2020-2021深圳西乡中学八年级数学下期中第一次模拟试题(带答案)
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【详解】
解:∵四边形ABCD是矩形,
∴OB=OD,OA=OC,AC=BD,
∴OA=OB,
∵AE垂直平分OB,
∴AB=AO,
∴OA=OB=AB=2,
∴BD=2OB=4,
∴AD= = = .
故答案为: .
【点睛】
此题考查了矩形的性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.
C.当 时,它是矩形D.当 时,它是正方形
3.如图,将长方形纸片 折叠,使边 落在对角线 上,折痕为 且 点落在对角线 处.若 则 的长为()
A. B. C. D.
4.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是()
22.先化简,再求值:(2﹣ )÷ ,其中x= ﹣3.
23.为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务.该工程队有 两种型号的挖掘机,已知3台 型和5台 型挖掘机同时施工一小时挖土165立方米;4台 型和7台 型挖掘机同时施工一小时挖土225立方米.每台 型挖掘机一小时的施工费用为300元,每台 型挖掘机一小时的施工费用为180元.
3.A
解析:A
【解析】
【分析】
首先利用勾股定理计算出AC的长,再根据折叠可得 ≌ ,设 ,则 , , ,再根据勾股定理可得方程 ,解方程即可求得结果.
【详解】
解:∵四边形 是长方形, ,
∴ , ,
∴ 为直角三角形,
∴ ,
根据折叠可得: ≌ ,
∴ , , ,
∴ ,则 为直角三角形,
设 ,则 , , ,
C.82﹢(x﹣3)2=x2D.x2﹢(x﹣3)2= 82
8.如图,点 分别是四边形 边 、 、 、 的中点.则下列说法:①若 ,则四边形 为矩形;②若 ,则四边形 为菱形;③若四边形 是平行四边形,则 与 互相平分;④若四边形 是正方形,则 与 互相垂直且相等.其中正确的个数是( )
A.1B.2C.3D.4
9.下列运算正确的是()
A. B.
C. D.
10.下列各式不成立的是( )
A. B.
C. D.
11.下列结论中,矩形具有而菱形不一定具有的性质是()
A.内角和为360°B.对角线互相平分C.对角线相等D.对角线互相垂直
12.如图,在正方形网格(每个小正方形的边长都是1)中,若将△ABC沿A﹣D的方向平移AD长,得△DEF(B、C的对应点分别为E、F),则BE长为( )
A.1B.2C. D.3
二、填空题
13.某校在“爱护地球,绿化祖国“的创建活动中,组织了100名学生开展植数造林活动,其植树情况整理如下表:
植树棵数(单位:棵)
4
5
6
8
10
人数(人)
30ຫໍສະໝຸດ Baidu
22
25
15
8
则这100名学生所植树棵数的中位数为_____.
14.如图,在矩形 中, ,对角线 , 相交于点 , 垂直平分 于点 ,则 的长为__________.
【详解】
A、菱形、矩形的内角和都为360°,故本选项错误;
B、对角互相平分,菱形、矩形都具有,故本选项错误;
C、对角线相等菱形不具有,而矩形具有,故本选项正确
D、对角线互相垂直,菱形具有而矩形不具有,故本选项错误,
故选C.
【点睛】
本题考查了菱形的性质及矩形的性质,熟练掌握矩形的性质与菱形的性质是解题的关键.
14.【解析】【分析】由矩形的性质和线段垂直平分线的性质证出OA=OB=AB=2得出BD=2OB=4由勾股定理求出AD即可【详解】解:∵四边形ABCD是矩形∴OB=ODOA=OCAC=BD∴OA=OB∵A
解析:
【解析】
【分析】
由矩形的性质和线段垂直平分线的性质证出OA=OB=AB=2,得出BD=2OB=4,由勾股定理求出AD即可.
25.如图在8×8的正方形网格中,△ABC的顶点在边长为1的小正方形的顶点上.
(1)填空:∠ABC=,BC=;
(2)若点A在网格所在的坐标平面里的坐标为(1,﹣2),请你在图中找出一点D,并作出以A、B、C、D四个点为顶点的平行四边形,求出满足条件的D点的坐标.
【参考答案】***试卷处理标记,请不要删除
19.在平行四边形ABCD中,若∠A+∠C=140°,则∠B=.
20.比较大小: ________ .
三、解答题
21.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(﹣2,6),且与x轴相交于点B,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.
(1)求k、b的值;
(2)若点D在y轴负半轴上,且满足S△COD= S△BOC,求点D的坐标.
∴AE= =5,
∵ ,
∴ ,
∴BH= ,则BF= ,
∵FE=BE=EC,
∴∠BFC=90°,
∴CF= = .
故选B.
【点睛】
本题考查的是翻折变换的性质、矩形的性质及勾股定理的应用,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.
7.C
解析:C
解析:5
【解析】
【分析】
直接利用中位数定义求解.
【详解】
第50个数和第55个数都是5,
所以这100名学生所植树棵数的中位数为5(棵).
故答案为5.
【点睛】
考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
6.B
解析:B
【解析】
【分析】
连接BF,由折叠可知AE垂直平分BF,根据勾股定理求得AE=5,利用直角三角形面积的两种表示法求得BH= ,即可得BF= ,再证明∠BFC=90°,最后利用勾股定理求得CF= .
【详解】
连接BF,由折叠可知AE垂直平分BF,
∵BC=6,点E为BC的中点,
∴BE=3,
又∵AB=4,
12.C
解析:C
【解析】
【分析】
直接根据题意画出平移后的三角形进而利用勾股定理得出BE的长.
【详解】
如图所示:
.
故选:C.
【点睛】
此题主要考查了勾股定理以及坐标与图形的变化,正确得出对应点位置是解题关键.
二、填空题
13.5【解析】【分析】直接利用中位数定义求解【详解】第50个数和第55个数都是5所以这100名学生所植树棵数的中位数为5(棵)故答案为5【点睛】考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排
【解析】
【分析】
设绳索长为x尺,根据勾股定理列出方程解答即可.
【详解】
解:设绳索长为x尺,可列方程为(x-3)2+82=x2,
故选:C.
【点睛】
本题考查了勾股定理的应用,找准等量关系,正确列出一元二次方程是解题的关键.
8.A
解析:A
【解析】
【分析】
因为一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形.
2020-2021深圳西乡中学八年级数学下期中第一次模拟试题(带答案)
一、选择题
1.如图,四边形ABCD是长方形,AB=3,AD=4.已知A(﹣ ,﹣1),则点C的坐标是( )
A.(﹣3, )B.( ,﹣3)C.(3, )D.( ,3)
2.已知四边形 是平行四边形,下列结论中不正确的是()
A.当 时,它是菱形B.当 时,它是菱形
A. B. C. D.
7.《九章算术》勾股章有一问题,其意思是:现有一竖立着的木柱,在木柱上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵着绳索退行,在离木柱根部8尺处时绳索用尽,请问绳索有多长?若设绳索长度为x尺,根据题意,可列方程为()
A.82﹢x2= (x﹣3)2B.82﹢(x+3)2=x2
15.已知 则 ____________________.
16.在矩形ABCD中,点E为AD的中点,点F是BC上的一点,连接EF和DF,若AB=4,BC=8,EF=2 ,则DF的长为___________.
17.化简 _____________;
18.如图,四边形 为菱形, , , 于点 ,则 __________.
【详解】
因为一般四边形的中点四边形是平行四边形,
当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形,
故④选项正确,
故选A.
【点睛】
本题考查中点四边形、平行四边形、矩形、菱形的判定等知识,解题的关键是记住一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形.
【详解】
,A选项成立,不符合题意;
,B选项成立,不符合题意;
,C选项不成立,符合题意;
,D选项成立,不符合题意;
故选C.
【点睛】
本题考查的是二次根式的混合运算,掌握二次根式的性质、二次根式的混合运算法则是解题的关键.
11.C
解析:C
【解析】
【分析】
矩形与菱形相比,菱形的四条边相等、对角线互相垂直;矩形四个角是直角,对角线相等,由此结合选项即可得出答案.
一、选择题
1.D
解析:D
【解析】
【分析】
由矩形的性质可知CD=AB= 3,BC=AD= 4,结合A点坐标即可求得C点坐标.
【详解】
∵四边形ABCD是长方形,
∴CD=AB= 3,BC=AD= 4,
∵点A(﹣ ,﹣1),
∴点C的坐标为(﹣ +3,﹣1+4),
即点C的坐标为( ,3),
故选D.
【点睛】
本题考查了矩形的性质和坐标的平移,根据平移的性质解决问题是解答此题的关键.
9.D
解析:D
【解析】
【分析】
根据二次根式的运算法则即可求出答案.
【详解】
A、原式= ,故错误;
B、 ,故错误;
C、原式= ,故C错误;
D、 ,正确;
故选:D.
【点睛】
本题考查二次根式,解题的关键是熟练运用二次根式的运算,本题属于基础题型.
10.C
解析:C
【解析】
【分析】
根据二次根式的性质、二次根式的加法法则、除法法则计算,判断即可.
在 中,由勾股定理得: ,
即 ,
解得: ,
故选:A.
【点睛】
此题主要考查了轴对称的折叠问题,以及勾股定理的应用,关键是掌握折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
4.C
解析:C
【解析】
解:A.小丽从家到达公园共用时间20分钟,正确;
B.公园离小丽家的距离为2000米,正确;
2.D
解析:D
【解析】
【分析】
根据特殊平行四边形的判定方法判断即可.
【详解】
解:有一组邻边相等的平行四边形是菱形,A选项正确;对角线互相垂直的平行四边形是菱形,B选项正确;有一个角是直角的平行四边形是矩形,C选项正确;对角线互相垂直且相等的平行四边形是正方形,D选项错误.
故答案为:D
【点睛】
本题考查了特殊平行四边形的判定方法,熟练掌握特殊平行四边形与平行四边形之间的关系是判定的关键.
C.小丽在便利店时间为15﹣10=5分钟,错误;
D.便利店离小丽家的距离为1000米,正确.
故选C.
5.B
解析:B
【解析】
【分析】
先将各二次根式进行化简,再根据同类二次根式的概念求解即可.
【详解】
∵ ; ; ; .
∵ ,
∴不能与 合并的是 、 ,
故选:B.
【点睛】
本题考查了同类二次根式,解答本题的关键在于熟练掌握二次根式的化简及同类二次根式的概念.
(1)分别求每台 型, 型挖掘机一小时挖土多少立方米?
(2)若不同数量的 型和 型挖掘机共12台同时施工4小时,至少完成1080立方米的挖土量,且总费用不超过12960元.问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元?
24.已知:如图,在四边形ABCD中,∠B=90°,AB=BC=2,CD=3,AD=1,求∠DAB的度数.
A.小丽从家到达公园共用时间20分钟B.公园离小丽家的距离为2000米
C.小丽在便利店时间为15分钟D.便利店离小丽家的距离为1000米
5.下列二次根式: ,其中不能与 合并的有()
A. 个B. 个C. 个D. 个
6.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()
15.-2【解析】【分析】直接代入根据二次根式的运算法则即可求出答案【详解】解:当时原式【点睛】本题考查了学生的运算能力解题的关键是熟练运用运算法则本题属于基础题型
解析:-2
【解析】
【分析】
解:∵四边形ABCD是矩形,
∴OB=OD,OA=OC,AC=BD,
∴OA=OB,
∵AE垂直平分OB,
∴AB=AO,
∴OA=OB=AB=2,
∴BD=2OB=4,
∴AD= = = .
故答案为: .
【点睛】
此题考查了矩形的性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.
C.当 时,它是矩形D.当 时,它是正方形
3.如图,将长方形纸片 折叠,使边 落在对角线 上,折痕为 且 点落在对角线 处.若 则 的长为()
A. B. C. D.
4.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是()
22.先化简,再求值:(2﹣ )÷ ,其中x= ﹣3.
23.为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务.该工程队有 两种型号的挖掘机,已知3台 型和5台 型挖掘机同时施工一小时挖土165立方米;4台 型和7台 型挖掘机同时施工一小时挖土225立方米.每台 型挖掘机一小时的施工费用为300元,每台 型挖掘机一小时的施工费用为180元.
3.A
解析:A
【解析】
【分析】
首先利用勾股定理计算出AC的长,再根据折叠可得 ≌ ,设 ,则 , , ,再根据勾股定理可得方程 ,解方程即可求得结果.
【详解】
解:∵四边形 是长方形, ,
∴ , ,
∴ 为直角三角形,
∴ ,
根据折叠可得: ≌ ,
∴ , , ,
∴ ,则 为直角三角形,
设 ,则 , , ,
C.82﹢(x﹣3)2=x2D.x2﹢(x﹣3)2= 82
8.如图,点 分别是四边形 边 、 、 、 的中点.则下列说法:①若 ,则四边形 为矩形;②若 ,则四边形 为菱形;③若四边形 是平行四边形,则 与 互相平分;④若四边形 是正方形,则 与 互相垂直且相等.其中正确的个数是( )
A.1B.2C.3D.4
9.下列运算正确的是()
A. B.
C. D.
10.下列各式不成立的是( )
A. B.
C. D.
11.下列结论中,矩形具有而菱形不一定具有的性质是()
A.内角和为360°B.对角线互相平分C.对角线相等D.对角线互相垂直
12.如图,在正方形网格(每个小正方形的边长都是1)中,若将△ABC沿A﹣D的方向平移AD长,得△DEF(B、C的对应点分别为E、F),则BE长为( )
A.1B.2C. D.3
二、填空题
13.某校在“爱护地球,绿化祖国“的创建活动中,组织了100名学生开展植数造林活动,其植树情况整理如下表:
植树棵数(单位:棵)
4
5
6
8
10
人数(人)
30ຫໍສະໝຸດ Baidu
22
25
15
8
则这100名学生所植树棵数的中位数为_____.
14.如图,在矩形 中, ,对角线 , 相交于点 , 垂直平分 于点 ,则 的长为__________.
【详解】
A、菱形、矩形的内角和都为360°,故本选项错误;
B、对角互相平分,菱形、矩形都具有,故本选项错误;
C、对角线相等菱形不具有,而矩形具有,故本选项正确
D、对角线互相垂直,菱形具有而矩形不具有,故本选项错误,
故选C.
【点睛】
本题考查了菱形的性质及矩形的性质,熟练掌握矩形的性质与菱形的性质是解题的关键.
14.【解析】【分析】由矩形的性质和线段垂直平分线的性质证出OA=OB=AB=2得出BD=2OB=4由勾股定理求出AD即可【详解】解:∵四边形ABCD是矩形∴OB=ODOA=OCAC=BD∴OA=OB∵A
解析:
【解析】
【分析】
由矩形的性质和线段垂直平分线的性质证出OA=OB=AB=2,得出BD=2OB=4,由勾股定理求出AD即可.
25.如图在8×8的正方形网格中,△ABC的顶点在边长为1的小正方形的顶点上.
(1)填空:∠ABC=,BC=;
(2)若点A在网格所在的坐标平面里的坐标为(1,﹣2),请你在图中找出一点D,并作出以A、B、C、D四个点为顶点的平行四边形,求出满足条件的D点的坐标.
【参考答案】***试卷处理标记,请不要删除
19.在平行四边形ABCD中,若∠A+∠C=140°,则∠B=.
20.比较大小: ________ .
三、解答题
21.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(﹣2,6),且与x轴相交于点B,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.
(1)求k、b的值;
(2)若点D在y轴负半轴上,且满足S△COD= S△BOC,求点D的坐标.
∴AE= =5,
∵ ,
∴ ,
∴BH= ,则BF= ,
∵FE=BE=EC,
∴∠BFC=90°,
∴CF= = .
故选B.
【点睛】
本题考查的是翻折变换的性质、矩形的性质及勾股定理的应用,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.
7.C
解析:C
解析:5
【解析】
【分析】
直接利用中位数定义求解.
【详解】
第50个数和第55个数都是5,
所以这100名学生所植树棵数的中位数为5(棵).
故答案为5.
【点睛】
考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
6.B
解析:B
【解析】
【分析】
连接BF,由折叠可知AE垂直平分BF,根据勾股定理求得AE=5,利用直角三角形面积的两种表示法求得BH= ,即可得BF= ,再证明∠BFC=90°,最后利用勾股定理求得CF= .
【详解】
连接BF,由折叠可知AE垂直平分BF,
∵BC=6,点E为BC的中点,
∴BE=3,
又∵AB=4,
12.C
解析:C
【解析】
【分析】
直接根据题意画出平移后的三角形进而利用勾股定理得出BE的长.
【详解】
如图所示:
.
故选:C.
【点睛】
此题主要考查了勾股定理以及坐标与图形的变化,正确得出对应点位置是解题关键.
二、填空题
13.5【解析】【分析】直接利用中位数定义求解【详解】第50个数和第55个数都是5所以这100名学生所植树棵数的中位数为5(棵)故答案为5【点睛】考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排
【解析】
【分析】
设绳索长为x尺,根据勾股定理列出方程解答即可.
【详解】
解:设绳索长为x尺,可列方程为(x-3)2+82=x2,
故选:C.
【点睛】
本题考查了勾股定理的应用,找准等量关系,正确列出一元二次方程是解题的关键.
8.A
解析:A
【解析】
【分析】
因为一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形.
2020-2021深圳西乡中学八年级数学下期中第一次模拟试题(带答案)
一、选择题
1.如图,四边形ABCD是长方形,AB=3,AD=4.已知A(﹣ ,﹣1),则点C的坐标是( )
A.(﹣3, )B.( ,﹣3)C.(3, )D.( ,3)
2.已知四边形 是平行四边形,下列结论中不正确的是()
A.当 时,它是菱形B.当 时,它是菱形
A. B. C. D.
7.《九章算术》勾股章有一问题,其意思是:现有一竖立着的木柱,在木柱上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵着绳索退行,在离木柱根部8尺处时绳索用尽,请问绳索有多长?若设绳索长度为x尺,根据题意,可列方程为()
A.82﹢x2= (x﹣3)2B.82﹢(x+3)2=x2
15.已知 则 ____________________.
16.在矩形ABCD中,点E为AD的中点,点F是BC上的一点,连接EF和DF,若AB=4,BC=8,EF=2 ,则DF的长为___________.
17.化简 _____________;
18.如图,四边形 为菱形, , , 于点 ,则 __________.
【详解】
因为一般四边形的中点四边形是平行四边形,
当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形,
故④选项正确,
故选A.
【点睛】
本题考查中点四边形、平行四边形、矩形、菱形的判定等知识,解题的关键是记住一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形.
【详解】
,A选项成立,不符合题意;
,B选项成立,不符合题意;
,C选项不成立,符合题意;
,D选项成立,不符合题意;
故选C.
【点睛】
本题考查的是二次根式的混合运算,掌握二次根式的性质、二次根式的混合运算法则是解题的关键.
11.C
解析:C
【解析】
【分析】
矩形与菱形相比,菱形的四条边相等、对角线互相垂直;矩形四个角是直角,对角线相等,由此结合选项即可得出答案.
一、选择题
1.D
解析:D
【解析】
【分析】
由矩形的性质可知CD=AB= 3,BC=AD= 4,结合A点坐标即可求得C点坐标.
【详解】
∵四边形ABCD是长方形,
∴CD=AB= 3,BC=AD= 4,
∵点A(﹣ ,﹣1),
∴点C的坐标为(﹣ +3,﹣1+4),
即点C的坐标为( ,3),
故选D.
【点睛】
本题考查了矩形的性质和坐标的平移,根据平移的性质解决问题是解答此题的关键.
9.D
解析:D
【解析】
【分析】
根据二次根式的运算法则即可求出答案.
【详解】
A、原式= ,故错误;
B、 ,故错误;
C、原式= ,故C错误;
D、 ,正确;
故选:D.
【点睛】
本题考查二次根式,解题的关键是熟练运用二次根式的运算,本题属于基础题型.
10.C
解析:C
【解析】
【分析】
根据二次根式的性质、二次根式的加法法则、除法法则计算,判断即可.
在 中,由勾股定理得: ,
即 ,
解得: ,
故选:A.
【点睛】
此题主要考查了轴对称的折叠问题,以及勾股定理的应用,关键是掌握折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
4.C
解析:C
【解析】
解:A.小丽从家到达公园共用时间20分钟,正确;
B.公园离小丽家的距离为2000米,正确;
2.D
解析:D
【解析】
【分析】
根据特殊平行四边形的判定方法判断即可.
【详解】
解:有一组邻边相等的平行四边形是菱形,A选项正确;对角线互相垂直的平行四边形是菱形,B选项正确;有一个角是直角的平行四边形是矩形,C选项正确;对角线互相垂直且相等的平行四边形是正方形,D选项错误.
故答案为:D
【点睛】
本题考查了特殊平行四边形的判定方法,熟练掌握特殊平行四边形与平行四边形之间的关系是判定的关键.
C.小丽在便利店时间为15﹣10=5分钟,错误;
D.便利店离小丽家的距离为1000米,正确.
故选C.
5.B
解析:B
【解析】
【分析】
先将各二次根式进行化简,再根据同类二次根式的概念求解即可.
【详解】
∵ ; ; ; .
∵ ,
∴不能与 合并的是 、 ,
故选:B.
【点睛】
本题考查了同类二次根式,解答本题的关键在于熟练掌握二次根式的化简及同类二次根式的概念.
(1)分别求每台 型, 型挖掘机一小时挖土多少立方米?
(2)若不同数量的 型和 型挖掘机共12台同时施工4小时,至少完成1080立方米的挖土量,且总费用不超过12960元.问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元?
24.已知:如图,在四边形ABCD中,∠B=90°,AB=BC=2,CD=3,AD=1,求∠DAB的度数.
A.小丽从家到达公园共用时间20分钟B.公园离小丽家的距离为2000米
C.小丽在便利店时间为15分钟D.便利店离小丽家的距离为1000米
5.下列二次根式: ,其中不能与 合并的有()
A. 个B. 个C. 个D. 个
6.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()
15.-2【解析】【分析】直接代入根据二次根式的运算法则即可求出答案【详解】解:当时原式【点睛】本题考查了学生的运算能力解题的关键是熟练运用运算法则本题属于基础题型
解析:-2
【解析】
【分析】