(完整版)流水行船问题的公式和例题
四年级流水行船问题的公式和例题(含答案)
流水行船问题的公式和例题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。
在小学数学中涉及到的题目,一般是匀速运动的问题。
这类问题的主要特点是,水速在船逆行和顺行中的作用分歧。
流水问题有如下两个基本公式:顺水速度=船速+水速(1)逆水速度=船速-水速(2)这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船自己的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。
公式(1)标明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。
这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。
公式(2)标明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。
根据加减互为逆运算的原理,由公式(1)可得:水速=顺水速度-船速(3)船速=顺水速度-水速(4)由公式(2)可得:水速=船速-逆水速度(5)船速=逆水速度+水速(6)这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。
另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。
因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)÷2 (7)水速=(顺水速度-逆水速度)÷2 (8)*例1一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。
此船在静水中的速度是多少?解:此船的顺水速度是:25÷5=5(千米/小时)因为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水速度-水速”。
5-1=4(千米/小时)综合算式:25÷5-1=4(千米/小时)答:此船在静水中每小时行4千米。
*例2一只渔船在静水中每小时航行4千米,逆水4小时航行12千米。
水流的速度是每小时多少千米?解:此船在逆水中的速度是:12÷4=3(千米/小时)因为逆水速度=船速-水速,所以水速=船速-逆水速度,即:4-3=1(千米/小时)答:水流速度是每小时1千米。
流水行船
流水行船问题
1.流水行船问题涉及公式
顺流速度=船速+水流速度
逆流速度=船速-水流速度
静水速度(船速)=(顺水速度+逆水速度)÷2
水速=(顺水速度-逆水速度)÷2
流水行船问题中一定要记住四种速度的关系,而且在水速产生变化的情况下记住找到题中的不变量:船速
2.流水行船问题的几种题型
①求流水行船中的几种速度
例一:一艘船速每小时行20千米的客轮,在大运河中从甲地到乙地逆水航行84千米,需要6小时,则顺水速度多少?
例二:一只船以30千米/小时的速度顺水从甲港到乙港需7小时,从乙港返回甲港需10小时。
则船速是多少?
②综合题型--水速变化问题
例三:船往返于相距480千米的两港之间,顺水而下需用8小时,逆水而上需用10小时。
由于暴雨后水速增加,该船顺水而行只需5小时,那么逆水而行需要多久呢?
③综合题型--往返问题
例四:轮船用同一速度往返于两码头之间,它顺流而下行了9个小时,逆流而上行了15小时,如果水流速度是每小时3千米,两码头之间的距离是多少?
变式训练:一艘轮船在两个港口间航行,水速为每小时6千米,船速为每小时48千米,往返需要48小时。
这两个港口之间的距离是多少千米?
往返问题解题小结:。
(完整版)流水行船问题的公式和例题(含答案)
流水行船问题的公式和例题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。
在小学数学中涉及到的题目,一般是匀速运动的问题。
这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
流水问题有如下两个基本公式:顺水速度=船速+水速(1)逆水速度=船速-水速(2)这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。
公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。
这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。
公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。
根据加减互为逆运算的原理,由公式(1)可得:水速=顺水速度-船速(3)船速=顺水速度-水速(4)由公式(2)可得:水速=船速-逆水速度(5)船速=逆水速度+水速(6)这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。
另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。
因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)十2 (7)水速=(顺水速度-逆水速度)十2 (8)*例1一只渔船顺水行25千米,用了5小时,水流的速度是每小时1 千米。
此船在静水中的速度是多少?解:此船的顺水速度是:25 - 5=5 (千米/小时)因为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水速度-水速”。
5-1=4(千米/ 小时)综合算式:25 - 5-仁4 (千米/小时)答:此船在静水中每小时行 4 千米。
* 例2 一只渔船在静水中每小时航行4 千米,逆水4 小时航行12 千米。
水流的速度是每小时多少千米?解:此船在逆水中的速度是:12 -4=3 (千米/小时)因为逆水速度=船速-水速,所以水速=船速-逆水速度,即:4-3=1 (千米/ 小时)答:水流速度是每小时 1 千米。
流水行船问题的公式和例题(完整版)
流水行船问题的公式和例题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。
在小学数学中涉及到的题目,一般是匀速运动的问题。
这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
流水问题有如下两个基本公式:顺水速度=船速+水速(1)逆水速度=船速-水速(2)这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。
公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。
这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。
公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。
根据加减互为逆运算的原理,由公式(1)可得:水速=顺水速度-船速(3)船速=顺水速度-水速(4)由公式(2)可得:水速=船速-逆水速度(5)船速=逆水速度+水速(6)这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。
另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。
因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)÷2 (7)水速=(顺水速度-逆水速度)÷2 (8)*例1一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。
此船在静水中的速度是多少?(适于高年级程度)解:此船的顺水速度是:25÷5=5(千米/小时)因为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水速度-水速”。
5-1=4(千米/小时)综合算式:25÷5-1=4(千米/小时)答:此船在静水中每小时行4千米。
流水行船问题的公式和例题(含答案)
流水行船问题的公式和例题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。
在小学数学中涉及到的题目,一般是匀速运动的问题。
这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
流水问题有如下两个基本公式:顺水速度二船速+水速(1)逆水速度二船速•水速(2)这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。
公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。
这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。
公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。
根据加减互为逆运算的原理,由公式(1)可得:水速二顺水速度■船速(3)船速二顺水速度•水速(4)由公式(2)可得:水速二船速•逆水速度(5)船速二逆水速度+水速(6)这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求岀第三个。
另外,已知某船的逆水速度和颇水速度,还可以求出船速和水速。
因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速二(嫌水速度+逆水速度)十2 (7)水速二(嫌水速度-逆水速度)十2 ( 8)•例1一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。
此船在静水中的速度是多少?解:此船的顺水速度是:25 - 5=5 (千米/小时)因为“顺水速度二船速+水速”,所以,此船在静水中的速度是“顺水速度•水速”。
5.仁4 (千米/小时)综合算式:25 - 5-仁4 (千米/小时)答:此船在静水中每小时行4千米。
•例2 —只渔船在静水中每小时航行4千米,逆水4小时航行12千米。
水流的速度是每小时多少千米?解:此船在逆水中的速度是:12-4=3 (千米/小时)因为逆水速度二船速-水速,所以水速二船速•逆水速度,即:4-3=1 (千米/小时)答:水流速度是每小时1千米。
流水行船问题的公式和例题(无答案)
流水行船问题的公式和例题流水问题有如下两个基本公式:顺水速度=船速+水速(1)逆水速度=船速-水速(2)水速=顺水速度-船速(3)船速=顺水速度-水速(4)水速=船速-逆水速度(5)船速=逆水速度+水速(6)这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。
另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。
因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)÷2(7)水速=(顺水速度-逆水速度)÷2(8)*例1一只渔船顺水行30千米,用了6小时,水流的速度是每小时1千米。
此船在静水中的速度是多少?*例2一只渔船在静水中每小时航行5千米,逆水5小时航行15千米。
水流的速度是每小时多少千米?*例3一只船,顺水每小时行20千米,逆水每小时行12千米。
这只船在静水中的速度和水流的速度各是多少?*例4某船在静水中每小时行18千米,水流速度是每小时2千米。
此船从甲地逆水航行到乙地需要15小时。
求甲、乙两地的路程是多少千米?此船从乙地回到甲地需要多少小时?*例5某船在静水中的速度是每小时15千米,它从上游甲港开往乙港共用6小时。
已知水速为每小时3千米。
此船从乙港返回甲港需要多少小时?*例6甲、乙两个码头相距144千米,一艘汽艇在静水中每小时行30千米,水流速度是每小时6千米。
求由甲码头到乙码头顺水而行需要几小时,由乙码头到甲码头逆水而行需要多少小时?*例7一条大河,河中间(主航道)的水流速度是每小时8千米,沿岸边的水流速度是每小时6千米。
一只船在河中间顺流而下,6."5小时行驶260千米。
求这只船沿岸边返回原地需要多少小时?*例8一只船在水流速度是2500米/小时的水中航行,逆水行60千米用12小时。
顺水行100千米需要多少小时?*例9一只轮船在416千米长的水路中航行。
流水行船问题的公式和例题(完整版)
流水行船问题的公式和例题*例1一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。
此船在静水中的速度是多少?(适于高年级程度)*例2一只渔船在静水中每小时航行4千米,逆水4小时航行12千米。
水流的速度是每小时多少千米?(适于高年级程度)*例3一只船,顺水每小时行20千米,逆水每小时行12千米。
这只船在静水中的速度和水流的速度各是多少?(适于高年级程度)答略。
*例4某船在静水中每小时行18千米,水流速度是每小时2千米。
此船从甲地逆水航行到乙地需要15小时。
求甲、乙两地的路程是多少千米?此船从乙地回到甲地需要多少小时?(适于高年级程度)*例5某船在静水中的速度是每小时15千米,它从上游甲港开往乙港共用8小时。
已知水速为每小时3千米。
此船从乙港返回甲港需要多少小时?(适于高年级程度)*例6 甲、乙两个码头相距144千米,一艘汽艇在静水中每小时行20千米,水流速度是每小时4千米。
求由甲码头到乙码头顺水而行需要几小时,由乙码头到甲码头逆水而行需要多少小时?(适于高年级程度)*例7一条大河,河中间(主航道)的水流速度是每小时8千米,沿岸边的水流速度是每小时6千米。
一只船在河中间顺流而下,6.5小时行驶260千米。
求这只船沿岸边返回原地需要多少小时?(适于高年级程度)*例9一只轮船在208千米长的水路中航行。
顺水用8小时,逆水用13小时。
求船在静水中的速度及水流的速度。
(适于高年级程度)1、一只油轮,逆流而行,每小时行12千米,7小时可以到达乙港。
从乙港返航需要6小时,求船在静水中的速度和水流速度?2、某船在静水中的速度是每小时15千米,河水流速为每小时5千米。
这只船在甲、乙两港之间往返一次,共用去6小时。
求甲、乙两港之间的航程是多少千米?解:(15-5):(15+5)=1:26÷(2+1)×2=6÷3×2=4(小时)(15-5)×4=10×4=40(千米)答:甲、乙两港之间的航程是40千米。
四年级流水行船问题的公式和例题含答案
流水行船问题的公式和例题流水问题是研究船在流水中的行程问题,因此,又叫行船问题.在小学数学中涉及到的题目,一般是匀速运动的问题.这类问题的主要特点是,水速在船逆行和顺行中的作用不同.流水问题有如下两个根本公式:顺水速度=船速+水速〔1〕逆水速度=船速-水速〔2〕这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程.公式〔1〕说明,船顺水航行时的速度等于它在静水中的速度与水流速度之和. 这是由于顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和.公式〔2〕说明,船逆水航行时的速度等于船在静水中的速度与水流速度之差.根据加减互为逆运算的原理,由公式〔1〕可得:水速=顺水速度- 船速〔3〕船速=顺水速度- 水速〔4〕2〕可得:水速=船速-逆水速度〔5〕船速=逆水速度+水速〔6〕这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个.另外,某船的逆水速度和顺水速度,还可以求出船速和水速.由于顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速二〔顺水速度+逆水速度〕+ 2 〔7〕水速=〔顺水速度-逆水速度〕+ 2 〔8〕*例1 一只渔船顺水行25 千米,用了 5 小时,水流的速度是每小时 1 千米.此船在静水中的速度是多少?解:此船的顺水速度是:25+ 5=5 〔千米/小时〕由于“顺水速度=船速+水速〞, 所以, 此船在静水中的速度是“顺水速度-水速〞 .5-1=4〔千米/小时〕综合算式:25+5-1=4 〔千米/小时〕答:此船在静水中每小时行 4 千米.*例2 一只渔船在静水中每小时航行4千米,逆水4小时航行12 千米.水流的速度是每小时多少千米?解:此船在逆水中的速度是:12+4=3 〔千米/小时〕由于逆水速度=船速- 水速,所以水速=船速- 逆水速度,即:4-3=1 〔千米/ 小时〕答:水流速度是每小时 1 千米.*例3 一只船, 顺水每小时行20 千米, 逆水每小时行12 千米. 这只船在静水中的速度和水流的速度各是多少?解:由于船在静水中的速度=〔顺水速度+逆水速度〕+ 2,所以,这只船在静水中的速度是:〔20+12〕 + 2=16 〔千米/小时〕由于水流的速度=〔顺水速度-逆水速度〕+ 2,所以水流的速度是:〔20-12 〕 + 2=4 〔千米/小时〕答略.*例4某船在静水中每小时行18 千米,水流速度是每小时 2 千米.此船从甲地逆水航行到乙地需要15 小时. 求甲、乙两地的路程是多少千米?此船从乙地回到甲地需要多少小时?解:此船逆水航行的速度是:18-2=16〔千米/小时〕甲乙两地的路程是:16X 15=240 〔千米〕此船顺水航行的速度是:18+2=20〔千米/ 小时〕此船从乙地回到甲地需要的时间是:240+20=12 〔小时〕答略.*例5 某船在静水中的速度是每小时15千米,它从上游甲港开往乙港共用8 小时.水速为每小时 3 千米.此船从乙港返回甲港需要多少小时?解:此船顺水的速度是:甲乙两港之间的路程是:此船逆水航行的速度是:15-3=12〔千米/小时〕此船从乙港返回甲港需要的时间是:144+ 12=12 〔小时〕综合算式:〔15+3〕 X 8+ 〔 15-3〕= 144+12=12〔小时〕答略.* 例6 甲、乙两个码头相距144 千米,一艘汽艇在静水中每小时行20 千米,水流速度是每小时 4 千米.求由甲码头到乙码头顺水而行需要几小时,由乙码头到甲码头逆水而行需要多少小时?解:顺水而行的时间是:144+ 〔20+4〕 =6 〔小时〕逆水而行的时间是:144+ (20-4) =9 (小时)答略.* 例7 一条大河,河中间〔主航道〕的水流速度是每小时8千米,沿岸边的水流速度是每小时 6 千米.一只船在河中间顺流而下, 6.5 小时行驶260 千米.求这只船沿岸边返回原地需要多少小时?解:此船顺流而下的速度是:260+6.5=40 〔千米/小时〕此船在静水中的速度是:40-8=32〔千米/小时〕此船沿岸边逆水而行的速度是:32-6=26〔千米/小时〕此船沿岸边返回原地需要的时间是:260+26=10 〔小时〕综合算式:260+ 〔260 + 6.5-8-6 〕=260+ 〔40-8-6 〕=260+26答略.* 例8 一只船在水流速度是2500米/小时的水中航行,逆水行120 千米用24 小150 千米需要多少小时?解:此船逆水航行的速度是:120000+24=5000 〔米/小时〕此船在静水中航行的速度是:5000+2500=7500〔米/小时〕此船顺水航行的速度是:7500+2500=10000〔米/小时〕顺水航行150 千米需要的时间是:150000+10000=15 〔小时〕综合算式:150000+ 〔 120000+ 24+2500X 2〕= 150000+ 〔 5000+5000〕=150000+10000答略.*例9 一只轮船在208 千米长的水路中航行.顺水用8 小时,逆水用13小时.求船在静水中的速度及水流的速度.*例10 A、B两个码头相距180千米.甲船逆水行全程用18小时,乙船逆水行全程用15 小时.甲船顺水行全程用10 小时.乙船顺水行全程用几小时?练习1、一只油轮,逆流而行,每小时行12 千米, 7 小时可以到达乙港.从乙港返航需要6 小时,求船在静水中的速度和水流速度?.练习2、某船在静水中的速度是每小时15 千米,河水流速为每小时 5 千米.这只船在甲、乙两港之间往返一次, 共用去 6 小时. 求甲、乙两港之间的航程是多少千米?练习3、一只船从甲地开往乙地,逆水航行,每小时行24 千米,到达乙地后,又从乙地返回甲地, 比逆水航行提前 2. 5 小时到达. 水流速度是每小时 3 千米, 甲、乙两地间的距离是多少千米?练习4、一轮船在甲、乙两个码头之间航行,顺水航行要8 小时行完全程,逆水航行要10 小时行完全程. 水流速度是每小时 3 千米, 求甲、乙两码头之间的距离?。
流水行船问题
流水行船问题【知识点睛】1基本公式:相遇问题:路程和=速度和×相遇时间追及问题:路程差=速度差×追及时间2行船问题:船的静水速度:船在静止水中行驶的速度,简称船速水流速度:水在河流中流淌的速度,简称水速顺水速度:船顺流而行时的总速度,即顺水速度=静水速度+水速逆水速度:船逆流而行时的总速度,即逆水速度=静水速度-水速3推导公式静水速度=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2【例题精讲】例1:四个速度游轮以每小时30千米的速度,在水速每小时5千米的水中顺流航行5小时,共行了多少千米?【练习1】1.一艘船每小时行25千米,在大河中顺水航行140千米。
已知水速是每小时3千米,这艘船行完全程需要航行几小时?2.一条河的水速为2千米/小时,一艘船顺水航行6小时走了60千米,若它逆水航行66千米需要多少小时?3.一条河的水速为4千米/小时,一艘船顺水航行11小时走了121千米,若它逆水航行39千米需要多少小时?例2:甲乙两港相距100千米,一只船从甲港往乙港顺流出发,4小时到达,从乙港返回甲港,10小时到达,求船在静水中的速度是多少?【练习2】1.甲乙两港相距180千米,一只船从甲港往乙港顺流出发,6小时到达,从乙港返回甲港,9小时到达,求水流的速度是多少?2.甲乙两港之间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度各是多少?3.一艘飞艇,顺风6小时行驶了900公里,在同样的风速下,逆风行驶600公里,也用了6小时,那么在无风的时候,这艘飞艇行驶1000公里要用多少小时?例3:一艘轮船在河流的两个码头之间航行,顺流需要6小时,逆流需要8小时,水流速度为2.5千米/小时。
求轮船在静水中的速度。
1.一艘轮船在河流的两个码头间航行,顺流需要4小时,逆流需要5小时,水流速度为1.5千米/时。
行程问题流水行船问题
---流水行船
流水行船问题基本关系式:
顺水速度=船速+水速 逆水速度=船速-水速 船速=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2
牛刀小试: 船在静水中的速度为每小时15千米,水流速度是 每小时3千米,船从上游乙港到下游甲港航行了12小时, 甲、乙两港间距离多少千米?
例1: 游轮从A城市到B城市顺流而下需要48小时,游轮 在静水中的速度是每小时30千米,水流速度是每小时 6千米,游轮从B城市返回A城市需要多少小时?
练习: 某轮船在相距216千米的两个港口间往返运送货物, 已知轮船在静水中每小时21千米,两个港口间的水流 速度是每小时3千米,那么,这只轮船往返一次需要多 长时间?
例2 : 甲、乙两港间的航线长360千米,一只船从甲港求船在静水中的速度和水流速度?
练习: 某架飞机顺风飞行每小时飞1320千米,逆风飞 行每小时飞1080千米,这架飞机的速度和风速分别是 多少?
例3: A、B两码头间河流长为90千米,甲、乙两船分别 从A、B码头同时起航,如果相向而行3小时相遇;如 果同向而行15小时甲船追上乙船,求两船在静水中的 速度?
练习: 两个港口相距342千米,甲、乙两支轮船同时从 两个港口相对开出,甲船顺流而下,乙船逆流而上, 9小时后正好相遇,已知甲船每小时比乙船慢4千米。 甲、乙两船的速度分别是多少?
谢谢观赏
WPS Office
Make Presentation much more fun
@WPS官方微博 @kingsoftwps
例5: 静水中,甲乙两船的速度分别为每小时20千米 和每小时16千米,两船先后自同一港口顺水开出, 乙船比甲船早出发2小时,若水速是每小时4千米, 甲船开出几小时后追上乙船?
(完整版)流水行船问题及答案
流水行船问题顺水速度=船速+水速逆水速度=船速-水速2÷+=逆水速度)(顺水速度船速2-÷=逆水速度)(顺水速度水速例1:船在静水中的速度为每小时13千米,水流的速度为每小时3千米,船从甲港到达乙港的距离为240千米,船从甲港到乙港为顺风,求船往返甲港和乙港所需要的时间?顺水速度:13+3=16千米/小时逆水速度:13-3=10千米/小时返甲港所需时间:240÷10=24小时返乙港所需时间:240÷16=15小时1、一艘轮船在静水中航行,每小时行15千米,水流的速度为每小时3千米。
这艘轮船顺水航行270千米到达目的地,用了几个小时?如果按原航道返回,需要几小时?顺水速度:15+3=18千米/小时逆水速度:15-3=12千米/小时到达目的地用时:270÷18=15小时按原航道返回需用时:270÷12=22.5小时例题2:甲乙两码头相距144千米,一只船从甲码头顺水航行8小时到达乙码头,已知船在静水中每小时行驶15千米,问这船返回甲码头需几小时?顺水速度:144÷8=18千米/小时水速:18-15=3千米/小时逆水速度:15-3=12千米/小时返回甲码头需用时:144÷12=12小时1、甲乙两码头相距560千米,一只船从甲码头顺水航行20小时到达乙码头,已知船在静水中每小时行驶24千米,问这船返回甲码头需几小时?顺水速度:560÷20=28千米/小时水速:28-24=4千米/小时逆水速度:24-4=20千米/小时返回甲码头需用时:560÷20=28小时2、两个码头相距360千米,一艘汽艇顺水行完全程需9小时,这条河水流速度为每小时5千米,求这艘汽艇逆水行完全程需几小时?顺水速度:360÷9=40千米/小时船速:40-5=35千米/小时逆水速度:35-5=30千米/小时逆水行完全程需用时:360÷30=12小时例3:甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。
(完整版)流水行船问题及答案
(完整版)流水行船问题及答案流水行船问题顺水速度=船速+水速逆水速度=船速-水速2÷+=逆水速度)(顺水速度船速2-÷=逆水速度)(顺水速度水速例1:船在静水中的速度为每小时13千米,水流的速度为每小时3千米,船从甲港到达乙港的距离为240千米,船从甲港到乙港为顺风,求船往返甲港和乙港所需要的时间?顺水速度:13+3=16千米/小时逆水速度:13—3=10千米/小时返甲港所需时间:240÷10=24小时返乙港所需时间:240÷16=15小时1、一艘轮船在静水中航行,每小时行15千米,水流的速度为每小时3千米。
这艘轮船顺水航行270千米到达目的地,用了几个小时?如果按原航道返回,需要几小时?顺水速度:15+3=18千米/小时逆水速度:15—3=12千米/小时到达目的地用时:270÷18=15小时按原航道返回需用时:270÷12=22。
5小时例题2:甲乙两码头相距144千米,一只船从甲码头顺水航行8小时到达乙码头,已知船在静水中每小时行驶15千米,问这船返回甲码头需几小时?顺水速度:144÷8=18千米/小时水速:18-15=3千米/小时逆水速度:15-3=12千米/小时返回甲码头需用时:144÷12=12小时1、甲乙两码头相距560千米,一只船从甲码头顺水航行20小时到达乙码头,已知船在静水中每小时行驶24千米,问这船返回甲码头需几小时?顺水速度:560÷20=28千米/小时水速:28-24=4千米/小时逆水速度:24-4=20千米/小时返回甲码头需用时:560÷20=28小时2、两个码头相距360千米,一艘汽艇顺水行完全程需9小时,这条河水流速度为每小时5千米,求这艘汽艇逆水行完全程需几小时?顺水速度:360÷9=40千米/小时船速:40-5=35千米/小时逆水速度:35-5=30千米/小时逆水行完全程需用时:360÷30=12小时例3:甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。
(完整版)流水行船问题常见练习题
流水行船问题两个基本公式:1、顺水速度=船速2、逆水速度=船速-水速两个变式1、船速=(顺水速度+逆水速度)÷2船速=顺水速度-船速=顺水速度+2、水速=(顺水速度-逆水速度)÷2水速=顺水速度-—水速=船速——例题1李刚驾驶一只小船在河中行驶,顺流划行的速度时每小时10千米,逆流划行的速度时每小时6千米,水流的速度是多少?1.甲、乙之间的水路是234千米,一只船从甲港到乙港需9小时,从乙港返回甲港需13小时,问船速和水速各为每小时多少千米?2。
一艘每小时行25千米的客轮,在大运河中顺水航行140千米,水速是每小时3千米,需要行几个小时?3.一只小船静水中速度为每小时30千米。
在176千米长河中逆水而行用了11个小时.求返回原处需用几个小时。
例题2汽船在静水中的速度时每小时32千米,汽船由甲城开出逆流而上,开行8小时到达相距224千米的乙城,汽船从乙城开回甲城需要多少小时?1.一只船在河里航行,顺流而下每小时行18千米。
已知这只船下行2小时恰好与上行3小时所行的路程相等.求船速和水速。
2.两个码头相距352千米,一船顺流而下,行完全程需要11小时。
逆流而上,行完全程需要16小时,求这条河水流速度。
例题3某河有相距45千米的上下两码头,每天定时甲乙两艘船速度相同的客轮分别从两码头同时出发想、相向而行,一天甲船从上游码头出发时掉下一物,此物浮于水面顺流漂下,4分钟后,与甲船相距1千米。
预计乙船出发后几小时可以与此物相遇?1.A、B两码头间河流长为90千米,甲、乙两船分别从A、B码头同时启航.如果相向而行3小时相遇,如果同向而行15小时甲船追上乙船,求两船在静水中的速度.2.乙船顺水航行2小时,行了120千米,返回原地用了4小时。
甲船顺水航行同一段水路,用了3小时.甲船返回原地比去时多用了几小时?列车过桥时间=(车长+桥长)÷速度一“死桥"例题1一辆火车全长280米每秒钟行驶25米,要经过一座全长920米的大桥,求全车通过这座大桥需要多少秒?二“活桥”例题2小明100米每分钟沿着3路电车方向行走,电车完全从他身边经过时用了5分钟,已知电车的速度为200米每分钟,求电车的速度?三“点桥”例题3一列火车以200米每分钟的速度经过一根电线杆用了10分钟,求火车车长?四“追及问题”1齐头并进、齐尾并进例题4甲车每秒行22米,乙车每秒行16米,若两车齐头并进,则甲车行30秒超过乙车,若两车齐尾并进,则甲车行26秒超过乙车,求两车车长各多少米?五“相遇问题’1交轨,交错交汇、擦肩而过例题5一列客车长190米,一列货车长240米,两车分别以每秒20米和23米的速度相向行进,在双轨铁路上,交会时从车头相遇到车尾想离共需多少时间?练习题1.两个码头相距192千米,一艘汽艇顺水行完全程需要8小时,已知这条河的水流速度为4千米/小时,求逆水行完全程需几小时?2.两个码头相距432千米,轮船顺水行这段路程需要16小时,逆水每小时比顺水少行9千米,逆水比顺水需要多用几个小时行完全程?3.甲、乙两个码头相距130千米,汽船从乙码头逆水行驶6.5小时到达甲码头,又知汽船在静水中每小时行驶23千米。
(完整版)五年级奥数流水行船问题
流水行船问题:顺水速度=静水速度(船速)+水速逆水速度=静水速度(船速)-水速静水速度(船速)=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷21、两个码头相距352千米,一船顺流而下,行完全程需要11小时,逆流而上,行完全程需要16小时,求这条河的水流速度和船的静水速度。
2、长江沿岸甲乙两城的水路距离为240千米,一条船从甲城开往乙城,顺水10小时可以到达,从乙城返回甲城,逆水则需要15小时才能到达,求船速和水速。
3、两个港口相距528千米,一艘轮船顺水航行要24小时走完全程,已知这条河的水速是每小时3千米,那么它返回逆流航行时要多少小时?4、两个港口相距480千米,一艘轮船顺水航行要24小时走完全程,已知这条河流的水速是每小时4千米,那么它返回逆流航行要多少小时?5、甲乙两地相距234千米,一只船从甲港到乙港需9小时,从乙港返回甲港需13小时,问船速和水速各为每小时多少千米?6、一只船在长江里航行,顺流每小时20千米,已知这艘船顺流4小时恰好与逆流5小时的路程相等,求船速与水速?7、船行于120千米一段长的江河中,逆流而上用10小时,顺流而下用6小时,水速和船速各是多少千米?8、一只船逆流而上,水速2千米,船速32千米,4小时行多少千米?9、甲乙两地之间的距离是140千米,一艘轮船从甲港开往乙港,顺水7小时到达,从乙港返回甲港,逆水10小时到达,这艘轮船在静水中的速度和水流速度各是多少?10、一只船在静水中的速度是每小时18千米,水流速度是每小时2千米。
这只船从甲港逆水航行到乙港需要15小时,甲、乙两港的距离是多少千米?11、两码头相距192千米,一艘汽艇顺水行完全程需要8小时,已知这条河流的水流速度为每小时4千米,求逆水行完全程需要多少小时?12、甲、乙两船分别从A港出发逆流而上行驶向B港,甲船的顺水速度是每小时30千米,静水中乙船每小时航行20千米,水流的速度是每小时5千米,乙船出发后4小时,甲船才出发,当甲船追上乙船的时候,甲船已经离开A港多少千米?13、甲乙两船分别从A港顺流而下至B港,甲船的逆水速度为每小时30千米,静水中乙船的速度为每小时25千米,水速为每小时5千米,乙船出发后3小时甲船才出发,当甲船追上乙船的时候甲船离开A港多少千米?14、已知一艘轮船顺水行48千米需要4小时,逆水行48千米需要6小时,现在轮船从上游的A城驶向下游的B城,已知两城的水路长72千米,开船时一位旅客站在船边看风景,不小心把一只鞋掉进水里,问:船到B城时这只鞋距离B 城有多远?15、某人顺水游360米需要12分钟,逆水游360米需要15分钟,此人现在从河的下游A处游向上游的B处,A、B两地相距480千米,他从A处刚开始游的时候向水里放了一块木板,当游到B处的时候,木板距离他多少米?16、一条船顺水航行60千米需要3小时,水流速度为每小时5千米,这条船逆流行驶60千米需要多少小时?17、一条船在河流中顺水航行的速度是每小时40千米,逆水速度是每小时32千米,这条河流的水速每小时多少千米?18、甲乙两地相距180千米,一只船从甲地开往乙地,顺水9小时到达,从乙地开往甲地,逆水15小时到达,求水流的速度。
流水行船问题的公式和例题含答案
流水行船问题的公式和例题流水问题是研究船在流水中的行程问题;因此;又叫行船问题..在小学数学中涉及到的题目;一般是匀速运动的问题..这类问题的主要特点是;水速在船逆行和顺行中的作用不同..流水问题有如下两个基本公式:顺水速度=船速+水速1逆水速度=船速-水速2这里;顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度;也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程..公式1表明;船顺水航行时的速度等于它在静水中的速度与水流速度之和..这是因为顺水时;船一方面按自己在静水中的速度在水面上行进;同时这艘船又在按着水的流动速度前进;因此船相对地面的实际速度等于船速与水速之和..公式2表明;船逆水航行时的速度等于船在静水中的速度与水流速度之差..根据加减互为逆运算的原理;由公式1可得:水速=顺水速度-船速3船速=顺水速度-水速4由公式2可得:水速=船速-逆水速度5船速=逆水速度+水速6这就是说;只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个;就可以求出第三个..另外;已知某船的逆水速度和顺水速度;还可以求出船速和水速..因为顺水速度就是船速与水速之和;逆水速度就是船速与水速之差;根据和差问题的算法;可知:船速=顺水速度+逆水速度÷2 7例1一只渔船顺水行25千米;用了5小时;水流的速度是每小时1千米..此船在静水中的速度是多少解:此船的顺水速度是:25÷5=5千米/小时因为“顺水速度=船速+水速”;所以;此船在静水中的速度是“顺水速度-水速”..5-1=4千米/小时综合算式:25÷5-1=4千米/小时答:此船在静水中每小时行4千米..例2一只渔船在静水中每小时航行4千米;逆水4小时航行12千米..水流的速度是每小时多少千米解:此船在逆水中的速度是:12÷4=3千米/小时因为逆水速度=船速-水速;所以水速=船速-逆水速度;即:4-3=1千米/小时答:水流速度是每小时1千米..例3一只船;顺水每小时行20千米;逆水每小时行12千米..这只船在静水中的速度和水流的速度各是多少解:因为船在静水中的速度=顺水速度+逆水速度÷2;所以;这只船在静水中的速度是:20+12÷2=16千米/小时因为水流的速度=顺水速度-逆水速度÷2;所以水流的速度是:20-12÷2=4千米/小时答略..乙地需要15小时..求甲、乙两地的路程是多少千米此船从乙地回到甲地需要多少小时解:此船逆水航行的速度是:18-2=16千米/小时甲乙两地的路程是:16×15=240千米此船顺水航行的速度是:18+2=20千米/小时此船从乙地回到甲地需要的时间是:240÷20=12小时答略..例5某船在静水中的速度是每小时15千米;它从上游甲港开往乙港共用8小时..已知水速为每小时3千米..此船从乙港返回甲港需要多少小时解:此船顺水的速度是:15+3=18千米/小时甲乙两港之间的路程是:18×8=144千米此船逆水航行的速度是:15-3=12千米/小时此船从乙港返回甲港需要的时间是:144÷12=12小时综合算式:15+3×8÷15-3=144÷12例6 甲、乙两个码头相距144千米;一艘汽艇在静水中每小时行20千米;水流速度是每小时4千米..求由甲码头到乙码头顺水而行需要几小时;由乙码头到甲码头逆水而行需要多少小时解:顺水而行的时间是:144÷20+4=6小时逆水而行的时间是:144÷20-4=9小时答略..例7一条大河;河中间主航道的水流速度是每小时8千米;沿岸边的水流速度是每小时6千米..一只船在河中间顺流而下;6.5小时行驶260千米..求这只船沿岸边返回原地需要多少小时解:此船顺流而下的速度是:260÷6.5=40千米/小时此船在静水中的速度是:40-8=32千米/小时此船沿岸边逆水而行的速度是:32-6=26千米/小时此船沿岸边返回原地需要的时间是:260÷26=10小时综合算式:260÷260÷6.5-8-6=260÷40-8-6=260÷26例8一只船在水流速度是2500米/小时的水中航行;逆水行120千米用24小时..顺水行150千米需要多少小时解:此船逆水航行的速度是:120000÷24=5000米/小时此船在静水中航行的速度是:5000+2500=7500米/小时此船顺水航行的速度是:7500+2500=10000米/小时顺水航行150千米需要的时间是:150000÷10000=15小时综合算式:150000÷120000÷24+2500×2=150000÷5000+5000=150000÷10000=15小时答略..例9一只轮船在208千米长的水路中航行..顺水用8小时;逆水用13小时..求船在静水中的速度及水流的速度..解:此船顺水航行的速度是:208÷8=26千米/小时此船逆水航行的速度是:208÷13=16千米/小时26+16÷2=21千米/小时由公式水速=顺水速度-逆水速度÷2;可求出水流的速度是:26-16÷2=5千米/小时答略..例10A、B两个码头相距180千米..甲船逆水行全程用18小时;乙船逆水行全程用15小时..甲船顺水行全程用10小时..乙船顺水行全程用几小时解:甲船逆水航行的速度是:180÷18=10千米/小时甲船顺水航行的速度是:180÷10=18千米/小时根据水速=顺水速度-逆水速度÷2;求出水流速度:18-10÷2=4千米/小时乙船逆水航行的速度是:180÷15=12千米/小时乙船顺水航行的速度是:12+4×2=20千米/小时乙船顺水行全程要用的时间是:180÷20=9小时综合算式:180÷180÷15+180÷10-180÷18÷2×3=180÷12+18-10÷2×2=180÷12+8=180÷20练习1、一只油轮;逆流而行;每小时行12千米;7小时可以到达乙港..从乙港返航需要6小时;求船在静水中的速度和水流速度分析:逆流而行每小时行12千米;7小时时到达乙港;可求出甲乙两港路程:12×7=84千米;返航是顺水;要6小时;可求出顺水速度是:84÷6=14千米;顺速-逆速=2个水速;可求出水流速度14-12÷2=1千米;因而可求出船的静水速度..解:12×7÷6-12÷2=2÷2=1千米12+1=13千米答:船在静水中的速度是每小时13千米;水流速度是每小时1千米..练习2、某船在静水中的速度是每小时15千米;河水流速为每小时5千米..这只船在甲、乙两港之间往返一次;共用去6小时..求甲、乙两港之间的航程是多少千米分析:1、知道船在静水中速度和水流速度;可求船逆水速度 15-5=10千米;顺水速度15+5=20千米..2、甲、乙两港路程一定;往返的时间比与速度成反比..即速度比是 10÷20=1:2;那么所用时间比为2:1 ..3、根据往返共用6小时;按比例分配可求往返各用的时间;逆水时间为 6÷2+1×2=4小时;再根据速度乘以时间求出路程..解:15-5:15+5=1:26÷2+1×2=6÷3×2=4小时15-5×4=10×4=40千米答:甲、乙两港之间的航程是40千米..练习3、一只船从甲地开往乙地;逆水航行;每小时行24千米;到达乙地后;又从乙地返回甲地;比逆水航行提前2. 5小时到达..已知水流速度是每小时3千米;甲、乙两地间的距离是多少分析:逆水每小时行24千米;水速每小时3千米;那么顺水速度是每小时 24+3×2=30千米;比逆水提前2. 5小时;若行逆水那么多时间;就可多行 30×2. 5=75千米;因每小时多行3×2=6千米;几小时才多行75千米;这就是逆水时间..解: 24+3×2=30千米24× 30×2. 5÷3×2=24× 30×2. 5÷6 =24×12. 5=300千米答:甲、乙两地间的距离是300千米..练习4、一轮船在甲、乙两个码头之间航行;顺水航行要8小时行完全程;逆水航行要10小时行完全程..已知水流速度是每小时3千米;求甲、乙两码头之间的距离分析:顺水航行8小时;比逆水航行8小时可多行 6×8=48千米;而这48千米正好是逆水10-8小时所行的路程;可求出逆水速度 4 8÷2=24 千米;进而可求出距离..解: 3×2×8÷10-8=3×2×8÷2=24千米24×10=240千米答:甲、乙两码头之间的距离是240千米..解法二:设两码头的距离为“1”;顺水每小时行;逆水每小时行;顺水比逆水每小时快-;快6千米;对应..3×2÷-=6÷=24 0千米答:略练习5、某河有相距12 0千米的上下两个码头;每天定时有甲、乙两艘同样速度的客船从上、下两个码头同时相对开出..这天;从甲船上落下一个漂浮物;此物顺水漂浮而下;5分钟后;与甲船相距2千米;预计乙船出发几小时后;可与漂浮物相遇分析:从甲船落下的漂浮物;顺水而下;速度是“水速”;甲顺水而下;速度是“船速+水速”;船每分钟与物相距:船速+水速-水速=船速..所以5分钟相距2千米是甲的船速5÷60=小时;2÷=24千米..因为;乙船速与甲船速相等;乙船逆流而行;速度为24-水速;乙船与漂浮物解: 120÷ 2÷5÷60=120÷24=5小时答:乙船出发5小时后;可与漂浮物相遇..。
流水行船问题的公式和例题
流水行船问题的公式和例题流水问题是研讨船在流水中的行程问题,是以,又叫行船问题.在小学数学中涉及到的标题,一般是匀速活动的问题.这类问题的重要特色是,水速在船逆行温柔行中的感化不合.流水问题有如下两个根本公式:顺水速度=船速+水速(1)逆水速度=船速-水速(2)这里,顺水速度是指船顺水航行时单位时光里所行的旅程;船速是指船本身的速度,也就是船在静水中单位时光里所行的旅程;水速是指水在单位时光里流过的旅程.公式(1)标明,船顺水航行时的速度等于它在静水中的速度与水流速度之和.这是因为顺水时,船一方面按本身在静水中的速度在水面上行进,同时这艘船又在按着水的流淌速度进步,是以船相对地面的现实速度等于船速与水速之和.公式(2)标明,船逆水航行时的速度等于船在静水中的速度与水流速度之差.依据加减互为逆运算的道理,由公式(1)可得:水速=顺水速度-船速(3)船速=顺水速度-水速(4)由公式(2)可得:水速=船速-逆水速度(5)船速=逆水速度+水速(6)这就是说,只要知道了船在静水中的速度.船的现实速度和水速这三者中的随意率性两个,就可以求出第三个.别的,已知某船的逆水速度温柔水速度,还可以求出船速和水速.因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,依据和差问题的算法,可知:船速=(顺水速度+逆水速度)÷2 (7)水速=(顺水速度-逆水速度)÷2 (8)*例1一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米.此船在静水中的速度是若干?解:此船的顺水速度是:*例2一只渔船在静水中每小时航行4千米,逆水4小时航行12千米.水流的速度是每小时若干千米?*例3一只船,顺水每小时行20千米,逆水每小时行12千米.这只船在静水中的速度和水流的速度各是若干?*例4某船在静水中每小时行18千米,水流速度是每小时2千米.此船从甲地逆水航行到乙地须要15小时.求甲.乙两地的旅程是若干千米?此船从乙地回到甲地须要若干小时?*例5某船在静水中的速度是每小时15千米,它从上游甲港开往乙港共用8小时.已知水速为每小时3千米.此船从乙港返回甲港须要若干小时?*例6 甲.乙两个船埠相距144千米,一艘汽艇在静水中每小时行20千米,水流速度是每小时4千米.求由甲船埠到乙船埠顺水而行须要几小时,由乙船埠到甲船埠逆水而行须要若干小时?*例7一条大河,河中央(主航道)的水流速度是每小时8千米,沿岸边的水流速度是每小时6千米.一只船在河中央顺流而下,6.5小时行驶260千米.求这只船沿岸边返回原地须要若干小时?解:此船顺流而下的速度是:*例8一只船在水流速度是2500米/小时的水中航行,逆水行120千米用24小时.顺水行150千米须要若干小时?*例9一只汽船在208千米长的水路中航行.顺水用8小时,逆水用13小时.求船在静水中的速度及水流的速度.*例10 A.B两个船埠相距180千米.甲船逆水行全程用18小时,乙船逆水行全程用15小时.甲船顺水行全程用10小时.乙船顺水行全程用几小时?演习1.一只油轮,逆流而行,每小时行12千米,7小时可以到达乙港.从乙港返航须要6小时,求船在静水中的速度和水流速度?演习2.某船在静水中的速度是每小时15千米,河水流速为每小时5千米.这只船在甲.乙两港之间往返一次,共用去6小时.求甲.乙两港之间的航程是若干千米?演习3.一只船从甲地开往乙地,逆水航行,每小时行24千米,到达乙地后,又从乙地返回甲地,比逆水航行提前2. 5小时到达.已知水流速度是每小时3千米,甲.乙两地间的距离是若干千米?演习4.一汽船在甲.乙两个船埠之间航行,顺水航行要8小时行完整程,逆水航行要10小时行完整程.已知水流速度是每小时3千米,求甲.乙两船埠之间的距离?演习5.某河有相距12 0千米的高低两个船埠,天天准时有甲.乙两艘同样速度的客船从上.下两个船埠同时相对开出.是日,从甲船上落下一个沉没物,此物顺水沉没而下,5分钟后,与甲船相距2千米,估计乙船动身几小时后,可与沉没物相遇?流水行船问题的公式和例题流水问题是研讨船在流水中的行程问题,是以,又叫行船问题.在小学数学中涉及到的标题,一般是匀速活动的问题.这类问题的重要特色是,水速在船逆行温柔行中的感化不合.流水问题有如下两个根本公式:顺水速度=船速+水速(1)逆水速度=船速-水速(2)这里,顺水速度是指船顺水航行时单位时光里所行的旅程;船速是指船本身的速度,也就是船在静水中单位时光里所行的旅程;水速是指水在单位时光里流过的旅程.公式(1)标明,船顺水航行时的速度等于它在静水中的速度与水流速度之和.这是因为顺水时,船一方面按本身在静水中的速度在水面上行进,同时这艘船又在按着水的流淌速度进步,是以船相对地面的现实速度等于船速与水速之和.公式(2)标明,船逆水航行时的速度等于船在静水中的速度与水流速度之差.依据加减互为逆运算的道理,由公式(1)可得:水速=顺水速度-船速(3)船速=顺水速度-水速(4)由公式(2)可得:水速=船速-逆水速度(5)船速=逆水速度+水速(6)这就是说,只要知道了船在静水中的速度.船的现实速度和水速这三者中的随意率性两个,就可以求出第三个.别的,已知某船的逆水速度温柔水速度,还可以求出船速和水速.因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,依据和差问题的算法,可知:船速=(顺水速度+逆水速度)÷2 (7)水速=(顺水速度-逆水速度)÷2 (8)*例1一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米.此船在静水中的速度是若干?解:此船的顺水速度是:25÷5=5(千米/小时)因为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水速度-水速”.5-1=4(千米/小时)分解算式:25÷5-1=4(千米/小时)答:此船在静水中每小时行4千米.*例2一只渔船在静水中每小时航行4千米,逆水4小时航行12千米.水流的速度是每小时若干千米?解:此船在逆水中的速度是:12÷4=3(千米/小时)因为逆水速度=船速-水速,所以水速=船速-逆水速度,即:4-3=1(千米/小时)答:水流速度是每小时1千米.*例3一只船,顺水每小时行20千米,逆水每小时行12千米.这只船在静水中的速度和水流的速度各是若干?解:因为船在静水中的速度=(顺水速度+逆水速度)÷2,所以,这只船在静水中的速度是:(20+12)÷2=16(千米/小时)因为水流的速度=(顺水速度-逆水速度)÷2,所以水流的速度是:(20-12)÷2=4(千米/小时)答略.*例4某船在静水中每小时行18千米,水流速度是每小时2千米.此船从甲地逆水航行到乙地须要15小时.求甲.乙两地的旅程是若干千米?此船从乙地回到甲地须要若干小时?解:此船逆水航行的速度是:18-2=16(千米/小时)甲乙两地的旅程是:16×15=240(千米)此船顺水航行的速度是:18+2=20(千米/小时)此船从乙地回到甲地须要的时光是:240÷20=12(小时)答略.*例5某船在静水中的速度是每小时15千米,它从上游甲港开往乙港共用8小时.已知水速为每小时3千米.此船从乙港返回甲港须要若干小时?解:此船顺水的速度是:15+3=18(千米/小时)甲乙两港之间的旅程是:18×8=144(千米)此船逆水航行的速度是:15-3=12(千米/小时)此船从乙港返回甲港须要的时光是:144÷12=12(小时)分解算式:(15+3)×8÷(15-3)=144÷12=12(小时)答略.*例6 甲.乙两个船埠相距144千米,一艘汽艇在静水中每小时行20千米,水流速度是每小时4千米.求由甲船埠到乙船埠顺水而行须要几小时,由乙船埠到甲船埠逆水而行须要若干小时?解:顺水而行的时光是:144÷(20+4)=6(小时)逆水而行的时光是:144÷(20-4)=9(小时)答略.*例7一条大河,河中央(主航道)的水流速度是每小时8千米,沿岸边的水流速度是每小时6千米.一只船在河中央顺流而下,6.5小时行驶260千米.求这只船沿岸边返回原地须要若干小时?解:此船顺流而下的速度是:260÷6.5=40(千米/小时)此船在静水中的速度是:40-8=32(千米/小时)此船沿岸边逆水而行的速度是:32-6=26(千米/小时)此船沿岸边返回原地须要的时光是:260÷26=10(小时)分解算式:260÷(260÷6.5-8-6)=260÷(40-8-6)=260÷26=10(小时)答略.*例8一只船在水流速度是2500米/小时的水中航行,逆水行120千米用24小时.顺水行150千米须要若干小时?解:此船逆水航行的速度是:120000÷24=5000(米/小时)此船在静水中航行的速度是:5000+2500=7500(米/小时)此船顺水航行的速度是:7500+2500=10000(米/小时)顺水航行150千米须要的时光是:150000÷10000=15(小时)分解算式:150000÷(120000÷24+2500×2)=150000÷(5000+5000)=150000÷10000=15(小时)答略.*例9一只汽船在208千米长的水路中航行.顺水用8小时,逆水用13小时.求船在静水中的速度及水流的速度.解:此船顺水航行的速度是:208÷8=26(千米/小时)此船逆水航行的速度是:208÷13=16(千米/小时)由公式船速=(顺水速度+逆水速度)÷2,可求出此船在静水中的速度是:(26+16)÷2=21(千米/小时)由公式水速=(顺水速度-逆水速度)÷2,可求出水流的速度是:(26-16)÷2=5(千米/小时)答略.*例10 A.B两个船埠相距180千米.甲船逆水行全程用18小时,乙船逆水行全程用15小时.甲船顺水行全程用10小时.乙船顺水行全程用几小时?解:甲船逆水航行的速度是:180÷18=10(千米/小时)甲船顺水航行的速度是:180÷10=18(千米/小时)依据水速=(顺水速度-逆水速度)÷2,求出水流速度:(18-10)÷2=4(千米/小时)乙船逆水航行的速度是:180÷15=12(千米/小时)乙船顺水航行的速度是:12+4×2=20(千米/小时)乙船顺水行全程要用的时光是:180÷20=9(小时)分解算式:180÷[180÷15+(180÷10-180÷18)÷2×3]=180÷[12+(18-10)÷2×2]=180÷[12+8]=180÷20=9(小时)演习1.一只油轮,逆流而行,每小时行12千米,7小时可以到达乙港.从乙港返航须要6小时,求船在静水中的速度和水流速度?剖析:逆流而行每小时行12千米,7小不时到达乙港,可求出甲乙两港旅程:12×7=84(千米),返航是顺水,要6小时,可求出顺水速度是:84÷6=14(千米),顺速-逆速=2个水速,可求出水流速度(14-12)÷2=1(千米),因而可求出船的静水速度.解:(12×7÷6-12)÷2=2÷2=1(千米)12+1=13(千米)答:船在静水中的速度是每小时13千米,水流速度是每小时1千米.演习2.某船在静水中的速度是每小时15千米,河水流速为每小时5千米.这只船在甲.乙两港之间往返一次,共用去6小时.求甲.乙两港之间的航程是若干千米?剖析:1.知道船在静水中速度和水流速度,可求船逆水速度 15-5=10(千米),顺水速度15+5=20(千米).2.甲.乙两港旅程必定,往返的时光比与速度成反比.即速度比是 10÷20=1:2,那么所用时光比为2:1 .3.依据往返共用6小时,按比例分派可求往返各用的时光,逆水时光为 6÷(2+1)×2=4(小时),再依据速度乘以时光求出旅程.解:(15-5):(15+5)=1:26÷(2+1)×2=6÷3×2=4(小时)(15-5)×4=10×4=40(千米)答:甲.乙两港之间的航程是40千米.演习3.一只船从甲地开往乙地,逆水航行,每小时行24千米,到达乙地后,又从乙地返回甲地,比逆水航行提前2. 5小时到达.已知水流速度是每小时3千米,甲.乙两地间的距离是若干千米?剖析:逆水每小时行24千米,水速每小时3千米,那么顺水速度是每小时 24+3×2=30(千米),比逆水提前 2. 5小时,若行逆水那么多时光,就可多行 30×2. 5=75(千米),因每小时多行3×2=6(千米),几小时才多行75千米,这就是逆水时光.解: 24+3×2=30(千米)24×[ 30×2. 5÷(3×2)]=24× [ 30×2. 5÷6 ]=24×12. 5=300(千米)答:甲.乙两地间的距离是300千米.演习4.一汽船在甲.乙两个船埠之间航行,顺水航行要8小时行完整程,逆水航行要10小时行完整程.已知水流速度是每小时3千米,求甲.乙两船埠之间的距离?剖析:顺水航行8小时,比逆水航行8小时可多行 6×8=48(千米),而这48千米正好是逆水(10-8)小时所行的旅程,可求出逆水速度 4 8÷2=24 (千米),进而可求出距离.解: 3×2×8÷(10-8)=3×2×8÷2=24(千米)24×10=240(千米)答:甲.乙两船埠之间的距离是240千米.解法二:设两船埠的距离为“1”,顺水每小时行,逆水每小时行,顺水比逆水每小时快-,快6千米,对应.3×2÷(-)=6÷=24 0(千米)答:(略)演习5.某河有相距12 0千米的高低两个船埠,天天准时有甲.乙两艘同样速度的客船从上.下两个船埠同时相对开出.是日,从甲船上落下一个沉没物,此物顺水沉没而下,5分钟后,与甲船相距2千米,估计乙船动身几小时后,可与沉没物相遇?剖析:从甲船落下的沉没物,顺水而下,速度是“水速”,甲顺水而下,速度是“船速+水速”,船每分钟与物相距:(船速+水速)-水速=船速.所以5分钟相距2千米是甲的船速5÷60=(小时),2÷=24(千米).因为,乙船速与甲船速相等,乙船逆流而行,速度为24-水速,乙船与沉没物相遇,求相遇时光,是相遇旅程120千米,除以它们的速度和(24-水速)+水速=24(千米).解: 120÷[ 2÷(5÷60)]=120÷24=5(小时)答:乙船动身5小时后,可与沉没物相遇.。
完整版)流水行船问题的公式和例题(含答案)
完整版)流水行船问题的公式和例题(含答案)此船在静水中的速度=(20+12)÷2=16(千米/小时)又因为水速=(顺水速度-船速)或(船速-逆水速度),所以:水速=(20-16)÷2=2(千米/小时)或水速=(16-12)÷2=2(千米/小时)答:此船在静水中的速度为16千米/小时,水流速度为2千米/小时。
此船在静水中的速度是:5000-2500=2500(米/小时)此船顺水航行的速度是:2500+2500=5000(米/小时)顺水行150千米需要的时间是:÷5000=30(小时)答案:30小时。
一只油轮逆流而行,每小时行驶12千米,7小时后到达乙港。
从乙港返航需要6小时。
求该船在静水中的速度和水流速度。
分析:船舶逆流而行每小时行驶12千米,7小时后到达乙港,因此甲乙两港的路程为12×7=84千米。
船舶返航时顺流而行,需要6小时,因此船舶的顺水速度为84÷6=14千米。
船舶的静水速度可由顺速和逆速的平均值得出。
水速等于顺速和逆速的差值除以2,从而可以得出水流速度。
因此,可以求出船的静水速度。
解:船舶的顺水速度为14千米,逆水速度为12千米。
因此,水速为(14-12)÷2=1千米。
船的静水速度为(14+12)÷2=13千米。
水流速度为1千米。
练2:一艘船在静水中的速度是每小时15千米,河水流速为每小时5千米。
该船在甲、乙两港之间往返一次,共用去6小时。
求甲、乙两港之间的航程是多少千米?分析:首先,根据船在静水中速度和水流速度,可以求得船逆水速度为15-5=10(千米),顺水速度为15+5=20(千米)。
其次,甲、乙两港之间路程一定,往返的时间比与速度成反比,即速度比为10÷20=1:2,那么所用时间比为2:1.最后,根据往返共用6小时,按比例分配可求往返各用的时间,逆水时间为6÷(2+1)×2=4(小时),再根据速度乘以时间求出路程。
流水问题公式
【行船问题公式】
(1)一般公式:
静水速度(船速)+水流速度(水速)=顺水速度;
船速-水速=逆水速度;(顺水速度+逆水速度)÷2=船速;
(顺水速度-逆水速度)÷2=水速
(2)两船相向航行的公式:
甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度
(3)两船同向航行的公式:
后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度
例题:轮船在顺水中航行80千米所需的时间和逆水航行60千米所需的时间相同,已知水流的速度是3千米/时.求轮船在静水中的速度.
船在顺水中速度=静水中船速+水速
船在逆水中速度=静水中船速-水速
用以下两种方法求解
方法一:船在顺水中的速度比在逆水中的速度恰好多了两个水流的速度。
即:3*2=6千米。
因为轮船在顺水中航行80千米所需的时间和逆水航行60千米所需的时间相同,所以,在同一时间内,顺水多行的80-60=20千米就是在这段时间内,2倍的水流的速度行的。
因此,船行的时间是:20/6=10/3
因此,船在静水中的速度是:80÷10/3-3=21千米
方法二:比例
设船在静水中的速度是X千米/小时,则顺水速度是X+3,逆水速度是:X-3
根据时间一定,路程与速度成正比例。
可以列比例式:
(X-3):(X+3)=60:80
60(X+3)=80(X-3)
60X+180=80X-240
180=80X-240-60X
20X=420
X=21
【下载本文档,可以自由复制内容或自由编辑修改内容,更多精彩文章,期待你的好评和关注,我将一如既往为您服务】
精品文档交流 2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水速=(顺水速度-逆水速度)十2(8)
*例1一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。此船在静水中的速度是多少? 解:此船的顺水速度是:
25-5=5(千米/小时)
因为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水速度-水速”。
5-1=4(千米/小时)
*例4某船在静水中每小时行18千米,水流速度是每小时2千米。此船从甲地逆水航行到乙地需要15小时。 求甲、乙两地的路程是多少千米?此船从乙地回到甲地需要多少小时?
*例5某船在静水中的速度是每小时15千米,它从上游甲港开往乙港共用8小时。已知水速为每小时3千米。
此船从乙港返回甲港需要多少小时?
*例6甲、乙两个码头相距144千米,一艘汽艇在静水中每小时行20千米,水流速度是每小时4千米。求由 甲码头到乙码头顺水而行需要几小时,由乙码头到甲码头逆水而行需要多少小时?
船速=(顺水速度+逆水速度)十2(7)
水速=(顺水速度-逆水速度)十2(8)
*例1一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。此船在静水中的速度是多少?
解:此船的顺水速度是:
4千米,逆水4小时航行12千米。水流的速度是每小时多少千米?
*例3一只船,顺水每小时行20千米,逆水每小时行12千米。这只船在静水中的速度和水流的速度各是多少?
练习3、一只船从甲地开往乙地,逆水航行,每小时行24千米,到达乙地后,又从乙地返回甲地,比逆水航行提前
2.5小时到达。已知水流速度是每小时3千米,甲、乙两地间的距离是多少千米?
练习4、一轮船在甲、乙两个码头之间航行,顺水航行要8小时行完全程,逆水航行要10小时行完全程。已知水流
速度是每小时3千米,求甲、乙两码头之间的距离?
*例3一只船,顺水每小时行20千米,逆水每小时行12千米。这只船在静水中的速度和水流的速度各是多少? 解:因为船在静水中的速度=(顺水速度+逆水速度)十2,所以,这只船在静水中的速度是:
用10小时。乙船顺水行全程用几小时?
练习1、一只油轮,逆流而行,每小时行12千米,7小时可以到达乙港。从乙港返航需要6小时,求船在静水中的
速度和水流速度?
练习2、某船在静水中的速度是每小时15千米,河水流速为每小时5千米。这只船在甲、乙两港之间往返一次,共 用去6小时。求甲、乙两港之间的航程是多少千米?
公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。 根据加减互为逆运算的原理,由公式(1)可得:
水速=顺水速度-船速(3)
船速=顺水速度-水速(4)
由公式(2)可得:
水速=船速-逆水速度(5)
船速=逆水速度+水速(6) 这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。 另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。因为顺水速度就是船速与水速之和,逆水速 度就是船速与水速之差,根据和差问题的算法,可知:
练习5、某河有相距12 0千米的上下两个码头,每天定时有甲、乙两艘同样速度的客船从上、下两个码头同时相对 开出。这天,从甲船上落下一个漂浮物,此物顺水漂浮而下,5分钟后,与甲船相距2千米,预计乙船出发几小时 后,可与漂浮物相遇?
流水行船问题的公式和例题
流水问题是研究船在流水中的行程问题,因此,又叫行船问题。在小学数学中涉及到的题目,一般是匀速运动的 问题。这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
流水问题有如下两个基本公式:
顺水速度=船速+水速(1)
逆水速度=船速-水速(2) 这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时 间里所行的路程;水速是指水在单位时间里流过的路程。
公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。这是因为顺水时,船一方面按 自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速 与水速之和。
公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。这是因为顺水时,船一方面按 自己在静水中的速度地面的实际速度等于船速 与水速之和。
公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。 根据加减互为逆运算的原理,由公式(1)可得:
*例7一条大河,河中间(主航道)的水流速度是每小时8千米,沿岸边的水流速度是每小时6千米。一只船
在河中间顺流而下,6.5小时行驶260千米。求这只船沿岸边返回原地需要多少小时? 解:此船顺流而下的速 度是:
*例9一只轮船在208千米长的水路中航行。 度。
*例10A、B两个码头相距180千米。甲船逆水行全程用18小时,乙船逆水行全程用15小时。甲船顺水行全程
综合算式:
25-5-仁4(千米/小时)
答:此船在静水中每小时行4千米。
*例2一只渔船在静水中每小时航行4千米,逆水4小时航行12千米。水流的速度是每小时多少千米? 解:此船在逆水中的速度是:
12-4=3(千米/小时)
因为逆水速度=船速-水速,所以水速=船速-逆水速度,即:
4-3=1(千米/小时)
答:水流速度是每小时1千米。
流水行船问题的公式和例题
流水问题是研究船在流水中的行程问题,因此,又叫行船问题。在小学数学中涉及到的题目,一般是匀速运动的 问题。这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
流水问题有如下两个基本公式:
顺水速度=船速+水速(1)
逆水速度=船速-水速(2) 这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时 间里所行的路程;水速是指水在单位时间里流过的路程。
水速=顺水速度-船速(3)
船速=顺水速度-水速(4)
由公式(2)可得:
水速=船速-逆水速度(5)
船速=逆水速度+水速(6) 这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。 另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。因为顺水速度就是船速与水速之和,逆水速 度就是船速与水速之差,根据和差问题的算法,可知: