绝对值不等式,高考历年真题
高考数学经典专题:绝对值不等式含参数成立问题(含详解答案)
高考数学经典专题:绝对值不等式中含参数成立问题1.已知函数()|1||2|f x x x m m =-+-∈R ,.(1)当3m =时,解不等式()3f x ≥;(2)证明:当0m <时,总存在0x 使00()21f x x <-+成立2.已知函数()32f x x =-.(1)若不等式213f x t ⎛⎫+≥- ⎪⎝⎭的解集为11,,33⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭,求实数t 的值; (2)若不等式()3133y y f x x m -≤+++⋅对任意x ,y 恒成立,求实数m 的取值范围.3.已知函数()2f x x a =-,()|1|g x a x =-,a R ∈.(Ⅰ)若1a =,求满足()(1)1g x g x +->的实数x 的取值范围;(Ⅱ)设()()()h x f x g x =+,若存在12,[2,2]x x ∈-,使得()()216h x h x -≥成立,试求实数a 的取值范围.4.已知()|3|f x ax =-,不等式()6f x …的解集是{|13}x x -剟. (1)求a 的值;(2)若()()3f x f x k +-<存在实数解,求实数k 的取值范围. 5.已知函数f (x )=|2x ﹣a |+|x ﹣a +1|.(1)当a =4时,求解不等式f (x )≥8;(2)已知关于x 的不等式f (x )22a ≥在R 上恒成立,求参数a 的取值范围. 6.已知定义在R 上的函数2()|24|f x x a x a =-+-.(1)当1a =时,解不等式()5f x ≥;(2)若2()4f x a -≥对任意x ∈R 恒成立,求a 的取值范围.7.已知,a b 均为实数,且3410a b += .(Ⅰ)求22a b +的最小值;(Ⅱ)若2232x x a b +--≤+对任意的,a b ∈R 恒成立,求实数x 的取值范围.8.已知函数()|2||21|f x x x =+--.(1)求()5f x >-的解集(2)若关于x 的不等式2|2|||(|1|||)(0)b a b a a x x m a +--++-≠…能成立,求实数m 的取值范围.9.已知函数()2f x x a a =-+,()1g x x =+.(Ⅰ)当1a =时,解不等式()()3f x g x -≤;(Ⅱ)当x ∈R 时,()()4f x g x +≥恒成立,求实数a 的取值范围.10.已知函数()121f x ax x =++-(1)当1a =时,求不等式()3f x >的解集;(2)若02a <<,且对任意x ∈R ,3()2f x a≥恒成立,求a 的最小值. 11.函数()1f x x x a =-+-的图象关于直线2x =对称.(1)求a 的值;(2)若()2f x x m ≥+的解集非空,求实数m 的取值范围. 12.已知函数()|1||1|f x x x m =-+++.(1)当5m =-时,求不等式()2f x ≤的解集;(2)若二次函数2y x 2x 3=-++与函数()y f x =的图象恒有公共点,求实数m 的取值范围.13.已知函数()221f x x x =-++.(1)求不等式()9f x ≤的解集;(2)若对任意x ∈R ,不等式()f x a x b ≤+恒成立,求+a b 的最小值.14.已知()2221f x x x a =+-+ (1)当3a =-时,求不等式()2f x x x >+的解集; (2)若不等式()0f x ≥的解集为实数集R ,求实数a 的取值范围.15.已知函数(),f x x x a a R =-∈.(Ⅰ)当()()111f f +->,求a 的取值范围;。
高三数学绝对值不等式试题
高三数学绝对值不等式试题1.已知函数(Ⅰ)a=-3时,求不等式的解集;(Ⅱ)若关于x的不等式恒成立,求实数a的取值范围【答案】(Ⅰ) [-1,2] ;(Ⅱ) (-,]【解析】(Ⅰ) 当a="-3" 时,即为≤6,将分成,和三种情况,通过分类讨论去掉绝对值,将原不等式等价转化为三个一元一次不等式组,解这些不等式组即可得到原不等式的解集; (Ⅱ)利用绝对值不等式性质:求出的最小值,由关于x的不等式恒成立及不等式恒成立的知识知,<,解这个不等式,即可得到实数的取值范围.试题解析:(Ⅰ) 当a="-3" 时,为≤6,等价于或或,解得或或,所以不等式的解集为[-1,2];(5分)(Ⅱ) 因为=,所以<,解得实数a的取值范围(-,].(10分)【考点】含绝对值不等式解法,绝对值不等式性质,恒成立问题2.若关于x的不等式|a|≥|x+1|+|x-2|存在实数解,则实数a的取值范围是()A.[3,+∞)B.(-∞,3]C.(-1,2)D.(-2,3]【答案】B【解析】当x≤-1时,|x+1|+|x-2|=-x-1-x+2=-2x+1≥3;当-1<x≤2时,|x+1|+|x-2|=x+1-x+2=3;当x>2时,|x+1|+|x-2|=x+1+x-2=2x-1>3;综上可得|x+1|+|x-2|≥3,所以只要a≤3.即实数a的取值范围是(-∞,3],故选B.3.设A={x∈Z||x-2|≤5},则A中最小元素为( )A.2B.-3C.7D.0【答案】B【解析】由|x-2|≤5,得-3≤x≤7,又x∈Z,∴A中的最小元素为-3,选B.4.不等式解集是_____________________.【答案】【解析】设,则.由,解得,所以解集为【考点】分段函数图像不等式5.解不等式:x+|2x-1|<3.【答案】{x|-2<x<}【解析】原不等式可化为或解得≤x<或-2<x<.所以不等式的解集是{x|-2<x<}.6.若存在实数使得成立,则实数的取值范围为.【答案】【解析】在数轴上,表示横坐标为的点到横坐标为的点距离,就表示点到横坐标为1的点的距离,∵,∴要使得不等式成立,只要最小值就可以了,即,∴.故实数的取值范围是,故答案为:.【考点】绝对值不等式的解法.7.已知函数.若关于的不等式的解集是,则的取值范围是 .【答案】【解析】因为函数.若关于的不等式的解集是.即等价于对恒成立.等价于恒成立.即的最小值大于或等于.由绝对值不等式的性质可得.所以即.所以填.【考点】1.绝对值不等式的性质.2.不等式中恒成立问题.3.最值问题.8.已知函数.(1)若恒成立,求的取值范围;(2)当时,解不等式:.【答案】(1);(2).【解析】(1)即求出即可;(2)去绝对值解答.试题解析:(1)即2分又5分(2)当时,当时,当时,综上,解集为10分【考点】不等式选讲、绝对值不等式.9.关于的不等式的解集为,则实数的取值范围是 .【答案】【解析】表示的是到的距离和到的距离之和,表示的是到的距离,当时,此时若时则不能保证的解集为;当时,此时若时则不能保证的解集为;当,即,此时当为时,所以.【考点】1.绝对值不等式的几何意义.10.已知函数(I)若不等式的解集为,求实数的值;(II)在(I)的条件下,若对一切实数恒成立,求实数的取值范围.【答案】(Ⅰ);(Ⅱ)的取值范围为(-∞,5].【解析】(Ⅰ)不等式的解集为,求实数a的值,首先解不等式,解得,利用解集为,从而求出的值;(Ⅱ)若对一切实数恒成立,转化为求的最小值,只要实数的取值小于或等于它的最小值,不等式对一切实数恒成立,故关键点是求的最小值,由(Ⅰ)知,故,设,于是,易求出最小值为5,则的取值范围为(-∞,5].试题解析:(Ⅰ)由得,解得.又已知不等式的解集为,所以,解得.(Ⅱ)当时,,设,于是,所以当时,;当时,;当时,.综上可得,的最小值为5.从而若,即对一切实数恒成立,则的取值范围为(-∞,5].【考点】本题考不等式的解法,考查学生数形结合的能力以及化归与转化思想.11.设函数(Ⅰ)若,解不等式;(Ⅱ)若函数有最小值,求实数的取值范围.【答案】(Ⅰ)(Ⅱ)【解析】(Ⅰ)分类去掉绝对值符号,化为整式不等式再解,最后取并集即可.(Ⅱ)把函数f(x)化为分段函数,然后再找出f(x)有最小值的充要条件解之即可.试题解析:(Ⅰ)a=1时,f(x)=+x+3当x≥时,f(x)≤5可化为3x-1+x+3≤5,解得≤x;当x<时,f(x)≤5可化为-3x+1+x+3≤5,解得-,综上可得,原不等式的解集为(Ⅱ)f(x)= +x+3=函数有最小值的充要条件是,解得【考点】1.绝对值不等式;2.分段函数及其求函数值.12.设函数,.(1) 解不等式;(2) 设函数,且在上恒成立,求实数的取值范围.【答案】(1);(2)【解析】本小题主要考查不等式的相关知识,具体涉及到绝对值不等式及不等式证明以及解法等内容.(1)利用数轴分段法求解;(2)借助数形结合思想,画出两个函数的图像,通过图像的上下位置的比较,探求在上恒成立时实数的取值范围.试题解析:(1) 由条件知,由,解得. (5分)(2) 由得,由函数的图像可知的取值范围是. (10分)【考点】(1)绝对值不等式;(2)不等式证明以及解法;(3)函数的图像.13.(Ⅰ)(坐标系与参数方程)直线与圆相交的弦长为.(Ⅱ)(不等式选讲)设函数>1),且的最小值为,若,则的取值范围【答案】,3≤x≤8【解析】即,即,配方得,,所以,直线与圆相交的弦长为。
不等式与绝对值不等式(普通用卷)
不等式与绝对值不等式1.若关于x的不等式|x+2|+|x−a|<5有解,则实数a的取值范围是A.(−7,7)B.(−3,3)C.(−7,3)D.∅2.不等式|x+3|−|x−1|≤a2−3a对任意实数x恒成立,则实数a的取值范围为A.(−∞,−1]∪[4,+∞) B.(−∞,−2]∪[5,+∞)C.[1,2]D.(−∞,1]∪[2,+∞)3.不等式|x+2|+|x−1|≤3的解集是4.关于x的不等式|2x+3|≥3的解集是.5.如果关于x的不等式|x−2|+|x−3|≥a的解集为R,则a的取值范围是 .6.若对任意的x∈R,不等式|x−3|+|x−a|≥3恒成立,则实数a的取值范围为.7.已知关于x的不等式|x+2|+|x−1|>a恒成立,则实数a的取值范围是 .8.设函数f(x)=|x−4|+|x−a|(a>1),且f(x)的最小值为3.(1)求a的值;(2)若f(x)≤5,求满足条件的x的集合.9.已知a>0,b>0,且a2+b2=92,若a+b≤m恒成立,(1)求m的最小值;(2)若2|x−1|+|x|≥a+b对任意的a,b恒成立,求实数x的取值范围.10.已知不等式2|x−3|+|x−4|<2a.(1)若a=1,求不等式的解集;(2)若已知不等式的解集不是空集,求实数a的取值范围.11.已知函数f(x)=|x−2|+|x−1|.(1)求不等式f(x)≤7的解集;(3)若函数g(x)=x2−2x+|a2−3|的最小值不小于f(x)的最小值,求a的取值范围. 12.设函数f(x)=|x−2|−|x+1|.(1)解不等式f(x)>2;(2)若关于x的不等式a2−2a≤f(x)解集是空集,求实数a的取值范围.13.设函数f(x)=|x−1|+|x+2|的最小值为m.(1)求实数m的值;(2)已知a>2,b>2,且满足a+b=2+m,求证:1a−2+4b−2≥9.14.已知函数f(x)=|x+4|+|x−2|的最小值为n.(1)求n的值;(2)若不等式|x−a|+|x+4|≥n恒成立,求a的取值范围.参考答案1.C【解析】本题考查绝对值三角不等式及绝对值不等式的解法.由绝对值三角不等式可得|x +2|+|x −a |≥|(x +2)−(x −a )|=|2+a |,根据题意可得|2+a |<5,解得−7<a <3,故选C.【备注】无2.A【解析】本题主要考查绝对值不等式及一元二次不等式的解法.|x +3|−|x −1|≤(x +3)−(x −1)=4,故a 2−3a ≥4,解得a ≤−1或a ≥4,故选A.【备注】无3.[−2,1]【解析】本题主要考查含绝对值不等式的解法.解答本题时要注意通过分类讨论去掉绝对值的方式去解不等式.由题,当x >1时,x +2+x −1=2x +1≤3,解得x ≤1,无解;当−2≤x ≤1时,x +2+1−x =3≤3恒成立,故−2≤x ≤1;当x <−2时,−x −2+1−x =−2x −1≤3,解得x ≥−2,故无解.综上可知,−2≤x ≤1【备注】统计历年的高考试题可以看出,含绝对值不等式的解法现在主要在选考模块中进行考查,属于容易题.4.(−∞,−3]∪[0,+∞)【解析】本题考查绝对值不等式的解法.由|2x +3|≥3可得2x +3≥3或2x +3≤−3,所以x ≥0或x ≤−3,故答案为(−∞,−3]∪[0,+∞).【备注】无5.(−∞,1]【解析】本题主要考查含绝对值不等式和三角不等式的应用;因为|x −2|+|x −3|≥|(x −2)−(x −3)|=1,且不等式|x −2|+|x −3|≥a 的解集为R ,则a ≤1;故填(−∞,1].【备注】在求|x −2|+|x −3|的最值时,可以考虑绝对值的几何意义:|x −2|+|x −3|表示数轴上的点x 到点2和点3的距离之和,由平面几何知识,得当点x 在点2和点3之间时,其距离和最小,为1.6.a ≤0或a ≥6【解析】无【备注】无7.(−∞,3)【解析】无【备注】无8.(1)函数f (x )=|x ﹣4|+|x ﹣a |表示数轴上的x 对应点到4、a 对应点的距离之和, 它的最小值为|a ﹣4|=3,再结合a >1,可得a =7.(2)f (x )=|x ﹣4|+|x ﹣7|={−2x +11,x <43, 4≤x ≤72x −11,x >7,故由f (x )≤5可得{x <4−2x +11≤5①,或{4≤x ≤73≤5②,或{x >72x −11≤5③. 解①求得3≤x <4,解②求得4≤x ≤7,解③求得7<x ≤8,所以不等式的解集为{x|3≤x ≤8}.【解析】本题考查绝对值不等式.(1)由绝对值的几何意义得|a ﹣4|=3,而a >1,即a =7.(2)分段求解得{x|3≤x ≤8}.【备注】无9.(1)∵(a 2+b 2)(12+12)≥(a +b )2,∴a +b ≤3,(当且仅当a 1=b 1,即{a =32b =32(时取等号). 又a +b ≤m 恒成立,∴m ≥3.(2)要使2|x −1|+|x|≥a +b 恒成立,须且只须2|x −1|+|x|≥3,∴{x ≤0−2x +2−x ≥3或{0<x ≤1−2x +2+x ≥3或{x >12x −2+x ≥3 ∴x ≤−13或x ≥53. 【解析】本题考查基本不等式应用及绝对值不等式.解答本题时要注意(1)根据条件利用柯西不等式求得最值,并表示实数m 的最小值;(2)先构造绝对值不等式,然后解绝对值不等式,得到实数x 的取值范围.【备注】无10.(1)当a =1时,不等式即为2|x -3|+|x -4|<2,若x ≥4,则3x -10<2,x <4,所以舍去;若3<x <4,则x -2<2,所以3<x <4;若x ≤3,则10-3x <2,所以83<x ≤3.综上,不等式的解集为{x |83<x <4}.(2)设f (x )=2|x -3|+|x -4|,则f (x )={3x −10,x ≥4,x −2,3<x <4,10−3x,x ≤3.作出函数f (x )的图象,如图所示.由图象可知,f (x )≥1,所以2a >1,a >12,即a 的取值范围为(12,+∞).【解析】无【备注】无11.(1)由f (x )≤7,得|x −2|+|x −1|≤7,∴{x >22x −3≤7或{1≤x ≤21≤7或{x <13−2x ≤7. 解得−2≤x ≤5,故不等式f (x )≤7的解集为[−2,5].(2)∵f (x )=|x −2|+|x −1|≥|x −2−(x −1)|=1,∴f (x )的最小值为1.∵g (x )min =g(1)=|a 2−3|−1,∴|a 2−3|−1≥1,则a 2−3≥2或a 2−3≤−2,解得a ∈(−∞,−√5]∪[−1,1]∪[√5,+∞).【解析】无【备注】无12.(1)由|x −2|−|x +1|>2,得{x ≤−13>2或{−1<x <21−2x >2或{x ≥2−3>2, 解得x <−12,即解集为x ∈(−∞,−12).(2)∵a 2−2a ≤f (x )的解集为空集,∴a 2−2a >f (x )max ,而f (x )=|x −2|−|x +1|≤|(x −2)−(x +1)|=3,∴a 2−2a >3,即a >3或a <−1.【解析】无【备注】无13.(1)函数f (x )=|x −1|+|x +2|=|1−x|+|x +2|≥|(1−x)+(x +2)|=3, 故f (x )的最小值m =3.(2)由(1)得a +b =2+m =5,故a −2+b −2=1,故1a−2+4b−2=(1a−2+4b−2)[(a −2)+(b −2)]=1+b−2a−2+4(a−2)b−2+4≥5+2√b−2a−2⋅4(a−2)b−2=9. 当且仅当b −2=2(a −2),即a =73,b =83时“=”成立.【解析】无【备注】无14.(1)f (x )=|x +4|+|x −2|={2x +2,x ≥26,−4≤x <2−2x −2,x <−4,所以最小值为6,即n =6.(2)由(1)知n =6,|x −a|+|x +4|≥6恒成立,由于|x −a|+|x +4|≥|(x −a)−(x +4)|=|a +4|,等号当且仅当(x −a)(x +4)≤0时成立,故|a +4|≥6,解得a ≥2或a ≤−10.所以a 的取值范围为(−∞,−10]∪[2,+∞).【解析】无【备注】无。
绝对值不等式高考真题和典型题
绝对值不等式高考真题和典型题1.(2020·全国卷Ⅱ)已知函数f(x)=|x-a2|+|x-2a+1|.(1)当a=2时,求不等式f(x)≥4的解集;(2)若f(x)≥4,求a的取值范围.2.(2020·全国卷Ⅰ)已知函数f(x)=|3x+1|-2|x-1|.(1)画出y=f(x)的图象;(2)求不等式f(x)>f(x+1)的解集.3.已知函数f(x)=|x-a|+3x,其中a∈R.(1)当a=1时,求不等式f(x)≥3x+|2x+1|的解集;(2)若不等式f(x)≤0的解集为{x|x≤-1},求a的值.4.已知函数f(x)=|x-4|+|x-a|(a∈R)的最小值为a.(1)求实数a的值;(2)解不等式f(x)≤5.5.设函数f(x)=lg (|2x-1|+2|x+1|-a).(1)当a=4时,求函数f(x)的定义域;(2)若函数f(x)的定义域为R,求实数a的取值范围.参考答案1.解 (1)当a =2时,f (x )=|x -4|+|x -3|.当x ≤3时,f (x )=4-x +3-x =7-2x ,由f (x )≥4,解得x ≤32;当3<x <4时,f (x )=4-x +x -3=1,f (x )≥4无解;当x ≥4时,f (x )=x -4+x -3=2x -7,由f (x )≥4,解得x ≥112.综上所述,f (x )≥4的解集为⎩⎨⎧⎭⎬⎫x |x ≤32或x ≥112. (2)f (x )=|x -a 2|+|x -2a +1|≥|(x -a 2)-(x -2a +1)|=|-a 2+2a -1|=(a -1)2(当且仅当2a -1≤x ≤a 2时取等号),∴(a -1)2≥4,解得a ≤-1或a ≥3,∴a 的取值范围为(-∞,-1]∪[3,+∞).2.解 (1)f (x )=⎩⎪⎨⎪⎧ x +3,x ≥1,5x -1,-13<x <1,-x -3,x ≤-13,作出图象,如图所示.(2)将函数f (x )的图象向左平移1个单位,可得函数f (x +1)的图象,如图所示:由-x -3=5(x +1)-1,解得x =-76.所以不等式的解集为⎝ ⎛⎭⎪⎫-∞,-76. 3.解 (1)当a =1时,f (x )=|x -1|+3x ,由f (x )≥3x +|2x +1|,得|x -1|-|2x +1|≥0,当x >1时,x -1-(2x +1)≥0,得x ≤-2,无解;当-12≤x ≤1时,1-x -(2x +1)≥0,得-12≤x ≤0;当x <-12时,1-x -(-2x -1)≥0,得-2≤x <-12.所以不等式的解集为{x |-2≤x ≤0}.(2)由|x -a |+3x ≤0,可得⎩⎨⎧ x ≥a ,4x -a ≤0或⎩⎨⎧ x <a ,2x +a ≤0, 即⎩⎪⎨⎪⎧ x ≥a ,x ≤a 4或⎩⎪⎨⎪⎧ x <a ,x ≤-a 2. 当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x ≤-a 2. 由-a 2=-1,得a =2.当a =0时,不等式的解集为{x |x ≤0},不符合题意.当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x ≤a 4. 由a 4=-1,得a =-4.综上,a =2或a =-4.4.解 (1)f (x )=|x -4|+|x -a |≥|a -4|=a ,解得a =2.(2)由(1)知,f (x )=|x -4|+|x -2|=⎩⎪⎨⎪⎧ -2x +6,x ≤2,2,2<x ≤4,2x -6,x >4.故当x ≤2时,由-2x +6≤5,得12≤x ≤2,当2<x ≤4时,显然不等式成立,当x >4时,由2x -6≤5,得4<x ≤112,故不等式f (x )≤5的解集为⎩⎨⎧⎭⎬⎫x |12≤x ≤112. 5.解 (1)当a =4时,f (x )=lg (|2x -1|+2|x +1|-4),此时x 应满足|2x -1|+2|x +1|>4.当x ≤-1时,1-2x -2x -2>4,解得x <-54;当-1<x <12时,1-2x +2x +2>4,无解;当x ≥12时,2x -1+2x +2>4,解得x >34.综上所述,函数f (x )的定义域为⎩⎨⎧⎭⎬⎫x |x <-54或x >34. (2)函数f (x )的定义域为R ,即|2x -1|+2|x +1|-a >0在R 上恒成立,即a <(|2x -1|+2|x +1|)min .因为|2x -1|+2|x +1|=|2x -1|+|2x +2|≥|(2x -1)-(2x +2)|=3, 所以a <3,即实数a 的取值范围为(-∞,3).。
绝对值不等式(高考版)(含经典例题+答案)
绝对值不等式(一) 绝对值不等式c b x a x c b x a x ≤-+-≥-+-绝对值的几何意义:a 的几何意义是:数轴上表示数轴上点a 到原点的距离;b a -的几何意义是:数轴上表示数轴上,a b 两点的距离。
b a +的几何意义是:数轴上表示数轴上,a b -的两点的距离。
x a x b -+-的几何意义是:数轴上表示点x 到,a b 的两点的距离和,故b a b x a x -≥-+- 利用图像和几何意义解c b x a x ≤-+-或c b x a x ≥-+-的解集。
分区间讨论:()()()⎪⎩⎪⎨⎧>--≤≤-<++-=-+-b x b a x b x a a b a x b a x b x a x 22c b ax ≤-的解法:I.当0>c 时,不等式解集为:c b ax c ≤+≤- II.当0<c 时,不等式解集为:空集 c b ax ≥+的解法:I.当0>c 时,不等式解集为:c b ax c b ax -≤+≥+或 II.当0<c 时,不等式解集为:全体实数解:由于|x +1|+|x -2|≥|(1-(-2)|=3,所以只需a ≤3即可.若本题条件变为“∃x ∈R 使不等式|x +1|+|x -2|<a 成立为假命题”,求a 的范围.解:由条件知其等价命题为对∀x ∈R ,|x +1|+|x -2|≥a 恒成立,故a ≤(|x +1|+|x -2|)min ,又|x +1|+|x -2|≥|(x +1)-(x -2)|=3,∴a ≤3.例2:不等式log3(|x -4|+|x +5|)>a 对于一切x ∈R 恒成立,则实数a 的取值范围是________. 解:由绝对值的几何意义知:|x -4|+|x +5|≥9,则log 3(|x -4|+|x +5|)≥2所以要使不等式log 3(|x -4|+|x +5|)>a 对于一切x ∈R 恒成立,则需a <2.解:当x >1时,原不等式等价于2x <3⇒x <32,∴1<x <32;当-1≤x ≤1时,原不等式等价于x +1-x +1<3,此不等式恒成立,∴-1≤x ≤1;当x <-1时,原不等式等价于-2x <3⇒x >-32,∴-32<x <-1.综上可得:-32<x <32。
高三数学绝对值不等式试题
高三数学绝对值不等式试题1. (1).(不等式选做题)对任意,的最小值为()A.B.C.D.【答案】C【解析】因为,当且仅当时取等号,所以的最小值为,选C.【考点】含绝对值不等式性质2.集合A={x|<0},B={x||x-b|<a}.若“a=1”是“A∩B≠∅”的充分条件,则实数b的取值范围是______.【答案】(-2,2)【解析】A={x|<0}={x|-1<x<1},B={x||x-b|<a}={x|b-a<x<b+a},因为“a=1”是“A∩B≠∅”的充分条件,所以-1≤b-1<1或-1<b+1≤1,即-2<b<2.3.若关于x的不等式|x-2|+|x-a|≥a在R上恒成立,则a的最大值是()A.0B.1C.-1D.2【答案】B【解析】由于|x-2|+|x-a|≥|a-2|,∴等价于|a-2|≥a,解之得a≤1.故实数a的最大值为1,选B.4.设A={x∈Z||x-2|≤5},则A中最小元素为( )A.2B.-3C.7D.0【答案】B【解析】由|x-2|≤5,得-3≤x≤7,又x∈Z,∴A中的最小元素为-3,选B.5.解不等式:|x-1|>.【答案】{x|x<0或x>2}【解析】当x<0时,原不等式成立;当x≥1时,原不等式等价于x(x-1)>2,解得x>2或x<-1,所以x>2;当0<x<1时,原不等式等价于x(1-x)>2,这个不等式无解.综上,原不等式的解集是{x|x<0或x>2}.6.已知函数f(x)=|x+a|+|x-2|.(1)当a=-3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围.【答案】(1)x≤1或x≥4(2)-3≤a≤0【解析】(1)当a=-3时,f(x)≥3,|x-3|+|x-2|≥3,或或解得x≤1或x≥4.(2)原命题f(x)≤|x-4|在[1,2]上恒成立|x+a|+2-x≤4-x在[1,2]上恒成立-2-x≤a≤2-x在[1,2]上恒成立,故-3≤a≤0.7.已知函数.(1)当时,解不等式;(2)若时,,求a的取值范围.【答案】(1);(2)[-7,7].【解析】本题主要考查绝对值不等式的解法、不等式恒成立等基础知识,考查学生分析问题解决问题的能力、转化能力、计算能力.第一问,先把a=-1代入,先写出的解析式,利用零点分段法去掉绝对值,解不等式组,得到不等式的解集;第二问,在已知的范围内的绝对值可去掉,解绝对值不等式,使之转化成2个恒成立.试题解析:(1)当a=-1时,不等式为|x+1|-|x+3|≤1.当x≤-3时,不等式化为-(x+1)+(x+3)≤1,不等式不成立;当-3<x<-1时,不等式化为-(x+1)-(x+3)≤1,解得;当x≥-1时,不等式化为(x+1)-(x+3)≤1,不等式必成立.综上,不等式的解集为. 5分(2)当x∈[0,3]时,f(x)≤4即|x-a|≤x+7,由此得a≥-7且a≤2x+7.当x∈[0,3]时,2x+7的最小值为7,所以a的取值范围是[-7,7]. 10分【考点】绝对值不等式的解法、不等式恒成立.8.不等式的解集为__________________.【答案】.【解析】,由,解得.【考点】绝对值不等式的解法.9.设(1)当时,,求a的取值范围;(2)若对任意,恒成立,求实数a的最小值【答案】(1);(2)【解析】本题主要考查绝对值不等式的解法、不等式的性质等基础知识,考查学生分析问题解决问题的能力,考查学生的转化能力和计算能力第一问,利用绝对值不等式的解法,先解出的解,再利用是的子集,列不等式组,求解;第二问,先利用不等式的性质求出的最小值,将恒成立的表达式转化为,再解绝对值不等式,求出的取值范围试题解析:(1),即依题意,,由此得的取值范围是[0,2] 5分(2)当且仅当时取等号解不等式,得故a的最小值为 10分【考点】1 绝对值不等式的解法;2 集合的子集关系;3 不等式的性质;4 恒成立问题10.解不等式:x+|2x-1|<3.【答案】{x|-2<x<}【解析】原不等式可化为或解得≤x<或-2<x<.所以不等式的解集是{x|-2<x<}.11.在实数范围内,不等式的解集为.【答案】【解析】不等式,由绝对值的几何意义知(如下图),当时,不等式成立.【考点】含绝对值不等式.12.(1)解关于的不等式;(2)若关于的不等式有解,求实数的取值范围.【答案】(1);(2).【解析】(1)解绝对值不等式的关键是去掉绝对号,如果有多个绝对号,可考虑零点分段的办法,该题只需分和分类讨论;(2)构造函数,只需函数.试题解析:(1)不等式等价于:,或,所以解集为;(2)记,则,∴实数的取值范围是.【考点】1、;绝对值不等式的解法;2、分段函数的最值.13.若关于x的不等式有解,则实数的取值范围是: .【答案】【解析】∵关于的不等式有解,表示数轴上的到和的距离之差,其最小值等于,最大值是,由题意,∴.【考点】绝对值不等式的解法.14.关于的不等式.(Ⅰ)当时,解此不等式;(Ⅱ)设函数,当为何值时,恒成立?【答案】(1)解集为;(2).【解析】本题考查绝对值不等式的解法和不等式的恒成立问题,考查学生的分类讨论思想和转化能力.第一问,先将代入,利用对数值得,利用零点分段法去绝对值解不等式;第二问,先将已知转化为,利用绝对值的几何意义得到的最大值,所以,即.试题解析:(1)当时,原不等式可变为,可得其解集为(2)设,则由对数定义及绝对值的几何意义知,因在上为增函数,则,当时,,故只需即可,即时,恒成立.【考点】1.解绝对值不等式;2.绝对值的几何意义;3.函数的最大值.15.已知函数.(1)若的解集为,求实数的值.(2)当且时,解关于的不等式.【答案】(1);(2)当时,原不等式的解集为,当时,原不等式的解集为.【解析】本题考查绝对值不等式的解法及利用解集求实数的值,考查学生的分类讨论思想和转化能力.第一问,利用绝对值不等式的解法求出的范围,让它和已知解集相同,列出等式,解出和的值;第二问,先将代入,得到解析式,再代入到所求不等式中,找到需要解的不等式,注意到当时,2个绝对值一样,所以先进行讨论,当时,按照解绝对值不等式的步骤,先列出不等式组,内部求交集,综合和的情况得到结论.试题解析:(Ⅰ)由得,所以解之得为所求. 4分(Ⅱ)当时,,所以当时,不等式①恒成立,即;当时,不等式或或,解得或或,即;综上,当时,原不等式的解集为,当时,原不等式的解集为. 10分【考点】1.绝对值不等式的解法.16.已知的最小值为,则二项式展开式中项的系数为 .【答案】15【解析】二项式展开式中含的项为其系数为.【考点】1、绝对值不等式的性质;2、二项式定理.17.已知函数f(x)=|x-2|+2|x-a|(a∈R).(I)当时,解不等式f(x)>3;(II)不等式在区间(-∞,+∞)上恒成立,求实数a的取值范围.【答案】(I) ;(II)或.【解析】(I) 分三种情况去掉绝对值解不等式;(II)分三种情况讨论,即得的最小值为,再得,解不等式得a的取值范围.试题解析:(Ⅰ)解得;解得;解得, 3分不等式的解集为. 5分(Ⅱ);;;的最小值为; 8分则,解得或. 10分【考点】1、绝对值不等式的解法.18.设函数.(Ⅰ)解不等式;(Ⅱ)若函数的解集为,求实数的取值范围.【答案】①②.【解析】(Ⅰ)把绝对值函数写出分段函数,然后分别解不等式. (Ⅱ)画出函数的图象,由图象知过定点的直线的斜率满足函数的解集为.试题解析:(Ⅰ),即解集为..5分(Ⅱ)如图,,故依题知,即实数的取值范围为 5分【考点】1.绝对值不等式;2.数形结合数学思想.19.设.(1)解不等式;(2)若对任意实数,恒成立,求实数a的取值范围.【答案】(Ⅰ)或;(Ⅱ)【解析】(Ⅰ)绝对值函数是分段函数,要分段考虑, (Ⅱ)对 ,恒成立等价于对,恒成立,等价于对,函数的最大值小于等于 , 利用函数在区间上是单调递增,求出最大值即可试题解析:解:, 2分(Ⅰ)画出函数的图像如图,的解为或. 4分的解集为或 5分(Ⅱ),即, 7分10分【考点】绝对值不等式,不等式恒成立.20.若关于的不等式的解集非空,则实数的取值范围是;【答案】【解析】根据题意,由于的不等式即可知实数的取值范围是。
高二数学绝对值不等式(含答案)
高二数学绝对值不等式一、选择题 : 1.已知{}2,Ma a =≥{}2(2)(3)0,A a a a a M =--=∈则集合A 的子集共有( )A .1个B .2个C .4个D .8 个【答案】B2.不等式2|x 2|2-<的解集是( )A .(﹣1,1)B .(﹣2,2)C .(﹣1,0)∪(0,1)D .(﹣2,0)∪(0,2)【答案】D3.不等式||x -2>1的解集是( )A .(1,3)B .(-∞,1)C .(3,+∞)D .(-∞,1)∪(3,+∞)【答案】D4.不等式|x +1|>x +1成立的充分不必要条件是( )A .x <0B .x >-1C .x <-1D .x <-2【答案】D5.不等式|x -2|+|x +1|<5的解集为( )A .(-∞,-2)∪(3,+∞)B .(-∞,-1)∪(2,+∞)C .(-2,4)D .(-2,3)【答案】D6.不等式5310x x -++≥的解集是( )A .[]5,7-B .[]4,6-C .(][),57,-∞-⋃+∞D .(][),46,-∞-⋃+∞【答案】D7.不等式3≤|5﹣2x|<9的解集为()A.[﹣2,1)∪[4,7)B.(﹣2,1]∪(4,7]C.(﹣2,﹣1]∪[4,7)D.(﹣2,1]∪[4,7)【答案】Dx-2+||x>a恒成立”的()8.已知a∈R,则“a<2”是“||A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C9.关于x的不等式|x-1|+|x-2|>a2+a+1的解集为R,则a的取值范围是() A.(0,1) B.(-1,0) C.(1,2) D.(-∞,-1)【答案】B10.不等式|x+3|﹣|x﹣1|≤a2﹣3a对任意实数x恒成立,则实数a的取值范围为()A.(﹣∞,﹣1]∪[4,+∞)B.(﹣∞,﹣2]∪[5,+∞)C.[1,2] D.(﹣∞,1]∪[2,+∞)【答案】A11.已知不等式|x+2|+|x-3|≤a的解集不是空集,则实数a的取值范围是()A.a<5 B.a≤5 C.a>5 D.a≥5【答案】D12.若对任意x∈R,不等式|x|≥ax恒成立,则实数a的取值范围是()A.a<-1 B.a≥1 C.|a|<1 D.|a|≤1【答案】D二、解答题 :13.选修4-5:不等式选讲已知函数|4||8|)(---=x x x f . (1)作出函数)(x f y =的图像; (2)解不等式2|4||8|>---x x . 【答案】解:(1)4()2124f x x ⎧⎪=-+⎨⎪-⎩,,4488.x x x ≤<≤>,图象如下:(2)不等式842x x --->,即()2f x >, 由2122x -+=得5x =.由函数()f x 图象可知,原不等式的解集为(5)-∞,.14.已知关于x 的不等式|x ﹣3|+|x ﹣4|<a .(1)当a=2时,解上述不等式;(2)如果关于x 的不等式|x ﹣3|+|x ﹣4|<a 的解集为空集,求实数a 的取值范围.【答案】(1)原不等式|x ﹣3|+|x ﹣4|<2当x<3时,原不等式化为7﹣2x<2,解得5x 2>,∴5x 32<< 当3≤x≤4时,原不等式化为1<2,∴3≤x≤4 当x>4时,原不等式化为2x ﹣7<2,解得9x 2<,∴94x 2<<综上,原不等式解集为59xx 22⎧⎫<<⎨⎬⎩⎭;(2)法一、作出y=|x ﹣3|+|x ﹣4|与y=a 的图象,若使|x ﹣3|+|x ﹣4|<a 解集为空集只须y=|x ﹣3|+|x ﹣4|图象在y=a 的图象的上方, 或y=a 与y=1重合,∴a≤1 所以,a 的范围为(﹣∞,1],法二、:y=|x ﹣3|+|x ﹣4|=2x 7,x 41,3x 472x,x 3-≥⎧⎪≤≤⎨⎪-<⎩当x≥4时,y≥1 当3≤x<4时,y=1 当x<3时,y>1综上y≥1,原问题等价为a≤[|x ﹣3|+|x ﹣4|]min ∴a≤1 法三、:∵|x ﹣3|+|x ﹣4|≥|x ﹣3﹣x+4|=1, 当且仅当(x ﹣3)(x ﹣4)≤0时,上式取等号 ∴a≤1.15.已知函数f (x )=log 2(|x+1|+|x ﹣2|﹣m ).(1)当m=5时,求函数f (x )的定义域;(2)若关于x 的不等式f (x )≥1的解集是R ,求m 的取值范围【答案】(1)由题设知:当m=5时:|x+1|+|x ﹣2|>5, 不等式的解集是以下三个不等式组解集的并集:2125x x x ≥⎧⎨++->⎩,或12125x x x ≤<⎧⎨+-+>⎩,或1125x x x >⎧⎨---+>⎩, 解得函数f (x )的定义域为(﹣∞,﹣2)∪(3,+∞); (2)不等式f (x )≥1即|x+1|+|x ﹣2|>m+2,∵x ∈R 时,恒有|x+1|+|x ﹣2|≥|(x+1)﹣(x ﹣2)|=3, 不等式|x+1|+|x ﹣2|>m+2解集是R ,∴m+2<3,m 的取值范围是(﹣∞,1). 故答案为(﹣∞,1).16.已知函数f (x )=|x ﹣a|.(1)若不等式f (x )≤3的解集为{x|﹣1≤x≤5},求实数a 的值;(2)在(1)的条件下,若f (x )+f (x+5)≥m 对一切实数x 恒成立,求实数m 的取值范围.【答案】(1)由f (x )≤3得|x ﹣a|≤3, 解得a ﹣3≤x≤a+3.又已知不等式f (x )≤3的解集为{x|﹣1≤x≤5}, 所以3135a a -=-⎧⎨+=⎩解得a=2.(6分)(2)当a=2时,f (x )=|x ﹣2|. 设g (x )=f (x )+f (x+5),于是()21,323532212x x g x x x x x --<-⎧⎪=-++=-≤≤⎨⎪+>⎩所以当x<﹣3时,g (x )>5; 当﹣3≤x≤2时,g (x )=5; 当x>2时,g (x )>5.综上可得,g (x )的最小值为5. 从而,若f (x )+f (x+5)≥m即g (x )≥m 对一切实数x 恒成立,则m 的取值范围为(﹣∞,5].17.设函数()3f x x a x =-+,其中0a >.(Ⅰ)当1a =时,求不等式()32f x x ≥+的解集 (Ⅱ)若不等式()0f x ≤的解集为{}|1x x ≤-,求a 的值.【答案】解:(Ⅰ)当1a =时,()32f x x ≥+可化为|1|2x -≥.由此可得3x ≥或1x ≤-. 故不等式()32f x x ≥+的解集为{|3x x ≥或1}x ≤-. (Ⅱ)由()0f x ≤得:30x a x -+≤此不等式化为不等式组30x a x a x ≥⎧⎨-+≤⎩或30x aa x x ≤⎧⎨-+≤⎩即4x a a x ≥⎧⎪⎨≤⎪⎩或2x a a a ≤⎧⎪⎨≤-⎪⎩ 因为0a >,所以不等式组的解集为{}|2ax x ≤-由题设可得2a-= 1-,故2a =18.(选修4﹣5:不等式选讲)已知函数f (x)|2x 1||2x a |=-++,g(x)x 3=+. (Ⅰ)当a=﹣2时,求不等式f (x)g(x)<的解集; (Ⅱ)设a >﹣1,且当时,f (x)g(x)≤,求a 的取值范围.【答案】(Ⅰ)当a=﹣2时,求不等式f (x )<g (x )化为|2x ﹣1|+|2x ﹣2|﹣x ﹣3<0.设y=|2x ﹣1|+|2x ﹣2|﹣x ﹣3,则y=,它的图象如图所示:结合图象可得,y <0的解集为(0,2),故原不等式的解集为(0,2). (Ⅱ)设a >﹣1,且当时,f (x )=1+a ,不等式化为 1+a≤x+3,故 x≥a ﹣2对都成立.故﹣≥a ﹣2,解得 a≤,故a 的取值范围为(﹣1,].19.设函数()|1|||f x x x a =-+-.(Ⅰ)若1,a =-解不等式()3f x ≥;(Ⅱ)如果x R ∀∈,()2f x ≥,求a 的取值范围.【答案】解:(Ⅰ)当()11a f x x x =-=-++时,. 由()3113f x x x ≥-++≥得.①1x ≤-时,不等式化为11323x x x ---≥-≥.即.不等式组1()3x f x ≤-⎧⎨≥⎩的解集为3,2⎛⎤-∞- ⎥⎝⎦.②当11x -<≤时,不等式化为113x x -++≥,不可能成立. 不等式组11()3x f x -<≤⎧⎨≥⎩的解集为∅.③当1x >时,不等式化为1323x x x x -++≥≥,即.不等式组1()3x f x >⎧⎨≥⎩的解集为3,2⎡⎫+∞⎪⎢⎣⎭.综上得,()3f x ≥的解集为33,,22⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭.(Ⅱ)若1a =,()21f x x =-,不满足题设条件.若1a <,21,,1,1,2(1),1x a x a a a x x a x -++≤⎧⎪-<<⎨⎪-+≥⎩,f x ()的最小值为1-a . 若1a >,21,1,1,1,2(1),.x a x a x a x a x a -++≤⎧⎪-<<⎨⎪-+≥⎩,f x ()的最小值为a-1. 所以x R ∀∈,()2f x ≥的充要条件是12a -≥,从而a 的取值范围为][(13)-∞-⋃+∞,,.20.已知()2f x x x a =--.(I )当1a =时,解不等式()2f x x <-; (II )当(0,1]x ∈时,()2112f x x <-恒成立,求实数a 的取值范围. 【答案】(1){}|2x x <(2)12a ⎛∈- ⎝。
高三数学绝对值不等式试题
高三数学绝对值不等式试题1. (1).(不等式选做题)对任意,的最小值为()A.B.C.D.【答案】C【解析】因为,当且仅当时取等号,所以的最小值为,选C.【考点】含绝对值不等式性质2.设函数.(1)求不等式的解集;(2)若存在实数,使得成立,求实数的取值范围.【答案】(1);(2)【解析】(1)由函数的零点为或.所以将x分为三类即可得到不等式的解集.(2)存在实数,使得成立,即等价于函数的最大值大于.由柯西不等式放缩即可求得到的最大值,从而求得实数的取值范围,即可得结论.(1)当时,由得,所以;当时,由得,所以;当时,由得,所以. 2分综上不等式的解集. 3分(2), 4分由柯西不等式得,, 5分当且仅当时取“=”,的取值范围是. 7分【考点】1.绝对值不等式.2.柯西不等式.3.若存在实数使成立,则实数的取值范围_______【答案】【解析】由又因为存在实数使成立则,则【考点】绝对值不等式;存在性问题.4.已知f(x)=|x+1|+|x-1|,不等式f(x)的解集为M.(1)求M;(2)当a,b M时,证明:2|a+b|<|4+ab|.【答案】(1);(2)证明过程详见解析.【解析】本题主要考查绝对值不等式、不等式的证明等基础知识,意在考查考生的运算求解能力、利用综合法、分类讨论思想的解题能力.第一问,利用零点分段法分别去掉绝对值,解不等式;第二问,可先用分析法由所求证的结论入手,分析需要证明什么,再用综合法证明,要证2|a+b|<|4+ab|,需证明,展开,需证明,由已知入手,找到,,从而证出.试题解析:(1)由,即,当时,则,得,∴;当时,则,得,恒成立,∴;当时,则,得,∴;综上,. 5分(2)当时,则,.即:,,∴,∴,即,也就是,∴,即:,即. 10分【考点】绝对值不等式、不等式的证明.5.若不等式恒成立,则实数的取值范围为 _______;【答案】【解析】因为函数,不等式恒成立,即,所以实数的取值范围为.【考点】绝对值不等式的最值问题.6.设.(1)当时,,求a的取值范围;(2)若对任意,恒成立,求实数a的最小值.【答案】(1);(2).【解析】本题主要考查绝对值不等式的解法、不等式的性质等基础知识,考查学生分析问题解决问题的能力,考查学生的转化能力和计算能力.第一问,利用绝对值不等式的解法,先解出的解,再利用是的子集,列不等式组,求解;第二问,先利用不等式的性质求出的最小值,将恒成立的表达式转化为,再解绝对值不等式,求出的取值范围.试题解析:(1),即.依题意,,由此得的取值范围是[0,2] .5分(2).当且仅当时取等号.解不等式,得.故a的最小值为. 10分【考点】1.绝对值不等式的解法;2.集合的子集关系;3.不等式的性质;4.恒成立问题.7.已知函数.(1)若不等式的解集为,求实数的值;(2)在(Ⅰ)的条件下,若存在实数使成立,求实数的取值范围.【答案】(1);(2)【解析】(1)由|2x a|+a≤6得|2x a|≤6 a,再利用绝对值不等式的解法去掉绝对值,结合条件得出a值;(2)由(1)知f(x)="|2x" 1|+1,令φ(n)=f(n)+f(n),化简φ(n)的解析式,若存在实数n使f(n)≤m f( n)成立,只须m大于等于φ(n)的最小值即可,从而求出实数m的取值范围.试题解析:(1)由解得则所以 5分(2)由(1)知则原不等式为+2所以 10分【考点】绝对值不等式的解法8.不等式的解集为_______________.【答案】【解析】当时,原不等式为恒成立;当时,原不等式为,解得,所以;当时,原不等式为,无解.综上可知,不等式的解集为.【考点】绝对值不等式的解法9.已知函数(1)求不等式的解集;(2)若关于x的不等式的解集非空,求实数的取值范围.【答案】(1);(2)或.【解析】本题考查绝对值不等式的解法和不等式的有解问题,考查学生运用函数零点分类讨论的解题思路和问题的转化能力.第一问,利用零点分段法进行分段,分别去掉绝对值,列出不等式组,求出每一个不等式的解,通过求交集、求并集得到原不等式的解集;第二问,先将不等式的解集非空,转化为,利用绝对值的运算性质,求出函数的最小值4,所以,再解绝对值不等式,得到的取值范围.试题解析:(Ⅰ)原不等式等价于或或 3分解得或或即不等式的解集为 5分(Ⅱ) 8分∴或. 10分【考点】1.绝对值的运算性质;2.绝对值不等式的解法.10.不等式对任意实数恒成立,则实数的取值范围是____________.【答案】或.【解析】,故的值域为,不等式对任意实数恒成立,即,解得或.【考点】绝对值不等式的解法,恒成立问题.11.若关于实数的不等式的解集是空集,则实数的取值范围是____________.【答案】【解析】使关于实数的不等式的解集是空集,则,由绝对值的几何意义可知,故,解得.【考点】极坐标系、绝对值不等式.12.不等式组的解集为 .【答案】【解析】,或,所以不等式组的解集为.【考点】1.绝对值不等式的解法;2.分式不等式的解法;3.集合的交集运算.13.若不等式对于一切非零实数均成立,则实数的取值范围是()A.B.C.D.【答案】C【解析】因为,要使对于一切非零实数,恒成立,则,即,选C.【考点】1.函数最值;2.绝对值不等式.14.给出下列四个命题:①命题,则.②当时,不等式的解集为非空.③当时,有.④设复数z满足(1-i)z="2" i,则z=1-i其中真命题的个数是A.1B.2C.3D.4【答案】A.【解析】命题,则,故①错;当时,不等式的解集不是非空,②错;当时,,由均值不等式有,当且仅当时等号成立,③正确;复数z满足(1-i)z="2" i,设,则,所以,④错.所以真命题个数为1个,选A.【考点】1.否命题;2.绝对值不等式;3.均值不等式;4.复数的运算.15.已知函数.(Ⅰ)当a = 3时,求不等式的解集;(Ⅱ)若对恒成立,求实数a的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)将a = 3代入解绝对值不等式即可;(Ⅱ)由题知恒成立令,画出图象求解.试题解析:(Ⅰ)时,即求解①当时,②当时,③当时,综上,解集为(Ⅱ)即恒成立令则函数图象为,【考点】1.绝对值不等式;2.分段函数图象.16.已知实数组成的数组满足条件:①;②.(Ⅰ)当时,求,的值;(Ⅱ)当时,求证:;(Ⅲ)设,且,求证:.【答案】(1)或;(2)详见解析;(3)详见解析.【解析】(1)列出方程组求解;(2)应用绝对值不等式进行证明;(3)应用绝对值不等式可以证明.试题解析:(Ⅰ)解:由(1)得,再由(2)知,且.当时,.得,所以 2分当时,同理得 4分(Ⅱ)证明:当时,由已知,.所以. 9分(Ⅲ)证明:因为,且.所以,即. 11分). 14分.【考点】绝对值不等式.17.若不等式对一切实数恒成立,则实数的取值范围是 .【答案】【解析】有图像可知: 时,的图像的图像恒在的图像的下面.【考点】不等式恒成立问题.18.设(1)当,解不等式;(2)当时,若,使得不等式成立,求实数的取值范围.【答案】(I);(II).【解析】(I)绝对值不等式的解法,易知不等式的等价不等式组解出不等式解集; (II)存在性问题转化为函数最值问题,含绝对值的函数式去绝对值化为分段函数求得最值即可.试题解析:(I)时原不等式等价于即,所以解集为.(II)当时,,令,由图像知:当时,取得最小值,由题意知:,所以实数的取值范围为.【考点】1、绝对值不等式的解法; 2、函数最值问题.19.已知函数,.(Ⅰ)解不等式;(Ⅱ)若,试求的最小值.【答案】(Ⅰ)原不等式的解集为或;(Ⅱ)的最小值为.【解析】(Ⅰ)将原不等式表示出来,借助含绝对值不等式的解法进行求解;(Ⅱ)先将不等式配成柯西不等式的相关形式,然后利用柯西不等式求的最小值.试题解析:(Ⅰ)原不等式化为,或,即或,原不等式的解集为或. 3分(Ⅱ)由已知,得,由柯西不等式,得,, 5分当且仅当即时等号成立, 6分所以,的最小值为. 7分【考点】含绝对值不等式、柯西不等式20.(Ⅰ)(坐标系与参数方程)直线与圆相交的弦长为.(Ⅱ)(不等式选讲)设函数>1),且的最小值为,若,则的取值范围【答案】,3≤x≤8【解析】即,即,配方得,,所以,直线与圆相交的弦长为。
高考数学十年真题专题解析—不等式选讲
不等式选讲年份题号考点考查内容2011文理24不等式选讲绝对值不等式的解法2012文理24不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法2013卷1文理24不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷2文理24不等式选讲多元不等式的证明2014卷1文理24不等式选讲基本不等式的应用卷2文理24不等式选讲绝对值不等式的解法2015卷1文理24不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷2文理24不等式选讲不等式的证明2016卷1文理24不等式选讲分段函数的图像,绝对值不等式的解法卷2文理24不等式选讲绝对值不等式的解法,绝对值不等式的证明卷3文理24不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法2017卷1文理23不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷2文理23不等式选讲不等式的证明卷3文理23不等式选讲绝对值不等式的解法,绝对值不等式解集非空的参数取值范围问题2018卷1文理23不等式选绝对值不等式的解法,不等式恒成立参数取值范围问题的解法讲卷2文理23不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷3文理23不等式选讲绝对值函数的图象,不等式恒成立参数最值问题的解法2019卷1文理23不等式选讲三元条件不等式的证明卷2文理23不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷3文理23不等式选讲三元条件最值问题的解法,三元条件不等式的证明2020卷1文理23不等式选讲绝对值函数的图像,绝对值不等式的解法卷2文理23不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷3文理23不等式选讲三元条件不等式的证明考点出现频率2021年预测考点120绝对值不等式的求解23次考4次2021年主要考查绝对值不等式的解法、绝对值不等式的证明,不等式恒成立参数取值范围问题的解法等.考点121含绝对值不等式的恒成立问题23次考12次考点122不等式的证明23次考7次考点120绝对值不等式的求解1.(2020全国Ⅰ文理22)已知函数()3121f x x x =+--.(1)画出()y f x =的图像;(2)求不等式()()1f x f x >+的解集.【解析】(1)∵()3,1151,1313,3x x f x x x x x ⎧⎪+≥⎪⎪=--<<⎨⎪⎪--≤-⎪⎩,作出图像,如图所示:(2)将函数()f x 的图像向左平移1个单位,可得函数()1f x +的图像,如图所示:由()3511x x --=+-,解得76x =-,∴不等式的解集为7,6⎛⎫-∞- ⎪⎝⎭.2.(2020江苏23)设x ∈R ,解不等式2|1|||4x x ++≤.【答案】22,3⎡⎤-⎢⎥⎣⎦【思路导引】根据绝对值定义化为三个不等式组,解得结果.【解析】1224x x x <-⎧⎨---≤⎩ 或10224x x x -≤≤⎧⎨+-≤⎩或0224x x x >⎧⎨++≤⎩,21x ∴-≤<-或10x -≤≤或203x <≤,∴解集为22,3⎡⎤-⎢⎥⎣⎦.3.(2016全国I 文理)已知函数()|1||23|f x x x =+--.(I)在图中画出()y f x =的图像;(II)求不等式|()|1f x >的解集.【解析】(1)如图所示:(2)()4133212342x x f x x x x x ⎧⎪--⎪⎪=--<<⎨⎪⎪-⎪⎩,≤,,≥,()1f x >.当1x -≤,41x ->,解得5x >或3x <,1x -∴≤;当312x -<<,321x ->,解得1x >或13x <,113x -<<∴或312x <<;当32x ≥,41x ->,解得5x >或3x <,332x <∴≤或5x >.综上,13x <或13x <<或5x >,()1f x >∴,解集为()()11353⎛⎫-∞+∞ ⎪⎝⎭ ,,,.4.(2014全国II 文理)设函数()f x =1(0)x x a a a++->(Ⅰ)证明:()f x ≥2;(Ⅱ)若()35f <,求a 的取值范围.【解析】(I)由0a >,有()f x 111()2x x a x x a a a a a=++-≥+--=+≥,∴()f x ≥2.(Ⅱ)1(3)33f a a=++-.当时a >3时,(3)f =1a a+,由(3)f <5得3<a <5212;当0<a ≤3时,(3)f =16a a-+,由(3)f <5得12<a ≤3.综上:a 的取值范围是(152+,5212+).5.(2011新课标文理)设函数()3f x x a x =-+,其中0a >.(Ⅰ)当1a =时,求不等式()32f x x ≥+的解集;(Ⅱ)若不等式()0f x ≤的解集为{}|1x x ≤-,求a 的值.【解析】(Ⅰ)当1a =时,()32f x x ≥+可化为|1|2x -≥,由此可得3x ≥或1x ≤-.故不等式()32f x x ≥+的解集为{|3x x ≥或1}x ≤-.(Ⅱ)由()0f x ≤得30x a x -+≤,此不等式化为不等式组30x ax a x ≥⎧⎨-+≤⎩或30x aa x x ≤⎧⎨-+≤⎩,即4x a a x ⎧⎪⎨⎪⎩≥≤或2x aax ⎧⎪⎨-⎪⎩≤≤,因为0a >,∴不等式组的解集为{}|2a x x ≤-,由题设可得2a-=1-,故2a =.考点121含绝对值不等式的恒成立问题6.(2020全国Ⅱ文理22)已知函数()221f x x a x a =-+-+.(1)当2a =时,求不等式()4f x ≥的解集;(2)若()4f x ≥,求a 的取值范围.【答案】(1)32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭;(2)(][),13,-∞-+∞ .【思路导引】(1)分别在3x ≤、34x <<和4x ≥三种情况下解不等式求得结果;(2)利用绝对值三角不等式可得到()()21f x a ≥-,由此构造不等式求得结果.【解析】(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤;当34x <<时,()4314f x x x =-+-=≥,无解;当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥;综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭.(2)()()()()22222121211f x x a x a x ax a a a a =-+-+≥---+=-+-=-(当且仅当221a x a -≤≤时取等号),()214a ∴-≥,解得:1a ≤-或3a ≥,a ∴的取值范围为(][),13,-∞-+∞ .7.(2019全国II 文理23)[选修4-5:不等式选讲](10分)已知()|||2|().f x x a x x x a =-+--(1)当1a =时,求不等式()0f x <的解集;(2)若(,1)x ∈-∞时,()0f x <,求a 的取值范围.【解析】(1)当a=1时,()=|1| +|2|(1)f x x x x x ---.当1x <时,2()2(1)0f x x =--<;当1x ≥时,()0f x ≥,∴不等式()0f x <的解集为(,1)-∞.(2)因为()=0f a ,∴1a ≥.当1a ≥,(,1)x ∈-∞时,()=() +(2)()=2()(1)<0f x a x x x x a a x x -----∴a 的取值范围是[1,)+∞.8.(2018全国Ⅰ文理)已知()|1||1|f x x ax =+--.(1)当1a =时,求不等式()1f x >的解集;(2)若(0,1)x ∈时不等式()f x x >成立,求a 的取值范围.【解析】(1)当1a =时,()|1||1|f x x x =+--,即2,1,()2,11,2, 1.--⎧⎪=-<<⎨⎪⎩≤≥x f x x x x 故不等式()1f x >的解集为1{|}2x x >.(2)当(0,1)x ∈时|1||1|x ax x +-->成立等价于当(0,1)x ∈时|1|1ax -<成立.若0≤a ,则当(0,1)x ∈时|1|1-≥ax ;若0a >,|1|1ax -<的解集为20x a <<,∴21≥a,故02<≤a .综上,a 的取值范围为(0,2].9.(2018全国Ⅱ文理)设函数()5|||2|=-+--f x x a x .(1)当1a =时,求不等式()0≥f x 的解集;(2)若()1≤f x ,求a 的取值范围.【解析】(1)当1=a 时,24,1,()2,12,26, 2.+-⎧⎪=-<⎨⎪-+>⎩≤≤x x f x x x x 可得()0≥f x 的解集为{|23}-≤≤x x .(2)()1≤f x 等价于|||2|4++-≥x a x .而|||2||2|++-+≥x a x a ,且当2=x 时等号成立.故()1≤f x 等价于|2|4+≥a .由|2|4+≥a 可得6-≤a 或2≥a ,∴a 的取值范围是(,6][2,)-∞-+∞ .10.(2018全国Ⅲ文理)设函数()|21||1|f x x x =++-.(1)画出()y f x =的图像;(2)当[0,)x ∈+∞时,()f x ax b +≤,求a b +的最小值.【解析】(1)13,,21()2,1,23, 1.x x f x x x x x ⎧-<-⎪⎪⎪=+-<⎨⎪⎪⎪⎩≤≥()y f x =的图像如图所示.(2)由(1)知,()y f x =的图像与y 轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当3a ≥且2b ≥时,()f x ax b +≤在[0,)+∞成立,因此a b +的最小值为5.11.(2018江苏)若x ,y ,z 为实数,且226x y z ++=,求222x y z ++的最小值.【解析】由柯西不等式,得2222222()(122)(22)x y z x y z ++++++≥.因为22=6x y z ++,∴2224x y z ++≥,当且仅当122x y z ==时,不等式取等号,此时244333x y z ===,,,∴222x y z ++的最小值为4.12.(2017全国Ⅰ文理)已知函数2()4f x x ax =-++,()|1||1|g x x x =++-.(1)当1a =时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含[1,1]-,求a 的取值范围.【解析】(1)当1a =时,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤.①当1x <-时,①式化为2340x x --≤,无解;当11x -≤≤时,①式化为220x x --≤,从而11x -≤≤;当1x >时,①式化为240x x +-≤,从而11712x -+<≤,∴()()f x g x ≥的解集为117{|1}2x x -+-<≤.(2)当[1,1]x ∈-时,()2g x =,∴()()f x g x ≥的解集包含[1,1]-,等价于当[1,1]x ∈-时()2f x ≥.又()f x 在[1,1]-的最小值必为(1)f -与(1)f 之一,∴(1)2f -≥且(1)2f ≥,得11a -≤≤,∴a 的取值范围为[1,1]-.13.(2017全国Ⅲ文理)已知函数()|1||2|f x x x =+--.(1)求不等式()1f x ≥的解集;(2)若不等式2()f x x x m -+≥的解集非空,求m 的取值范围.【解析】(1)3,1()21,123,2x f x x x x -<-⎧⎪=--⎨⎪>⎩≤≤,当1x <-时,()f x 1≥无解;当x -12≤≤时,由()f x 1≥得,x -211≥,解得x 12≤≤;当>2x 时,由()f x 1≥解得>2x .∴()f x 1≥的解集为{}x x 1≥.(2)由()f x x x m -+2≥得m x x x x +---+212≤,而x x x x x x x x +---+--+2212+1+2≤x ⎛⎫ ⎪⎝⎭2355=--+244≤,且当32x =时,2512=4x x x x +---+,故m 的取值范围为5-,4⎛⎤∞ ⎥⎝⎦.14.(2016全国III 文理)已知函数()|2|f x x a a =-+(Ⅰ)当a=2时,求不等式()6f x ≤的解集;(Ⅱ)设函数()|21|g x x =-,当x ∈R 时,()()3f x g x +≥,求a 的取值范围.【解析】(Ⅰ)当2a =时,()|22|2f x x =-+.解不等式|22|26x -+ ,得13x - ,因此()6f x ≤的解集为{|13}x x - .(Ⅱ)当x R ∈时,()()|2||12|f xg x x a a x +=-++-|212|x a x a -+-+ |1|a a =-+,当12x =时等号成立,∴当x R ∈时,()()3f x g x + 等价于|1|3a a -+ .①当1a 时,①等价于13a a -+ ,无解.当1a >时,①等价于13a a -+ ,解得2a .∴a 的取值范围是[2,)+∞.15.(2015全国I 文理)已知函数()|1|2||f x x x a =+--,0a >.(Ⅰ)当1a =时,求不等式()1f x >的解集;(Ⅱ)若()f x 的图像与x 轴围成的三角形面积大于6,求a 的取值范围.【解析】(Ⅰ)当1a =时,不等式()1f x >化为|1|2|1|10x x +--->,当1x -≤时,不等式化为40x ->,无解;当11x -<<时,不等式化为320x ->,解得213x <<;当1x ≥时,不等式化为20x -+>,解得12x <≤.∴()1f x >的解集为2{|2}3x x <<.(Ⅱ)有题设可得,12,1()312,112,x a x f x x a x a x a x a --<-⎧⎪=+--⎨⎪-++>⎩≤≤,∴函数()f x 图象与x 轴围成的三角形的三个顶点分别为21(,0),(21,0),(,1)3a A B a C a a -++,ABC ∆的面积为22(1)3a +.有题设得22(1)63a +>,故2a >.∴a 的取值范围为(2,)+∞.16.(2014全国I 文理)若0,0ab >>,且11a b +=.(Ⅰ)求33a b +的最小值;(Ⅱ)是否存在,a b ,使得236a b +=?并说明理由.【解析】(I)11a b =+≥,得2ab ≥,且当a b ==时取等号.故33ab+≥≥,且当a b ==∴33a b +的最小值为(II)由(I)知,23a b +≥.由于6>,从而不存在,a b ,使得236a b +=.16.(2013全国I 文理)已知函数()f x =|21||2|x x a -++,()g x =3x +.(Ⅰ)当a =-2时,求不等式()f x <()g x 的解集;(Ⅱ)设a >-1,且当x ∈[2a -,12)时,()f x ≤()g x ,求a 的取值范围.【解析】(Ⅰ)当a =-2时,不等式()f x <()g x 化为|21||22|30x x x -+---<,设函数y =|21||22|3x x x -+---,y =15, 212, 1236, 1x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩,其图像如图所示,从图像可知,当且仅当(0,2)x ∈时,y <0,∴原不等式解集是{|02}x x <<.(Ⅱ)当x ∈[2a -,12)时,()f x =1a +,不等式()f x ≤()g x 化为13a x ++≤,∴2x a -≥对x ∈[2a -,12)都成立,故2a -≥2a -,即a ≤43,∴a 的取值范围为(-1,43].17.(2012新课标文理)已知函数|2|||)(-++=x a x x f .(Ⅰ)当|3-=a 时,求不等式()3f x 的解集;(Ⅱ)若()|4|f x x - 的解集包含]2,1[,求a 的取值范围.【解析】(1)当3a =-时,()3323f x x x ⇔-+- 2323x x x ⎧⇔⎨-+-⎩ 或23323x x x <<⎧⇔⎨-+-⎩ 或3323x x x ⎧⇔⎨-+-⎩ 1x ⇔ 或4x .(2)原命题()4f x x ⇔- 在[1,2]上恒成立24x a x x ⇔++-- 在[1,2]上恒成立22x a x ⇔--- 在[1,2]上恒成立30a ⇔- .考点122不等式的证明18.(2020全国Ⅲ文理23)设,,,0,1a b c a b c abc ∈++==R .(1)证明:0ab bc ca ++<;(2)用{}max ,,a b c 表示,,a b c 的最大值,证明:{}3max ,,4a b c ≥【答案】(1)证明见解析(2)证明见解析.【思路导引】(1)根据题设条件,0=++c b a 两边平方,再利用均值不等式证明即可;(2)思路一:不妨设max{,,}a b c a =,由题意得出0,,0a b c ><,由()222322b c b c bc a a a bc bc+++=⋅==,结合基本不等式,即可得出证明.思路二:假设出c b a ,,中最大值,根据反证法与基本不等式推出矛盾,即可得出结论.【解析】(1)证明:().0,02=++∴=++c b a c b a ,0222222=+++++∴ca ac ab c b a 即()222222c b a ca bc ab ++-=++.0,0222<++∴<++∴ca bc ab ca bc ab (2)证法一:不妨设max{,,}a b c a =,由0,1a b c abc ++==可知,0,0,0a b c ><<,1,a b c a bc =--= ,()222322224b c b c bc bc bc a a a bc bc bc++++∴=⋅==≥=,当且仅当b c =时,取等号,a ∴≥,即max{,,}a b c .证法二:不妨设403<<<≤c b a ,则,4,41133>=-->=c b a c ab而1132a b ->--≥>==矛盾,∴命题得证.19.(2019全国I 文理23)已知a ,b ,c 为正数,且满足abc=1.证明:(1)222111a b c a b c++≤++;(2)333()()()24a b b c c a +++≥++.【解析】(1)因为2222222,2,2a b ab b c bc c a ac +≥+≥+≥,又1abc =,故有222111ab bc ca a b c ab bc ca abc a b c ++++≥++==++,∴222111a b c a b c++≤++.(2)因为, , a b c 为正数且1abc =,故有333()()()a b b c c a +++++≥=3(+)(+)(+)a b b c ac 3≥⨯⨯⨯=24.∴333()()()24a b b c c a +++++≥.20.(2019全国III 文理23)设,,x y z ∈R ,且1x y z ++=.(1)求222(1)(1)(1)x y z -++++的最小值;(2)若2221(2)(1)()3x y z a -+-+-≥成立,证明:3a ≤-或1a ≥-.【解析】(1)由于2[(1)(1)(1)]x y z -++++222(1)(1)(1)2[(1)(1)(1)(1)(1)(1)]x y z x y y z z x =-+++++-++++++-2223(1)(1)(1)x y z ⎡⎤≤-++++⎣⎦,故由已知得2224(1)(1)(1)3x y z -++++≥,当且仅当x=53,y=–13,13z =-时等号成立.∴222(1)(1)(1)x y z -++++的最小值为43.(2)由于2[(2)(1)()]x y z a -+-+-222(2)(1)()2[(2)(1)(1)()()(2)]x y z a x y y z a z a x =-+-+-+--+--+--2223(2)(1)()x y z a ⎡⎤-+-+-⎣⎦ ,故由已知2222(2)(2)(1)()3a x y z a +-+-+- ,当且仅当43a x -=,13a y -=,223a z -=时等号成立,因此222(2)(1)()x y z a -+-+-的最小值为2(2)3a +.由题设知2(2)133a + ,解得3a - 或1a - .21.(2017全国Ⅱ文理)已知0a >,0b >,332a b +=,证明:(1)()()554a b a b ++≥;(2)2a b +≤.【解析】(1)556556()()a b a b a ab a b b ++=+++3323344()2()a b a b ab a b =+-++()22244ab a b =+-≥.(2)∵33223()33a b a a b ab b +=+++23()ab a b =++23()2()4a b a b +≤++33()24a b +=+,∴3()8a b +≤,因此2a b +≤.22.(2017江苏)已知a ,b ,c ,d 为实数,且224a b +=,2216c d +=,证明8ac bd +≤.【解析】证明:由柯西不等式可得:22222()()()ac bd a b c d +++≤,因为22224,16,a b c d +=+=∴2()64ac bd +≤,因此8ac bd +≤.23.(2016全国II 文理)已知函数()1122f x x x =-++,M 为不等式()2f x <的解集.(I)求M ;(II)证明:当a ,b M ∈时,1a b ab +<+.【解析】(I)当12x <-时,()11222f x x x x =---=-,若112x -<<-;当1122x -≤≤时,()111222f x x x =-++=<恒成立;当12x >时,()2f x x =,若()2f x <,112x <<.综上可得,{}|11M x x =-<<.(Ⅱ)当()11a b ∈-,,时,有()()22110a b -->,即22221a b a b +>+,则2222212a b ab a ab b +++>++,则()()221ab a b +>+,即1a b ab +<+,证毕.24.(2015全国II 文理)设,,,a b c d 均为正数,且a b c d +=+,证明:(Ⅰ)若ab >cd ,则a b c d +>+;(Ⅱ)a b c d +>+是||||a b c d -<-的充要条件.【解析】(Ⅰ)∵2()2a b a b ab +=++,2()c d c d cd +=++由题设a b c d +=+,ab cd >得22()a b c d >+a b c d +>(Ⅱ)(ⅰ)若||||a b c d -<-,则22()()a b c d -<-,即22()4()4a b ab c d cd +-<+-.因为a b c d +=+,∴ab cd >,由(Ⅰ)得a b c d >(ⅱ)a b c d +>则22(a b c d >+,即a b ab c d cd ++>++因为a b c d +=+,∴ab cd >,于是2222()()4()4()a b a b ab c d cd c d -=+-<+-=-.因此||||a b c d -<-.a b c d +>||||a b c d -<-的充要条件.25.(2013全国II 文理)设,,a b c 均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ca ++≤;(Ⅱ)2221a b c b c a++≥.【解析】(Ⅰ)2222222,2,2a b ab b c bc c a ca +≥+≥+≥得222a b c ab bc ca ++≥++,由题设得()21a b c ++=,即2222221a b c ab bc ca +++++=,∴()31ab bc ca ++≤,即13ab bc ca ++≤.(Ⅱ)∵2222,2,2a b c b a c b a c b c a +≥+≥+≥,∴222()2()a b c a b c a b c b c a +++++≥++,即222a b c a b c b c a ++≥++,∴2221a b c b c a ++≥.。
高三数学绝对值不等式试题答案及解析
高三数学绝对值不等式试题答案及解析1.已知,且.(1)试利用基本不等式求的最小值;(2)若实数满足,求证:.【答案】(1)3(2)参考解析【解析】(1)由已知,且.即m可化为.由柯西不等式可得结论.(2)由(1)可得.再由柯西不等式即可得结论.(1)由三个数的均值不等式得:(当且仅当即时取“=”号),故有. 4分(2),由柯西不等式得:(当且仅当即时取“=”号)整理得:,即. 7分【考点】1.柯西不等式.2.绝对值不等式.2.(不等式选讲题)对于任意实数和不等式恒成立,则实数x的取值范围是_________.【答案】【解析】依题意可得恒成立,等价于小于或等于的最小值.因为.所以.【考点】1绝对值不等式的性质.2.恒成立问题.3.最值问题.3.已知f(x)=|x+1|+|x-1|,不等式f(x)<4的解集为M.(1)求M.(2)当a,b∈M时,证明:2|a+b|<|4+ab|.【答案】(1) M=(-2,2) (2)见解析【解析】(1)f(x)=|x+1|+|x-1|=当x<-1时,由-2x<4,得-2<x<-1.当-1≤x≤1时,f(x)=2<4;当x>1时,由2x<4,得1<x<2.所以M=(-2,2).(2)a,b∈M,即-2<a<2,-2<b<2,∴4(a+b)2-(4+ab)2=4(a2+2ab+b2)-(16+8ab+a2b2)=(a2-4)(4-b2)<0.∴4(a+b)2<(4+ab)2.∴2|a+b|<|4+ab|.4.设函数f(x)=.(1)当a=-5时,求函数f(x)的定义域.(2)若函数f(x)的定义域为R,试求a的取值范围.【答案】(1)(-∞,-2]∪[3,+∞)(2) a≥-3【解析】(1)由题设知|x+1|+|x-2|-5≥0,如图,在同一坐标系中作出函数y=|x+1|+|x-2|和y=5的图象,知定义域为(-∞,-2]∪[3,+∞).(2)由题设知,当x∈R时,恒有|x+1|+|x-2|+a≥0,即|x+1|+|x-2|≥-a,又由(1)知|x+1|+|x-2|≥3,所以-a≤3,即a≥-3.5.设函数f(x)=|2x-1|+|2x-3|,x∈R.(1)求关于x的不等式f(x)≤5的解集.(2)若g(x)=的定义域为R,求实数m的取值范围.【答案】(1) x∈[-,] (2) m>-2【解析】(1)或或不等式的解集为x∈[-,].(2)若g(x)=的定义域为R.则f(x)+m≠0恒成立,即f(x)+m=0在R上无解,又f(x)=|2x-1|+|2x-3|≥|2x-1-2x+3|=2,f(x)的最小值为2,所以m>-2.6.不等式|x+2|-|x|≤1的解集是________.【答案】【解析】①当x≤-2时,原不等式可化为-x-2+x≤1,该不等式恒成立.②当-2<x<0时,原不等式可化为x+2+x≤1,∴2x≤-1,∴x≤-,∴-2<x≤-.③当x≥0时,原不等式可化为x+2-x≤1,无解.综上,原不等式的解集为7.设a,b∈R,|a-b|>2,则关于实数x的不等式|x-a|+|x-b|>2的解集是________.【答案】(-∞,+∞)【解析】∵|x-a|+|x-b|≥|(x-a)-(x-b)|=|b-a|=|a-b|.又∵|a-b|>2,∴|x-a|+|x-b|>2恒成立,即该不等式的解集为(-∞,+∞).8.设函数.(Ⅰ)当时,解不等式;(Ⅱ)当时,不等式的解集为,求实数的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)原不等式的解集等价于不等式组或的解集的并集;(Ⅱ)当时,不等式的解集为,恒成立问题,对分类讨论,①,②.试题解析:(Ⅰ)当时,,或或,∴不等式的解集是. 5分[(Ⅱ)不等式可化为,∴,由题意,时恒成立,当时,可化为,,,,综上,实数的取值范围是. 10分【考点】绝对值不等式,恒成立问题.9.已知函数,①若不等式的解集为,求实数的值;②在①的条件下,若对一切实数恒成立,求实数的取值范围.【答案】①;②.【解析】①由得,解得,根据已知条件列方程组求解;②将问题转化为,利用绝对值不等式的性质求的最小值..试题解析:①由得,解得.又已知不等式的解集为|}, 2分所以解得. 4分②当时,.设.由(当且仅当时等号成立)得的最小值为5.从而,若,即对一切实数x恒成立,则m的取值范围为. 7分【考点】不等式选讲.10.(本大题10分)已知函数.(Ⅰ)求不等式的解集;(Ⅱ)如果的解集不是空集,求实数的取值范围.【答案】(1) ;(2)【解析】本题考查绝对值函数,考查不等式的解法,考查分类讨论的数学思想,将函数正确化简是关键。
含绝对值的不等式考试试题及答案
含绝对值的不等式考试试题及答案例5-3-13解下列不等式:(1)|2-3x|-1<2(2)|3x+5|+1>6解(1)原不等式同解于(2)原不等式可化为|3x+5|>5 3x+5>5或3x+5<-5注解含绝对值的不等式,关键在于正确地根据绝对值的定义去掉绝对值符号。
解5-3-14解不等式4<|x2-5x|≤6。
解原不等式同解于不等式组不等式(i)同解于x2-5x<-4或x2-5x>4不等式(ii)同解于-6≤x2-5x≤6取不等式(i),(ii)的解的交集,即得原不等式的解集其解集可用数轴标根法表示如下:注本例的难点是正确区别解集的交、并关系。
“数轴标根法”是确定解集并防止出错的有效辅助方法。
例5-3-15解不等式|x+2|-|x-1|≥0。
解原不等式同解于|x+2|≥|x-1| (x+2)2≥(x-1)2注解形如|ax+b|-|cx+d|≥0的不等式,适合于用移项后两边平方脱去绝对值符号的方法。
但对其他含多项绝对值的情形,采用此法一般较繁,不可取。
例5-3-16解下列不等式:解(1)原不等式同解于不等式组左边不等式同解于右边不等式同解于取(i),(ii)的交集,得原不等式的解集为{x|1<x<2} (2)原不等式同解于取(Ⅰ)、(Ⅱ)、(Ⅲ)的并集,得原不等式的解集为例5-3-17解不等式||x+1|-|x-1||<x+2。
分析要使不等式有解,必须x+2>0即x>-2。
又|x+1|,|x-1|的零点分别为-1,1,故可在区间(-2,-1),[-1,1],[1,+∞)内分别求解。
解原不等式同解于注解含多个绝对值项的不等式,常采用分段脱号法。
其步骤是:找出零点,确定分段区间;分段求解,确定各段解集;综合取并,确定所求解集。
例5-3-18已知a>0,b>0,解不等式|ax-b|<x。
解显然x>0,故原不等式同解于注含绝对值的不等式中,若含有参数,则先去掉绝对值符号并化简,再根据具体情况对参数进行分类讨论。
高三数学绝对值不等式试题答案及解析
高三数学绝对值不等式试题答案及解析1.(不等式选讲题)对于任意实数和不等式恒成立,则实数x的取值范围是_________.【答案】【解析】依题意可得恒成立,等价于小于或等于的最小值.因为.所以.【考点】1绝对值不等式的性质.2.恒成立问题.3.最值问题.2.关于x的不等式|x-3|+|x-4|<a的解集不是空集,求a的取值范围.【答案】(1,+∞)【解析】∵|x-3|+|x-4|≥|(x-3)-(x-4)|=1,∴a>1.即a的取值范围是(1,+∞).3.设函数f(x)=|2x-1|+|2x-3|,x∈R.(1)求关于x的不等式f(x)≤5的解集.(2)若g(x)=的定义域为R,求实数m的取值范围.【答案】(1) x∈[-,] (2) m>-2【解析】(1)或或不等式的解集为x∈[-,].(2)若g(x)=的定义域为R.则f(x)+m≠0恒成立,即f(x)+m=0在R上无解,又f(x)=|2x-1|+|2x-3|≥|2x-1-2x+3|=2,f(x)的最小值为2,所以m>-2.4.若存在实数x使|x-a|+|x-1|≤3成立,则实数a的取值范围是________.【答案】[-2,4]【解析】|x-a|+|x-1|≥|a-1|,则只需要|a-1|≤3,解得-2≤a≤4.5.若关于实数x的不等式|x-5|+|x+3|<a无解,则实数a的取值范围是________.【答案】(-∞,8]【解析】因为|x-5|+|x+3|表示数轴上的动点x到数轴上的点-3,5的距离之和,而(|x-5|+|x+=8,∴当a≤8时,|x-5|+|x+3|<a无解,3|)min故实数a的取值范围为(-∞,8].6.已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.(1)当a=-2时,求不等式f(x)<g(x)的解集;(2)设a>-1,且当x∈时,f(x)≤g(x),求a的取值范围.【答案】(1){x|0<x<2}(2)【解析】(1)当a=-2时,不等式f(x)<g(x)化为|2x-1|+|2x-2|-x-3<0.设函数y=|2x-1|+|2x-2|-x-3,则y=其图象如图所示,由图象可知,当且仅当x∈(0,2)时,y<0.所以原不等式的解集是{x|0<x<2}.(2)当x∈时,f(x)=1+a,不等式f(x)≤g(x)化为1+a≤x+3,所以x≥a-2对x∈都成立,应有-≥a-2,则a≤,从而实数a的取值范围是.7.若不等式的解集为,则实数的取值范围是____.【答案】【解析】不等式的解集为,所以.,所以,.【考点】不等式8.设函数.(Ⅰ)当时,解不等式;(Ⅱ)当时,不等式的解集为,求实数的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)原不等式的解集等价于不等式组或的解集的并集;(Ⅱ)当时,不等式的解集为,恒成立问题,对分类讨论,①,②.试题解析:(Ⅰ)当时,,或或,∴不等式的解集是. 5分[(Ⅱ)不等式可化为,∴,由题意,时恒成立,当时,可化为,,,,综上,实数的取值范围是. 10分【考点】绝对值不等式,恒成立问题.9.(本题满分10分)《选修4-5:不等式选讲》已知函数(1)证明:(2)求不等式:的解集【答案】(1);(2)【解析】(1)对于x进行分三类讨论,得到关于x的分段函数,进而分别求解得到解集取其并集得到。
2017-2021年高考真题 绝对值不等式 解答题全集 (学生版 解析版)
2017-2021年高考真题绝对值不等式解答题全集(学生版+解析版)1.(2021•乙卷)已知函数f(x)=|x﹣a|+|x+3|.(1)当a=1时,求不等式f(x)≥6的解集;(2)若f(x)>﹣a,求a的取值范围.2.(2020•江苏)设x∈R,解不等式2|x+1|+|x|<4.3.(2020•新课标Ⅲ)设a,b,c∈R,a+b+c=0,abc=1.(1)证明:ab+bc+ca<0;3.(2)用max{a,b,c}表示a,b,c的最大值,证明:max{a,b,c}≥√4 4.(2020•新课标Ⅰ)已知函数f(x)=|3x+1|﹣2|x﹣1|.(1)画出y=f(x)的图象;(2)求不等式f(x)>f(x+1)的解集.5.(2020•新课标Ⅱ)已知函数f(x)=|x﹣a2|+|x﹣2a+1|.(1)当a=2时,求不等式f(x)≥4的解集;(2)若f(x)≥4,求a的取值范围.6.(2020•新课标Ⅲ)设数列{a n}满足a1=3,a n+1=3a n﹣4n.(1)计算a2,a3,猜想{a n}的通项公式并加以证明;(2)求数列{2n a n}的前n项和S n.7.(2020•新课标Ⅲ)设a,b,c∈R,a+b+c=0,abc=1.(1)证明:ab+bc+ca<0;3.(2)用max{a,b,c}表示a,b,c中的最大值,证明:max{a,b,c}≥√48.(2019•江苏)设x∈R,解不等式|x|+|2x﹣1|>2.9.(2019•新课标Ⅲ)设x,y,z∈R,且x+y+z=1.(1)求(x﹣1)2+(y+1)2+(z+1)2的最小值;(2)若(x﹣2)2+(y﹣1)2+(z﹣a)2≥13成立,证明:a≤﹣3或a≥﹣1.10.(2019•新课标Ⅱ)已知f(x)=|x﹣a|x+|x﹣2|(x﹣a).(1)当a=1时,求不等式f(x)<0的解集;(2)当x∈(﹣∞,1)时,f(x)<0,求a的取值范围.11.(2019•新课标Ⅰ)已知a,b,c为正数,且满足abc=1.证明:(1)1a +1b+1c≤a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.12.(2018•北京)设n为正整数,集合A={α|α=(t1,t2,…t n),t k∈{0,1},k=1,2,…,n},对于集合A中的任意元素α=(x1,x2,…,x n)和β=(y1,y2,…y n),记M(α,β)=12[(x1+y1﹣|x1﹣y1|)+(x2+y2﹣|x2﹣y2|)+…(x n+y n﹣|x n﹣y n|)].(Ⅰ)当n=3时,若α=(1,1,0),β=(0,1,1),求M(α,α)和M(α,β)的值;(Ⅱ)当n=4时,设B是A的子集,且满足:对于B中的任意元素α,β,当α,β相同时,M(α,β)是奇数;当α,β不同时,M(α,β)是偶数.求集合B中元素个数的最大值;(Ⅲ)给定不小于2的n,设B是A的子集,且满足:对于B中的任意两个不同的元素α,β,M(α,β)=0,写出一个集合B,使其元素个数最多,并说明理由.13.(2018•新课标Ⅰ)已知f(x)=|x+1|﹣|ax﹣1|.(1)当a=1时,求不等式f(x)>1的解集;(2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围.14.(2018•新课标Ⅱ)设函数f(x)=5﹣|x+a|﹣|x﹣2|.(1)当a=1时,求不等式f(x)≥0的解集;(2)若f(x)≤1,求a的取值范围.15.(2017•新课标Ⅰ)已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.16.(2017•新课标Ⅱ)已知a>0,b>0,a3+b3=2.证明:(1)(a+b)(a5+b5)≥4;(2)a+b≤2.17.(2017•新课标Ⅲ)已知函数f(x)=|x+1|﹣|x﹣2|.(1)求不等式f(x)≥1的解集;(2)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范围.2017-2021年高考真题 绝对值不等式 解答题全集 (学生版+解析版)参考答案与试题解析1.(2021•乙卷)已知函数f (x )=|x ﹣a |+|x +3|.(1)当a =1时,求不等式f (x )≥6的解集;(2)若f (x )>﹣a ,求a 的取值范围.【解答】解:(1)当a =1时,f (x )=|x ﹣1|+|x +3|={−2x −2,x ≤−34,−3<x <12x +2,x ≥1, ∵f (x )≥6,∴{x ≤−3−2x −2≥6或{−3<x <14≥6或{x ≥12x +2≥6, ∴x ≤﹣4或x ≥2,∴不等式的解集为(﹣∞,﹣4]∪[2,+∞).(2)f (x )=|x ﹣a |+|x +3|≥|x ﹣a ﹣x ﹣3|=|a +3|,若f (x )>﹣a ,则|a +3|>﹣a ,两边平方可得a 2+6a +9>a 2,解得a >−32,即a 的取值范围是(−32,+∞).2.(2020•江苏)设x ∈R ,解不等式2|x +1|+|x |<4.【解答】解:2|x +1|+|x |={3x +2,x >0x +2,−1≤x ≤0−3x −2,x <−1.∵2|x +1|+|x |<4,∴{3x +2<4x >0或{x +2<4−1≤x ≤0或{−3x −2<4x <−1, ∴0<x <23或﹣1≤x ≤0或﹣2<x <﹣1,∴﹣2<x <23,∴不等式的解集为{x |﹣2<x <23}.3.(2020•新课标Ⅲ)设a ,b ,c ∈R ,a +b +c =0,abc =1.(1)证明:ab +bc +ca <0;(2)用max {a ,b ,c }表示a ,b ,c 的最大值,证明:max {a ,b ,c }≥√43.【解答】证明:(1)∵a +b +c =0,∴(a +b +c )2=0,∴a 2+b 2+c 2+2ab +2ac +2bc =0,∴2ab +2ac +2bc =﹣(a 2+b 2+c 2),∵abc =1,∴a ,b ,c 均不为0,∴2ab +2ac +2bc =﹣(a 2+b 2+c 2)<0,∴ab +ac +bc <0;(2)不妨设a ≤b <0<c <√43,则ab =1c >1√43, ∵a +b +c =0,∴﹣a ﹣b =c <√43,而﹣a ﹣b ≥2√ab >2√46=412416=413=√43,与假设矛盾, 故max {a ,b ,c }≥√43.4.(2020•新课标Ⅰ)已知函数f (x )=|3x +1|﹣2|x ﹣1|.(1)画出y =f (x )的图象;(2)求不等式f (x )>f (x +1)的解集.【解答】解:函数f (x )=|3x +1|﹣2|x ﹣1|={ x +3,(x ≥1)5x −1,(−13≤x <1)−x −3,(x <−13), 图象如图所示(2)由于f (x +1)的图象是函数f (x )的图象向左平移了一个单位所得,(如图所示)直线y =5x ﹣1向左平移一个单位后表示为y =5(x +1)﹣1=5x +4,联立{y =−x −3y =5x +4,解得横坐标为x =−76, ∴不等式f (x )>f (x +1)的解集为{x |x <−76}.5.(2020•新课标Ⅱ)已知函数f (x )=|x ﹣a 2|+|x ﹣2a +1|.(1)当a =2时,求不等式f (x )≥4的解集;(2)若f (x )≥4,求a 的取值范围.【解答】解:(1)当a =2时,f (x )=|x ﹣4|+|x ﹣3|={−2x +7,x ≤31,3<x <42x −7,x ≥4, ∴当x ≤3时,不等式f (x )≥4化为﹣2x +7≥4,即x ≤32,∴x ≤32;当3<x <4时,不等式f (x )≥4化为1≥4,此时x ∈∅;当x ≥4时,不等式f (x )≥4化为2x ﹣7≥4,即x ≥112,∴x ≥112.综上,当a =2时,不等式f (x )≥4的解集为{x |x ≤32或x ≥112};(2)f (x )=|x ﹣a 2|+|x ﹣2a +1|≥|x ﹣a 2﹣(x ﹣2a +1)|=|(a ﹣1)2|=(a ﹣1)2. 又f (x )≥4,∴(a ﹣1)2≥4,得a ﹣1≤﹣2或a ﹣1≥2,解得:a ≤﹣1或a ≥3.综上,若f (x )≥4,则a 的取值范围是(﹣∞,﹣1]∪[3,+∞).6.(2020•新课标Ⅲ)设数列{a n }满足a 1=3,a n +1=3a n ﹣4n .(1)计算a 2,a 3,猜想{a n }的通项公式并加以证明;(2)求数列{2n a n }的前n 项和S n .【解答】解:(1)法一:数列{a n }满足a 1=3,a n +1=3a n ﹣4n ,则a 2=3a 1﹣4=5,a 3=3a 2﹣4×2=7,…,猜想{a n }的通项公式为a n =2n +1.证明如下:(i )当n =1,2,3时,显然成立,(ii )假设n =k 时,a k =2k +1(k ∈N +)成立,当n =k +1时,a k +1=3a k ﹣4k =3(k +1)﹣4k =2k +3=2(k +1)+1,故n =k +1时成立, 由(i )(ii )知,a n =2n +1,猜想成立,所以{a n }的通项公式a n =2n +1.法二:数列{a n }满足a 1=3,a n +1=3a n ﹣4n ,则a 2=3a 1﹣4=5,a 3=3a 2﹣4×2=7,…,猜想{a n }的通项公式为a n =2n +1.证明:设a n +1+α(n +1)+β=3(a n +αn +β),可得a n +1=3a n +2αn +2β﹣α,∴{2α=−42β−α=0,解得{α=−2β=−1, ∴a n +1﹣2(n +1)﹣1=3(a n ﹣2n ﹣1),(不能说明{a n ﹣2n ﹣1}是等比数列)∵a 1=3,a 1﹣2×1﹣1=0,并且a 2﹣2(2+1)﹣1=0,所以a n =2n +1恒成立. 所以a n =2n +1.(2)令b n =2n a n =(2n +1)•2n ,则数列{2n a n }的前n 项和S n =3×21+5×22+…+(2n +1)2n ,…①两边同乘2得,2S n =3×22+5×23+…+(2n +1)2n +1,…②①﹣②得,﹣S n =3×2+2×22+…+2×2n ﹣(2n +1)2n +1=6+8(1−2n−1)1−2−(2n +1)2n +1,所以S n =(2n ﹣1)2n +1+2.7.(2020•新课标Ⅲ)设a ,b ,c ∈R ,a +b +c =0,abc =1.(1)证明:ab +bc +ca <0;(2)用max {a ,b ,c }表示a ,b ,c 中的最大值,证明:max {a ,b ,c }≥√43.【解答】证明:(1)∵a +b +c =0,∴(a +b +c )2=0,∴a 2+b 2+c 2+2ab +2ac +2bc =0,∴2ab +2ac +2bc =﹣(a 2+b 2+c 2),∵abc =1,∴a ,b ,c 均不为0,∴2ab +2ac +2bc =﹣(a 2+b 2+c 2)<0,∴ab +ac +bc <0;(2)不妨设a ≤b <0<c <√43,则ab =1c √43, ∵a +b +c =0,∴﹣a ﹣b =c <√43,而﹣a ﹣b ≥2√ab >√46=412416=413=√43,与假设矛盾, 故max {a ,b ,c }≥√43.8.(2019•江苏)设x ∈R ,解不等式|x |+|2x ﹣1|>2.【解答】解:|x |+|2x ﹣1|={ 3x −1,x >12−x +1,0≤x ≤12−3x +1,x <0, ∵|x |+|2x ﹣1|>2,∴{3x −1>2x >12或{−x +1>20≤x ≤12或{−3x +1>2x <0, ∴x >1或x ∈∅或x <−13,∴不等式的解集为{x |x <−13或x >1}.9.(2019•新课标Ⅲ)设x ,y ,z ∈R ,且x +y +z =1.(1)求(x ﹣1)2+(y +1)2+(z +1)2的最小值;(2)若(x ﹣2)2+(y ﹣1)2+(z ﹣a )2≥13成立,证明:a ≤﹣3或a ≥﹣1.【解答】解:(1)x ,y ,z ∈R ,且x +y +z =1,由柯西不等式可得(12+12+12)[(x ﹣1)2+(y +1)2+(z +1)2]≥(x ﹣1+y +1+z +1)2=4,可得(x ﹣1)2+(y +1)2+(z +1)2≥43,即有(x ﹣1)2+(y +1)2+(z +1)2的最小值为43; (2)证明:由x +y +z =1,柯西不等式可得(12+12+12)[(x ﹣2)2+(y ﹣1)2+(z ﹣a )2]≥(x ﹣2+y ﹣1+z ﹣a )2=(a +2)2,可得(x ﹣2)2+(y ﹣1)2+(z ﹣a )2≥(a+2)23, 即有(x ﹣2)2+(y ﹣1)2+(z ﹣a )2的最小值为(a+2)23, 由题意可得(a+2)23≥13, 解得a ≥﹣1或a ≤﹣3.10.(2019•新课标Ⅱ)已知f (x )=|x ﹣a |x +|x ﹣2|(x ﹣a ).(1)当a =1时,求不等式f (x )<0的解集;(2)当x ∈(﹣∞,1)时,f (x )<0,求a 的取值范围.【解答】解:(1)当a =1时,f (x )=|x ﹣1|x +|x ﹣2|(x ﹣1),∵f (x )<0,∴当x <1时,f (x )=﹣2(x ﹣1)2<0,恒成立,∴x <1;当x ≥1时,f (x )=(x ﹣1)(x +|x ﹣2|)≥0恒成立,∴x ∈∅;综上,不等式的解集为(﹣∞,1);(2)当a ≥1时,f (x )=2(a ﹣x )(x ﹣1)<0在x ∈(﹣∞,1)上恒成立; 当a <1时,x ∈(a ,1),f (x )=2(x ﹣a )>0,不满足题意,∴a 的取值范围为:[1,+∞)11.(2019•新课标Ⅰ)已知a ,b ,c 为正数,且满足abc =1.证明:(1)1a +1b +1c ≤a 2+b 2+c 2;(2)(a +b )3+(b +c )3+(c +a )3≥24.【解答】证明:(1)分析法:已知a ,b ,c 为正数,且满足abc =1.要证(1)1a +1b +1c ≤a 2+b 2+c 2;因为abc =1.就要证:abc a +abc b +abc c ≤a 2+b 2+c 2;即证:bc+ac+ab≤a2+b2+c2;即:2bc+2ac+2ab≤2a2+2b2+2c2;2a2+2b2+2c2﹣2bc﹣2ac﹣2ab≥0(a﹣b)2+(a﹣c)2+(b﹣c)2≥0;∵a,b,c为正数,且满足abc=1.∴(a﹣b)2≥0;(a﹣c)2≥0;(b﹣c)2≥0恒成立;当且仅当:a=b=c=1时取等号.即(a﹣b)2+(a﹣c)2+(b﹣c)2≥0得证.故1a +1b+1c≤a2+b2+c2得证.(2)证(a+b)3+(b+c)3+(c+a)3≥24成立;即:已知a,b,c为正数,且满足abc=1.(a+b)为正数;(b+c)为正数;(c+a)为正数;(a+b)3+(b+c)3+(c+a)3≥3(a+b)•(b+c)•(c+a);当且仅当(a+b)=(b+c)=(c+a)时取等号;即:a=b=c=1时取等号;∵a,b,c为正数,且满足abc=1.(a+b)≥2√ab;(b+c)≥2√bc;(c+a)≥2√ac;当且仅当a=b,b=c;c=a时取等号;即:a=b=c=1时取等号;∴(a+b)3+(b+c)3+(c+a)3≥3(a+b)•(b+c)•(c+a)≥3×8√ab•√bc•√ac=24abc =24;当且仅当a=b=c=1时取等号;故(a+b)3+(b+c)3+(c+a)3≥24.得证.故得证.12.(2018•北京)设n为正整数,集合A={α|α=(t1,t2,…t n),t k∈{0,1},k=1,2,…,n},对于集合A中的任意元素α=(x1,x2,…,x n)和β=(y1,y2,…y n),记M(α,β)=12[(x1+y1﹣|x1﹣y1|)+(x2+y2﹣|x2﹣y2|)+…(x n+y n﹣|x n﹣y n|)].(Ⅰ)当n=3时,若α=(1,1,0),β=(0,1,1),求M(α,α)和M(α,β)的值;(Ⅱ)当n=4时,设B是A的子集,且满足:对于B中的任意元素α,β,当α,β相同时,M(α,β)是奇数;当α,β不同时,M(α,β)是偶数.求集合B中元素个数的最大值;(Ⅲ)给定不小于2的n ,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素α,β,M (α,β)=0,写出一个集合B ,使其元素个数最多,并说明理由. 【解答】解:(I ) M (α,α)=1+1+0=2,M (α,β)=0+1+0=1. (II )考虑数对(x k ,y k )只有四种情况:(0,0)、(0,1)、(1,0)、(1,1),相应的x k +y k −|x k −y k |2分别为0、0、0、1,所以B 中的每个元素应有奇数个1,所以B 中的元素只可能为(上下对应的两个元素称之为互补元素): (1,0,0,0 )、(0,1,0,0)、(0,0,1,0)、(0,0,0,1), (0,1,1,1)、(1,0,1,1)、(1,1,0,1)、(1,1,1,0), 对于任意两个只有1个1的元素α,β都满足M (α,β)是偶数,所以四元集合B ={(1,0,0,0)、(0,1,0,0)、(0,0,1,0)、(0,0,0,1)}满足 题意,假设B 中元素个数大于等于4,就至少有一对互补元素, 除了这对互补元素之外还有至少1个含有3个1的元素α,则互补元素中含有1个1的元素β与之满足M (α,β)=1不合题意, 故B 中元素个数的最大值为4.(Ⅲ) B ={(0,0,0,…0),(1,0,0…,0),(0,1,0,…0),(0,0,1…0)…, (0,0,0,…,1)},此时B 中有n +1个元素,下证其为最大.对于任意两个不同的元素α,β,满足M (α,β)=0,则α,β中相同位置上的数字不能同时为1,假设存在B 有多于n +1个元素,由于α=(0,0,0,…,0)与任意元素β都有M (α,β)=0,所以除(0,0,0,…,0)外至少有n +1个元素含有1,根据元素的互异性,至少存在一对α,β满足x i =y i =l ,此时M (α,β)≥1不满足题意, 故B 中最多有n +1个元素.13.(2018•新课标Ⅰ)已知f (x )=|x +1|﹣|ax ﹣1|. (1)当a =1时,求不等式f (x )>1的解集;(2)若x ∈(0,1)时不等式f (x )>x 成立,求a 的取值范围.【解答】解:(1)当a =1时,f (x )=|x +1|﹣|x ﹣1|={2,x >12x ,−1≤x ≤1−2,x <−1,由f (x )>1,∴{2x >1−1≤x ≤1或{2>1x >1, 解得x >12,故不等式f (x )>1的解集为(12,+∞),(2)当x ∈(0,1)时不等式f (x )>x 成立, ∴|x +1|﹣|ax ﹣1|﹣x >0, 即x +1﹣|ax ﹣1|﹣x >0, 即|ax ﹣1|<1, ∴﹣1<ax ﹣1<1, ∴0<ax <2, ∵x ∈(0,1), ∴a >0, ∴0<x <2a , ∴a <2x ∵2x >2,∴0<a ≤2,故a 的取值范围为(0,2].14.(2018•新课标Ⅱ)设函数f (x )=5﹣|x +a |﹣|x ﹣2|. (1)当a =1时,求不等式f (x )≥0的解集; (2)若f (x )≤1,求a 的取值范围.【解答】解:(1)当a =1时,f (x )=5﹣|x +1|﹣|x ﹣2|={2x +4,x ≤−12,−1<x <2−2x +6,x ≥2.当x ≤﹣1时,f (x )=2x +4≥0,解得﹣2≤x ≤﹣1, 当﹣1<x <2时,f (x )=2≥0恒成立,即﹣1<x <2,当x ≥2时,f (x )=﹣2x +6≥0,解得2≤x ≤3, 综上所述不等式f (x )≥0的解集为[﹣2,3], (2)∵f (x )≤1, ∴5﹣|x +a |﹣|x ﹣2|≤1, ∴|x +a |+|x ﹣2|≥4,∴|x +a |+|x ﹣2|=|x +a |+|2﹣x |≥|x +a +2﹣x |=|a +2|, ∴|a +2|≥4,解得a ≤﹣6或a ≥2,故a 的取值范围(﹣∞,﹣6]∪[2,+∞).15.(2017•新课标Ⅰ)已知函数f (x )=﹣x 2+ax +4,g (x )=|x +1|+|x ﹣1|. (1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[﹣1,1],求a 的取值范围.【解答】解:(1)当a =1时,f (x )=﹣x 2+x +4,是开口向下,对称轴为x =12的二次函数,g (x )=|x +1|+|x ﹣1|={2x ,x >12,−1≤x ≤1−2x ,x <−1,当x ∈(1,+∞)时,令﹣x 2+x +4=2x ,解得x =√17−12,g (x )在(1,+∞)上单调递增,f (x )在(1,+∞)上单调递减,∴此时f (x )≥g (x )的解集为(1,√17−12];当x ∈[﹣1,1]时,g (x )=2,f (x )≥f (﹣1)=2.当x ∈(﹣∞,﹣1)时,g (x )单调递减,f (x )单调递增,且g (﹣1)=f (﹣1)=2. 综上所述,f (x )≥g (x )的解集为[﹣1,√17−12]; (2)依题意得:﹣x 2+ax +4≥2在[﹣1,1]恒成立,即x 2﹣ax ﹣2≤0在[﹣1,1]恒成立,则只需{12−a ⋅1−2≤0(−1)2−a(−1)−2≤0,解得﹣1≤a ≤1,故a 的取值范围是[﹣1,1].16.(2017•新课标Ⅱ)已知a >0,b >0,a 3+b 3=2.证明: (1)(a +b )(a 5+b 5)≥4; (2)a +b ≤2.【解答】证明:(1)由柯西不等式得:(a +b )(a 5+b 5)≥(√a ⋅a 5+√b ⋅b 5)2=(a 3+b 3)2≥4,当且仅当√ab 5=√ba 5,即a =b =1时取等号, (2)∵a 3+b 3=2,∴(a +b )(a 2﹣ab +b 2)=2, ∴(a +b )[(a +b )2﹣3ab ]=2, ∴(a +b )3﹣3ab (a +b )=2, ∴(a+b)3−23(a+b)=ab ,由均值不等式可得:(a+b)3−23(a+b)=ab ≤(a+b 2)2,∴(a +b )3﹣2≤3(a+b)34, ∴14(a +b )3≤2,∴a +b ≤2,当且仅当a =b =1时等号成立. 17.(2017•新课标Ⅲ)已知函数f (x )=|x +1|﹣|x ﹣2|. (1)求不等式f (x )≥1的解集;(2)若不等式f (x )≥x 2﹣x +m 的解集非空,求m 的取值范围.【解答】解:(1)∵f (x )=|x +1|﹣|x ﹣2|={−3,x <−12x −1,−1≤x ≤23,x >2,f (x )≥1,∴当﹣1≤x ≤2时,2x ﹣1≥1,解得1≤x ≤2; 当x >2时,3≥1恒成立,故x >2; 综上,不等式f (x )≥1的解集为{x |x ≥1}.(2)原式等价于存在x ∈R 使得f (x )﹣x 2+x ≥m 成立, 即m ≤[f (x )﹣x 2+x ]max ,设g (x )=f (x )﹣x 2+x .由(1)知,g (x )={−x 2+x −3,x ≤−1−x 2+3x −1,−1<x <2−x 2+x +3,x ≥2,当x ≤﹣1时,g (x )=﹣x 2+x ﹣3,其开口向下,对称轴方程为x =12>−1, ∴g (x )≤g (﹣1)=﹣1﹣1﹣3=﹣5;当﹣1<x <2时,g (x )=﹣x 2+3x ﹣1,其开口向下,对称轴方程为x =32∈(﹣1,2), ∴g (x )≤g (32)=−94+92−1=54;当x ≥2时,g (x )=﹣x 2+x +3,其开口向下,对称轴方程为x =12<2, ∴g (x )≤g (2)=﹣4+2+3=1; 综上,g (x )max =54,∴m 的取值范围为(﹣∞,54].。
绝对值不等式高考题
2006浙江文10 2006浙江理12
2015高考理18
已知函数 f x x 2 ax ba, b R ,记Ma,b是
当a一般地设函数yห้องสมุดไป่ตู้x的定义域为i如果存在实数m满足
2015高考理18
已知函数 f x x 2 ax ba, b R ,记Ma,b是
f x 在区间[-1,1]上的最大值.
(Ⅰ)证明:当|a| 2时,M(a,b) 2;
2014高考理8
2014高考理8
2015高考理18(1)
(Ⅱ)当 a, b满足 Ma,b 2时,求|a|+|b|
的最大值.
已知函数 f x x 2 ax ba, b R ,记Ma,b是
f x 在区间[-1,1]上的最大值.
(Ⅰ)证明:当|a| 2时,M(a,b) 2;
(Ⅱ)当 a, b满足 Ma,b 2时,求|a|+|b|
的最大值.
1996全国高考理25
已知a、b、c是实数,函数f(x)=ax2+bx+c, g(x)=ax+b,当-1≤x≤1时,│f(x)│≤1.
(Ⅰ)证明:│c│≤l; (Ⅱ)证明:当-1≤x≤1时,│g(x)│≤2; (Ⅲ)设a>0,当-1≤x≤1时,g(x)的最大值为
2,求f(x)
f x 在区间[-1,1]上的最大值.
(Ⅰ)证明:当|a| 2时,M(a,b) 2;
高三数学绝对值不等式试题答案及解析
高三数学绝对值不等式试题答案及解析1.已知,且.(1)试利用基本不等式求的最小值;(2)若实数满足,求证:.【答案】(1)3(2)参考解析【解析】(1)由已知,且.即m可化为.由柯西不等式可得结论.(2)由(1)可得.再由柯西不等式即可得结论.(1)由三个数的均值不等式得:(当且仅当即时取“=”号),故有. 4分(2),由柯西不等式得:(当且仅当即时取“=”号)整理得:,即. 7分【考点】1.柯西不等式.2.绝对值不等式.2.已知f(x)=|x+1|+|x-1|,不等式f(x)的解集为M.(1).求M;(2).当a,b M时,证明:2|a+b|<|4+ab|.【答案】(1);(2)证明过程详见解析.【解析】本题主要考查绝对值不等式、不等式的证明等基础知识,意在考查考生的运算求解能力、利用综合法、分类讨论思想的解题能力.第一问,利用零点分段法分别去掉绝对值,解不等式;第二问,可先用分析法由所求证的结论入手,分析需要证明什么,再用综合法证明,要证2|a+b|<|4+ab|,需证明,展开,需证明,由已知入手,找到,,从而证出.试题解析:(1)由,即,当时,则,得,∴;当时,则,得,恒成立,∴;当时,则,得,∴;综上,. 5分(2)当时,则,.即:,,∴,∴,即,也就是,∴,即:,即. 10分【考点】绝对值不等式、不等式的证明.3.解不等式|2x-4|<4-|x|.【答案】【解析】当x>2时,原不等式同解于2x-4<4-x,解得x<,所以2<x<;当0≤x≤2时,原不等式同解于4-2x<4-x,解得x>0,所以0<x≤2;当x<0时,原不等式同解于4-2x<4+x,解得x>0,所以x∈∅.综上所述,原不等式的解集为.4.若关于实数x的不等式|x-5|+|x+3|<a无解,则实数a的取值范围是________.【答案】(-∞,8]【解析】因为|x-5|+|x+3|表示数轴上的动点x到数轴上的点-3,5的距离之和,而(|x-5|+|x+3|)=8,∴当a≤8时,|x-5|+|x+3|<a无解,min故实数a的取值范围为(-∞,8].5.已知函数.(1)若的解集为,求实数的值.(2)当且时,解关于的不等式.【答案】(1);(2)当时,原不等式的解集为,当时,原不等式的解集为.【解析】本题考查绝对值不等式的解法及利用解集求实数的值,考查学生的分类讨论思想和转化能力.第一问,利用绝对值不等式的解法求出的范围,让它和已知解集相同,列出等式,解出和的值;第二问,先将代入,得到解析式,再代入到所求不等式中,找到需要解的不等式,注意到当时,2个绝对值一样,所以先进行讨论,当时,按照解绝对值不等式的步骤,先列出不等式组,内部求交集,综合和的情况得到结论.试题解析:(Ⅰ)由得,所以解之得为所求. 4分(Ⅱ)当时,,所以当时,不等式①恒成立,即;当时,不等式或或,解得或或,即;综上,当时,原不等式的解集为,当时,原不等式的解集为. 10分【考点】1.绝对值不等式的解法.6.若存在实数使成立,则实数的取值范围是 .【答案】【解析】令,易知的最小值为,故,所以.【考点】绝对值不等式的解法点评:本题考查绝对值不等式的解法,考查绝对值的几何意义,得到|a-1|≤3是关键,也是难点,考查分析问题、转化解决问题的能力,属于中档题.7.(本题满分10分)选修4-5:不等式选讲已知关于的不等式:的整数解有且仅有一个值为2.(1)求整数的值;(2)在(1)的条件下,解不等式:.【答案】(1),。
绝对值不等式,高考历年真题
温馨提示:高考题库为 Word 版,请按住Ctrl ,滑动鼠标滚轴,调节合适的 观看比例,点击右上角的关闭按钮可返回目录。
2009年考题故选择D 。
1 a2 3a 对任意实数x 恒成立,则实数a 的取值范围为(,1]U[2,1、(2009全国I )不等式V 1的解集为((A) {x 0 x 1 U{x x 1 (B) x 0 x (C ) x 1 x 0(D) x xw.w.w.k.s.5.u.c.o.m【解析】选D. 1 |x1| |x1| (x 1)2 (x 1)2 0 4x 0 x 0,(,1]U[4,B . (,2]U[5,【考点35】 绝对值不等式2、(2009重庆高考)不等式[1,2]【解析】选A.因为4 3a 对任意x 恒成立,所以a 2 3a 4即 a 2 3a0, 解得a1.3、(2009广东咼考)不等式1的实数解为【解析】(x 1)2 (x x 22)22.4、(2009山东高考)不等式2x 2 0的解集为【解析】原不等式等价于不等式组或② 22x 1 (x 2)0 2x 1 (x 2) 0答案:{x| 1 x 1}答案: 3,16、(2009福建高考)解不等式I 2x-1 I < I x I +1【解析】当x<0时,原不等式可化为 2x 1 x 1,解得x 0又Q x 0, x 不存在;1当0 x 丄时,原不等式可化为2x 1 x 1,解得x 02p1 1又 Q 0 x ,0 x ;2 211 1当x,原不等式可化为2x 1 x 1,解得x 2又Q xx 222 2综上,原不等式的解集为 x|0 x 2.表示C 与原点的距离,y 表示C 到A 距离4倍与C 到B 距离的6倍的和.(1) 将y 表示成x 的函数; (2)要使y 的值不超过70, x或③1x -2(2x 1) (x 2)1不等式组①无解,由②得丄x 1,由③得11 x,综上得1 x 1,所以原不等式的解集为{x|1 x 1} . w.w.w.k.s.5.u.c.o.m5、( 2009北京高考)若函数 f (x)(y,x 0则不等式I f(x)| -的解集为3【解析】主要考查分段函数和简单绝对值不等式的解法 .属于基础知识、基本运算的考查1(1)由 I f(x)i 33x0.1(2)由 |f(X )| 13x 01 x1 0x1.33•••不等式| f(x)| 1的解集为3x| 3 x 1,•应填3,17、(2009海南宁夏高考)如图,O 为数轴的原点,A,B,M 为数轴上三点,C 为线段OM 上的动点,设x应该在什么范围内取值?w.w.w.k.s.5.u.c.o.m【解析】(I) y 4|x 101 6|x 201,0 x 30.(n )依题意,x 满足4|x 10| 6|x 20| 70, 0 x 30.解不等式组,其解集为[9, 23],所以x [9, 23].8、( 2009辽宁高考)设函数 f(x) | x 1| | x a |。
高二数学绝对值不等式试题
高二数学绝对值不等式试题1.函数若不等式f(x)≥6的解集为(—∞,-2][4,+∞),则实数a的值为.【答案】3.【解析】∵a>0,故f(x)=|x+1|+|x-a|=,∴当x≤-1时,解-2x+a-1≥6得:x≤;当-1<x<a时,f(x)=1+a;当x≥a时,解2x+1-a≥6得:x≥;又f(x)≥6的解集为(-∞,-2]∪[4,+∞),∴=-2且=4且1+a∈[4,+∞),解得a=3.故应填入:3.【考点】绝对值不等式的解法.2.设函数(1)求不等式的解集;(2)若不等式(,,)恒成立,求实数的范围.【答案】(1);(2).【解析】(1)欲解不等式,需去掉绝对值,考虑到含有两个绝对值,因此分三段去,然后解.(2)要使不等式恒成立,则,考虑到不等式性质,不等式右侧可化简.试题解析:去绝对值,函数可化为,分三段解不等式,可得解集为:.由, 可得, 由(1)可解得:【考点】(1)含绝对不等会的解法;(2)恒成立问题(一般采用分离常数).3.已知.(1)求不等式的解集A;(2)若不等式对任何恒成立,求的取值范围.【答案】(1) (2)【解析】(1)把不等式转化为即可. (2) 恒成立转化为,即.(1)∴(2)恒成立对恒成立.∴取值范围是【考点】绝对值不等式的解法;简单的不等式恒成立的问题.4.不等式A.B.C.D.【答案】D【解析】因为,所以,,故不等式,选D。
【考点】绝对值不等式解法点评:简单题,绝对值不等式解法,通常以“去绝对值符号”为出发点。
有“平方法”,“分类讨论法”,“几何意义法”,不等式性质法等等。
5.已知关于x的不等式的解集是非空集合,则的取值范围是【答案】【解析】根据题意,关于x的不等式|x+a|+|x-1|+a<2013(a是常数)的解是非空集合,即为存在y=|x+a|+|x-1|的图形在y=2013-a的下方. y=|x+a|+|x-1|的图形是一条有两个折点的折线.y=2013-a是一条平行于x轴的直线.a的取值范围是(-∞,1006);6所以答案为:(-∞,1006).【考点】绝对值不等式点评:(1)关于x的不等式|x+a|+|x-1|+a<2013(a是常数)的解是非空集合,等价于存在y=|x+a|+|x-1|的图形在y=2013-a的下方.与恒成立是有本质区别的.(2)y=|x+a|+|x+b|的图形为一条带有两个折点的直线.6.已知函数(1)当的解集(2)若的解集包含[1,2],求的取值范围【答案】(1)(2)[-3,0]【解析】解:(1)当,当无解,当,故(2)当,即由条件得,故满足条件的的取值范围为[-3,0]【考点】绝对值不等式点评:主要是考查了绝对值不等式的求解,以及运用不等式来得到参数的范围,属于中档题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
温馨提示:高考题库为Word 版,请按住Ctrl ,滑动鼠标滚轴,调节合适的观看比例,点击右上角的关闭按钮可返回目录。
【考点35】绝对值不等式2009年考题1、(2009全国Ⅰ)不等式11X X +-<1的解集为( )(A ){x }}01{1x x x 〈〈〉 (B){}01x x 〈〈(C ){}10x x -〈〈 (D){}0x x 〈 【解析】选D.0040)1()1(|1||1|11122<⇔<⇔<--+⇔-<+⇔<-+x x x x x x x x , 故选择D 。
2、(2009重庆高考)不等式2313x x a a +--≤-对任意实数x 恒成立,则实数a 的取值范围为A .(,1][4,)-∞-+∞B .(,2][5,)-∞-+∞C .[1,2]D .(,1][2,)-∞+∞【解析】选A.因为24314313x x x x a a -≤+--≤+--≤-对对任意x 恒成立,所以223434041a a a a a a -≥--≥≥≤-即,解得或.3、(2009广东高考)不等式112x x +≥+的实数解为 . 【解析】112x x +≥+2302)2()1(022122-≤⇔⎩⎨⎧≠++≥+⇔⎩⎨⎧≠++≥+⇔x x x x x x x 且2-≠x . 答案:32x ≤-且2-≠x .4、(2009山东高考)不等式0212<---x x 的解集为 .【解析】原不等式等价于不等式组①221(2)0x x x ≥⎧⎨---<⎩或②12221(2)0x x x ⎧<<⎪⎨⎪-+-<⎩ 或③12(21)(2)0x x x ⎧≤⎪⎨⎪--+-<⎩不等式组①无解,由②得112x <<,由③得112x -<≤,综上得11x -<<,所以原不等式的解集为{|11}x x -<<. 答案:{|11}x x -<<5、(2009北京高考)若函数1,0()1(),03x x xf x x ⎧<⎪⎪=⎨⎪≥⎪⎩ 则不等式1|()|3f x ≥的解集为________.【解析】主要考查分段函数和简单绝对值不等式的解法. 属于基础知识、基本运算的考查.(1)由01|()|301133x f x x x <⎧⎪≥⇒⇒-≤<⎨≥⎪⎩.(2)由001|()|01111133333x xx x f x x ≥⎧≥⎧⎪⎪≥⇒⇒⇒≤≤⎨⎨⎛⎫⎛⎫≥≥ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎩⎩.∴不等式1|()|3f x ≥的解集为{}|31x x -≤≤,∴应填[]3,1-. 答案:[]3,1-6、(2009福建高考)解不等式∣2x -1∣<∣x∣+1【解析】当x<0时,原不等式可化为211,0x x x -+<-+>解得 又0,x x <∴不存在;当102x ≤<时,原不等式可化为211,0x x x -+<+>解得 又110,0;22x x ≤<∴<<当111,211,22222x x x x x x ≥-<+<≥∴≤<原不等式可化为解得又综上,原不等式的解集为|0 2.x x <<7、(2009海南宁夏高考)如图,O 为数轴的原点,A,B,M 为数轴上三点,C 为线段OM 上的动点,设x 表示C 与原点的距离,y 表示C 到A 距离4倍与C 到B 距离的6倍的和. (1)将y 表示成x 的函数;(2)要使y 的值不超过70,x 应该在什么范围内取值【解析】(Ⅰ)4|10|6|20|,030.y x x x =-+-≤≤(Ⅱ)依题意,x 满足4|10|6|20|70,030.x x x -+-≤⎧⎨≤≤⎩解不等式组,其解集为[9,23],所以[9,23].x ∈8、(2009辽宁高考)设函数()|1|||f x x x a =-+-。
(1) 若1,a =-解不等式()3f x ≥;(2)如果x R ∀∈,()2f x ≥,求a 的取值范围。
【解析】(1)当1a =-时,()|1||1|f x x x =-++,由()3f x ≥得:|1||1|3x x -++≥, (法一)由绝对值的几何意义知不等式的解集为33{|}22x x x ≤-≥或。
(法二)不等式可化为123x x ≤-⎧⎨-≥⎩或1123x -<≤⎧⎨≥⎩或123x x >⎧⎨≥⎩,∴不等式的解集为33{|}22x x x ≤-≥或。
-------------5分 (2)若1a =,()2|1|f x x =-,不满足题设条件;若1a <,21,()()1,(1)2(1),(1)x a x a f x a a x x a x -++≤⎧⎪=-<<⎨⎪-+≥⎩,()f x 的最小值为1a -;若1a >,21,(1)()1,(1)2(1),()x a x f x a x a x a x a -++≤⎧⎪=-<<⎨⎪-+≥⎩,()f x 的最小值为1a -。
所以对于x R ∀∈,()2f x ≥的充要条件是|1|2a -≥,从而a 的取值范围(,1][3,)-∞-+∞。
…………………………………………………………………………………………………………10分2008年考题1、(2008湖南高考)“|1|2x -<”是“3x <”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解析】选A.由|1|2x -<得13x -<<,所以易知选A .2、(2008湖南高考)“|1|2x -<成立”是“(3)0x x -<成立”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解析】选B.由|1|2x -<得13x -<<,由(3)0x x -<得03x <<,所以易知选B . 3、(2008四川高考)不等式2||2x x -<的解集为( )(A )(1,2)- (B )(1,1)- (C )(2,1)- (D )(2,2)- 【解析】选A.∵2||2x x -< ∴222x x -<-< 即222020x x x x ⎧-+>⎨--<⎩, 12x R x ∈⎧⎨-<<⎩,∴(1,2)x ∈- 故选A .4、(2008天津高考)设集合{||2|3},{|8},S x x T x a x a ST R =->=<<+=,则a 的取值范围是(A) 31a -<<- (B) 31a --(C) 3a-或1a - (D) 3a <-或1a >-【解析】选A.{|15}S x x x =<->或,所以{13185a a a <-⇒-<<-+>,选A . 5、(2008山东高考)若不等式|3x -b |<4的解集中的整数有且仅有1,2,3,则b 的取值范围为 . 【解析】本题考查绝对值不等式401443,433343b b b x b -⎧≤<⎪-+⎪<<⎨+⎪<≤⎪⎩,解得57b << 答案:(5,7)6、(2008广东高考)已知a ∈R ,若关于x 的方程2104x x a a ++-+=有实根,则a 的取值范围是 . 【解析】方程即214a a x x -+=--,左边14a a -+ 在数轴上表示点a 到原点和14的距离的和,易见1144a a -+≥(1[0,]4a ∈等号成立),而右边2x x --的最大值是14,所以方程有解当且仅当两边都等于14,可得实数a 的取值范围为10,4⎡⎤⎢⎥⎣⎦答案:10,4⎡⎤⎢⎥⎣⎦7、(2008上海高考)不等式|1|1x -<的解集是 . 【解析】由11102x x -<-<⇒<<. 答案:(0,2)2007年考题1、(2007安徽高考)若对任意∈x R,不等式x ≥ax 恒成立,则实数a 的取值范围是 (A)a <-1 (B)a ≤1 (C) a <1 (D )a ≥1【解析】选B .若对任意∈x R,不等式x ≥ax 恒成立,当x≥0时,x≥ax,a≤1,当x<0时,-x≥ax,∴a≥-1,综上得11a -≤≤,即实数a 的取值范围是a ≤1,选B 。
2、(2007安徽高考)若}{2228xA x -=∈Z ≤<,{2R |log |1}B x x =∈>,则)(C R B A ⋂的元素个数为 (A )0(B )1(C )2 (D )3【解析】选C . }{2228xA x -=∈Z ≤<={0,1},{2R |log |1}B x x =∈>=1{|20}2x x x ><<或, ∴ )(C R B A ⋂={0,1},其中的元素个数为2,选C 。
3、(2007福建高考)“|x |<2”是“x 2-x -6<0”的v1.0 可编辑可修改A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【解析】选A .由|x|<2得-2<x<2,由 x 2-x -6<0得-2<x<3,选A.4、(湖北高考)设P 和Q 是两个集合,定义集合{}|P Q x x P x Q -=∈∉,且,如果{}2|log 1P x x =<,{}|21Q x x =-<,那么P Q -等于( )A.{}|01x x <<B.{}|01x x <≤C.{}|12x x <≤D.{}|23x x <≤【解析】选B .先解两个不等式得{}02P x x =<<,}{13Q x x =<<。
由P Q -定义,故选B. 5、(2007辽宁高考)设p q ,是两个命题:21251:log (||3)0:066p x q x x ->-+>,,则p 是q 的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【解析】选A .p :344||313||0-<<-⇒<<⇒<-<x x x 或43<<x ,q :),21()31,(+∞-∞ ,结合数轴知p 是q 的充分而不必要条件,选A.6、(2007辽宁高考)设p q ,是两个命题:251:||30:066p x q x x ->-+>,,则p 是q 的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【解析】选A .p :),3()3,(+∞--∞ ,q :),21()31,(+∞-∞ ,结合数轴知p 是q 的充分而不必要条件,选A.7、(2007福建高考)已知f(x)为R 上的减函数,则满足f(||)<f(1)的实数x 的取值范围是A (-1,1)B (0,1)C (-1,0)(0,1)D (-,-1)(1,+)【解析】选C .由已知得1||1>x 解得01<<-x 或0<x<1,选C. 8、(2007山东高考)当(12)x ∈,时,不等式240x mx ++<恒成立,则m 的取值范围是 .【解析】构造函数:2()4,f x x mx =++12x ∈(,)。