第五版物理化学第九章习题答案
【通用】《物理化学(第五版)》第九章复习题答案.ppt
演示课件
复习题
7.在公式ΔrGmΘ=-zEΘF中,ΔrGmΘ是否表示 该电池各物都处于标准态时,电池反应的 Gibbs自由能变化值?
答:在公式ΔrGmΘ=-zEΘF中,ΔrGmΘ表示该 电池各物都处于标准态时,在T,p保持不变 的条件下,按电池反应进行1mol的反应时 系统的Gibbs自由能变化值。
ln
m m'
高价型:Mz+Az-(m1)|Mz+Az-(m2)
E
j=
t z
- t- z 演示课-件
RT F
ln
m1 m2
基本公式
用可逆电池的测定值计算热力学函数变化
值
rGm zFE , rGm zFE
E
RT zF
ln
K
a
r Sm
( r Gm T
)p
E zF (T ) p
E
QR
T rSm
答:可逆电极有三种类型: (1)金属气体电极 如Zn(s)|Zn2+ (m) Zn2+(m) +2e- = Zn(s) (2)金属难溶盐和金属难溶氧化物电极 如:
Ag(s)|AgCl(s)|Cl-(m) AgCl(s)+ e- = Ag(s)+Cl-(m) (3)氧化还原电极 如: Pt|Fe3+(m1),Fe2+(m2) Fe3+(m1) +e- = Fe2+(m2) 对于气体电极和氧化还原电极,在书写时要标明电极
反应所依附的惰性金属。
演示课件
复习题
2.什么叫电池的电动势?用伏特表侧得的电 池的端电压与电池的电动势是否相同?为何 在测电动势时要用对消法?
(完整word版)《物理化学》高等教育出版(第五版)第九章
第九章电解质溶液练习题一、判断题:1.溶液是电中性的,正、负离子所带总电量相等,则正、负离子离子的迁移数也相等。
2.离子迁移数与离子速率成正比,某正离子的运动速率一定时,其迁移数也一定。
3.离子的摩尔电导率与其价态有关系。
4.电解质溶液中各离子迁移数之和为1。
5.电解池通过l F电量时,可以使1mol物质电解。
6.因离子在电场作用下可以定向移动,所以测定电解质溶液的电导率时要用直流电桥。
7.无限稀电解质溶液的摩尔电导率可以看成是正、负离子无限稀摩尔电导率之和,这一规律只适用于强电解质。
8.电解质的无限稀摩尔电导率Λ∞m可以由Λm作图外推到c1/2 = 0得到。
下列关系式是否正确:(1) Λ∞,1<Λ∞,2<Λ∞,3<Λ∞,4(2)κ1=κ2=κ3=κ4(3)Λ∞,1=Λ∞,2=Λ∞,3=Λ∞,4(4)Λm,1=Λm,2=Λm,3=Λm,410.德拜—休克尔公式适用于强电解质。
11.对于BaCl2溶液,以下等式成立:(1) a = γb/b0;(2) a = a+·a - ; (3) γ± = γ+·γ - 2;(4) b = b+·b-;(5) b±3 = b+·b-2; (6) b± = 4b3。
12.若a(CaF2) = 0.5,则a(Ca2+) = 0.5 ,a(F-) = 1。
二、单选题:1.下列溶液中哪个溶液的摩尔电导最大:(A) 0.1M KCl水溶液;(B) 0.001M HCl水溶液;(C) 0.001M KOH水溶液;(D) 0.001M KCl水溶液。
2.对于混合电解质溶液,下列表征导电性的量中哪个不具有加和性:(A) 电导;(B) 电导率;(C) 摩尔电导率;(D) 极限摩尔电导。
3.在一定温度和较小的浓度情况下,增大强电解质溶液的浓度,则溶液的电导率κ与摩尔电导Λm变化为:(A) κ增大,Λm增大;(B) κ增大,Λm减少;(C) κ减少,Λm增大;(D) κ减少,Λm减少。
物理化学傅献彩(下册)第五版课后习题答案解析
专业技术资料整理分享
word格式可编辑专业技术资料整理分享物理化学傅献彩下册第五版课后习题答案第九章可逆电池的电动势及其应用word格式可编辑专业技术资料整理分享word格式可编辑专业技术资料整理分享word格式可编辑专业技术资料整理分享word格式可编辑专业技术资料整理分享word格式可编辑专业技术资料整理分享word格式可编辑专业技术资料整理分享word格式可编辑专业技术资料整理分享word格式可编辑专业技术资料整理分享word格式可编辑专业技术资料整理分享word格式可编辑专业技术资料整理分享word格式可编辑专业技术资料整理分享word格式可编辑专业技术资料整理分享word格式可编辑专业技术资料整理分享word格式可编辑专业技术资料整理分享word格式可编辑专业技术资料整理分享word格式可编辑专业技术资料整理分享word格式可编辑专业技术资料整理分享word格式可编辑专业技术资料整理分享word格式可编辑专业技术资料整理分享word格式可编辑专业技术资料整理分享word格式可编辑专业技术资料整理分享word格式可编辑专业技术资料整理分享word格式可编辑专业技术资料整理分享word格式可编辑专业技术资料整理分享word格式可编辑专业技术资料整理分享欢迎您的光临word文档下载后可修改编辑
《物理化学(第五版)》第九章复习题答案
复习题
8.有哪些求算标准电动势EΘ的方法?在公式E zF ln K 中,EΘ是否是电池反应达平衡时的电动势?KΘ是否是
zE F K exp RT
a
复习题
(8).醋酸的解离平衡常数。 电池:Pt|H2(pΘ)|HAc(mHAc),Ac-(mAc-),Cl-(aCl)|AgCl(s)|Ag(s) 净反应:AgCl(s)+H2(pΘ)→H+(aH+)+Cl-(aCl-) +Ag(s
1.可逆电极有哪些主要类型?每种类型试举一例,并写 出该电极的还原反应。对于气体电极和氧化还原电极 在书写电极表示式时应注意什么问题? 答:可逆电极有三种类型: (1)金属气体电极 如Zn(s)|Zn2+ (m) Zn2+(m) +2e- = Zn(s) (2)金属难溶盐和金属难溶氧化物电极 如: Ag(s)|AgCl(s)|Cl-(m) AgCl(s)+ e- = Ag(s)+Cl-(m) (3)氧化还原电极 如: Pt|Fe3+(m1),Fe2+(m2) Fe3+(m1) +e- = Fe2+(m2) 对于气体电极和氧化还原电极,在书写时要标明电极 反应所依附的惰性金属。
RT a H aCl E E ln zF a 1 2 H2 E RT ln m zF m
复习题
(6)Ag2O(s)的标准摩尔生成焓ΔfHmΘ 和分解压。 电池:Ag(s)+Ag2O(s)|OH-(aOH-)|O2(pΘ )|Pt 净反应:Ag2O(s)→1/2O2(pΘ )+2Ag(s) E r H m zE F zFT T p
物理化学课后习题答案第九章
物理化学习题解答(九)习题p109~1161解:(1) Pt︱H2(p H2)︱HCl(a)︱Cl2(p Cl2)︱Pt正极:Cl2(p Cl2)+ 2e-→2Cl-(a)负极:H2(p H2) –2e-→2H+(a)电池反应:H2(p H2) + Cl2(p Cl2)==2HCl(a) (2) Pt︱H2(p H2)︱H+(a H+)‖Ag+(a Ag+)︱Ag(s) 正极:Ag+(a Ag+)+ e-→Ag(s)负极:H2(p H2) –2e-→2H+(a H+)电池反应:H2(p H2) + Ag+(a Ag+)==2H+(a H+)+ Ag(s)(3) Ag(s)︱AgI(s)︱I-(a I-)‖Cl-(a Cl-)︱AgCl(s)︱Ag(s)正极:AgCl(s) + e-→Ag(s) + Cl-(a Cl-)负极:Ag(s) + I-(a I-)– e-→AgI(s)电池反应:AgCl(s) + I-(a I-)==AgI(s) + Cl-(a Cl-)(4) Pb(s)︱PbSO4(s)︱SO42-(a SO42-)‖Cu2+(a Cu2+)︱Cu(s)正极:Cu2+(a Cu2+) + 2e-→Cu(s)负极:Pb(s) + SO42-(a SO42-)–2e-→PbSO4(s)电池反应:Pb(s) + Cu2+(a Cu2+) + SO42-(a SO42-)==PbSO4(s) + Cu(s)(5) Pt︱H2(p H2)︱NaOH(a)︱HgO(s)︱Hg(l)正极:HgO(s) + H2O (l)+ 2e-→Hg(l) + 2OH-(a OH-)负极:H2(p H2)+ 2OH-(a OH-) –2e-→2H2O(l)电池反应:HgO(s) + H2(p H2)==Hg(l)+H2O(l) (6) Pt︱H2(p H2)︱H+(a H+)︱Sb2O3(s)︱Sb(s) 正极:Sb2O3(s) + 6H+(a H+)+ 6e-→2Sb(s) + 3H2O(l)负极:H2(p H2) –2e-→2H+(a H+)电池反应:Sb2O3(s) + 3H2(p H2) ==2Sb(s) + 3H2O(l)(7) Pt︱Fe3+(a1),Fe2+(a2)‖Ag+(a Ag+)︱Ag(s)正极:Ag+(a Ag+)+ e-→Ag(s)负极:Fe2+(a2) – e-→ Fe3+(a1)电池反应:Ag+(a Ag+) + Fe2+( a2)==Fe3+( a1)+Ag(s)(8) Na(Hg)(a am)︱Na+(a Na+)‖OH-(a OH-)︱HgO(s)︱Hg(l)正极:HgO(s) + H2O (l)+ 2e-→Hg(l) +2OH-(a OH-)负极:2Na(Hg)(a am) –2e-→2Na+(a Na+) + 2Hg(l)电池反应:2Na(Hg)(a am) + HgO (s) + H2O(l)==2 Na+(a Na+) + 2OH-(a OH-) + 3Hg(l)2解:(1)AgCl(s)==Ag+(a Ag+) + Cl-(a Cl-)电池:Ag(s)︱Ag+(a Ag+)‖Cl-(a Cl-)︱AgCl(s)︱Ag(s)正极:AgCl(s) + e-→Ag(s) + Cl-(a Cl-)负极:Ag(s)–e-→Ag+(a Ag+)电池反应:AgCl(s)==Ag+(a Ag+) + Cl-(a Cl-) (2)AgCl(s) + I-(a I-) ==AgI(s) + Cl-(a Cl-)电池:Ag(s)︱AgI(s)︱I-(a I-)‖Cl-(a Cl-)︱AgCl(s)︱Ag(s)正极:AgCl(s) + e-→A g(s) + Cl-(a Cl-)负极:Ag(s) + I-(a I-)– e-→AgI(s)电池反应:AgCl(s) + I-(a I-) ==AgI(s) + Cl-(a Cl-)(3) HgO(s) + H2(p H2)==Hg(l)+H2O(l)电池:Pt(s)︱H2(p H2)︱NaOH(a)︱HgO(s)︱Hg(l)正极:HgO(s) + H2O(l) + 2e-→Hg(l) + 2OH-(a)负极:H2(g) + 2OH-(a) –2e-→2H2O(l)电池反应:HgO(s) + H2(p H2)→Hg(l) + H2O(l) (4) Fe2+(a Fe2+) + Ag+(a Ag+)== Fe3+(a Fe3+) + Ag(s)电池:Pt(s)︱Fe3+(a Fe3+),Fe2+( a Fe2+)‖Ag+(a Ag+)︱Ag(s)正极:Ag+(a Ag+)+ e-→Ag(s)负极:Fe2+( a Fe2+) – e-→ Fe3+( a Fe3+)电池反应:Fe2+(a Fe2+)+Ag+(a Ag+)== Fe3+( a Fe3+) + Ag(s)(5) 2 H2(p H2) + O2(p O2)==2H2O(l)电池:Pt︱H2(p H2)︱H+(a H+)︱O2(p O2)︱Pt(s) 正极:O2(p O2) + 4H+(a H+) + 4 e-→2H2O(l)负极:2H2(p H2) – 4e-→4H+(a H+)电池反应:2 H2(p H2) + O2(p O2)==2H2O(l) (6) Cl2(p Cl2) + 2I-(a I-)==I2(s)+2Cl-(a Cl-)电池:Pt︱I2(s))︱I-(a I-)‖Cl-(a Cl-)︱Cl2(p Cl2)︱Pt正极:Cl2(p Cl2) + 2e-→2Cl-(a Cl-)负极:2I-(a I-)–2e-→ I2(s)电池反应:Cl2(p Cl2) + 2I-(a I-)==I2(s)+2Cl-(a Cl-) (7) H2O(l)== H+(a H+) + OH-(a OH-)电池:Pt(s)︱H2(p H2)︱H+(a H+)‖OH-(a OH-)︱H2(p H2)︱Pt(s)正极:2H2O(l) + e-→2H2(p H2) + 2OH-(a OH-) 负极:H2(p H2)–2e-→ 2H+(a H+)电池反应:H2O(l)== H+(a H+) + OH-(a OH-) (8) Mg(s) + 1/2O2(g) + H2O(l)== Mg(OH)2(s) 电池:Mg(s)︱Mg(OH)2(s)︱OH-(a OH-)︱O2(p O2)︱Pt(s)正极:1/2O2(g) + H2O(l) + 2e-→ 2OH-(a OH-) 负极:Mg(s) + 2OH-(a OH-)– 2e-→Mg(OH)2(s) 电池反应:Mg(s) + 1/2O2(g) + H2O(l)== Mg(OH)2(s)(9) Pb(s) + HgO(s)==Hg(l) + PbO(s)电池:Pb(s)︱PbO(s)︱OH-(a OH-)HgO(s)︱Hg(l)正极:HgO(s) + H2O(l) + 2e-→ Hg(l) + 2OH-(a OH-)负极:Pb(s) + 2OH-(a OH-) –2e-→PbO(s) + H2O(l)电池反应:Pb(s) + HgO(s)==Hg(l) + PbO(s) (10) Sn2+(a Sn2+) + Tl3+(a Tl3+) == Sn4+(a Sn4+) + Tl+(a Tl+)电池:Pt(s)︱Sn2+(a Sn2+),Sn4+(a Sn4+)‖Tl3+(a Tl3+),Tl+(a Tl+)︱Pt(s)正极:Tl3+(a Tl3+) + 2e-→ Tl+(a Tl+)负极:Sn2+(a Sn2+) –2e-→Sn4+(a Sn4+)电池反应:Sn2+(a Sn2+) + Tl3+(a Tl3+) == Sn4+(a Sn4+) + Tl+(a Tl+)15解:Fe(s) + Cd2+(aq)==Cd(s)+Fe2+(aq)E=Eө– RT/2F×ln{[ Fe2+]/[Cd2+]}(1) E=φөcd2+/Cd–φөFe2+/Fe- RT/2F×ln{[ Fe2+]/[Cd2+]}=-0.40 +0.44–0.0592/2lg{0.1/0.1}=0.04>0反应能自发向右进行,故金属Fe首先被氧化。
物理化学傅献彩下册第五版课后习题答案
物理化学傅献彩下册第五版课后习题答案 6 / 26
物理化学傅献彩下册第五版课后习题答案 7 / 26
物理化学傅献彩下册第五版课后习题答案 8 / 26
物理化学傅献彩下册第五版课后习题答案 9 / 26
物理化学傅献彩下册第五版课后习题答案 10 / 26
物理化学傅献彩下册第五版课后习题答案 11 / 26
物理化学傅献彩下册第五版课后习题答案 12 / 26
物理化学傅献彩下册第五版课后习题答案 13 / 26
物理化学傅献彩下册第五版课后习题答案 14 / 26
物理化学傅献彩下册第五版课后习题答案 15 / 26
物理化学傅献彩下册第五版课后习题答案 16 / 26
物理化学傅献彩下册第五版课后习题答案 17 / 26
物理化学傅献彩下册第五版课后习题答案 24 / 26
物理化学傅献彩下册第五版课后习题答案 25 / 26
物理化学傅献彩下册第五版课后习题答案 26 / 26
物理化学傅献彩下册第五版课后习题答案
物理化学傅献彩下册第五版课后习题答案
第九章 可逆电池的电动势及其应用
1 / 26
物理化学傅献彩下册第五版课后习题答案 2 / 26
物理化学傅献彩下册第五版课后习题答案 3 / 26
物理化学傅献彩下册第五版课后习题答案 4 / 26
物理化学傅献彩下册第五版课后习题答案 5 / 26
物理化学傅献彩下册第五版课后习题答案 18 / 26
物理化学傅献彩下册第五版课后习题答案 19 / 26
物理化学傅献彩下册第五版课后习题答案 20 / 26
物理化学傅献彩下册第五版课后习题答案 21 / 26
物理化学傅献彩下册第五版课后习题答案 22 / 26
物理化学第九章课后题答案
已知气体2I 相邻振动能级的能量差J 2010426.0-⨯=∆ε,试求300K 时2I 分子的0,,v v v v f q q 及Θ。
解:J h 2010426.0-⨯=∆=ενK kh v 5.308==Θν当T=300K 时,9309.0)(122=-=-Θ-ΘT Tv vveeq557.1)1(10=-=-Θ-Tv veq557.10==v v q f已知气态I 原子的20,=e g ,21,=e g 电子第一激发态与基态能量之差J e 2010510.1-⨯=∆ε,试计算1000K 时气态I 原子的电子配分函数0e q 以及在第一激发态的电子分布数1n 与总电子数N 之比。
解:kTe kTe kTii e e e e ie eg eg eg q 1,0,,1,0,,εεε---+==∑67.2)exp(221,0,/00,=-+=⋅=kTq eq e e e kTe e εεε2509.00/1,11,==-ekTe q e g N n e ε1mol 2O 在,100kPa 条件下,试计算 (1)2O 分子的平动配分函数t q ;(2)2O 分子的转动配分函数r q ,已知2O 分子的平衡核间距m R 100102037.1-⨯=;(3)2O 分子的振动配分函数v q 及0v q 。
已知2O 分子的振动频率11310666.4-⨯=s ν;(4)2O 分子的电子配分函数0e q ,已知电子基态30,=e g ,电子激发态可忽略。
解:(1)平动配分函数t q : m pnRTh mkT V h mkT q t 3023223210345.4)2()2(⨯===ππ (2)转动配分函数r q :Ik h r 228π=Θ 20R I μ= m R 100102037.1-⨯= 05.72=Θ=σr r Tq (3)kh v ν=Θ0234.0)(122=-=-Θ-ΘT Tv vveeq0005.1)1(10=-=-Θ-Tv veq(4)由于电子激发态可以忽略,则 30,/00,===e e kTe g q eq e ε利用题的结果计算25℃时氧气的标准摩尔熵Θm S ()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章 统计热力学初步1.按照能量均分定律,每摩尔气体分子在各平动自由度上的平均动能为2RT 。
现有1 mol CO气体于0 ºC、101.325 kPa 条件下置于立方容器中,试求: (1)每个CO 分子的平动能ε; (2)能量与此ε相当的CO 分子的平动量子数平方和()222xy y nn n ++解:(1)CO 分子有三个自由度,因此,2123338.314273.155.65710 J 226.02210RT L ε-⨯⨯===⨯⨯⨯(2)由三维势箱中粒子的能级公式()(){}2222223223222222221233426208888828.0104 5.6571018.314273.15101.325106.626110 6.022103.81110x y z x y z h n n n ma ma mV m nRT n n n h h h p εεεε-=++⎛⎫∴++=== ⎪⎝⎭⨯⨯⨯⨯⨯⎛⎫= ⎪⨯⎝⎭⨯⨯⨯=⨯2.2.某平动能级的()45222=++zy xn n n,使球该能级的统计权重。
解:根据计算可知,x n 、yn 和z n 只有分别取2,4,5时上式成立。
因此,该能级的统计权重为g = 3! = 6,对应于状态452245425254245,,,,ψψψψψ542ψ。
3.气体CO 分子的转动惯量246m kg 1045.1⋅⨯=-I ,试求转动量子数J 为4与3两能级的能量差ε∆,并求K 300=T 时的kT ε∆。
解:假设该分子可用刚性转子描述,其能级公式为()()J 10077.31045.1810626.61220 ,81224623422---⨯=⨯⨯⨯⨯-=∆+=πεπεI h J J J22210429.710233807.130010077.3--⨯=⨯⨯⨯=∆kT ε4.三维谐振子的能级公式为()νεh s s ⎪⎭⎫ ⎝⎛+=23,式中s 为量子数,即,3 ,2 ,1 ,0=++=z y x s v v v 。
试证明能级()s ε的统计权重()s g 为()()()1221++=s s s g解:方法1,该问题相当于将s 个无区别的球放在x ,y ,z 三个不同盒子中,每个盒子容纳的球数不受限制的放置方式数。
x 盒中放置球数0,y, z 中的放置数s + 1x 盒中放置球数1,y, z 中的放置数s……………………………………….x 盒中放置球数s ,y, z 中的放置数1()()()212111++==∑+=s s j s g s j方法二,用z,v v v 和y x 构成一三维空间,sz y x =++v v v 为该空间的一个平面,其与三个轴均相交于s 。
该平面上z,v v v 和y x 为整数的点的总数即为所求问题的解。
这些点为平面,2 ,1 ,0,, , , ,111322====n n n n n n z y x v v v 在平面sz y x =++v v v 上的交点:由图可知,()()()1221121++++++=s s s s g5.某系统由3个一维谐振子组成,分别围绕着A , B , C 三个定点做振动,总能量为211νh 。
试列出该系统各种可能的能级分布方式。
解:由题意可知方程组j j j j 111j 223h h n n ì骣ï÷ïç+=÷镧÷çï桫ïíïï=ïïïïîåån n的解即为系统可能的分布方式。
方程组化简为j jj 4n =å,其解为6.计算上题中各种能级分布拥有的微态数及系统的总微态数。
解:对应于分布{}1,2,n n n L 的微态数为j jj j!!n n 骣÷ç÷ç÷ç÷ç桫W=åÕ所以上述各分布的微态数分别为10.在体积为V 的立方形容器中有极大数目的三维平动子,其kT mV h 1.08232=,式计算该系统在平衡情况下,()14222=++zy xn n n的平动能级上粒子的分布数n 与基态能级的分布数0n 之比。
解:根据Boltzmann 分布(){}{}00003329.01.011exp exp g gkT kT g gkT g g n n =⨯-=--=εε基态的统计权重10=g ,能级()14222=++z y x n n n 的统计权重6=g (量子数1,2,3),因此997.163329.00=⨯=n n11.若将双原子分子看作一维谐振子,则气体HCl 分子与I 2分子的振动能级间隔分别是J 1094.520-⨯和J 10426.020-⨯。
试分别计算上述两种分子在相邻振动能级上分布数之比。
解:谐振子的能级为非简并的,且为等间隔分布的()⎩⎨⎧⨯=∆-=-+271I for 0.3553HClfor 10409.5exp kT n n jj ε12.试证明离域子系统的平衡分布与定域子系统同样符合波尔兹曼分布,即{}exp i i i Nn g T q e =-k略。
14.2 mol N 2置于一容器中,kPa 50 K, 400==p T ,试求容器中N 2分子的平动配分函数。
解:分子的平动配分函数表示为()()()31333432323332333109632.21050400314.82106260755.640010380658.1100221367.610142π2π2π2⨯=⨯⨯⨯⨯⎥⎦⎤⎢⎣⎡⨯⨯⨯⨯⨯⨯⨯===---pnRTh mkT V h mkT q t16.能否断言:粒子按能级分布时,能级愈高,则分布数愈小。
试计算 300 K 时HF 分子按转动能级分布时各能级的有效状态数,以验证上述结论之正误。
已知HF 的转动特征温度K 3.30=r Θ。
解:能级的有效状态数定义为[]kTg j j ε-ex p ,对转动来说,有效状态数为()()[]Θj j j j r 1ex p 1+-+,其图像为如图,该函数有极值。
原因是转动能级的简.已知气体I 2相邻振动能级的能量差J 10426.023-⨯=,试求 300 K 时I 2分子的v Θ、v q 、0v q 及0v f 。
解:分子的振动特征温度为K 5.308,=∆===∆k k h Θh v εννε分子的振动配分函数为9307.01e e 130025.30830025.30822=-=-=⨯-⨯-e e q TΘT Θv v v ()()557.130025.308ex p 9307.02ex p 0=⨯==v r v q T Θq557.100==v v q f19.设有N 个振动频率为ν 的一维谐振子组成的系统,试证明其中能量不低于()νε的离子总数为()kT h N νv -ex p ,其中v 为振动量子数。
解:根据Boltzmann 分布()()()()()()()()()()kT h N kT h kT h q N kT h kT hjq NkT h kT j q Nn qkT N n j j vj j j νννενεv v vv-=----=--=-=-=∑∑∑∞=∞=∞=exp exp 1exp 2exp exp 2exp expexp21.试求25ºC 时氩气的标准摩尔熵()m 298.15 K S ž。
解:对于单原子气体,只存在平动()()()320m 332-323233323342π35298.15 K ln ln 2239.943102π 1.38065810298.156.022********.314298.15ln 2100106.022136710 6.626075510t mkT q RT S R R R R R L Lh p R R --轾骣犏÷ç=++=+?ç犏÷ç÷桫犏臌骣´÷ç÷创创ç÷÷ç骣´´桫÷ç=+÷çç桫´创?žž11154.84 J K mol --轾犏犏犏犏÷犏犏犏臌=鬃22.CO 的转动惯量246m kg 1045.1⋅⨯=-I ,振动特征温度K 3084=v Θ,试求25ºC 时CO 的标准摩尔熵()m 298.15 K S ž。
解:CO 分子的平动、转动和振动配分函数计算如下()()()()32320333232323333430224623022342π2π28102π 1.38065810298.156.0221367108.314298.15100106.6260755103.55341088 1.4510 1.38065810298.156.62607551010trmkT mkT nRTq V hh pIkT q h p p ------==轾´犏创创犏´´臌=´´=?创创?==´=()07.34111130841exp 1exp 298.151q ΘT ==骣--÷ç--÷ç÷ç桫»v v分子配分函数为32300000108142.313411.107105534.3⨯=⨯⨯⨯==v r t q q q q()000m 117298.15 K ln ln 21197.60 J mol K ΘTR ΘU q 1q S Lk Lk R R T N T e L --=++=++-=鬃žv v23.N 2与CO 的相对分子质量非常接近,转动惯量的差别也极小,在25ºC 时振动与电子运动均处于基态。
但是N 2的标准熵为11K mol J 6.191--⋅⋅,而CO 的为11K mol J 6.197--⋅⋅,试分析其原因。
解:显然N 2与CO 标准熵的差别主要是由分子的对称性引起的:11K mol J 763.52ln --⋅⋅==∆R S25.试由pV A T -=⎪⎭⎫ ⎝⎛∂∂导出理想气体服从NkT pV =解:正则系综特征函数()T V N Q kT A ,,ln -=,对理想气体()()!ln ln ln !ln ln !ln ,,ln N k q q q q NkT q NkT N kT q NkT N q kT T V N Q kT A n e v r t N+--=+-=-=-=只有平动配分函数与体积有关,且与体积的一次方程正比,因此:NkT pV V NkT V q NkT V A Tt T =∴-=⎪⎭⎫⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂ ln。