the table below:0 - 2 V ............ R3 = 0 ohm 1%0 - 20 V ........... R3 = 1.2 Kohm 1%0 - 200 V .......... R3 = 12 Kohm 1%0 - 2000 V ......... R3 = 120 Kohm 1%When you have finished all the soldering on the board and you are sure that everythin g is OK you can insert the IC in its place. The IC is CMOS and is very sensitive to stat ic electricity. It comes wrapped in aluminium foil to protect it from static discharges an d it should be handled with great care to avoid damaging it. Try to avoid touching its pins with your hands and keep the circuit and your body at ground potential when youinsert it in its place.Connect the circuit to a suitable power supply ρ 5 VDC and turn the supply on. The di splays should light immediately and should form a number. Short circuit the input (0 V) and adjust the trimmer P1 until the display indicates exactly «0».Parts ListR1 = 180k P1 = 20k trimmer multi turnR2 = 22k U1 = ICL 7107R3 = 12k LD1,2,3,4 = MAN 6960 common anode led displaysR4 = 1MR5 = 470kR6 = 560 OhmC1 = 100pFC2, C6, C7 = 100nFC3 = 47nFC4 = 10nFC5 = 220nFIf it does not workCheck your work for possible dry joints, bridges across adjacent tracks or soldering flux residues that usually cause problems.Check again all the external connections to and from the circuit to see if there is a mistake there.- See that there are no components missing or inserted in the wrong places.- Make sure that all the polarised components have been soldered the right way round. - Make sure the supply has the correct voltage and is connected the right way roundto your circuit.- Check your project for faulty or damaged components.Sample Power supply 1 Sample Power Supply 2。

液晶屏显示电压表

液晶屏显示电压表

桂林航天工业学院单片机技术综合应用技能实训课程设计报告系(部):电子信息与自动化学院专业班级: 无人机应用技术一班学生姓名:学号:设计题目:_____________ 液晶屏显示的电压表__________ 完成日期:___________ 2018年07月06日 _____________ 指导教师评语:成绩(五级记分制):_____________________指导教师(签字):_______________________桂林航天工业学院课程设计任务书液晶屏显示的电压表设计教研室主任:系(部)分管领导: 指导教师:桂林航天工业学院摘要本文介绍了一种基于单片机的简易数字电压表的设计。

该设计主要由三个模块组成:A/D 转换模块,数据处理模块及显示模块。

A/D转换主要由芯片PCF8591来完成, 它负责把采集到的模拟量转换为相应的数字量在传送到数据处理模块。

数据处理则由芯片STC89C52来完成,其负责把PCF8591传送来的数字量经过一定的数据处理,产生相应的显示码送到显示模块进行显示;该系统的数字电压表电路简单,所用的元件较少,成本低,且测量精度和可靠性较高。

此数字电压表可以测量0-5V的模拟直流输入电压值,并通过一个LCD1602液晶屏显示出来。

关键词:STC89C52; PCF8591;电压表;A/D 转换;LCDl602桂林航天工业学院目录一、系统概述 (1)LI设计任务 (1)1.2设计要求 (1)二、整体设计方案 (1)2.1开发板整体功能 (1)2.2软件功能描述 (2)三、硬件电路设计 (3)3.189C52 单片机 (3)3.2LCDl602 液晶 (7)3.3总体电路设计 (11)四、软件设计 (12)4.1程序整体流程图 (12)4.2程序清单 (13)五、硬件调试及结果 (16)5.1软件仿真 (16)5.2硬件电路调试 (17)六、小结 (18)参考文献 (19)附录电路图及程序 (19)桂林航天工业学院一、系统概述1.1设计任务使用所学的单片机以及编程的知识,利用PCF8591A/D转换芯片把电阻转换为电压并使用LCD1602显示出来。

ICL7129

ICL7129

ICL7129制作的LCD液晶显示41/2数字电压表使用ICL7129制作的 LCD 液晶显示 41/2 数字电压表头,具有非常高的性能指标,可广泛应用于数字电压表,便携式数字万用表,智能测量仪器和其他高精度高分辨率的测试系统中。

ICL7129的主要性能特征:满度测量量程为±200.00mV(比7135更好!)和±2.0000V,在此范围内,准确度为±1个字。

在积分电路上作了重大改进,采用逐次多重积分、数字调零等先进技术,保证在0V 输入时读数为“0000”而且不需要使用自动调零电容,(最高位自动消隐)。

当基本量程选择为±200.00mV时,分辨力高达10uV.目前大量使用的数字万用表DT930F 等名牌系列,其芯片就是 ICL7129 .输入阻抗高于 109Ω,输入漏电流仅仅 1 pA(典型值),允许差分输入方式。

(本表头按共地方式输入)。

能够自动判断输入信号的极性,具有数据保持功能。

设有多个标志符号控制信号端口ANND(ANNUNCIATOR DIRVE)。

采用LCD液晶显示,非常省电,DC9V 供电时,耗电只有 9 mW.以闪烁方式表示超量程状态。

采用 DC9V单电源(电池)供电。

本表头的主要应用说明:本表头是按照普通应用电路而组合成为最基本的数字表头,主要使用了其±200.00mV 的直接测量功能。

只需要给表头供电 DC9V 就可以正常使用。

芯片的 22 引脚对电源正极连接,就可以令读数数据保持,方便对瞬变信号的捕捉观察。

小数点选择:芯片的 38、39.20、21 引脚是小数点选择点亮引脚,利用一只 47k 电阻对地连接各引脚,就可以选择点亮某一位小数点。

芯片的 37 引脚是基本量程选择端口,利用它接地或者是接电源正极,就可以选择基本量程是±200.00mV(高分辨率) 或者是±2.0000V(普通应用)。

--此特点比 ICL7135好用得多。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 引言数字电压表的基本工作原理是利用A/D转换电路将待测的模拟信号转换成数字信号,通过相应换算后将测试结果以数字形式显示出来的一种电压表。

较之于一般的模拟电压表,数字电压表具有精度高、测量准确、读数直观、使用方便等优点。

电压表的数字化测量,关键在于如何把随时连续变化的模拟量转化成数字量,完成这种转换的电路叫模数转换器]1[(A/D)。

数字电压表的核心部件就是A/D转换器,由于各种不同的A/D转换原理构成了各种不同类型的DVM。

一般说来,A/D 转换的方式可分为两类:积分式和逐次逼近式。

积分式A/D转换器是先用积分器将输入的模拟电压转换成时间或频率,再将其数字化。

根据转化的中间量不同,它又分为U-T(电压-时间)式和U-F(电压-频率)式两种。

逐次逼近式A/D转换器分为比较式和斜坡电压式,根据不同的工作原理,比较式又分为逐次比较式及零平衡式等。

斜坡电压式又分为线性斜坡式和阶梯斜坡式两种。

在高精度数字电压表中,常采用由积分式和比较式相结合起来的复合式A/D转换器。

本设计以AT89C51单片机为核心,以逐次比较型A/D转换器ADC0808、液晶显示器LCD1602为主体,构造了一款简易的数字电压表,能够测量1路0~5V 直流电压,最小分辨率0.02V。

2 仿真软件介绍2.1 仿真软件简介2.1.1 Proteus 6 ProfessionalISIS 6 Professiona软件是它不仅具有其它EDA工具软件的仿真]2[功能,还能仿真单片机及外围器件。

它是目前最好的仿真单片机及外围器件的工具。

虽然目前国内推广刚起步,但已受到单片机爱好者、从事单片机教学的教师、致力于单片机开发应用的科技工作者的青睐。

它从原理图布图、代码调试到单片机与外围电路协同仿真,一键切换到PCB设计,真正实现了从概念到产品的完整设计。

是目前将电路仿真软件、PCB设计软件和虚拟模型仿真软件三合一的设计平台,其处理器模型支持8051、HC11、PIC10/12/16/18/24/30/DsPIC33、A VR、ARM、8086和MSP430等,2010年即将增加Cortex和DSP系列处理器,并持续增加其他系列处理器模型。

在编译方面,它也支持IAR、Keil和MPLAB等多种编译器。

ISIS 6 Professiona软件具有的功能:原理布图;PCB自动或人工布线;SPICE 电路仿真。

2.1.2 Keil uVision2Keil提供了包括C编译器、宏汇编]3[、连接器、库管理和一个功能强大仿真调试器等在内的完整开发方案,通过一个集成开发环境(uVision)将这些部分组合在一起。

Keil C51集成开发环境主要由菜单栏、工具栏、源文件编辑窗口、工程窗口和输出窗口五部分组成。

工具栏为一组快捷工具图标,主要包括基本文件工具栏、建造工具栏和调试工具栏,基本文件工具栏包括新建、打开、拷贝、粘贴等基本操作。

建造工具栏主要包括文件编译、目标文件编译连接、所有目标文件编译连接、目标选项和一个目标选择窗口。

调试工具栏位于最后,主要包括一些仿真调试源程序的基本操作,如单步、复位、全速运行等。

在工具栏下面,默认有三个窗口。

左边的工程窗口包含一个工程的目标(target)、组(group)和项目文件。

右边为源文件编辑窗口,编辑窗口实质上就是一个文件编辑器,我们可以在这里对源文件进行编辑、修改、粘贴等。

下边的为输出窗口,源文件编译之后的结果显示在输出窗口中,会出现通过或错误(包括错误类型及行号)的提示。

3 硬件设计3.1单片机控制模块设计单片机控制模块的作用是为控制各单元电路的运行并完成数据的换算或处理,主要由单片机、时钟电路、复位电路组成。

3.1.1时钟电路单片机工作的时间基准是由时钟电路提供的,在单片机的XTAL1和XYAL2两个管脚接一只晶振及两只电容就构成了单片机的时钟电路,电路中电容器1C和2C 对振荡频率]4[有微调作用,通常取(30±10)pF石英晶体选择6MHz或12MHz都可以。

时钟电路如图1所示。

图1 系统时钟电路图2 系统复位电路3.1.2复位电路单片机的RST管脚为主机提供了一个外部复位信号输入口。

复位信号是高电平有效,高电平有效的持续时间为2个机器周期以上。

单片机的复位方式可由手动复位方式完成。

复位电路如图2所示。

3.2逐次逼近式A/D转换模块设计逐次逼近型A/D转换器属于直接型A/D转换器,它能把输入的模拟电压直接转换为输出的数字代码,而不需要经过中间变量。

主要由比较器、环形分配器]5[、控制门、寄存器与D/A转换器组成。

3.2.1 ADC0808简介1.ADC0808引脚功能图3 引脚图IN0~IN7:8路模拟量输入。

A、B、C:3位地址输入,2个地址输入端的不同组合选择八路模拟量输入。

ALE:地址锁存启动信号,在ALE的上升沿,将A、B、C上的通道地址锁存到内部的地址锁存器。

D0~D7:八位数据输出线,A/D转换结果由这8根线传送给单片机。

OE:允许输出信号。

当OE=1时,即为高电平,允许输出锁存器输出数据。

START:启动信号输入端,START为正脉冲,其上升沿清除ADC0808的内部的各寄存器,其下降沿启动A/D开始转换。

EOC:转换完成信号,当EOC上升为高电平时,表明内部A/D转换已完成。

2.ADC0808内部结构图逐次逼近型A/D转换器ADC0808由八路模拟开关、地址锁存与译码器、比较器、D/A转换器、寄存器、控制电路和三态输出锁存器等组成。

其内部结构如图4所示。

图4 ADC0808内部结构3.2.2 A/D转换电路设计集成摸数转换芯片ADC0808实现的A/D转换电路如图5所示,被测信号由ADC0808模拟输入端输入,完成A/D转换后送入单片机,经相应处理后送出显示。

图5 ADC0808与单片机的连接3.3显示模块设计3.3.1 LCD显示模块LCD显示器分为字段显示和字符显示两种。

其中字段显示与LED显示相似,只要送对应的信号到相应的管脚就能显示。

字符显示是根据需要显示基本字符。

本设计采用的是字符型显示。

系统中采用LCD1602作为显示器件输出信息。

与传统的LED数码管显示器件相比,液晶显示模块具有体积小、功耗低、显示内容丰富等优点,而且不需要外加驱动电路,现在液晶显示模块已经是单片机应用设计中最常用的显示器件了。

LCD1602可以显示2行16个汉字。

3.3.2 LCD1602的引脚功能LCD1602模块的引脚如图6所示,其引脚功能如下:RS:数据和指令选择控制端,RS=0命令状态;RS=1数据。

R/W:读写控制线,R/W=0写操作;R/W=1读操作。

A:背光控制正电源,K:背光控制地。

E:数据读写操作控制位,E线向LCD模块发送一个脉冲,LCD模块与单片机间将进行一次数据交换。

DB0~DB7:数据线,可以用8位连接,也可以只用高4位连接,节约单片机资源。

VDD:电源端,VEE:亮度控制端(1-5V),VSS:接地端。

LCD 模块1 2 3 4 5 6 7 8 9 10 11 12 13 14 15VSS VDD VO RS R/W E DB0 DB1 DB2 DB3 DB4 DB5 DB6 DB7 A K图6 LCD1602模块3.3.3 LCD1602的显示操作1.四种基本操作LCD有四种基本操作,具体如表1所示。

表1 LCD与单片机之间有四种基本操作RS R/W 操作0 0 写命令操作(初始化,光标定位等)0 1 读状态操作(读忙标志位)1 0 写数据操作(要显示内容)1 1 读数据操作(可以把显示存储区中的数据反读出来)(1)读状态字:执行读状态字操作,如表3-1满足RS=0,R/W=1。

根据管脚功能,当为有效电平时,状态命令字可从LCD模块传输到数据总线。

同时可以保持一段时间,从而实现读状态字的功能。

读状态字流程如图7所示。

图7 读入状态字流程图(2)命令字表2所示为命令字,其主要介绍了指令名称、控制信号及控制代码。

其指令名称是指要实现的功能;控制代号是采用的十六进制的数值表示的。

1)清零操作是指输入某命令字后即能将整个屏幕显示的内容全部清除;2)归home位:将光标送到初始位;其中的*号为任意,高低电平均可;3)输入方式:设光标移动方向并指定整体显示,是否移动。

I/D=0:减量方式,S=1:移位方式,S=0:不移位;4)显示状态:D指设置整体显示开关;C指设置光标显示开关;B指设置光标的字符闪耀;5)光标画面滚动:R/L指右移或左移;S/C指移动总体或光标;6)功能设置:DL接口数位,L指显示行数,F显示字型;如DL=1:8位=0,4位N=1:2行=0:1行,G=1:5×10=0:5×7(点阵);7)CGRAM地址设制:相当于一个数据库,可以在其中选择所需要的符号;8)DDRAM地址设制:显示定位;9)读BF和AC:B为最高位忙的标志,F为标志位;10)写数据:将数据按要求写入到对应的单元;11)读数据:读相应单元内的数据;表2 命令字(3)写命令字由表2可知当RS=0,R/W=0时,才可以通过单片机或用户指令把数据写到LCD 模块,此时就对LCD进行调制。

可采用查询方式:先读入状态字,再判断忙标志位,最后写命令字。

图8所示为写命令字的流程图。

图8 写命令字流程图1)定义光标位置显示数据的某位,就是把显示数据写在相应的DDRAM地址中,DDRAM地址占7位。

Set DDRAM address命令如表3所示。

光标定位,写入一个显示字符后,DDRAM地址会自动加1或减1,加或减由输入方式设置。

表3 Set DDRAM address命令RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB00 0 1 AC6 AC5 AC4 AC3 AC2 AC1 AC0第1行DDRAM地址与第2行DDRAM地址并不连续,如表3-4所示。

表4 DDRAM地址row 1 2 3 4 5 …14 15 16line1 80H 81H 82H 83H 84H …8dH 8eH 8fHline2 0c0H 0c1H 0c2H 0c3H 0c4H …0cdH 0ceH 0cfH 2)LCD初始化从通电开始延时,先经过判忙后再进行功能设置,过一段时间后可以设制显示状态(如设制行、位或阵列)再经过延时清屏后才可以设置输入方式,具体实现过程如图9所示。

图9 LCD初始化流程图2.LCD显示程序设计LCD显示程序的设计一般先要确定LCD的初始化、光标定位、确定显示字符后,显示流程如图10显示。

图10 LCD显示程序流程图4系统软件设计根据需要,可将系统软件按照功能划分为4个模块,分别是主程序模块、A/D 转换模块、液晶显示模块、中断服务程序模块(改变显示的小数点位置),各模块的功能关系如图11所示。

相关文档
最新文档