数值计算方法课程报告
数值计算方法实验分析报告
学生实验报告实验课程名称数值计算方法开课实验室数学实验室实验五解线性方程组的直接方法实验(主元的选取与算法的稳定性)问题提出:消去法是我们在线性代数中已经熟悉的。
但由于计算机的数值运算是在一个有限的浮点数集合上进行的,如何才能确保消去法作为数值算法的稳定性呢?消去法从理论算法到数值算法,其关键是主元的选择。
主元的选择从数学理论上看起来平凡,它却是数值分析中十分典型的问题。
实验内容:考虑线性方程组nn Rn∈=⨯,Ax∈,RbAb编制一个能自动选取主元,又能手动选取主元的求解线性方程组的消去过程。
实验要求:()取矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=1415157,6816816816M O O Ob A ,则方程有解Tx )1,,1,1(*Λ=。
取计算矩阵的条件数。
让程序自动选取主元,结果如何?()现选择程序中手动选取主元的功能。
每步消去过程总选取按模最小或按模尽可能小的元素作为主元,观察并记录计算结果。
若每步消去过程总选取按模最大的元素作为主元,结果又如何?分析实验的结果。
()取矩阵阶数或者更大,重复上述实验过程,观察记录并分析不同的问题及消去过程中选择不同的主元时计算结果的差异,说明主元素的选取在消去过程中的作用。
()选取其他你感兴趣的问题或者随机生成矩阵,计算其条件数。
重复上述实验,观察记录并分析实验结果。
实验(线性代数方程组的性态与条件数的估计) 问题提出:理论上,线性代数方程组b Ax =的摄动满足⎪⎪⎭⎫ ⎝⎛∆+∆∆-≤∆-b b A A AA A cond x x 11)( 矩阵的条件数确实是对矩阵病态性的刻画,但在实际应用中直接计算它显然不现实,因为计算1-A 通常要比求解方程b Ax =还困难。
实验内容:中提供有函数“”可以用来估计矩阵的条件数,它给出的是按范数的条件数。
首先构造非奇异矩阵和右端,使得方程是可以精确求解的。
再人为地引进系数矩阵和右端的摄动b A ∆∆和,使得bA ∆∆和充分小。
数值计算方法实验报告
本科实验报告课程名称:数值计算方法实验地点:计算机科学与技术学院506 专业班级:学号:学生姓名:指导教师:**年月日太原理工大学学生实验报告}printf("%f\n",c);}五、实验结果与分析二分法割线法分析:使用二分法和割线法均能计算出方程的根,但利用割线法要比二分法计算的次数少,并且能够较早的达到精度要求。
并且割线法程序代码量较少,精简明了。
六、讨论、心得本次数值计算方法程序设计实验是在不断的习题练习中跳脱出来,直接面对实用性较强的程序代码编写。
效果很好,不仅加深对二分法、割线法的理解,还加强了实际用运能力。
将理论成功地转化成实践结果。
实验地点北区多学科综合楼4506指导教师王峥太原理工大学学生实验报告x[i] = y[i];for(j=i+1;j<=n;++j){x[i]-=u[i][j]*x[j];}x[i]/= u[i][i];}for(i=1;i<=n;++i){printf("%0.2lf\n",x[i]);}return 0;}五、实验结果与分析完全主元素消元法:列主元素消元法:LU分解法:分析:对于两种高斯解方程,完全主元素跟列主元素都是先消元、再回代,由程序段可以发现,始终消去对角线下方的元素。
即,为了节约内存及时效,可以不必计算出主元素下方数据。
列主元素消元法的算法设计上优于完全主元素消元法,它只需依次按列选主元素然后换行使之变到主元素位置,再进行消元即可。
列主元素消元法的耗时比完全主元素法少很多,常采用之。
对于LU分解法,分解矩阵为单位下三角阵L与上三角阵U的乘积,然后解方程组Ly=b,回代,解方程组Ux=y。
其中的L为n阶单位下三角阵、U为上三角阵.六、讨论、心得本次试验中,感觉是最难的一次,完全主元素消元法程序编写过程相对来说花了好长时间。
纠正各种语法、算法、思路错误。
最后勉强成功,但还是有几处警告,不得解决之法。
数值分析(计算方法)课程设计实验报告(附程序)
n=4 时,max[L(X)-h(X)]=0.4020;
n=8 时,max[L(X)-h(X)]=0.1708;
n=10 时,max[L(X)-h(X)]=0.1092。
图象分析: 从图象可以看出随着插值节点数的增加出现异常的摆动,中间能较好的接近 原函数,但两边却出现很大的误差。
(3).对定义在(-5,5)上的函数
程序代码 2:
x=[-1:0.2:1]; y=1./(1+25.*x.^2); x0=[-1:0.01:1]; y0=lagrange(x,y,x0); y1=1./(1+25.*x0.^2);
plot(x0,y0,'--r'); hold on; plot(x0,y1,'-b'); x2=abs(y0-y1); max(x2) ; 程序代码3: n=3; for i=1:n x(i)=cos(((2.*i-1).*pi)./(2.*(n+1))); y(i)=1./(1+25.*x(i).*x(i)); end x0=-1:0.01:1; y0=lagrange(x,y,x0); y1=1./(1+25.*x0.^2); plot(x0,y0,'--r') hold on plot(x0,y1,'-b')
以 x1,x2,„,xn+1 为插值节点构造上述各函数的 Lagrange 插值多项式, 比较其 结果。
设计过程: 已知函数 f(x)在 n+1 个点 x0,x1,…,xn 处的函数值为 y0,y1,…,yn 。 求一 n 次多 项式函数 Pn(x),使其满足: Pn(xi)=yi,i=0,1,…,n. 解决此问题的拉格朗日插值多项式公式如下
数值计算方法实验报告
数值计算方法实验报告一、实验介绍本次实验是关于数值计算方法的实验,旨在通过计算机模拟的方法,实现对于数值计算方法的掌握。
本次实验主要涉及到的内容包括数值微积分、线性方程组的求解、插值与拟合、常微分方程的数值解等。
二、实验内容1. 数值微积分数值微积分是通过计算机模拟的方法,实现对于微积分中的积分运算的近似求解。
本次实验中,我们将会使用梯形公式和辛普森公式对于一定区间上的函数进行积分求解,并比较不同公式的计算误差。
2. 线性方程组的求解线性方程组求解是数值计算领域中的重要内容。
本次实验中,我们将会使用高斯消元法、LU分解法等方法对于给定的线性方程组进行求解,并通过比较不同方法的计算效率和精度,进一步了解不同方法的优缺点。
3. 插值与拟合插值与拟合是数值计算中的另一个重要内容。
本次实验中,我们将会使用拉格朗日插值法和牛顿插值法对于给定的数据进行插值求解,并使用最小二乘法对于给定的函数进行拟合求解。
4. 常微分方程的数值解常微分方程的数值解是数值计算中的难点之一。
本次实验中,我们将会使用欧拉法和龙格-库塔法等方法对于给定的常微分方程进行数值解的求解,并比较不同方法的计算精度和效率。
三、实验结果通过本次实验,我们进一步加深了对于数值计算方法的理解和掌握。
在数值微积分方面,我们发现梯形公式和辛普森公式都能够有效地求解积分,但是辛普森公式的计算精度更高。
在线性方程组求解方面,我们发现LU分解法相对于高斯消元法具有更高的计算效率和更好的数值精度。
在插值与拟合方面,我们发现拉格朗日插值法和牛顿插值法都能够有效地进行插值求解,而最小二乘法则可以更好地进行函数拟合求解。
在常微分方程的数值解方面,我们发现欧拉法和龙格-库塔法都能够有效地进行数值解的求解,但是龙格-库塔法的数值精度更高。
四、实验总结本次实验通过对于数值计算方法的模拟实现,进一步加深了我们对于数值计算方法的理解和掌握。
在实验过程中,我们了解了数值微积分、线性方程组的求解、插值与拟合、常微分方程的数值解等多个方面的内容,在实践中进一步明确了不同方法的特点和优缺点,并可以通过比较不同方法的计算效率和数值精度来选择合适的数值计算方法。
数值计算方法学习报告
数值计算方法学习报告数值计算方法是数学中研究数值计算的一门学科。
它主要研究用数学方法解决实际问题时所涉及的数值计算方法和计算技巧。
数值计算方法主要包括近似计算、数值逼近、数值微积分、数值代数等方面,广泛应用于科学工程计算、金融、图像处理等领域。
本文将对数值计算方法进行学习总结。
首先,在学习数值计算方法之前,我们需要了解数值计算的基本概念和原理。
数值计算是通过计算机等数值工具获得问题的数值解。
在实际应用中,往往无法用解析方法求得问题的精确解,而需要通过数值方法来近似求解。
数值计算方法的基本原理是将问题转化为数学模型,通过选择适当的数值算法和计算技巧,利用计算机进行数值计算,得到问题的数值解。
其次,数值计算方法的学习可以从近似计算开始。
近似计算是指通过代数运算或函数逼近得到问题的近似解。
常见的近似计算方法包括二分法、牛顿迭代法、泰勒展开法等。
这些方法在求解非线性方程、方程组、最优化问题等方面有广泛应用。
学习近似计算方法需要掌握数值误差的估计和控制方法,这是保证数值计算结果有效性和可靠性的关键。
然后,数值逼近是数值计算方法的核心内容之一、数值逼近是指用其中一种函数或多项式逼近待求函数或曲线的方法。
常见的数值逼近方法包括插值法、最小二乘法等。
插值法通过已知数据点之间的插值多项式来逼近待求函数,最小二乘法通过最小化残差平方和来逼近待求曲线。
在实际应用中,数值逼近方法常用于数据拟合、信号处理、图像处理等领域。
此外,数值微积分也是数值计算方法的重要内容。
数值微积分是将微积分的基本概念和方法用数值算法来实现。
常见的数值微积分方法包括数值积分和数值微分。
数值积分是通过数值近似方法计算函数的定积分,常用的数值积分方法有梯形法则、辛普森法则等。
数值微分是通过数值逼近方法计算函数的导数,常用的数值微分方法有前向差分法、后向差分法等。
最后,数值代数是数值计算方法的另一个重要组成部分。
数值代数主要研究线性方程组和矩阵的数值计算方法。
《数值计算方法》上机实验报告
《数值计算方法》上机实验报告华北电力大学实验名称数值il•算方法》上机实验课程名称数值计算方法专业班级:电力实08学生姓名:李超然学号:200801001008 成绩: 指导教师:郝育黔老师实验日期:2010年04月华北电力大学实验报告数值计算方法上机实验报吿一.各算法的算法原理及计算机程序框图1、牛顿法求解非线性方程*对于非线性方程,若已知根的一个近似值,将在处展开成一阶xxfx ()0, fx ()xkk泰勒公式"f 0 / 2 八八,fxfxfxxxxx 0 0 0 0 0 kkkk2!忽略高次项,有,fxfxfxxx 0 ()()(),,, kkk右端是直线方程,用这个直线方程来近似非线性方程。
将非线性方程的**根代入,即fx ()0, X ,* fxfxxx 0 0 0 0, ,, kkkfx 0 fx 0 0,解出fX 0 *k XX,, k' fx 0 k水将右端取为,则是比更接近于的近似值,即xxxxk, Ik, Ikfx ()k 八XX, Ikk* fx()k这就是牛顿迭代公式。
,2,计算机程序框图:,见,,3,输入变量、输出变量说明:X输入变量:迭代初值,迭代精度,迭代最大次数,\0输出变量:当前迭代次数,当前迭代值xkl,4,具体算例及求解结果:2/16华北电力大学实验报吿开始读入l>k/fx()0?,0fx 0 Oxx,,01* fx ()0XX,,,?10kk, ,1,kN, ?xx, 10输出迭代输出X输出奇异标志1失败标志,3,输入变量、输出变量说明: 结束例:导出计算的牛顿迭代公式,并il •算。
(课本P39例2-16) 115cc (0), 求解结果:10. 75000010.72383710. 72380510. 7238052、列主元素消去法求解线性方程组,1,算法原理:高斯消去法是利用现行方程组初等变换中的一种变换,即用一个不为零的数乘 -个 方程后加只另一个方程,使方程组变成同解的上三角方程组,然后再自下而上 对上三角3/16华北电力大学实验报告方程组求解。
数值计算基础实验报告(3篇)
第1篇一、实验目的1. 理解数值计算的基本概念和常用算法;2. 掌握Python编程语言进行数值计算的基本操作;3. 熟悉科学计算库NumPy和SciPy的使用;4. 分析算法的数值稳定性和误差分析。
二、实验内容1. 实验环境操作系统:Windows 10编程语言:Python 3.8科学计算库:NumPy 1.19.2,SciPy 1.5.02. 实验步骤(1)Python编程基础1)变量与数据类型2)运算符与表达式3)控制流4)函数与模块(2)NumPy库1)数组的创建与操作2)数组运算3)矩阵运算(3)SciPy库1)求解线性方程组2)插值与拟合3)数值积分(4)误差分析1)舍入误差2)截断误差3)数值稳定性三、实验结果与分析1. 实验一:Python编程基础(1)变量与数据类型通过实验,掌握了Python中变量与数据类型的定义方法,包括整数、浮点数、字符串、列表、元组、字典和集合等。
(2)运算符与表达式实验验证了Python中的算术运算、关系运算、逻辑运算等运算符,并学习了如何使用表达式进行计算。
(3)控制流实验学习了if-else、for、while等控制流语句,掌握了条件判断、循环控制等编程技巧。
(4)函数与模块实验介绍了Python中函数的定义、调用、参数传递和返回值,并学习了如何使用模块进行代码复用。
2. 实验二:NumPy库(1)数组的创建与操作通过实验,掌握了NumPy数组的基本操作,包括创建数组、索引、切片、排序等。
(2)数组运算实验验证了NumPy数组在数学运算方面的优势,包括加、减、乘、除、幂运算等。
(3)矩阵运算实验学习了NumPy中矩阵的创建、操作和运算,包括矩阵乘法、求逆、行列式等。
3. 实验三:SciPy库(1)求解线性方程组实验使用了SciPy库中的线性代数模块,通过高斯消元法、LU分解等方法求解线性方程组。
(2)插值与拟合实验使用了SciPy库中的插值和拟合模块,实现了对数据的插值和拟合,并分析了拟合效果。
数值计算方法 实验报告4
实验四 数值微积分实验学院:数学与计算机科学学院 专业:数学与应用数学 学号: 姓名:一. 实验目的1 利用复化求积公式计算定积分,并比较误差;2 比较一阶导数和二阶导数的数值方法,并绘图观察特点.二. 实验题目用复化梯形公式、复化辛普森公式、龙贝格公式求下列定积分,要求绝对误差为8105.0-⨯=ε,并将计算结果与精度解进行比较:⑴dx e x e x2321432⎰= ⑵dx x x ⎰-=322326ln .利用等距节点的函数值和端点的导数值,用不同的方法求下列函数的一阶和二阶导数,分析各种方法的有效性,并用绘图软件绘出函数的图形,观察其特点. ⑴35611201x x y -=,[]2,0∈x ⑵xey 1-=,[]5.0,5.2--∈x三. 实验原理1 复化梯形公式将积分区间[]b a ,剖分为n 等分,分点为)2,1,0( =+=k kh a x k ,其中n a b h /)(-=.在每个区间[]1,+k k x x 上用梯形公式,则有 ()()dx x fdxx fn k x xba k k∑⎰=⎰-=+11()()[][]∑⎭⎬⎫⎩⎨⎧++-=-=++1112n k k k kkk f R x f x f x x()()[][]f R x f x f h n k k n k k k ∑+∑+=-=-=+1112.记()()[]()()()[]∑++=∑+=-=-=+111222n k kn k k knx f b f a f hx f x f h T .2 复化辛普森公式 将积分区间[]b a ,剖分为n 等分,分点为)2,1,0( =+=k kh a xk,其中n a b h /)(-=.记区间[]1,+k k x x 的中点为21+k x ,在每个区间[]1,+k k x x 上用辛普森公式,则得到所谓的复化辛普森公式:()()⎥⎦⎤⎢⎣⎡+⎪⎭⎫⎝⎛+∑-=++-=+1211146k k kn k k k n xfx f x f x x S ,即()()()⎥⎦⎤⎢⎣⎡∑⎪⎭⎫ ⎝⎛+∑++=-=+-=1211426n k k n k knx f x fb f a f h S .3 龙贝格公式的算法步骤为: I.输入b a ,及精度ε; II.置,a b h -=()()()b f a f h T+=211;III. 置2,1,1===n j i ,对分区间[]b a ,,并计算111,+++i j i j T T :∑⎪⎭⎫ ⎝⎛+==-+nk k ii x f hT T 121111221,144111--=+++jijj jj i j T T T ;IV.若不满足终止条件,做循环:n n h h i i 2:,2/:,1:==+=, 计算∑⎪⎭⎫ ⎝⎛+==-+nk k ii x f hT T121111221, 对,,,1i j =计算:144111--=+++jijj jj i j T T T .4 向前差商公式:()()()ha f h a f a f -+≈';向后差商公式:()()()h h a f a f a f --≈';中心差商公式:()()()hh a f h a f a f 2--+≈';二阶导数公式:()()()()22hh a f a f h a f a f ++--≈''.四. 实验内容 实验一第一小题:对于方程dx e x e x2321432⎰=,利用程序shiyan1_01.m内容如下:%第一个函数的实验 clear clcfun=inline('(2/3)*x.^3.*exp(x.^2)'); S1=matrap(fun,1,2,170000); S2=masimp(fun,1,2,250); S3=maromb(fun,1,2,.5e-8); s=exp(4); Er1=abs(S1-s) Er2=abs(S2-s) Er3=abs(S3-s)第二小题:对于方程dx x x ⎰-=322326ln ,利用程序shiyan1_02.m内容如下:%第二个函数的实验 clearclcfun=inline('2*x./(x.^2-3)'); S1=matrap(fun,2,3,15000); S2=masimp(fun,2,3,100); S3=maromb(fun,2,3,.5e-8); s=log(6); Er1=abs(S1-s) Er2=abs(S2-s) Er3=abs(S3-s)实验二第一小题:对于方程35611201x x y -=,[]2,0∈x ,利用程序shiyan2_01.m内容如下:clear clcfun=inline('x.^5/20-(11./6)*x.^3'); dfun=inline('x.^4/4-(11./2)*x.^2'); ddfun=inline('x.^3-11*x'); n=8;h=2/n;x=0:h:2;x1=x(2:n); y=feval(fun,x); dy=feval(dfun,x1); ddy=feval(ddfun,x1); for i=2:ndy1(i)=(y(i+1)-y(i))/h; dy2(i)=(y(i)-y(i-1))/h;dy3(i)=(y(i+1)-y(i-1))/(2*h);ddy1(i)=(y(i+1)-2*y(i)+y(i-1))/(h*h); endfor i=1:n-1err1(i)=abs(dy1(i)-dy(i)); err2(i)=abs(dy2(i)-dy(i)); err3(i)=abs(dy3(i)-dy(i));errd2(i)=abs(ddy1(i)-ddy(i)); end[err1' err2' err3' errd2'] plot(x,y,'r')hold onplot(x1,dy,'y') plot(x1,ddy,'k')第二小题:对于方程xey 1-=,[]5.0,5.2--∈x ,利用程序shiyan2_02.m内容如下:clear clcfun=inline('exp(-1./x)');dfun=inline('(-1./x).*exp(-1./x)');ddfun=inline('(-1./(x.^2)).*exp(-1./x)+1./(x.^2)'); n=8;h=2/n;x=-2.5:h:-0.5;x1=x(2:n); y=feval(fun,x); dy=feval(dfun,x1); ddy=feval(ddfun,x1); for i=2:ndy1(i)=(y(i+1)-y(i))/h; dy2(i)=(y(i)-y(i-1))/h; dy3(i)=(y(i+1)-y(i-1))/(2*h);ddy1(i)=(y(i+1)-2*y(i)+y(i-1))/(h*h); endfor i=1:n-1err1(i)=abs(dy1(i)-dy(i)); err2(i)=abs(dy2(i)-dy(i)); err3(i)=abs(dy3(i)-dy(i)); errd2(i)=abs(ddy1(i)-ddy(i)); end[err1' err2' err3' errd2'] plot(x,y,'r')hold onplot(x1,dy,'y')plot(x1,ddy,'')五.实验结果实验一第一小题T =146.5012 0 0 0 0 0 0 083.9243 63.0653 0 0 0 0 0 062.6132 55.5095 55.0058 0 0 0 0 056.6535 54.6669 54.6108 54.6045 0 0 0 055.1154 54.6027 54.5984 54.5982 54.5982 0 0 054.7277 54.5984 54.5982 54.5982 54.5982 54.5982 0 054.6305 54.5982 54.5982 54.5982 54.5982 54.5982 54.5982 0 54.6062 54.5982 54.5982 54.5982 54.5982 54.5982 54.5982 54.5982Er1 =4.5922e-009Er2 =4.8409e-009Er3 =1.4211e-014第二小题T =2.5000 0 0 0 0 0 0 0 2.0192 1.8590 0 0 0 0 0 0 1.8564 1.8022 1.7984 0 0 0 0 0 1.8088 1.7929 1.7922 1.7921 0 0 0 0 1.7961 1.7918 1.7918 1.7918 1.7918 0 0 0 1.7928 1.7918 1.7918 1.7918 1.7918 1.7918 0 0 1.7920 1.7918 1.7918 1.7918 1.7918 1.7918 1.7918 0 1.7918 1.7918 1.7918 1.7918 1.7918 1.7918 1.7918 1.7918Er1 =4.9383e-009Er2 =4.0302e-009Er3 =1.0132e-012实验二第一小题ans =0.2196 0.2196 0.2196 2.1920 0.3627 0.8003 0.5815 2.1480 0.5711 1.4367 1.0039 2.0560 0.7667 2.0411 1.4039 1.91600.9447 2.5991 1.7719 1.72801.1003 3.09632.0983 1.4920 1.22873.5183 2.3735 1.2080 1.3251 3.8507 2.5879 0.87601.3847 4.07912.7319 0.4960第二小题ans =0.6932 0.6932 0.6932 0.1105 0.4680 0.5532 0.5106 0.5030 0.5236 0.6555 0.5895 0.7793 0.5907 0.8102 0.7005 1.2991 0.6692 1.0727 0.8709 2.3982 0.7473 1.6071 1.1772 5.15720.7567 3.0873 1.9220 14.2888六.实验结果分析1.利用复化辛普森公式比利用复化梯形公式,所取的n更小,当达到相同精度时,利用辛普森公式等分次数n更小,减少计算次数.2.若利用同一公式,所取n的大小与题设给出的精度ε之间的关系:当n越大时,与精度ε之间的误差越小;反之,当n越小时,与精度ε之间的误差越大。
数值计算方法实验报告
3如果f[(a+b)/2]>0,则区间(a,(a+b)/2)内存在零点,(a+b)/2≤b;
返回①重新循环,不断接近零点。通过每次把f(x)的零点所在区间收缩一半的方法,使区间内的两个端点逐步逼近函数零点,最终求得零点近似值。
{
int z[10];
int maxi,maxj;
initdata();
for(int i=1;i<=N;i++)
z[i]=i;
for(int k=1;k<N;k++)
{
maxi=k;maxj=k;float maxv=abs(a[k][k]);
for(i=k;i<=N;i++)
for(int j=k;j<=N;j++)
34;请输入矩阵阶数:"<<endl;
cin>>N;
cout<<"请输入矩阵各项:"<<endl;
for(int i=1;i<=N;i++)
for(int j=1;j<=N+1;j++)
{
cin>>a[i][j];
}
cout<<endl;
}
void main()
{
for(i=1;i<=N;i++)
{
float t=a[i][k];a[i][k]=a[i][maxj];a[i][maxj]=t;
数值计算方法I实验报告
实验报告实验课程名称数值计算方法I开课实验室数学实验室学院理学院年级2012 专业班信息与计算科学2班学生姓名学号开课时间2012 至2013 学年第 2 学期实验一 误差分析试验1.1(病态问题)问题提出:考虑一个高次的代数多项式)1.1()()20()2)(1()(201∏=-=---=k k x x x x x p显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。
现考虑该多项式的一个扰动)2.1(0)(19=+x x p ε其中ε是一个非常小的数。
这相当于是对(1.1)中19x 的系数作一个小的扰动。
我们希望比较(1.1)和(1.2)根的差别,从而分析方程(1.1)的解对扰动的敏感性。
实验内容:为了实现方便,我们先介绍两个MA TLAB 函数:“roots ”和“poly ”。
roots(a)u =其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。
设a 的元素依次为121,,,+n a a a ,则输出u 的各分量是多项式方程01121=+++++-n n n n a x a x a x a的全部根;而函数 poly(v)b =的输出b 是一个n+1维向量,它是以n 维向量v 的各分量为根的多项式的系数。
可见“roots ”和“poly ”是两个互逆的运算函数。
))20:1((;)2();21,1(;000000001.0ve poly roots ess ve zeros ve ess +===上述简单的MA TLAB 程序便得到(1.2)的全部根,程序中的“ess ”即是(1.2)中的ε。
实验要求:(1)选择充分小的ess ,反复进行上述实验,记录结果的变化并分析它们。
如果扰动项的系数ε很小,我们自然感觉(1.1)和(1.2)的解应当相差很小。
计算中你有什么出乎意料的发现?表明有些解关于如此的扰动敏感性如何?(2)将方程(1.2)中的扰动项改成18x ε或其它形式,实验中又有怎样的现象? (3)(选作部分)请从理论上分析产生这一问题的根源。
《数值计算方法》课程设计报告-15页精选文档
《数据分析方法》课 程 实 验 报 告1.实验内容(1)掌握回归分析的思想和计算步骤;(2) 编写程序完成回归分析的计算,包括后续的显著性检验、残差分析、Box-Cox 变换等内容。
2. 模型建立与求解(数据结构与算法描述)3.实验数据与实验结果解:根据所建立的模型在MATLAB 中输入程序(程序见附录)得到以下结果: (1)回归方程为:123.45260.49600.0092Y X X ∧=++说明该化妆品的消量和该城市人群收入情况关系不大,轻微影响,与使用该化妆品的人数有关。
2σ的无偏估计:2 4.7403σ= (2)方差分析表如下表: 方差来源自由度平方和 均方 F 值p回归(R ) 2 538452692256795 2.28误差(E ) 12 56.883 4.703 总和(T ) 1453902从分析表中可以看出:F 值远大于p 的值。
所以回归关系显著。
复相关20.9989R =,所以回归效果显著。
解:根据所建立的模型,在MATLAB 中输入程序(程序见附录)得到如下结果: (1)回归方程为:1257.9877 4.70820.3393Y X X ∧=-++在MTLAB 中计算学生化残差(见程序清单二),所得到的学生化残差r 的值由残差可知得到的r 的值在(-1,1)的概率为0.645,在(-1.5,1.5)的概率为0.871,在(-2,2)之间的概率为0.968.而服从正态分布的随机变量取值在(-1,1)之间的概率为0.68,在(-1.5,1.5)之间的概率为0.87,在(-2.2)之间的概率为0.95,所以相差较大,所以残差分析不合理,需要对数据变换。
取λ=0.6进行Box-Cox 变换()ln ,01,0Y Y Y λλλλλ=⎧⎪=⎨-≠⎪⎩ 在MATLAB 中输入程序(见程序代码清单二)取0.6λ=,所以得到r 的值(r 的值见附录二)其值在(-1,1)之间的个数大约为20/31=0.65,大致符合正态分布,所以重新拟合为:0-11.7736β=1 1.1478β=20.0969β=拟合函数为:12-11.7736 1.14780.0969Y X X ∧=++ 通过F 值,R 值可以检验到,回归效果显著(3)某医院为了了解病人对医院工作的满意程度Y 和病人的年龄1X ,病情的严重程度2X 和病人的忧虑程度3X 之间的关系,随机调查了该医院的23位病人,得数据如下表:(1) 拟合线性回归模型0112233Y X X X ββββε=++++,通过残差分析与考察模型及有关误差分布正态性假定的合理性;(2) 若(1)中模型合理,分别在2()()i R p α,()p ii C ,()p iii PRESS 准则下选择最优回归方程,各准则下的选择结果是否一致?(3) 对0.10E D αα==,用逐步回归法选择最优回归方程,其结果和(2)中的数否一致?(4) 对选择的最优回归方程作残差分析,与(1)中的相应结果比较,有何变化? 习题2.6解:(1)回归参数的β的最小二乘估计为:1()T T X X X Y β∧-=。
数值计算方法实验报告
一、实验目的1. 熟悉数值计算的基本概念和方法;2. 掌握数值计算的基本原理和算法;3. 提高编程能力和数值计算能力;4. 通过实验,加深对数值计算方法的理解和应用。
二、实验内容1. 矩阵运算2. 线性方程组求解3. 函数求值4. 微分方程求解三、实验步骤1. 矩阵运算(1)编写程序实现矩阵的加法、减法、乘法运算;(2)编写程序实现矩阵的转置运算;(3)编写程序实现矩阵的逆运算。
2. 线性方程组求解(1)编写程序实现高斯消元法求解线性方程组;(2)编写程序实现雅可比迭代法求解线性方程组;(3)编写程序实现高斯-赛德尔迭代法求解线性方程组。
3. 函数求值(1)编写程序实现牛顿迭代法求函数的零点;(2)编写程序实现二分法求函数的零点;(3)编写程序实现割线法求函数的零点。
4. 微分方程求解(1)编写程序实现欧拉法求解一阶微分方程;(2)编写程序实现龙格-库塔法求解一阶微分方程;(3)编写程序实现龙格-库塔-法求解二阶微分方程。
四、实验结果与分析1. 矩阵运算(1)矩阵加法、减法、乘法运算结果正确;(2)矩阵转置运算结果正确;(3)矩阵逆运算结果正确。
2. 线性方程组求解(1)高斯消元法求解线性方程组,结果正确;(2)雅可比迭代法求解线性方程组,结果正确;(3)高斯-赛德尔迭代法求解线性方程组,结果正确。
3. 函数求值(1)牛顿迭代法求函数的零点,结果正确;(2)二分法求函数的零点,结果正确;(3)割线法求函数的零点,结果正确。
4. 微分方程求解(1)欧拉法求解一阶微分方程,结果正确;(2)龙格-库塔法求解一阶微分方程,结果正确;(3)龙格-库塔-法求解二阶微分方程,结果正确。
五、实验总结本次实验通过对数值计算方法的学习和实践,使我对数值计算有了更深入的了解。
以下是我对本次实验的总结:1. 矩阵运算是数值计算的基础,熟练掌握矩阵运算对于解决实际问题具有重要意义;2. 线性方程组求解是数值计算中常见的问题,高斯消元法、雅可比迭代法和高斯-赛德尔迭代法是常用的求解方法;3. 函数求值是数值计算中另一个常见问题,牛顿迭代法、二分法和割线法是常用的求解方法;4. 微分方程求解是数值计算中的难点,欧拉法、龙格-库塔法和龙格-库塔-法是常用的求解方法。
数值计算方法实验报告
数值计算方法实验报告一、实验目的本实验旨在通过Python语言编写数值计算方法程序,掌握常见数值计算方法的实现原理及应用。
具体包括:插值法、最小二乘法、数值微积分、数值解方程、数值解微分方程等。
二、实验环境Python编程语言、Jupyter Notebook环境三、实验内容1.插值法(1)代码实现:在Python中使用Scipy库中的Interpolate模块实现拉格朗日插值法和牛顿插值法,并通过数据可视化展示其效果。
(2)实验步骤:- 导入所需库,准备所需数据;- 定义拉格朗日插值法函数;- 定义牛顿插值法函数;- 测试函数并可视化结果。
(3)实验结果:2.最小二乘法(1)代码实现:在Python中使用Numpy库实现最小二乘法,并通过数据可视化展示其效果。
(2)实验步骤:- 导入所需库,准备所需数据;- 定义最小二乘法函数;- 测试函数并可视化结果。
(3)实验结果:3.数值微积分(1)代码实现:在Python中实现梯形法和辛普森法,并通过数据可视化展示其效果。
(2)实验步骤:- 导入所需库,准备所需数据;- 定义梯形法函数和辛普森法函数;- 测试函数并可视化结果。
(3)实验结果:4.数值解方程(1)代码实现:在Python中实现二分法、牛顿法和割线法,并通过数据可视化展示其效果。
(2)实验步骤:- 导入所需库,准备所需数据;- 定义二分法函数、牛顿法函数和割线法函数;- 测试函数并可视化结果。
(3)实验结果:5.数值解微分方程(1)代码实现:在Python中实现欧拉法和龙格-库塔法,并通过数据可视化展示其效果。
(2)实验步骤:- 导入所需库,准备所需数据;- 定义欧拉法函数和龙格-库塔法函数;- 测试函数并可视化结果。
(3)实验结果:四、实验总结通过本次实验,我学习了数值计算方法的常用算法和实现原理,掌握了Python 语言实现数值计算方法的方法,加深了对数值计算方法的理解和应用。
实验中遇到的问题,我通过查找资料和与同学的讨论得到了解决,也更加熟练地掌握了Python语言的使用。
计算方法数值实验报告
计算方法数值实验报告(一)班级:0902 学生:苗卓芳 倪慧强 岳婧实验名称: 解线性方程组的列主元素高斯消去法和LU 分解法实验目的: 通过数值实验,从中体会解线性方程组选主元的必要性和LU 分解法的优点,以及方程组系数矩阵和右端向量的微小变化对解向量的影响。
实验内容:解下列两个线性方程组(1) ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--11134.981.4987.023.116.427.199.103.601.3321x x x (2) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----15900001.582012151526099999.23107104321x x x x 解:(1) 用熟悉的算法语言编写程序用列主元高斯消去法和LU 分解求解上述两个方程组,输出Ax=b 中矩阵A 及向量b, A=LU 分解的L 及U ,detA 及解向量。
①先求解第一个线性方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--11134.981.4987.023.116.427.199.103.601.3321x x x在命令窗口中运行A=[3.01,6.03,1.99;1.27,4.16,-1.23;0.987,-4.81,9.34] 可得A =3.0100 6.0300 1.99001.2700 4.1600 -1.23000.9870 -4.8100 9.3400b=[1,1,1]可得b =1 1 1H =det(A)可得 H =-0.0305列主元高斯消去法:在命令窗口中运行function x=Gauss_pivot(A,b)、A=[3.01,6.03,1.99;1.27,4.16,-1.23;0.987,-4.81,9.34];b=[1,1,1];n=length(b);x=zeros(n,1);c=zeros(1,n);dl=0;for i=1:n-1max=abs(A(i,i));m=i;for j=i+1:nif max<abs(A(j,i))max=abs(A(j,i));m=j;endendif(m~=i)for k=i:nc(k)=A(i,k);A(i,k)=A(m,k);A(m,k)=c(k);enddl=b(i);b(i)=b(m);b(m)=dl;endfor k=i+1:nfor j=i+1:nA(k,j)=A(k,j)-A(i,j)*A(k,i)/A(i,i);endb(k)=b(k)-b(i)*A(k,i)/A(i,i);A(k,i)=0;endendx(n)=b(n)/A(n,n);for i=n-1:-1:1sum=0;for j=i+1:nsum =sum+A(i,j)*x(j);endx(i)=(b(i)-sum)/A(i,i);end经程序可得实验结果ans =1.0e+003 *1.5926-0.6319-0.4936LU分解法:在命令窗口中运行function x=lu_decompose(A,b)A=[3.01,6.03,1.99;1.27,4.16,-1.23;0.987,-4.81,9.34];b=[1,1,1];L=eye(n);U=zeros(n,n);x=zeros(n,1);c=zeros(1,n);for i=1:nU(1,i)=A(1,i);if i==1;L(i,1)=1;elseL(i,1)=A(i,1)/U(1,1);endendfor i=2:nfor j=i:nsum=0;for k=1:i-1sum =sum+L(i,k)*U(k,j);endU(i,j)=A(i,j)-sum;Ifj~=nsum=0;for k=1:i-1sum=sum+L(j+1,k)*U(k,i);endL(j+1,i)=(A(j+1,i)-sum)/U(I,i);endendendy(1)=b(1);for k=2:nsum=0;forj=1:k-1sum=sum+L(k,j)*y (j);endy(k)=b(k)-sum;endx(n)=y(n)/U(n,n);260页最后一行c(k)=A(i,k);A(i,k)=A(m,k);A(m,k)=c(k);enddl=b(i);b(i)=b(m);b(m)=dl;endfor k=i+1:nfor j=i+1:nA(k,j)=A(k,j)-A(i,j)*A(k,i)/A(i,i);endb(k)=b(k)-b(i)*A(k,i)/A(i,i);A(k,i)=0;endendx(n)=b(n)/A(n,n);for i=n-1:-1:1sum=0;for j=i+1:nsum =sum+A(i,j)*x(j);endx(i)=(b(i)-sum)/A(i,i);end经程序可得结果ans =1.0e+003 *1.5926-0.6319-0.4936②再求解第二个线性方程组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----15900001.582012151526099999.23107104321x x x x 即A=[10,-7,0,1;-3,2.099999,6,2;5,-1,5,-1;2,1,0,2];b=[8,5.900001,5,1];重复上述步骤可的结果为ans =0.0000-1.00001.00001.0000(2)将方程组(1)中系数3.01改为3.00,0.987改为0.990,用列主元高斯消去法求解变换后的方程组,输出列主元行交换次序,解向量x 及detA ,并与(1)中结果比较。
数值计算方法学习报告
《数值微分及应用》研究 第一章 数值微分的描述一、《数值微分》描述数值微分(numerical differentiation)是根据函数在一些离散点的函数值,推算它在某点的导数或高阶导数的近似值的方法。
通常用差商代替微商,或者用一个能够近似代替该函数的较简单的可微函数(如多项式或样条函数等)的相应导数作为能求导数的近似值。
例如一些常用的数值微分公式(如两点公式、三点公式等)就是在等距步长情形下用插值多项式的导数作为近似值的。
此外,还可以采用待定系数法建立各阶导数的数值微分公式,并且用外推技术来提高所求近似值的精确度。
当函数可微性不太好时,利用样条插值进行数值微分要比多项式插值更适宜。
如果离散点上的数据有不容忽视的随机误差,应该用曲线拟合代替函数插值,然后用拟合曲线的导数作为所求导数的近似值,这种做法可以起到减少随机误差的作用。
数值微分公式还是微分方程数值解法的重要依据。
二、《数值微分》的相关概念根据函数在一些离散点上的函数值来估计函数在某点导数或高阶导数的近似值的方法,称为数值微分。
多项式插值是最常见的一种函数插值。
在一般插值问题中,若选取φ为n 次多项式类,由插值条件可以唯一确定一个n 次插值多项式满足上述条件。
从几何上看可以理解为:已知平面上n+1个不同点,要寻找一条n 次多项式曲线通过这些点。
插值多项式一般有两种常见的表达形式,一个是拉格朗日插值多项式,另一个是牛顿插值多项式。
三次样条函数定义:函数],,[)(2b a C x S ∈且在每个小区间[]1,+j j x x 上是三次多项式,其中b x x x a n =<<<= 10是给定节点,则称)(x S 是节点n x x x ,,,10 上的三次样条函数。
若在节点j x 上给定函数值(),,,1,0)(n j x f y j j ==并成立),,,1,0()(n j y x S j j ==则称)(x S 为三次样条插值函数。
数值计算方法实验报告
数值计算方法实验报告数值计算方法实验报告引言:数值计算方法是一种通过数学模型和计算机算法来解决实际问题的方法。
在科学研究和工程应用中,数值计算方法被广泛应用于求解方程、优化问题、模拟仿真等领域。
本实验报告将介绍数值计算方法的基本原理和实验结果。
一、二分法求根二分法是一种通过不断折半缩小搜索区间来求解方程根的方法。
在实验中,我们选取了一个简单的方程f(x) = x^2 - 4 = 0来进行求根实验。
通过不断将搜索区间进行二分,我们可以逐步逼近方程的根。
实验结果表明,通过二分法,我们可以得到方程的根为x = 2。
二、牛顿迭代法求根牛顿迭代法是一种通过不断逼近方程根的方法。
在实验中,我们同样选取了方程f(x) = x^2 - 4 = 0进行求根实验。
牛顿迭代法的基本思想是通过对方程进行线性近似,求得近似解,并不断迭代逼近方程的根。
实验结果表明,通过牛顿迭代法,我们可以得到方程的根为x = 2。
三、高斯消元法求解线性方程组高斯消元法是一种通过变换线性方程组的系数矩阵,将其化为上三角矩阵的方法。
在实验中,我们选取了一个简单的线性方程组进行求解实验。
通过对系数矩阵进行行变换,我们可以将其化为上三角矩阵,并通过回代求解得到方程组的解。
实验结果表明,通过高斯消元法,我们可以得到线性方程组的解为x = 1,y = 2,z = 3。
四、插值与拟合插值与拟合是一种通过已知数据点来构造函数模型的方法。
在实验中,我们选取了一组数据点进行插值与拟合实验。
通过拉格朗日插值多项式和最小二乘法拟合,我们可以得到数据点之间的函数模型。
实验结果表明,通过插值与拟合,我们可以得到数据点之间的函数关系,并可以通过该函数模型来进行预测和拟合。
结论:数值计算方法是一种通过数学模型和计算机算法来解决实际问题的方法。
通过本次实验,我们学习了二分法求根、牛顿迭代法求根、高斯消元法求解线性方程组以及插值与拟合的基本原理和应用。
这些方法在科学研究和工程应用中具有广泛的应用前景。
数值计算方法实验报告
#include<math.h>
double f(double x)
{
double s;
s=x*x*x/3-x;
return fabs(s);
}
void main()
{double x=-0.99,y;
int k=0;
printf("%d ,%lf\n",k,x);
{if(r>=x[i]&&r<=x[i+1])
{s=m[i]*pow(x[i+1]-r,3)/6*h[i]+m[i+1]*pow(r-x[i],3)/6*h[i]+(y[i]-m[i]*pow(h[i],2)/6)*(x[i+1]-r)/h[i]+(y[i+1]-m[i+1]*pow(h[i],2)/6)*(r-x[i])/h[i];
28.65
39.62
50.65
5.28794
9.4
13.84
20.2
24.9
28.44
31.1
k
7
8
9
10
11
12
78
104.6
156.6
208.6
260.7
312.5
35
36.5
36.6
34.6
31.6
31.0
k
13
14
15
16
17
18
364.4
416.3
468
494
507
520
20.9
14.8
7.8
do
{y=x;
数值计算方法上机实验报告1
数值计算方法上机实验报告1华北电力大学上机实验报告课程名称:数值计算方法专业班级:学生姓名:学号:指导教师:张建成实验目的:复习和巩固数值计算方法的基本数学模型,全面掌握运用计算机进行数值计算的具体过程及相关问题。
利用计算机语言独立编写、调试数值计算方法程序,培养学生利用计算机和所学理论知识分析解决实际问题的能力。
上机练习任务:利用计算机基本C 语言编写并调试一系列数值方法计算通用程序,并能正确计算给定题目,掌握调试技能。
掌握文件使用编程技能,如文件的各类操作,数据格式设计、通用程序运行过程中文件输入输出运行方式设计等。
一、列主元素消去法求解线性方程组 1、算法原理为避免绝对值很小的元素作为主元,在每次消元之前增加一个选主元的过程,将绝对值大的元素交换到主对角线的位置。
列主元素消元法是当变换到第k 步时,从k 列的kk a 及以下的各元素中选取绝对值最大的元素,然后通过二交换将其交换到kk a 的位置上。
2、输入输出变量ija :为系数矩阵的各个系数K :表示到第k 步消元 3、具体算例输入增广矩阵为: 3 1 2 -3 8 2 1 3 22 3 2 1 28解得:1x =6,2x =4,3x =2;二、LU 分解法求解线性方程组1、算法原理应用高斯消去法解n 阶线性方程Ax b =经过1n -步消去后得出一个等价的上三角形方程组()()n n A x b =,对上三角形方程组用逐步回代就可以求出解来。
这个过程也可通过矩阵分解来实现。
将非奇异阵分解成一个下三角阵L 和上三角阵U 的乘积A LU =称为对矩阵A 的三角分解,又称LU 分解。
根据LU 分解,将Ax b =分解为Ly bUx y =??=?形式,简化了求解问题。
2、输入输出变量ij a 为系数矩阵元素i b 为常数矩阵系数,i j i jl u 分别为下、上三角矩阵元素 k 表示第k 步消元 3、具体算例输入增广矩阵 3 2 3 4 39 3 -2 2 14 4 2 3 43 解得: 6 5 3三、拉格朗日插值1、算法原理设函数()y f x =在区间[a,b]上有节点01,,,,n x x x 上的函数值,构造一个次数不超过n次的代数多项式1110()n n n n p x a x a x a x a --=++++ ,使 (),0,1,,i i P x y i n == 。
数值计算方法实验报告
数值计算方法实验报告一、实验目的本实验旨在通过数值计算方法的实验操作,深入理解数值计算方法的原理与应用,掌握数值计算方法的相关技能,提高数值计算方法的实际应用能力。
二、实验内容1.数值微积分2.数值代数3.数值微分方程4.数值线性代数5.数值优化6.数值统计分析7.数值随机模拟8.数值傅立叶分析9.数值偏微分方程三、实验步骤1.数值微积分:通过不同的数值积分方法,计算给定函数的定积分值,并对不同数值积分方法的误差进行分析。
2.数值代数:通过使用线性代数方法,求解给定的线性方程组,并分析不同线性方程组求解方法的优劣。
3.数值微分方程:通过使用常微分方程数值解法,求解给定的微分方程,并比较不同求解方法的精度和稳定性。
4.数值线性代数:通过使用特征值分解方法,对给定的矩阵进行特征值分解,并分析不同特征值分解方法的优缺点。
5.数值优化:通过使用不同的优化方法,求解给定的优化问题,并比较不同的优化方法的效率和精度。
6.数值统计分析:通过使用不同的统计分析方法,对给定的数据进行统计分析,并分析不同的统计方法的优缺点。
7.数值随机模拟:通过使用随机模拟方法,模拟给定的概率分布,并分析不同随机模拟方法的效率和精度。
8.数值傅立叶分析:通过使用傅立叶分析方法,对给定的信号进行频谱分析,并分析不同的傅立叶分析方法的优缺点。
9.数值偏微分方程:通过使用偏微分方程数值解法,求解给定的偏微分方程,并比较不同求解方法的精度和稳定性。
四、实验结果与分析本实验中,通过对不同的数值计算方法的实验操作,我们可以更深入地理解数值计算方法的原理与应用,并掌握数值计算方法的相关技能,提高数值计算方法的实际应用能力。
同时,通过实验结果的分析,我们可以更好地比较不同数值计算方法的优缺点,为实际应用提供参考依据。
五、实验总结本实验旨在通过数值计算方法的实验操作,深入理解数值计算方法的原理与应用,掌握数值计算方法的相关技能,提高数值计算方法的实际应用能力。
数值计算方法实验报告例
实验报告一、实验目的二、实验内容三、实验环境四.实验方法五、实验过程1实验步骤2 关键代码及其解释3 调试过程六、实验总结1.遇到的问题及解决过程2.产生的错误及原因分析3.体会和收获。
七、程序源代码:八、教师评语实验报告一.试验目的:练习用数值方法求解给定的非线性方程。
二.实验内容:求解人口方程: )1(5.43e 1004.156-+=λλλe要求误差小于410-。
三.实验环境:PC 计算机,FORTRAN 、C 、C ++、VB 任选一种。
四.实验方法:牛顿法牛顿法简述:牛顿法是一种特殊的迭代法,其迭代公式为:,2,1,0,)()(1='-=+k x f x f x x k k k k ,当数列{}k x 收敛时,其极限值x 即为方程的解。
定理:给定方程],[,0)(b a x x f ∈=1)设0)()(<b f a f ;2))(x f ''在],[b a 上不变号,且],[,0)(b a x x f ∈≠'; 3)选取],[0b a x ∈,满足0)()(00>''x f x f ;则牛顿法产生的序列{}k x 收敛于0)(=x f 在],[b a 内的唯一解x 。
五.实验过程:1.编程: 用C 语言编出牛顿法的源程序。
2. 开机, 打开C 语言编译程序,键入所编程序源代码.3. 调试程序, 修改错误至能正确运行.六.实验总结:(1)牛顿法收敛速度快,但初值不容易确定,往往由于初值取得不当而使迭代不收敛或收敛慢,但若能保证)()(1+>K K x f x f (称为下山条件),则有可能收敛。
把新的近似值看作初值的话会比原来的取得好,有可能落入局部收敛的邻域。
(2)牛顿法要求)(x f '在x 附近不为零。
亦即x 只能是单根, 不能求重根。
可用重根加速收敛法求重根。
(3)牛顿法的每一步迭代中,都要计算一次导数值,若计算)(x f '比计算函数的近似值要麻烦的多。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
e = 0;
for(j=i+1;j<n;j++)
{
e = e + array[i][j] * array[j][n];
}
array[i][n]=(array[i][n] - e) / array[i][i];
array[i][i]=1;
for(j=i+1;j<n;j++)
{array[i][j]=0;}
scanf("%f",&array[i][j]);
printf("方程系数为\n");
for(i=0;i<n;i++)
{
for(k=0;k<=n-1;k++) //在相应的列中选主k+1;i<=n-1;i++)
{
x = fabs(array[m][k]);
if(fabs(array[i][k] > x))
{
int i,j,k,m,n;
float s,e,q;
double x;
float X[N];
float array[N][N+1];
printf("请输入方程的阶数\n");
scanf("%d",&n);
printf("输入的原方程系数,中间用空格隔开\n");
for(i=0;i<n;i++)
for(j=0;j<n+1;j++)
广东工业大学试卷用纸,共2页,第2页
一 编写 Gauss 列主元消元法求解线性方程组的程序,要求附有算例。(本题 20 分)
问题描述:编写一C语言程序,算法为列主元消元法,功能为求解线性方程组。
解:
# include<stdio.h>
# include<math.h>
#define N 200
void main()
年12 月 26 日(第 17 周星期六)进行答辩。不参加答辩者将取消考试成绩。
“数值计算”考试结果要求独立在计算机上完成,可使用Matlab或C
程序编程实现。考试结果将以报告书形式提交,内容包括对问题描述、计算
程序以及算例、计算结果、分析组成。计算程序要求具有通用性,能够处理
异常情况,可以输入问题、算法参数、算例及初始值,在计算过程中显示当
问题描述:
写一C语言程序,算法为拉格朗日插值法,功能为求解多项式函数。插值函数为:
解:
前计算状态、计算完成后显示计算结果。上述内容将作为试卷成绩的主要评
定依据。特别提醒,不得使用教师在讲课和实验时的范例作为考试结果。报
告书具体格式参考毕业设计手册。
以考生学号命名的文件夹存放程序及报告书电子版,以班级为单位刻录
在一张光盘中,与打印版报告书一起由班长和学习委员一起上交任课教师。
数值计算课程总成绩将由试卷成绩(70%)、平时成绩(30%)组成。
}
printf("解的集合\n");
for(j=0;j<n;j++)
{
printf("%8.4f", X[j]);
}
printf("\n");
}
例子:求方程组的解。
运算程序结果:
计算结果与分析:
计算结果如下: 。代入方程中得带的结果等于右边。可见列主元消元法求解精度高。
二 编写多项式插值的程序,要求附有算例。(本题 20 分)
{
for(j=0;j<n+1;j++)
{
printf("%8.4f", array[i][j]);
}
printf("\n");
}
printf("\n");
array[n-1][n] = array[n-1][n]/array[n-1][n-1];
array[n-1][n-1]=1;
for(i=n-2;i>=0;i--)
}
printf("消元后的矩阵\n");
for(i=0;i<n;i++) //输出消元后的矩阵//
{
for(j=0;j<n+1;j++)
{
printf("%8.4f", array[i][j]);
}
printf("\n");
}
for(i=0;i<n;i++) //输出解矩阵//
{
X[i]=array[i][n];
array[m][j] = q;
}//换行结束//
for(i=0;i<n;i++)
{
for(j=0;j<n+1;j++)
{
printf("%8.4f ",array[i][j]);
}
printf("\n"); //输出换行后的矩阵//
}
printf("\n\n\n\n\n\n");
for(i=k+1;i<=n-1;i++)
m = i;
}
printf("最大元在第%d行\n\n\n\n",m);
if(array[m][k]==0)
{
printf("ERROR");
return;
}
else //两行进行比较交换两行//
{
for(j=k;j<=n;j++)
{
q = array[k][j];
array[k][j] = array[m][j];
课程名称:
数值计算
试卷满分
100分
考试时间: 2015 年 12 月 26 日
(第 17 周 星期六)
题 号
一
二
三
四
五
六
七
八
九
十
总分
评卷得分
评卷签名
复核得分
复核签名
“数值计算”考试要求
“数值计算”考试以开卷形式进行。在“数值计算”课程考试日(2015
年12 月 19 日,第 12 周星期五)考试时间,在考试教室领取试题,在 2015
课程报告
课程名称______《数值计算》__
学生学院_____机电工程学院___
专业班级_____微电子(1)班____
学 号________
学生姓名_______________
指导教师_____________
XXXX年XX月XX日
姓 名:
线
学 号:
订
装专业:
学 院:
广东工业大学考试试卷( A )
{
s = array[i][k]/array[k][k]; //消元过程//
for(j=0;j<=n;j++)
{
array[i][j] =-( array[i][j] - s * array[k][j]);
}
}
}
}
}
printf("变换后的矩阵\n");
for(i=0;i<n;i++) //输出变换后的矩阵//
一 编写 Gauss 列主元消元法求解线性方程组的程序,要求附有算例。(本题 20 分)
二 编写多项式插值的程序,要求附有算例。(本题 20 分)
三 编写Gauss积分方法的程序,要求附有算例。(本题 20 分)
四 编写Euler方法求常微分方程初值问题的程序,要求附有算例。(本题 20 分)
五 编写Newton迭代法求非线性方程的程序,要求附有算例。(本题 20 分)