空间大地坐标系与平面直角坐标系转换公式

合集下载

blh转xyz 公式

blh转xyz 公式

blh转xyz 公式BLH转XYZ公式是地理坐标系之间的转换公式,用于将大地坐标系(BLH)转换为空间直角坐标系(XYZ)。

BLH指的是地球上某一点的大地经度、纬度和大地高,而XYZ则指的是该点在空间直角坐标系下的坐标。

这个公式在地理测量、导航定位等领域有着广泛的应用。

BLH转XYZ的公式可以通过矩阵相乘的方式进行计算。

下面我将详细介绍该公式的推导和使用方法。

我们需要了解一些基本概念。

大地坐标系是以地球椭球体为参照物建立的坐标系,其中经度表示点在赤道投影面上的投影长度,纬度表示点到赤道的弧长,大地高表示点到椭球体表面的垂直距离。

空间直角坐标系是以地球中心为原点建立的坐标系,其中X轴指向经度为0度的子午线,Y轴指向经度为90度的子午线,Z轴指向地球北极。

BLH转XYZ的公式可以表示为以下矩阵形式:```[X] [cosB*cosL cosB*sinL sinB ] [N+H][Y] = [-sinL cosL 0 ] * [N+H][Z] [-sinB*cosL -sinB*sinL cosB ] [N*(1-e^2)+H]```其中,[X Y Z]表示空间直角坐标系下的坐标,[B L H]表示大地坐标系下的坐标,N表示椭球体的半径,e^2表示椭球体的第一偏心率的平方。

这个公式的推导过程比较复杂,涉及到大量的数学和物理知识,这里就不再详述。

有兴趣的读者可以参考相关的地理测量学和大地测量学的教材。

在实际应用中,我们可以通过输入一个点的经纬度和大地高,就可以得到该点在空间直角坐标系下的坐标。

这对于地理测量、导航定位等应用非常有用。

例如,在航空航天领域,我们可以利用BLH转XYZ公式来计算卫星的轨道位置和航天器的定位。

BLH转XYZ公式是地理坐标系之间的转换公式,可以将大地坐标系下的坐标转换为空间直角坐标系下的坐标。

这个公式在地理测量、导航定位等领域有着广泛的应用。

通过掌握该公式的推导和使用方法,我们可以更好地理解和应用地理坐标系。

大地坐标与直角空间坐标转换计算公式

大地坐标与直角空间坐标转换计算公式

⼤地坐标与直⾓空间坐标转换计算公式⼤地坐标与直⾓空间坐标转换计算公式⼀、参⼼⼤地坐标与参⼼空间直⾓坐标转换1名词解释:A :参⼼空间直⾓坐标系:a) 以参⼼0为坐标原点;b) Z轴与参考椭球的短轴(旋转轴)相重合;c) X轴与起始⼦午⾯和⾚道的交线重合;d) Y轴在⾚道⾯上与 X轴垂直,构成右⼿直⾓坐标系O-XYZ ;e) 地⾯点P的点位⽤(X,Y,Z)表⽰;B :参⼼⼤地坐标系:a) 以参考椭球的中⼼为坐标原点,椭球的短轴与参考椭球旋转轴重合;b) ⼤地纬度B :以过地⾯点的椭球法线与椭球⾚道⾯的夹⾓为⼤地纬度 B ;c) ⼤地经度L:以过地⾯点的椭球⼦午⾯与起始⼦午⾯之间的夹⾓为⼤地经度L;d) ⼤地⾼H:地⾯点沿椭球法线⾄椭球⾯的距离为⼤地⾼H ;e) 地⾯点的点位⽤(B,L,H)表⽰。

2参⼼⼤地坐标转换为参⼼空间直⾓坐标:X =(N +H )* cosB* cosLY =(N +H )* cosB* sin L ?Z =[N * (I _e2) +H]* sin B”公式中,N为椭球⾯卯⾣圈的曲率半径,e为椭球的第⼀偏⼼率,a、b椭球的长短半径,f椭球扁率,W为第⼀辅助系数a2 -b22* f -1e 或e =a fW = . (1 -g*sin2BN aW西安80椭球参数:长半轴 a=6378140⼟ 5( m)短半轴 b=6356755.2882m扁率a =1/298.2573参⼼空间直⾓坐标转换参⼼⼤地坐标Z* (N + H) (X2 Y2)* N* (1 -e2) HX2 Y2cosB⼆⾼斯投影及⾼斯直⾓坐标系1、⾼斯投影概述⾼斯-克吕格投影的条件:1.是正形投影;2.中央⼦午线不变形⾼斯投影的性质: 1.投影后⾓度不变; 2.长度⽐与点位有关,与⽅向⽆关;3.离中央⼦午线越远变形越⼤为控制投影后的长度变形,采⽤分带投影的⽅法。

常⽤3度带或6度带分带,城市或⼯程控制⽹坐标可采⽤不按 3度带中央⼦午线的任意带。

空间大地坐标系与平面直角坐标系转换公式

空间大地坐标系与平面直角坐标系转换公式

空间大地坐标系与平面直角坐标系转换公式空间大地坐标系和平面直角坐标系是两种不同的坐标系统,用于描述地球上的点的位置。

在进行空间大地坐标系与平面直角坐标系之间的转换时,需要考虑到地球的椭球体形状和投影方式。

下面将详细介绍空间大地坐标系与平面直角坐标系的转换方法。

1.空间大地坐标系经度:经度是指地球上特定点与本初子午线之间的角度差,用度、分、秒的形式表示。

纬度:纬度是指地球上特定点距离赤道的角度,用度、分、秒的形式表示。

大地高:大地高是指地球表面特定点到参考椭球体上其中一参考面的高度差,可分为正高和负高。

2.平面直角坐标系平面直角坐标系是以地球上一些基准点为原点建立的二维坐标系。

在平面直角坐标系下,点的位置通常用东方向坐标值X和北方向坐标值Y来表示。

3.空间大地坐标系到平面直角坐标系的转换公式3.1平面直角投影平面直角投影是将地球表面上的点投影到一个水平的平面上。

其转换公式为:X = k₀ + R * cosL * sin(λ - λ₀)Y = k₀ + R * (cosφ₀ * sinL - sinφ₀ * cosL * cos(λ - λ₀))其中,X和Y为平面直角坐标系下的坐标值,L为参考点与待转换点的经度差,λ为待转换点的经度,φ₀为参考点的纬度,λ₀为参考点的经度,k₀为常数,R为参考点到地心的距离。

3.2高斯投影高斯投影是将地球上的点投影到一个平面上,使得该平面上的距离尽可能与大地距离一致。

其转换公式为:X = X₀ + N * cosB * (λ - L₀)Y = Y₀ + N * (tanB * cos(λ - L₀) - sinB * (B - B₀))其中,X和Y为平面直角坐标系下的坐标值,X₀和Y₀为参考点的平面坐标,N为法向子午线长度,B为待转换点的纬度,λ为待转换点的经度,L₀为参考点的经度,B₀为参考点的纬度。

4.平面直角坐标系到空间大地坐标系的转换公式平面直角坐标系到空间大地坐标系的转换公式为空间大地坐标系到平面直角坐标系的逆运算,可以通过解方程组或迭代法来进行计算。

坐标系统、基准、投影

坐标系统、基准、投影
遗憾的是,该椭球并未依据当时我国的天文观测资料进行重新定位,而是由前苏联西伯利亚地区的一等锁,经我国的东北地区传算过来的,该坐标系的高程异常是以前苏联1955年大地水准面重新平差的结果为起算值,按我国天文水准路线推算出来的,而高程又是以1956年青岛验潮站的黄海平均海水面为基准。
1954年北京坐标系建立后,全国天文大地网尚未布测完毕,因此,在全国分期布设该网的同时,相应地进行了分区的天文大地网局部平差,以满足经济和国防建设的需要。局部平差是按逐级控制的原则,先分区平差一等锁系,然后以一等锁环为起算值,平差环内的二等三角锁,平差时网区的连接部仅作了近似处理,如有的仅取两区的平差值,当某些一等锁环内的二等网太大,在当时的计算条件下无法处理时,也进行了分区平差,连接部仍采用近似处理的方法。
(2-10)
(2-11)
(2-12)
其中:
(2-13)
(2-14)
空间坐标系与平面直角坐标系间的转换采用的是投影变换的方法。在我国一般采用的是高斯投影。关于高斯投影,请参见有关文献。
高斯正算公式如下:
(2-15)
(2-16)
其中:
为子午线弧长;
为卯酉圈半径;
为经差;
为中央子午线经度。
为从赤道到投影点的椭球面弧长,可用下式计算:
WGS-84坐标系统的全称是World Geodical System-84(世界大地坐标系-84),它是一个地心地固坐标系统。WGS-84坐标系统由美国国防部制图局建立,于1987年取代了当时GPS所采用的坐标系统―WGS-72坐标系统而成为GPS的所使用的坐标系统。
WGS-84坐标系的坐标原点位于地球的质心,Z轴指向BIH1984.0定义的协议地球极方向,X轴指向BIH1984.0的启始子午面和赤道的交点,Y轴与X轴和Z轴构成右手系。

直角坐标系和大地坐标系转换

直角坐标系和大地坐标系转换

直角坐标系和大地坐标系的转换
在地理信息系统和测量领域中,直角坐标系和大地坐标系是两种常用的坐标系统。

直角坐标系是平面直角坐标系,由水平的x轴和垂直的y轴构成,可以用来表示平面上的点的位置,通常以米为单位。

而大地坐标系则是一种用来描述地球上点的位置的坐标系统,通常是经度(Longitude)和纬度(Latitude)的组合。

直角坐标系到大地坐标系的转换
直角坐标系到大地坐标系的转换涉及到高等数学的知识,主要是利用球面三角学的相关技巧。

在进行转换之前,需要知道点在直角坐标系中的坐标值,以及直角坐标系的原点。

然后,可以通过一系列的数学运算,将点的直角坐标值转换为大地坐标系中的经度和纬度。

大地坐标系到直角坐标系的转换
大地坐标系到直角坐标系的转换相对直接一些。

给定一个点的经度和纬度,我们可以利用地球的半径及球面三角学的相关公式,将该点的经度和纬度转换为直角坐标系中的坐标值。

这种转换可以帮助我们将地球表面上的点的位置转换为平面直角坐标系中的表示,便于进行地理信息系统中的测量和计算。

应用
直角坐标系和大地坐标系的转换在地理信息系统、地图制作、导航系统等领域都有着重要的应用。

通过这种转换,我们可以方便地将地球上的点的位置在不同坐标系统之间进行转换,从而实现不同系统之间的数据交换和信息共享。

总的来说,直角坐标系和大地坐标系的转换是地理信息系统和测量领域中的重要技术,对于地球表面上点的位置的表示和计算具有重要意义,能够为人类的地理信息分析和决策提供便利。

大地坐标系转换方法

大地坐标系转换方法

大地坐标系转换方法引言大地坐标系是地理空间测量中常用的一种坐标系统,用来描述地球上任意点的位置。

在使用大地坐标时,常见的问题是如何将大地坐标转换为其他坐标系,或者将其他坐标系转换为大地坐标。

本文将介绍一些常用的大地坐标系转换方法。

经纬度坐标与平面坐标间的转换大地坐标系与平面坐标系的关系大地坐标系使用经度(longitude)和纬度(latitude)来表示地球上的位置,是一种球面坐标系统。

而平面坐标系使用直角坐标系来表示位置,适用于小范围的测量。

因此,经纬度坐标与平面坐标之间的转换是常见的需求。

大地坐标转换为平面坐标大地坐标转换为平面坐标的方法称为投影。

常用的投影方法有等经纬度投影、高斯-克吕格投影、墨卡托投影等。

等经纬度投影等经纬度投影是一种简单的投影方法,它将地球表面划分为等大小的网格,将经纬度坐标映射到网格坐标上。

这种投影方法在小范围测量中常被使用,如城市规划、地图制作等。

高斯-克吕格投影高斯-克吕格投影是一种惯用的大范围测量投影方法。

这种投影方法在使用时需要选择一个中央子午线,并将经度平移至该子午线上,然后再进行投影转换。

高斯-克吕格投影适用于跨越多个经度带的地区。

墨卡托投影墨卡托投影是一种等积投影,具有无扭曲、保持形状不变和保持角度不变的特点。

这种投影方法广泛应用于航海、航空、地图制图等领域。

平面坐标转换为大地坐标平面坐标转换为大地坐标的方法称为反投影。

常用的反投影方法包括逆高斯-克吕格投影、反墨卡托投影等。

逆高斯-克吕格投影逆高斯-克吕格投影是将平面坐标转换为大地坐标的常用方法。

在逆高斯-克吕格投影中,需要知道投影中心的经纬度信息,然后通过逆运算将平面坐标转换为大地坐标。

反墨卡托投影反墨卡托投影将平面坐标转换为大地坐标的方法也很常见。

在反墨卡托投影中,需要指定投影的中心经纬度和投影的参数,然后通过逆运算将平面坐标转换为大地坐标。

大地坐标系间的转换大地坐标系间的转换通常包括从经纬度到其他大地坐标系的转换,或从其他大地坐标系到经纬度的转换。

空间直角坐标系与大地坐标系转换程序doc

空间直角坐标系与大地坐标系转换程序doc

空间直角坐标系与大地坐标系转换程序.doc本文将介绍一种实现空间直角坐标系与大地坐标系转换的程序实现方法。

在编写程序时,需要使用一些数学库和函数,比如C++标准库中的cmath和iostream 等。

首先,我们需要了解空间直角坐标系和大明坐标系之间的转换公式。

假设空间直角坐标系为(x, y, z),大地坐标系为(L, B, H),则它们之间的转换公式为:x = cosLcosBsinHy = cosLsinBsinHz = sinLsinH其中,L为经度,B为纬度,H为高程。

根据上述公式,我们可以编写一个C++程序来实现空间直角坐标系与大地坐标系之间的转换。

程序实现如下:#include <iostream>#include <cmath>using namespace std;void transform() {double x, y, z;double L, B, H;cout << "Enter x, y, and z coordinates: ";cin >> x >> y >> z;cout << "Enter L and B coordinates: ";cin >> L >> B;H = acos(z / sqrt(x * x + y * y + z * z));cout << "The converted coordinates are: " << x << " " << y << " " << H << endl;}int main() {transform();return 0;}在上述程序中,我们首先定义了变量x、y、z、L、B和H,分别代表空间直角坐标系和大明坐标系的坐标值。

空间大地坐标系与平面直角坐标系转换公式

空间大地坐标系与平面直角坐标系转换公式

§2.3.1 坐标系的分类之相礼和热创作正如后面所提及的,所谓坐标系指的是描绘空间地位的表达方式,即采取什么方法来暗示空间地位.人们为了描绘空间地位,采取了多种方法,从而也发生了分歧的坐标系,如直角坐标系、极坐标系等.在丈量中经常运用的坐标系有以下几种:一、空间直角坐标系空间直角坐标系的坐标系原点位于参考椭球的中心,Z 轴指向参考椭球的北极,X 轴指向起始子午面与赤道的交点,Y 轴位于赤道面上且按右手系与X 轴呈90°夹角.某点在空间中的坐标可用该点在此坐标系的各个坐标轴上的投影来暗示.空间直角坐标系可用图2-3来暗示:图2-3 空间直角坐标系二、空间大地坐标系空间大地坐标系是采取大地经、纬度和大地高来描绘空间地位的.纬度是空间的点与参考椭球面的法线与赤道面的夹角;经度是空间中的点与参考椭球的自转轴所在的面与参考椭球的起始子午面的夹角;大地高是空间点沿参考椭球的法线方向到参考椭球面的距离.空间大地坐标系可用图2-4来暗示:图2-4空间大地坐标系三、立体直角坐标系立体直角坐标系是利用投影变换,将空间坐标空间直角坐标或空间大地坐标经过某种数学变换映射到立体上,这种变换又称为投影变换.投影变换的方法有很多,如横轴墨卡托投影、UTM 投影、兰勃特投影等.在我国采取的是高斯-克吕格投影也称为高斯投影.UTM投影和高斯投影都是横轴墨卡托投影的特例,只是投影的个别参数分歧而已.高斯投影是一种横轴、椭圆柱面、等角投影.从几何意义上讲,是一种横轴椭圆柱正切投影.如图左侧所示,想象有一个椭圆柱面横套在椭球里面,并与某一子午线相切(此子午线称为地方子午线或轴子午线),椭球轴的中心轴CC’经过椭球中心而与地轴垂直.高斯投影满足以下两个条件:1、它是正形投影;2、地方子午线投影后应为x轴,且长度坚持不变.将地方子午线东西各肯定经差(一样平常为6度或3度)范围内的地区投影到椭圆柱面上,再将此柱面沿某一棱线展开,便构成了高斯立体直角坐标系,如下图2-5右侧所示.图2-5 高斯投影x 方向指北,y 方向指东.可见,高斯投影存在长度变形,为使其在测图和用图时影响很小,应相隔肯定的地区,另立地方子午线,采纳分带投影的法子.我国国家丈量规定采取六度带和三度带两种分带方法.六度带和三度带与地方子午线存在如下关系:366-N L =中; n L 33=中其中,N 、n 分别为6度带和3度带的带号.另外,为了防止y 出现负号,规定y 值以为地加上500000m ;又为了区别分歧投影带,后面还要冠以带号,如第20号六度带中,y=-200.25m ,则成果表中写为y 假定=20499799.75m.x 值在北半球总显正值,就无需改变其观测值了.1、空间直角坐标系与空间大地坐标系间的转换图2-6暗示了空间直角坐标系与空间大地坐标系之间的关系.图2-6 地球空间直角坐标系与大地坐标系在相反的基准下空间大地坐标系向空间直角坐标系的转换公式为:⎪⎭⎪⎬⎫+-=+=+=B H e N Z L B H N Y L B H N X sin ])1([sin cos )(cos cos )(2 (2-1)式中,W aN =,a 为椭球的长半轴,N 为椭球的卯酉圈曲率半径 a =6378.137km2222a b a e -=,e 为椭球的第一偏爱率,b 为椭球的短半轴 在相反的基准下空间直角坐标系向空间大地坐标系的转换公式为⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫-Φ=⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+Φ=N B R H X Y arctg L W B Z ae tg arctg B cos cos sin 12(2-2) 式中2、空间坐标系与立体直角坐标系间的转换空间坐标系与立体直角坐标系间的转换采取的是投影变换的方法.在我国一样平常采取的是高斯投影.由于高斯投影和UTM 投影都是横轴墨卡托的特例,因此,高斯投影和UTM 投影都可以套用横轴墨卡托投影的投影公式.横轴墨卡托投影的投影的正反算公式可拜见有关材料,它们的区别在于轴子午线投影到立体上后,其长度的系数,对于高斯投影,系数为1,对于UTM 投影,其系数为.3、变动高程回化面的影响用户在建立地方独立坐标系时,偶然变动高程回化面,这将发生一个新椭球,这就必须计算新常数,新椭球常数按下列方法和步调进行:1) 新椭球是在国家坐标系的参考椭球上扩大构成的,它的扁率应与国家坐标系参考椭球的扁率相称,即a a ='. 2) 计算该坐标系地方地区的新椭球均匀曲率半径和新椭球长半轴.新椭球均匀曲率半径为:m mm m m m H B e e a H W a W e a H MN H R R +--=+-=+=+=22232sin 11)1('(2.10) 式中m H ───该地区均匀大地高;m B ───该地区的均匀纬度.新椭球的长半轴按下式计算:2221sin 1''e B e R a m--=(2.11)将新的椭球参数代入,就可以进行投影的正反计算了.二、坐标零碎的转换方法分歧坐标零碎的转换本质上是分歧基准间的转换,分歧基准间的转换方法有很多,其中最为经常运用的有布尔沙模型,又称为七参数转换法.七参数转换法是:设两空间直角坐标系间有七个转换参数:3 个平移参数()z y x ∆∆∆、3 个旋转参数()z y x εεε和 1 个尺度参数k .比方,由空间直角坐标系A 转换到空间直角坐标系B 可采取上面的公式:§2.3.4 GPS 丈量中经常运用的坐标零碎一、世界大地坐标系WGS-84WGS-84 坐标系是如今GPS 所采取的坐标零碎,GPS 所发布的星历参数和历书参数等都是基于此坐标零碎的.WGS-84 坐标零碎的全称是World Geodical System-84 (世界大地坐标系-84), 它是一个地心肠固坐标零碎.WGS-84 坐标零碎由美国国防部制图局建立,于1987 年取代了当时GPS 所采取的坐标零碎WGS-72 坐标零碎而成为如今GPS 所运用的坐标零碎.WGS-84 坐标系的坐标原点位于地球的质心,Z 轴指向BIH1984.0 定义的协议地球极方向,X 轴指向BIH1984.0 的启始子午面和赤道的交点,Y 轴与X 轴和Z 轴构成右手系.WGS-84 系所采取椭球参数为见表2.1.二、1954 年北京坐标系1954 年北京坐标系是我国如今广泛采取的大地丈量坐标系.该坐标系源自于原苏联采取过的1942 年普尔科夫坐标系.该坐标系采取的参考椭球是克拉索夫斯基椭球.该椭球的参数见表2.1.遗憾的是该椭球并未根据当时我国的地理观测材料进行重新定位,而是由前苏联西伯利亚地区的一等锁经我国的东北地区传算过来的,该坐标系的高程异常是从前苏联1955 年大地水准面重新平差的结果为起算值,按我国地理水准路线推算出来的,而高程又是以1956 年青岛验潮站的黄海均匀海水面为基准.由于当时条件的限定1954 年北京坐标系存在着很多缺陷次要表示在以下几个方面:1. 克拉索夫斯基椭球参数同当代精确的椭球参数的差别较大,而且不包含暗示地球物理特性的参数,因此给理论和实践工作带来了许多方便.2. 椭球定向不非常明白,椭球的短半轴既不指向国际通用的CIO 极,也不指向如今我国运用的JYD极.参考椭球面与我国大地水准面呈西高东低的零碎性倾斜,东部高程异常达60余米,最大达67 米.3. 该坐标零碎的大地点坐标是经过局部分区平差得到的.因此天下的地理大地操纵点实践上不克不及构成一个团体,区与区之间有较大的隙距,如在有的接合部中同一点在分歧区的坐标值相差1-2 米,分歧分区的尺度差别也很大,而且坐标传递是从东北到东南和东北,后一区是从前一区的最弱部作为坐标起算点,因此一等锁具有分明的坐标积存偏差.三、1980 年西安大地坐标系1978 年我国决定重新对天下地理大地网实施团体平差,而且建立新的国家大地坐标零碎.团体平差在新大地坐标零碎中进行,这个坐标零碎就是1980 年西安大地坐标零碎.1980 年西安大地坐标零碎所采取的地球椭球参数的四个几何和物理参数采取了IAG 1975 年的引荐值,见表2.1中的西安80.椭球的短轴平行于地球的自转轴(由地球质心指向1968.0 JYD 地极原点方向),起始子午面平行于格林尼治均匀地理子午面,椭球面同似大地水准面在我国境内符合最好,高程零碎以1956 年黄海均匀海水面为高程起算基准.四、几种经常运用的坐标零碎的几何和物理参数下表列出了几种经常运用的坐标零碎的几何和物理参数,用户必要时可以查阅:表 2.1 GPS 丈量中经常运用的坐标零碎的几何和物理参数§2.4 GPS高程零碎在丈量中经常运用的高程零碎有大地高零碎、正高零碎和正常高零碎.§2.4.1 大地高零碎大地高零碎是以参考椭球面为基准面的高程零碎,某点的大地高是该点到经过该点的参考椭球的法线与参考椭球面的交点间的距离.大地高也称为椭球高.大地高一样平常用符号H 暗示.大地高是一个纯几何量,不具有物理意义,同一个点在分歧的基准下具有分歧的大地高.通常,GPS接收机单点定位得到的高程为WGS-84下的大地高.§2.4.2 正高零碎正高零碎是以大地水准面为基准面的高程零碎,某点的正高是该点到经过该点的铅垂线与大地水准面的交点之间的距离.正高用符号 H g暗示.§2.4.3 正常高正常高零碎是以似大地水准面为基准的高程零碎,某点的正常高是该点到经过该点的铅垂线与似大地水准面的交点之间的距离,正常高用 H γ 暗示.§2.4.4高程零碎之间的转换关系大地水准面到参考椭球面的距离称为大地水准面差距,记为 h g ,大地高与正高之间的关系可以暗示为:正 高:g g h H H -=似大地水准面到参考椭球面的距离,称为高程异常,记为ζ.大地高与正常高之间的关系可以暗示为:正常高:ζγ-=H H高程之间的互相关系可以用下图2-7来暗示:图2-7 高程零碎间的互相关系。

不同空间直角坐标系的转换

不同空间直角坐标系的转换

不同空间直角坐标系的转换
欧勒角
不同空间直角坐标系的转换,包括三个坐标轴的平移和坐标轴的旋转,以及两个坐标系的尺度比参数,坐标轴之间的三个旋转角叫欧勒角。

三参数法
三参数坐标转换公式是在假设两坐标系间各坐标轴相互平行,轴系间不存在欧勒角的条件下得出的。

实际应用中,因为欧勒角不大,可以用三参数公式近似地进行空间直角坐标系统的转换。

公共点只有一个时,采用三参数公式进行转换。

七参数法
用七参数进行空间直角坐标转换有布尔莎公式,莫洛琴斯基公式和范氏公式等。

下面给出布尔莎七参数公式:
坐标转换多项式回归模型
坐标转换七参数公式属于相似变换模型。

大地控制网中的系统误差一般呈区域性,当区域较小时,区域性的系统误差被相似变换参数拟合,故局部区域的坐标转换采用七参数公式模型是比较适宜的。

但对全国或一个省区范围内的坐标转换,可以采用多项式回归模型,将各区域的系统偏差拟合到回归参数中,从而提高坐标转换精度。

两种不同空间直角坐标系转换时,坐标转换的精度取决于坐标转换的数学模型和求解转换系数的公共点坐标精度,此外,还与公共点的分布有关。

鉴于地面控制网系统误差在⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000111222Z Y X Z Y X Z Y X ⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000111111222000)1(Z Y X Z Y X Z Y X m Z Y X X Y X Z Y Z εεεεεε
不同区域并非是一个常数,所以采用分区进行坐标转换能更好地反映实际情况,提高坐标转换的精度。

高斯克吕格投影公式(二)

高斯克吕格投影公式(二)

高斯克吕格投影公式(二)高斯克吕格投影公式高斯克吕格投影(Gauss-Krüger Projection)是一种广泛应用于大地测量和地理信息系统中的平面正轴投影方法。

这种投影方法可以将地球表面的经纬度坐标转换为平面直角坐标系,从而方便地对地理数据进行处理和分析。

公式1:高斯克吕格正算公式高斯克吕格正算公式用于将地球表面的经纬度转换为平面直角坐标系的坐标。

该公式如下:x = N * (L - L0)y = M + Eta * tanh(eta)其中,x和y表示平面直角坐标系的坐标,L和L0表示经度的差值和中央经线的经度,N表示切线圈长比例因子,M表示中央纬线的投影坐标,Eta为辅助变量,计算公式为:Eta = sinh(tanh^-1(tan(phi)) - (2 * sqrt(e) / (1 + e) * atanh(sqrt(e) * sin(phi))))phi表示纬度,e表示椭球的离心率。

公式2:高斯克吕格反算公式高斯克吕格反算公式用于将平面直角坐标系的坐标转换为地球表面的经纬度。

该公式如下:L = L0 + (x / N)phi = tan^-1(sinh(Eta)) + (e * atanh(sqrt(e) * sinh(Eta)) / (1 + e))其中,L和phi分别表示经度和纬度。

示例1:将经纬度转换为高斯克吕格投影坐标假设我们有一个点的经纬度为(121°30’,31°12’),中央经线选择为120°。

现在我们来计算该点对应的高斯克吕格投影坐标。

根据公式1,我们首先需要计算切线圈长比例因子N。

根据经度差值和纬度,我们可以计算得到N的值。

假设切线圈长比例因子为。

接下来,我们可以计算中央纬线的投影坐标M。

假设中央纬线的投影坐标为500000。

然后,我们需要计算辅助变量Eta。

根据公式1中的计算公式,我们可以得到Eta的值。

最后,根据公式1,我们可以计算得到该点对应的平面直角坐标系的坐标值为(x, y)。

大地坐标与平面坐标之间的区别与转换

大地坐标与平面坐标之间的区别与转换

南方CASS和南方平差易可以计算,正反算,坐标换带下面收集的文章总结,相互转换需根据文章计算方法:1.大地坐标系:WGS84(世界坐标系)坐标以经纬度显示,GPS测得2.平面直角坐标系:高斯投影平面直角坐标系:北京54全国80,平面坐标以数字显示,由WGS84坐标系根据椭球参数转换而得。

北京54和全国80坐标系之间可以相互转换3.全站仪放样测得坐标属于平面直角坐标;GPS测得坐标属于大地坐标,高程是海拔高程。

4.同一个坐标系之间的转换高斯投影坐标系中坐标换带的计算见以下文章,比如80坐标系的6度带坐标,要换带计算为80坐标系的3度带,需要平面坐标先转换为大地坐标后根据经纬度调整再转换为另一度带坐标5.全站仪采用极坐标放样原理:把坐标输入全站仪,全站仪自动转换成方位角和距离,根据后视基准边的夹角和距离来放样。

具体参考WORD直角坐标与极坐标的区别和转换例题:高斯坐标和北京54,西安80坐标有什么区别,举例说一下,行吗?举个例子,野外采集GPS数据,数据是用大地坐标表示的,也就是用经纬度和高程表示。

而采集的数据要在地图上显示出来,就需要将经纬度转化为平面坐标,也就是通常说的x,y 坐标。

因为我国地形图一般采用高斯投影,所以通常转化成高斯平面坐标显示到地图上。

而在经纬度向平面坐标转化的过程中,需要用到椭球参数,因此要考虑所选的坐标系,我国常用的坐标系有北京54,西安80,WGS-84坐标系,不同的坐标系对应的椭球体是不一样的,这里你可能会不明白根椭球体有啥关系,是这样的,我们所说的地理数据都是为了描述大地水准面上的某一个点,而大地水准面是不规则的,我们用一个规定的椭球面去拟合这个水准面,用椭球面上的点来近似表示地球上的点。

每个国家地理情况不同,采用的椭球体也不尽相同。

北京54坐标系采用的是克拉索夫斯基(Krassovsky)椭球体,而西安80采用的是IAG 75地球椭球体WGS84坐标与北京54坐标转换(转)2007-09-20 12:03转自GIS中的坐标系定义与转换戴勤奋1. 椭球体、基准面及地图投影GIS中的坐标系定义是GIS系统的基础,正确定义GIS系统的坐标系非常重要。

坐标系的转换

坐标系的转换

对于坐标系之间的转换,目前我们国家有以下几种:1、大地坐标(BLH)对平面直角坐标(XYZ);2、北京54全国80及WGS84坐标系的相互转换;3、任意两空间坐标系的转换。

坐标转换就是转换参数。

常用的方法有三参数法、四参数法和七参数法。

以下对上述三种情况作转换基本原理描述如下:1、大地坐标(BLH)对平面直角坐标(XYZ)常规的转换应先确定转换参数,即椭球参数、分带标准(3度,6度)和中央子午线的经度。

椭球参数就是指平面直角坐标系采用什么样的椭球基准,对应有不同的长短轴及扁率。

一般的工程中3度带应用较为广泛。

对于中央子午线的确定的一般方法是:平面直角坐标系中Y坐标的前两位*3,即可得到对应的中央子午线的经度。

如x=3888888m,y=388888666m,则中央子午线的经度=38*3=114度。

另外一些工程采用自身特殊的分带标准,则对应的参数确定不在上述之列。

确定参数之后,可以用软件进行转换,以下提供坐标转换的程序下载。

2、北京54全国80及WGS84坐标系的相互转换这三个坐标系统是当前国内较为常用的,它们均采用不同的椭球基准。

其中北京54坐标系,属三心坐标系,大地原点在苏联的普而科沃,长轴6378245m,短轴6356863,扁率1/298.3;西安80坐标系,属三心坐标系,大地原点在陕西省径阳县永乐镇,长轴6378140m,短轴6356755,扁率1/298.25722101;WGS84坐标系,长轴6378137.000m,短轴6356752.314,扁率1/298.257223563。

由于采用的椭球基准不一样,并且由于投影的局限性,使的全国各地并不存在一至的转换参数。

对于这种转换由于量较大,有条件的话,一般都采用GPS联测已知点,应用GPS软件自动完成坐标的转换。

当然若条件不许可,且有足够的重合点,也可以进行人工解算。

详细方法见第三类。

3、任意两空间坐标系的转换由于测量坐标系和施工坐标系采用不同的标准,要进行精确转换,必须知道至少3个重合点(即为在两坐标系中坐标均为已知的点。

大地坐标与平面坐标之间的区别与转换

大地坐标与平面坐标之间的区别与转换

大地坐标与平面坐标之间的区别与转换下面看几个概念:1、地球椭球体(Ellipsoid,Spheroid)2、大地基准面(Geodeticdatum)3、地理坐标系统(GeographicCoordinateSystem)4、投影坐标系统(ProjectedCoordinateSystem)其中,地理坐标系统包含地球椭球体和大地基准面,即3包含1和2;地球椭球体包含所选椭球的长半轴、短半轴和扁率。

投影坐标系统包含所需的投影方式(常用的投影有高斯-克吕投影GaussKruger简称GK和墨卡托投影Mecator),即东伪偏移量、北伪偏移量、中央子午线、尺度、纬度原点和米单位等。

上面提到的这些信息都是已知的或者包含在文件中,之所以需要转换参数,是因为大地基准面未知,它包含的信息就是转换参数,有了转换参数才能实行不同坐标系之间的转换。

常用的坐标转换使用的是布尔莎7参数法:1、DX--X轴偏移量2、DY--Y轴偏移量3、DZ--Z轴偏移量4、WX--X轴旋转角度5、WY--Y轴旋转角度6、WZ--Z轴旋转角度7、K--尺度其他三参数、四参数等都可以由7参数演变而来。

三参数和四参数都不涉及角度旋转问题。

几种常用坐标系统:1、大地坐标系(ArcGIS里称为地理坐标系),也即常说的经纬度坐标系,表示方法(B,L,H),B=经度,L=纬度,H=海拔2、空间直角坐标系统,表示方法(X,Y,Z),电子地图很少用这种坐标系统表示3、平面直角坐标系统,表示方法(X,Y,H)由于1和3多用于二维电子地图,多用两位来表示坐标,即(B,L)和(X,Y),H可以作为要素的一个属性字段来表示下面重点看大地坐标系和平面直角坐标系。

这两种坐标系有什么区别呢?大地坐标系(即经纬度坐标系)只包含地理坐标系;而平面直角坐标系既包含地理坐标系也包含投影坐标系。

所以,如果只是大地坐标系之间相互转换,就不涉及到投影变换。

大地坐标系之间相互转换分2种情况:1、参考椭球体相同,大地基准面不同2、参考椭球体不同,大地基准面也不同对于第一种情况,因为所选椭球相同,所以椭球圆心是一致的,只是椭球的大小不同而已,即尺度不一样,理论上是只涉及到一个参数(尺度),又因为起始点可能不一样,所以会有偏移,转换需要四个参数(DX、DY、DZ、K)。

空间大地坐标系与平面直角坐标系转换公式

空间大地坐标系与平面直角坐标系转换公式

§2.3.1 坐标系的分类正如前面所提及的,所谓坐标系指的是描述空间位置的表达形式,即采用什么方法来表示空间位置。

人们为了描述空间位置,采用了多种方法,从而也产生了不同的坐标系,如直角坐标系、极坐标系等。

在测量中常用的坐标系有以下几种:一、空间直角坐标系空间直角坐标系的坐标系原点位于参考椭球的中心,Z 轴指向参考椭球的北极,X 轴指向起始子午面与赤道的交点,Y 轴位于赤道面上且按右手系与X 轴呈90°夹角。

某点在空间中的坐标可用该点在此坐标系的各个坐标轴上的投影来表示。

空间直角坐标系可用图2-3来表示:图2-3 空间直角坐标系二、空间大地坐标系空间大地坐标系是采用大地经、纬度和大地高来描述空间位置的。

纬度是空间的点与参考椭球面的法线与赤道面的夹角;经度是空间中的点与参考椭球的自转轴所在的面与参考椭球的起始子午面的夹角;大地高是空间点沿参考椭球的法线方向到参考椭球面的距离。

空间大地坐标系可用图2-4来表示:图2-4空间大地坐标系三、平面直角坐标系平面直角坐标系是利用投影变换,将空间坐标空间直角坐标或空间大地坐标通过某种数学变换映射到平面上,这种变换又称为投影变换。

投影变换的方法有很多,如横轴墨卡托投影、UTM 投影、兰勃特投影等。

在我国采用的是高斯-克吕格投影也称为高斯投影。

UTM 投影和高斯投影都是横轴墨卡托投影的特例,只是投影的个别参数不同而已。

高斯投影是一种横轴、椭圆柱面、等角投影。

从几何意义上讲,是一种横轴椭圆柱正切投影。

如图左侧所示,设想有一个椭圆柱面横套在椭球外面,并与某一子午线相切(此子午线称为中央子午线或轴子午线),椭球轴的中心轴CC ’通过椭球中心而与地轴垂直。

高斯投影满足以下两个条件:1、 它是正形投影;2、 中央子午线投影后应为x 轴,且长度保持不变。

将中央子午线东西各一定经差(一般为6度或3度)范围内的地区投影到椭圆柱面上,再将此柱面沿某一棱线展开,便构成了高斯平面直角坐标系,如下图2-5右侧所示。

「空间大地坐标系与平面直角坐标系转换公式」

「空间大地坐标系与平面直角坐标系转换公式」

「空间大地坐标系与平面直角坐标系转换公式」空间大地坐标系(也称为地理坐标系)和平面直角坐标系(也称为笛卡尔坐标系)之间的转换公式是用于将地球表面上的点的经纬度(或大地坐标)转换为平面直角坐标系中的x、y、z值(或直角坐标)。

这两种坐标系的转换是地理信息系统(GIS)和测量工程中必不可少的一项基础工作。

下面将详细介绍这两种坐标系的特点以及它们之间的转换公式。

一、空间大地坐标系空间大地坐标系是以地球为基准的一种坐标系,用于描述地球表面上的点的位置。

空间大地坐标系是由经度、纬度和高程三个参数确定的,它们分别表示一个点在地球上的经度、纬度和高程(相对于一个参考椭球面)。

经度是指一个点与本初子午线(通常取格林尼治子午线)之间的夹角,可以用度、分、秒(DMS)或小数度(DD)表示;纬度是指一个点与赤道之间的夹角,同样可以用DMS或DD表示;高程是指一个点相对于参考椭球面的高度。

二、平面直角坐标系平面直角坐标系是由直角坐标系的一个特例,它在平面上使用x和y 两个参数来表示一个点的位置。

平面直角坐标系中,原点通常是一个叫做“地理坐标系原点”的基准点,x轴和y轴分别与参考坐标系的经度和纬度方向相对应。

这样,一个点在平面直角坐标系中的位置就可以用x和y 坐标值表示。

三、空间大地坐标系与平面直角坐标系的转换公式空间大地坐标系与平面直角坐标系之间的转换可分为大地坐标到直角坐标的转换和直角坐标到大地坐标的转换两个方向。

这里,我们主要关注大地坐标到直角坐标的转换过程。

大地坐标到直角坐标的转换公式如下:1.计算参考椭球面的参数首先,需要确定参考椭球面的参数,包括椭球长半轴a、扁率f以及椭球表面上任意一点的第一偏心率e。

这些参数通常可以从现有的地理坐标系参数库中获取。

2.计算大地坐标到空间直角坐标的转换设待转换的点在大地坐标系下的经度、纬度、高程分别为(λ,φ,H),则转换公式如下:X = (N + H) * cosφ * cosλY = (N + H) * cosφ * sinλZ = (N * (1 - e²) + H) * sinφ其中,N是参考椭球面上其中一点的曲率半径,由以下公式计算得到:N = a / (1 - e² * sin²φ)² 的平方根通过这些公式,可以将一个点从大地坐标系转换为平面直角坐标系中的x、y、z值。

大地坐标系与空间直角坐标系的相互转换方法

大地坐标系与空间直角坐标系的相互转换方法

大地坐标系与空间直角坐标系的相互转换方法1. 引言在测量和定位中,我们经常会用到坐标系来描述物体的位置。

大地坐标系和空间直角坐标系是常见的两种坐标系统,它们分别适用于地理测量和空间定位。

本文将介绍大地坐标系和空间直角坐标系之间的相互转换方法。

2. 大地坐标系大地坐标系是一种用来描述地球表面点位的坐标系统。

它采用经度、纬度和高度三个参数来确定点的位置。

2.1 经度和纬度经度是指地球表面上某点所在的东西方向线上的投影长度。

纬度是指地球表面上某点所在的南北方向线上的投影长度。

经度的取值范围是-180度到180度,纬度的取值范围是-90度到90度。

2.2 高度高度是指地球表面某点与平均海平面的距离。

它可以是正值,表示点位位于平均海平面之上,也可以是负值,表示点位位于平均海平面之下。

3. 空间直角坐标系空间直角坐标系是一种用来描述物体在空间中位置的坐标系统。

它采用直角坐标表示物体的位置,即用X、Y、Z三个参数表示点在空间中的位置。

3.1 X、Y、Z坐标X坐标表示点在东西方向上的位置,Y坐标表示点在南北方向上的位置,Z坐标表示点在垂直方向上的位置。

4. 大地坐标系转换为空间直角坐标系将大地坐标系中的经度、纬度和高度转换为空间直角坐标系中的X、Y、Z坐标,可以采用以下公式:X = (N + h) * cos(φ) * cos(λ)Y = (N + h) * cos(φ) * sin(λ)Z = (N * (1 - e^2) + h ) * sin(φ)其中,N为椭球面半径,h为高度,φ为纬度,λ为经度,e为第一偏心率。

5. 空间直角坐标系转换为大地坐标系将空间直角坐标系中的X、Y、Z坐标转换为大地坐标系中的经度、纬度和高度,可以采用以下公式:φ = atan(Z / sqrt(X^2 + Y^2))λ = atan(Y / X)h = sqrt(X^2 + Y^2 + Z^2) - N其中,N为椭球面半径,φ为纬度,λ为经度,h为高度。

大地坐标系与空间直角坐标系的相互转换公式

大地坐标系与空间直角坐标系的相互转换公式

大地坐标系与空间直角坐标系的相互转换公式概述大地坐标系和空间直角坐标系是地理信息系统中两种常用的坐标系。

大地坐标系主要用于描述地球上点的位置,而空间直角坐标系则是使用笛卡尔坐标系的三维空间中的坐标来表示点的位置。

在地理信息系统中,需要经常进行大地坐标系和空间直角坐标系之间的转换,以便在不同的坐标系统之间进行数据交互和分析。

大地坐标系大地坐标系是一种基于地球椭球体的坐标系统,常用来描述地球上点的位置。

一般采用经度(longitude)、纬度(latitude)和高程(elevation)来表示点在地球表面的位置。

经度表示点在东经或西经的位置,纬度表示点在北纬或南纬的位置,高程表示点相对于海平面的高度。

大地坐标系中经度的表示方式有多种,常见的有度分秒制和十进制制。

而纬度则一般用度制表示。

对于高程的表示方式,通常使用米作为单位。

空间直角坐标系空间直角坐标系是使用笛卡尔坐标系的三维空间中的坐标来表示点的位置。

在空间直角坐标系中,每个点的位置由三个数值组成,分别表示点在X轴、Y轴和Z轴方向上的位置。

这三个数值通常以米为单位。

空间直角坐标系中的原点可以选择任意位置,常见的有地心、地心地固、地心地独立三种坐标系。

地心坐标系以地球质心为原点,地心地固坐标系以地球上某一固定点为原点,地心地独立坐标系则是相对于地轴的一个旋转坐标系。

大地坐标系到空间直角坐标系的转换将大地坐标系中的点转换为空间直角坐标系中的点需要使用转换公式。

常用的转换方法有大地测量学和地心测量学两种。

### 大地测量学方法大地测量学方法中,将地球近似为椭球体,利用椭球体的形状参数和点的大地坐标来进行转换。

该方法的核心思想是通过计算点在曲线面上的法线方向,将大地坐标系的点转换为空间直角坐标系的点。

### 地心测量学方法地心测量学方法中,将地球近似为球体,并以地球质心或地球上某一固定点为原点。

该方法利用球面三角学的原理,根据点的经纬度和高程来进行转换。

大地坐标转平面坐标公式

大地坐标转平面坐标公式

大地坐标转平面坐标公式大地坐标转平面坐标是测量学和地理信息科学中的一个重要内容。

这事儿可不像表面看起来那么简单,里面的门道可多着呢!咱先来说说啥是大地坐标和平面坐标。

大地坐标啊,简单说就是用经度、纬度和大地高来表示地球上一个点的位置。

而平面坐标呢,通常就是咱们常见的直角坐标系里的 X、Y 坐标。

要把大地坐标转换成平面坐标,就得用到一些公式啦。

这里面比较常用的就是高斯-克吕格投影公式。

这公式看起来挺复杂,一堆数学符号,但是别害怕,咱们一点点来。

我记得有一次,我带着学生们去野外做测量实习。

那天阳光特别好,微风轻轻吹着。

我们在一片空旷的草地上,架起了测量仪器。

学生们都特别兴奋,跃跃欲试。

其中有个小同学,叫小明,特别积极。

他拿着笔记本,认真地听我讲解怎么测量大地坐标。

当我说到要把大地坐标转换成平面坐标的时候,他一脸的迷茫。

我就耐心地给他解释,告诉他每个参数的意义,怎么代入公式计算。

咱再回到公式上来哈。

在使用高斯-克吕格投影公式的时候,要先确定中央子午线的经度,还有投影的带号。

这可不能马虎,一旦弄错了,那后面算出来的结果可就全错啦。

而且啊,这计算过程中还得注意精度问题。

有时候一个小小的误差,可能会导致结果相差很大。

就像我们那次实习,有个小组在计算的时候,因为粗心忽略了一位小数,结果最后得出的位置偏差了好几十米,可把他们急坏了。

还有哦,不同的地区可能需要采用不同的投影方式和参数。

比如说在高纬度地区,就得特别小心投影变形的问题。

总之呢,大地坐标转平面坐标这个事儿,需要我们认真对待,细心计算。

就像我们做任何事情一样,一步一个脚印,才能得出准确可靠的结果。

那次实习结束的时候,小明跑过来跟我说:“老师,我终于搞明白这个转换公式啦!”看着他那开心的样子,我也特别有成就感。

这就是大地坐标转平面坐标,虽然有点复杂,但只要咱们用心去学,去实践,就一定能掌握好它!。

大地坐标系与站心地平直角坐标系的坐标转换

大地坐标系与站心地平直角坐标系的坐标转换

大地坐标系与站心地平直角坐标系的坐标转换
凌震莹 (第七一五研究所,杭州,310012)
摘要 介绍了大地坐标系和站心地平直角坐标系之间的转换算法,并结合实例数据对算法运算精度和速 度进行了仿真分析和评价,可解决声呐浮标搜潜系统中实时将测量所得的目标位置信息从大地坐标系转换到
作战区域所在的站心地平直角坐标系中问题,供定位和跟踪之用。
心直角坐标值(X、Y、Z)。
3.2 球心直角坐标转换为大地坐标
该步骤是从球心直角坐标(X、Y、Z)转换到 大地坐标(L、B、H),如图 1 如示,经度 L 可以 直接计算:
L = arctan Y X
(11)
纬度 B 计算比较复杂,有直接法和迭代法等多 种算法[3],本系统选择精度较高的迭代法,算法流 程如图 3 所示。
即:
(9)
⎡ ⎢ ⎢ ⎢⎣
x⎤ y⎥⎥ x⎥⎦
=
⎡⎢1 ⎢0 ⎢ ⎢⎣0
0
cos(90 − B) −sin(90 − B)
0
⎤ ⎥
sin(90 − B)⎥i

cos(90 − B)⎥⎦
⎡ X ⎤ ⎡− sin L
⎢ ⎢
Y
⎥ ⎥
=
⎢ ⎢
cos
L
⎢⎣ Z ⎥⎦ ⎢⎣ 0
− sin B cos L −sin B sin L
⎢ ⎢
Y
⎥ ⎥
=
⎢ ⎢
x
sin
L
⎥ ⎥
⎢⎣ Z ⎥⎦ ⎢⎣ y ⎥⎦
(1)
1 坐标系定义
文中用到了三个坐标系:大地坐标系、站心地 平直角坐标系和球心直角坐标系[1]。大地坐标系是 基于椭球体的曲线曲面坐标系,该坐标系中的任一 点用 L(经度)、B(纬度)和 H(高度)表示;站 心地平直角坐标系是三维坐标系(右手系),Y 轴指 向北,X 轴指向东,O 点法线为 Z 轴(指向天顶为 正);球心直角坐标系以椭球中心为原点,起始子 午面与赤道的交线为 X 轴,椭球的短轴为 Z 轴(向 北为正),在赤道面上与 X 轴正交的方向为 Y 轴, 构成右手直角坐标系。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2.3.1 坐标系的分类正如前面所提及的,所谓坐标系指的是描述空间位置的表达形式,即采用什么方法来表示空间位置。

人们为了描述空间位置,采用了多种方法,从而也产生了不同的坐标系,如直角坐标系、极坐标系等。

在测量中常用的坐标系有以下几种:一、空间直角坐标系空间直角坐标系的坐标系原点位于参考椭球的中心,Z 轴指向参考椭球的北极,X 轴指向起始子午面与赤道的交点,Y 轴位于赤道面上且按右手系与X 轴呈90°夹角。

某点在空间中的坐标可用该点在此坐标系的各个坐标轴上的投影来表示。

空间直角坐标系可用图2-3来表示:图2-3 空间直角坐标系二、空间大地坐标系空间大地坐标系是采用大地经、纬度和大地高来描述空间位置的。

纬度是空间的点与参考椭球面的法线与赤道面的夹角;经度是空间中的点与参考椭球的自转轴所在的面与参考椭球的起始子午面的夹角;大地高是空间点沿参考椭球的法线方向到参考椭球面的距离。

空间大地坐标系可用图2-4来表示:图2-4空间大地坐标系三、平面直角坐标系平面直角坐标系是利用投影变换,将空间坐标空间直角坐标或空间大地坐标通过某种数学变换映射到平面上,这种变换又称为投影变换。

投影变换的方法有很多,如横轴墨卡托投影、UTM 投影、兰勃特投影等。

在我国采用的是高斯-克吕格投影也称为高斯投影。

UTM 投影和高斯投影都是横轴墨卡托投影的特例,只是投影的个别参数不同而已。

高斯投影是一种横轴、椭圆柱面、等角投影。

从几何意义上讲,是一种横轴椭圆柱正切投影。

如图左侧所示,设想有一个椭圆柱面横套在椭球外面,并与某一子午线相切(此子午线称为中央子午线或轴子午线),椭球轴的中心轴CC ’通过椭球中心而与地轴垂直。

高斯投影满足以下两个条件:1、 它是正形投影;2、 中央子午线投影后应为x 轴,且长度保持不变。

将中央子午线东西各一定经差(一般为6度或3度)范围内的地区投影到椭圆柱面上,再将此柱面沿某一棱线展开,便构成了高斯平面直角坐标系,如下图2-5右侧所示。

图2-5 高斯投影x 方向指北,y 方向指东。

可见,高斯投影存在长度变形,为使其在测图和用图时影响很小,应相隔一定的地区,另立中央子午线,采取分带投影的办法。

我国国家测量规定采用六度带和三度带两种分带方法。

六度带和三度带与中央子午线存在如下关系:366 N L =中; n L 33=中其中,N 、n 分别为6度带和3度带的带号。

另外,为了避免y 出现负号,规定y 值认为地加上500000m ;又为了区别不同投影带,前面还要冠以带号,如第20号六度带中,y=-200.25m ,则成果表中写为y 假定=20499799.75m 。

x 值在北半球总显正值,就无需改变其观测值了。

1、空间直角坐标系与空间大地坐标系间的转换图2-6表示了空间直角坐标系与空间大地坐标系之间的关系。

图2-6 地球空间直角坐标系与大地坐标系在相同的基准下空间大地坐标系向空间直角坐标系的转换公式为:⎪⎭⎪⎬⎫+-=+=+=B H e N Z L B H N Y L B H N X sin ])1([sin cos )(cos cos )(2 (2-1)式中, Wa N =,a 为椭球的长半轴,N 为椭球的卯酉圈曲率半径 a =6378.137kmB e W 22sin 1-=2222a b a e -=,e 为椭球的第一偏心率,b 为椭球的短半轴 b =6356.7523141km在相同的基准下空间直角坐标系向空间大地坐标系的转换公式为⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫-Φ=⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+Φ=N B R H X Y arctg L W B Z ae tg arctg B cos cos sin 12 (2-2) 式中⎥⎦⎤⎢⎣⎡+=Φ22Y X Z arctg222Z Y X R ++=2、空间坐标系与平面直角坐标系间的转换空间坐标系与平面直角坐标系间的转换采用的是投影变换的方法。

在我国一般采用的是高斯投影。

因为高斯投影和UTM 投影都是横轴墨卡托的特例,因此,高斯投影和UTM 投影都可以套用横轴墨卡托投影的投影公式。

横轴墨卡托投影的投影的正反算公式可参见有关资料,它们的区别在于轴子午线投影到平面上后,其长度的系数,对于高斯投影,系数为1,对于UTM 投影,其系数为0.9996。

3、变动高程归化面的影响用户在建立地方独立坐标系时,有时变动高程归化面,这将产生一个新椭球,这就必须计算新常数,新椭球常数按下列方法和步骤进行:1) 新椭球是在国家坐标系的参考椭球上扩大形成的,它的扁率应与国家坐标系参考椭球的扁率相等,即a a ='。

2) 计算该坐标系中央地区的新椭球平均曲率半径和新椭球长半轴。

新椭球平均曲率半径为:m mm m m m H B e e a H W a W e a H MN H R R +--=+-=+=+=22232sin 11)1(' (2.10) 式中m H ───该地区平均大地高;m B ───该地区的平均纬度。

新椭球的长半轴按下式计算:2221sin 1''e B e R a m--= (2.11)将新的椭球参数代入,就可以进行投影的正反计算了。

二、坐标系统的转换方法不同坐标系统的转换本质上是不同基准间的转换,不同基准间的转换方法有很多,其中最为常用的有布尔沙模型,又称为七参数转换法。

七参数转换法是:设两空间直角坐标系间有七个转换参数:3 个平移参数()z y x ∆∆∆、3 个旋转参数()z y x εεε和1 个尺度参数k 。

比如,由空间直角坐标系A 转换到空间直角坐标系B 可采用下面的公式: Ax y x z y z A B Z Y X Z Y X k z y x Z Y X ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎭⎫ ⎝⎛++⎪⎪⎪⎭⎫ ⎝⎛∆∆∆=⎪⎪⎪⎭⎫ ⎝⎛000)1(εεεεεε §2.3.4 GPS 测量中常用的坐标系统一、世界大地坐标系WGS-84WGS-84 坐标系是目前GPS 所采用的坐标系统,GPS 所发布的星历参数和历书参数等都是基于此坐标系统的。

WGS-84 坐标系统的全称是World Geodical System-84 (世界大地坐标系-84), 它是一个地心地固坐标系统。

WGS-84 坐标系统由美国国防部制图局建立,于1987 年取代了当时GPS 所采用的坐标系统WGS-72 坐标系统而成为现在GPS 所使用的坐标系统。

WGS-84 坐标系的坐标原点位于地球的质心,Z 轴指向BIH 1984.0 定义的协议地球极方向,X 轴指向BIH 1984.0 的启始子午面和赤道的交点,Y 轴与X 轴和Z 轴构成右手系。

WGS-84 系所采用椭球参数为见表2.1。

二、1954 年北京坐标系1954 年北京坐标系是我国目前广泛采用的大地测量坐标系。

该坐标系源自于原苏联采用过的1942 年普尔科夫坐标系。

该坐标系采用的参考椭球是克拉索夫斯基椭球。

该椭球的参数见表2.1。

遗憾的是该椭球并未依据当时我国的天文观测资料进行重新定位,而是由前苏联西伯利亚地区的一等锁经我国的东北地区传算过来的,该坐标系的高程异常是以前苏联1955 年大地水准面重新平差的结果为起算值,按我国天文水准路线推算出来的,而高程又是以1956 年青岛验潮站的黄海平均海水面为基准。

由于当时条件的限制1954 年北京坐标系存在着很多缺点主要表现在以下几个方面:1. 克拉索夫斯基椭球参数同现代精确的椭球参数的差异较大,并且不包含表示地球物理特性的参数,因而给理论和实际工作带来了许多不便。

2. 椭球定向不十分明确,椭球的短半轴既不指向国际通用的CIO 极,也不指向目前我国使用的JYD极。

参考椭球面与我国大地水准面呈西高东低的系统性倾斜,东部高程异常达60余米,最大达67 米。

3. 该坐标系统的大地点坐标是经过局部分区平差得到的。

因此全国的天文大地控制点实际上不能形成一个整体,区与区之间有较大的隙距,如在有的接合部中同一点在不同区的坐标值相差1-2 米,不同分区的尺度差异也很大,而且坐标传递是从东北到西北和西南,后一区是以前一区的最弱部作为坐标起算点,因而一等锁具有明显的坐标积累误差。

三、1980 年西安大地坐标系1978 年我国决定重新对全国天文大地网施行整体平差,并且建立新的国家大地坐标系统。

整体平差在新大地坐标系统中进行,这个坐标系统就是1980 年西安大地坐标系统。

1980 年西安大地坐标系统所采用的地球椭球参数的四个几何和物理参数采用了IAG 1975 年的推荐值,见表2.1中的西安80。

椭球的短轴平行于地球的自转轴(由地球质心指向1968.0 JYD 地极原点方向),起始子午面平行于格林尼治平均天文子午面,椭球面同似大地水准面在我国境内符合最好,高程系统以1956 年黄海平均海水面为高程起算基准。

四、几种常用的坐标系统的几何和物理参数下表列出了几种常用的坐标系统的几何和物理参数,用户需要时可以查阅:表 2.1 GPS 测量中常用的坐标系统的几何和物理参数§2.4 GPS 高程系统在测量中常用的高程系统有大地高系统、正高系统和正常高系统。

§2.4.1 大地高系统大地高系统是以参考椭球面为基准面的高程系统,某点的大地高是该点到通过该点的参考椭球的法线与参考椭球面的交点间的距离。

大地高也称为椭球高。

大地高一般用符号H 表示。

大地高是一个纯几何量,不具有物理意义,同一个点在不同的基准下具有不同的大地高。

通常,GPS 接收机单点定位得到的高程为WGS-84下的大地高。

§2.4.2 正高系统正高系统是以大地水准面为基准面的高程系统,某点的正高是该点到通过该点的铅垂线与大地水准面的交点之间的距离。

正高用符号 H g 表示。

§2.4.3 正常高正常高系统是以似大地水准面为基准的高程系统,某点的正常高是该点到通过该点的铅垂线与似大地水准面的交点之间的距离,正常高用 H γ 表示。

§2.4.4 高程系统之间的转换关系大地水准面到参考椭球面的距离称为大地水准面差距,记为 h g ,大地高与正高之间的关系可以表示为:正 高:g g h H H -=似大地水准面到参考椭球面的距离,称为高程异常,记为ζ。

大地高与正常高之间的关系可以表示为:正常高:ζγ-=H H高程之间的相互关系可以用下图2-7来表示:图2-7 高程系统间的相互关系。

相关文档
最新文档