华师大九年级数学(上)期末大复习及答案
(期末复习)华东师大版九年级上册期末综合检测试题(有答案)-(数学)

期末专题复习:华师大版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.函数中,自变量的取值范围是( )A. B. C. ≠—2 D.2.已知三角形的两边长分别是3、5,则第三边a的取值范围是()A. 2<a<8B. 2≤a≤ 8C. a>2D. a>2E. a>23.等腰三角形一边长是3cm,另一边长是8cm,则等腰三角形的周长是()A. 14cm或19cmB. 19cmC. 13cmD. 以上都不对4.二次函数y=2﹣6+3的图象与轴有交点,则的取值范围是()A. <3B. <3且≠0C. ≤3D. ≤3且≠05.若=-1是方程a2+b+c=0的一个根,则a-b+c的值为()A. 1B. -1C. 0D. -26.若关于的方程(a+1)2+2–1=0是一元二次方程,则a的取值范围是( )A.a≠–1B.a>–1C.a<–1D.a≠07.如图,在菱形ABCD中,AB=6,∠DAB=60°,AE分别交BC、BD于点E、F,若CE=2,连接CF.以下结论:①∠BAF=∠BCF;②点E到AB的距离是2 √3;③S△CDF:S△BEF=9:4;④tan∠DCF= 3.其中正确的有7()A. 4个B. 3个C. 2个D. 1个8.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为,则下面所列方程正确的是()A.(32-)(20-)=32×20-570B.32+2×20=32×20-570C.32+2×20-22=570D.(32-2)(20-)= 5709.已知α,β是方程2+2014+1=0的两个根,则(1+2016α+α2)(1+2016β+β2)的值为()A. 1B. 2C. 3D. 410.如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE 于G,BG=4√2,则△EFC的周长为()A. 11B. 10C. 9D. 8二、填空题(共10题;共30分)11.如图是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,AC=1,则BB′的长为________.12.一元二次方程2+﹣3=0的根的情况是________.13.若√a−3+(b+2)2=0,则点M(a,b)关于轴的对称点的坐标为________.14.在同一时刻物体的高度与它的影长成比例,在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为20米,那么高楼的实际高度是________米.15.布袋中有1个黑球和1个白球,这两个球除颜色外其他都相同,如果从布袋中先摸出一个球,放回摇匀后,再摸出一个球,那么两次都摸到白球的概率是________16.某校组织“优质课大赛”活动,经过评比有两名男教师和两名女教师获得一等奖,学校将从这四名教师中随机挑选两位教师参加市教育局组织的决赛,挑选的两位教师恰好是一男一女的概率为________.17.已知a+ 1a = √13,则a﹣1a=________.18.点P(﹣2,1)是平面直角坐标系中的一点,将点P向左平移3个单位长度,再向下平移4个单位长度,得到点P′的坐标是________.19.“五一”期间,梁先生驾驶汽车从甲地经过乙地到丙地游玩.甲地到乙地有两条公路,乙地到丙地有三条公路.每一条公路的长度如图所示(单位:m),梁先生任选一条从甲地到丙地的路线,这条路线正好是最短路线的概率是________.20.如图,矩形ABCD中,BC=2,将矩形ABCD绕点D顺时针旋转90°,点A、C分别落在点A′、C′处.如果点A′、C′、B在同一条直线上,那么tan∠ABA′的值为________.三、解答题(共7题;共60分)21.解下列方程(1)22-=0 (2)2-4=422.(2017·金华)(本题6分)如图,在平面直角坐标系中,△ABC各顶点的坐标分别为A(−2,−2),B(−4,−1),C(−4,−4).(1)作出ΔABC关于原点O成中心对称的ΔA1B1C1.(2)作出点A关于轴的对称点A'.若把点A'向右平移a个单位长度后落在ΔA1B1C1的内部(不包括顶点和边界),求a的取值范围.23.如图,小明在操场上放风筝,已知风筝线AB长100 米,风筝线与水平线的夹角α=37°,小王拿风筝线的手离地面的高AD为1.5米,求风筝离地面的高度BE(精确到0.1米).24.在某河流的北岸有A、B两个村子,A村距河北岸的距离为1千米,B村距河北岸的距离为4千米,且两村相距5千米,B在A的右边,现以河北岸为轴,A村在y轴正半轴上(单位:千米).(1)请建立平面直角坐标系,并描出A、B两村的位置,写出其坐标.(2)近几年,由于乱砍滥伐,生态环境受到破坏,A、B两村面临缺水的危险.两村商议,共同在河北岸修一个水泵站,分别向两村各铺一条水管,要使所用水管最短,水泵站应修在什么位置在图中标出水泵站的位置,并求出所用水管的长度.25.已知,如图,在四边形ABCD中,∠ADB=∠ACB,延长AD、BC相交于点E.求证:(1)△ACE∽△BDE;(2)BE•DC=AB•DE.26.贵阳市某消防支队在一幢居民楼前进行消防演习,如图所示,消防官兵利用云梯成功救出在C处的求救者后,发现在C处正上方17米的B处又有一名求救者,消防官兵立刻升高云梯将其救出,已知点A与居民楼的水平距离是15米,且在A点测得第一次施救时云梯与水平线的夹角∠CAD=60°,求第二次施救时云梯与水平线的夹角∠BAD的度数(结果精确到1°).27.如图,在Rt△ABC中,∠B=Rt∠,直角边AB、BC的长(AB<BC)是方程2-7 +12=0的两个根.点P从点A出发,以每秒1个单位的速度沿△ABC边A→B→C→A的方向运动,运动时间为t(秒).(1)求AB与BC的长;(2)当点P运动到边BC上时,试求出使AP长为√10时运动时间t的值;(3)点P在运动的过程中,是否存在点P,使△ABP是等腰三角形?若存在,请求出运动时间t的值;若不存在,请说明理由.答案解析部分一、单选题1.【答案】B2.【答案】A3.【答案】B4.【答案】D5.【答案】C6.【答案】A7.【答案】B8.【答案】D9.【答案】D10.【答案】D二、填空题11.【答案】412.【答案】两个不相等的实数根13.【答案】(3,2 )14.【答案】1215.【答案】1416.【答案】2317.【答案】±318.【答案】(-5,-3)19.【答案】1620.【答案】√5−12三、解答题21.【答案】(1)解:22-=0,2(-1)=0,2=0或-1=0,则1=0,2=1.(2)解:方程两边同时+4,得2-4+4=4+4,(-2)2=8,-2=±2 √2,则1=2+2 √2,2=2-2 √2.22.【答案】(1)如下图:(2)解:A′如图所示。
华东师大版九年级数学上册期末复习综合测试题(含答案)

华师大版九年级数学上册期末复习综合测试题(满分120分;时间:120分钟)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 代数式√a有意义的条件是( )A.a≠0B.a≥0C.a<0D.a≤02. 如果4x=5y(y≠0),那么下列比例式成立的是( )A.x4=5yB.x4=y5C.x5=y4D.xy=453. 下列二次根式中,可与√12进行合并的二次根式为( )A.√6B.√32C.√18D.√754. 下列计算正确的是()A.√82=√4 B.√(−3)2=3 C.√2+√3=√5 D.2+√2=2√25. 下列命题中,是真命题的是( )A.直角三角形都相似B.等腰三角形都相似C.矩形都相似D.正方形都相似6. 下列计算正确的是()A.√16=±4B.√27−√123=√9−√4=1C.(2−√5)(2+√5)=1D.√2√2=3√2−17. 一个三角形三边的长是6,8,10,同时平分这个三角形周长和面积的直线有()条.A.1B.2C.3D.48. 将一个边长为a的正方形硬纸板剪去四角,使它成为正八边形,求正八边形的面积()A.(2√2−2)a2B.79a2 C.√22a2 D.(3−2√2)a29. 如图,在△ABC中,点D在AB上,在下列四个条件中:①∠ACD=∠B;②∠ADC=∠ACB;③AC2=AD⋅AB;④AB⋅CD=AD⋅CB,能满足△ADC与△ACB相似的条件是()A.①、②、③B.①、③、④C.②、③、④D.①、②、④10. 如图,马航370失联后,“海巡31”船匀速在印度洋搜救,当它行驶到A处时,发现它的北偏东30∘方向有一灯塔B,海巡船继续向北航行4小时后到达C处,发现灯塔B在它的北偏东60∘方向.若海巡船继续向北航行,那么要再过多少时间海巡船离灯塔B最近?()A.1小时B.2小时C.√3小时D.2√3小时二、填空题(本题共计8 小题,每题3 分,共计24分,)11. 计算:tan60∘×cos30∘=________.12. 关于x的方程k2x2−(2k+1)x+1=0有两个不相等的实数根,则k的取值范围是________.13. 方程x2+4x+k=0的一个根是2,那么k的值是________;它的另一个根是________.14. 在△ABC中,AB=18,AC=12,点D、E分别是边AB、AC上一点,且AE=6,若△ADE与△ABC相似,则AD的长为________.15. 方程(2x−1)(x+3)=0的根是________.16. 如图,小明站在C处看甲、乙两楼楼顶的点A和E,A、E、C三点在同一直线上,甲乙两楼的底部D、B与C也在同一直线上,测得BC相距20米,DB相距20米,乙楼高BE为15米,则甲楼高(小明身高忽略不计)为________米.17. 如图,A、B两地间有一池塘阻隔,为测量A、B两地的距离,在地面上选一点C,连接CA、CB的中点D、E.若DE的长度为30m,则A、B两地的距离为________m.18. 林业工人为调查树木的生长情况,常用一种角卡为工具,可以很快测出大树的直径,其工作原理如图所示.现已知∠BAC=53∘8′,AB=0.5米,则这棵大树的直径约为________米.三、解答题(本题共计7 小题,共计66分,)=0.19. 解方程:2x2−3x+1220. 关于x的一元二次方程x2+(2m−3)x+m2+1=0.(1)当方程有两个不相等的实数根时,求m的取值范围;(2)若方程两实根x1,x2满足2x1+2x2=1,求m的值.21. 已知关于x的一元二次方程x2+(2k−1)x+k2=0有两个不等实根x1,x2.(1)求实数k的取值范围;(2)若方程两实根x1,x2满足x1+x2+x1x2−1=0,求k的值.22. 三角形ABC三个顶点的坐标分别为A(−2, −3),B(3, 2),C(2, −1),如果将这个三角形三个顶点的横坐标都加3,同时纵坐标都减1,分别得到点A1,B1,C1,依次用线段连接A1、B1、C1所得三角形A1B1C1.(1)分别写出点A1,B1,C1坐标;(2)三角形A1B1C1与三角形ABC的大小、形状和位置上有什么关系?23. 如图,爸爸和小莉在两处观测气球的仰角分别为α、β,两人的距离(BD)是200m,如果爸爸的眼睛离地面的距离(AB)为1.6m,小莉的眼睛离地面的距离(CD)为1.2m,那么气球的高度(PQ)是多少m?(用含α、β的式子表示)24. 服装柜在销售中发现某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六⋅一”儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现,如果每件童装每降价4元,那么平均每天就可多售出8件.要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少元?25. (1)如图一:小明想测量一棵树的高度AB,在阳光下,小明测得一根与地面垂直、长为1米的竹竿的影长为0.8米.同时另一名同学测量一棵树的高度时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),墙壁上的影长CD为1.5米,落在地面上的影长BC为3米,则树高AB为多少米.25.(2)如图二:在阳光下,小明在某一时刻测得与地面垂直、长为1m的杆子在地面上的影子长为2m,在斜坡上影长为1.5m,他想测量电线杆AB的高度,但其影子恰好落在土坡的坡面CD和地面BC上,量得CD=3m,BC=10m,求电线杆的高度.参考答案一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】B【解答】解:由题意得:a≥0.故选B.2.【答案】C【解答】解:4x=5y(y≠0),两边都除以20,得x5=y4.故选C.3.【答案】D【解答】解:化成最简二次根式后,如果被开方数相同才能合并.∵√12=2√3,√32=4√2,√18=3√2,√75=5√3,∴能与√12合并的二次根式是√75.故选D.4.【答案】B【解答】A、√82=√2,故此选项错误;B、√(−3)2=3,正确;C、√2+√3,无法计算,故此选项错误;D、2+√2,无法计算,故此选项错误.5.【答案】D【解答】解:A、直角三角形不一定相似,是假命题,故A选项错误;B、等腰三角形不一定相似,是假命题,故B选项错误;C、矩形不一定都相似,是假命题,故C选项错误;D、正方形一定都相似,是真命题,故D选项正确.故选D.6.【答案】D【解答】解:A、原式=4,所以A选项错误;B、原式=3√3−2√33=√33,所以B选项错误;C、原式=4−5=−1,所以C选项错误;D、原式=√2−√2√2=3√2−1,所以D选项正确.故选D.7.【答案】A【解答】(2)若直线交AB、BC于点M、N.如图,设BN=x,则BM=12−x,作MD⊥BC,由Rt△MBD∽Rt△ABC,可得MD=8(12−x)10(1)根据S△MBN=12MD⋅BN=12S△ABC,得BN=6+√6,BM=6−√6,即这样的直线存在,且只有一条,综上,同时平分这个三角形周长和面积的直线有1条.故选:A.8.【答案】A【解答】解:设剪去三角形的直角边长x,根据勾股定理可得,三角形的斜边长为√2x,即正八边形的边长为√2x,依题意得√2x+2x=a,则x=√2+2=(2−√2)a2,∴正八边形的面积=a2−4×12×(a√2+2)2=(2√2−2)a2.故选A.9.【答案】A【解答】解:∵∠A是公共角,∴当∠ACD=∠B时,△ADC∽△ACB(有两组角对应相等的两个三角形相似);当∠ADC=∠ACB时,△ADC∽△ACB(有两组角对应相等的两个三角形相似);当AC2=AD⋅AB时,即ACAB =ADAC,△ADC∽△ACB(两组对应边的比相等且夹角对应相等的两个三角形相似).当AB⋅CD=AD⋅CB,即CDAD =CBAB时,∠A不是夹角,则不能判定△ADC与△ACB相似;∴能够判定△ABC与△ACD相似的条件是:①②③.故选A.10.【答案】B【解答】解:作BD⊥AC于D,如下图所示:易知:∠DAB=30∘,∠DCB=60∘,则∠CBD=∠CBA=30∘.∴AC=BC,可得∠DBC=30∘,故CD=12BC,∵海巡船从A点继续向北航行4小时后到达C处,∴海巡船继续向北航行2小时到达D处.故选:B.二、填空题(本题共计8 小题,每题 3 分,共计24分)11.【答案】32【解答】解:原式=√3×√32=32.故答案为:32.12.【答案】k>−14且k≠0【解答】解:∵方程有两个不相等的实数根,∴k≠0且Δ=b2−4ac=(2k+1)2−4k2 =4k+1>0,∴k>−14且k≠0.故答案为:k>−14且k≠0.13.【答案】−12,−6【解答】解:设方程另一根为x1,∵方程x2+4x+x=0的一个根是2,∴4+4×2+x=0,解得x=−12,∵x1+2=−4,∴x1=−6.故答案为−12,−6.14.【答案】4或9【解答】解:∵∠xxx=∠xxx,∴当△xxx∽△xxx,则xxxx =xxxx,即xx18=612,解得xx=9;当△xxx∽△xxx,则xxxx =xxxx,即618=xx12,解得xx=4,综上所述,xx的长为4或9.故答案为4或9.15.【答案】x=12或x=−3【解答】解:∵(2x−1)(x+3)=0,∴2x−1=0或x+3=0,解得:x=12或x=−3,故答案为:x=12或x=−3.16.【答案】30【解答】解:∵xx // xx,∴△xxx∽△xxx.∴xxxx =xxxx,即2040=15xx.∴xx=40×1520=30(米).故答案为:30.17.【答案】60【解答】解:∵x、x分别是xx、xx的中点,xx=30x,∴xx=2xx=60x故答案为:60.18.【答案】0.5【解答】解:由题意可知∠xxx=12∠xxx=26∘34′,且xx=xx⋅tan∠xxx=0.5tan26∘34′≈0.25,∴树的直径为2xx=0.5,三、解答题(本题共计7 小题,每题10 分,共计70分)19.【答案】解:这里x=2,x=−3,x=12,∵△=9−4=5,∴x=3±√54.【解答】解:这里x=2,x=−3,x=12,∵△=9−4=5,∴x=3±√54.20.【答案】解:(1)根据题意得x=(2x−3)2−4(x2+1)>0,解得x<512.(2)根据题意得x1+x2=−2x+3,x1⋅x2=x2+1,∵2x1+2x2=1,∴ x 1⋅x 2=2(x 1+x 2),∴ x 2+1=−4x +6,解得x 1=−5,x 2=1,∵ x <512,∴ x =−5.【解答】解:(1)根据题意得x =(2x −3)2−4(x 2+1)>0,解得x <512.(2)根据题意得x 1+x 2=−2x +3,x 1⋅x 2=x 2+1,∵ 2x 1+2x 2=1,∴ x 1⋅x 2=2(x 1+x 2),∴ x 2+1=−4x +6,解得x 1=−5,x 2=1,∵ x <512, ∴ x =−5.21.【答案】解:(1)关于x 的一元二次方程x 2+(2x −1)x +x 2=0有两个不等实根x 1,x 2, ∴ x =(2x −1)2−4x 2=−4x +1>0,解得x <14,即实数x 的取值范围是x <14.(2)由根与系数的关系,得x 1+x 2=−(2x −1)=1−2x ,x 1x 2=x 2,∵ x 1+x 2+x 1x 2−1=0,∴ 1−2x +x 2−1=0,解得x =0或2,由(1)知x <14,∴ x =0.【解答】解:(1)关于x 的一元二次方程x 2+(2x −1)x +x 2=0有两个不等实根x 1,x 2, ∴ x =(2x −1)2−4x 2=−4x +1>0,解得x <14,即实数x 的取值范围是x <14. (2)由根与系数的关系,得x 1+x 2=−(2x −1)=1−2x ,x 1x 2=x 2,∵ x 1+x 2+x 1x 2−1=0,∴ 1−2x +x 2−1=0,解得x =0或2,由(1)知x <14, ∴ x =0.22.【答案】解:(1)∵ 三角形xxx 的顶点坐标分别是x (−2,−3),x (3,2),x (2,−1), ∴ 三个顶点的横坐标都加3,纵坐标都减1后,得x 1=(−2+3,−3−1)=(1,−4),x 1=(3+3,2−1)=(6,1),x 1=(2+3,−1−1)=(5,−2),即x 1(1, −4),x 1(6, 1),x 1(5, −2);(2)三角形x 1x 1x 1的大小、形状与三角形xxx 的大小、形状完全一样,仅是位置不同,三角形x 1x 1x 1是将三角形xxx 沿x 轴方向向右平移3个单位,再沿x 轴方向向下平移1个单位得到的.【解答】解:(1)∵ 三角形xxx 的顶点坐标分别是x (−2,−3),x (3,2),x (2,−1),∴ 三个顶点的横坐标都加3,纵坐标都减1后,得x 1=(−2+3,−3−1)=(1,−4),x 1=(3+3,2−1)=(6,1),x 1=(2+3,−1−1)=(5,−2),即x 1(1, −4),x 1(6, 1),x 1(5, −2);(2)三角形x 1x 1x 1的大小、形状与三角形xxx 的大小、形状完全一样,仅是位置不同,三角形x 1x 1x 1是将三角形xxx 沿x 轴方向向右平移3个单位,再沿x 轴方向向下平移1个单位得到的.23.【答案】气球的高度是200tan x tan x +1.2tan x +1.6tan xtan x +tan x x .【解答】过点x作xx⊥xx于点x,过点x作xx⊥xx于点x,设xx=xx,则xx=(x−1.6)x,xx=(x−1.2)x.在△xxx中,xxxx=90∘.则tan xxxx=xxxx.∴xx=x−1.6tan x.在△xxx中,xxxx=90∘.则tan xxxx=xxxx.∴xx=x−1.2tan x.∵xx+xx=xx.∴x−1.6tan x +x−1.2tan x=200.解,得x=200tan x tan x+1.2tan x+1.6tan xtan x+tan x.24.【答案】解:如果每件童装降价4元,那么平均每天就可多售出8件,则每降价1元,多售2件,设降价x元,则多售2x件.设每件童装应降价x元,依题意得(40−x)(20+2x)=1200,整理得x2−30x+200=0,解之得x1=10,x2=20,因要减少库存,故x=20.因此每件童装应降价20元.【解答】解:如果每件童装降价4元,那么平均每天就可多售出8件,则每降价1元,多售2件,设降价x元,则多售2x件.设每件童装应降价x元,依题意得(40−x)(20+2x)=1200,整理得x2−30x+200=0,解之得x1=10,x2=20,因要减少库存,故x=20.因此每件童装应降价20元.25.【答案】树高为5.25米.(2)作xx⊥xx于x.xx对应的旗杆的高度:根据同一时刻物高与影长成比例,得10÷2=5;xx对应的旗杆的高度:3÷1.5=2;故旗杆的高度是5+2=7x.【解答】解:(1)设从墙上的影子的顶端到树的顶端的垂直高度是x米.则解得10.8=x3,解得:x=3.75.∴树高是3.75+1.5=5.25(米),答:树高为5.25米.(2)作xx⊥xx于x.xx对应的旗杆的高度:根据同一时刻物高与影长成比例,得10÷2=5;xx对应的旗杆的高度:3÷1.5=2;故旗杆的高度是5+2=7x.。
华师大版2023-2024学年数学九年级上册期末复习专练(7)及答案

(七)——2023-2024学年华师大版数学九年级上册期末复习专练1.在一个正方形的内部按照如图方式放置大小不同的两个小正方形,其中较大的正方形面积为12,重叠部分的面积为3,空白部分的面积为,则较小的正方形面积为( )A.11B.10C.9D.82.若,是一元二次方程的两个根,则的值为( )A.3B.10C.-3D.-103.如图,有两个可以自由转动的转盘.转盘A的盘面被等分成三个扇形区域,并分别标上数字1,2,-3;转盘B的盘面被等分成四个扇形区域,并分别标上数字-2,2,3,4.同时转动转盘A,B(当指针恰好指在分界线上时,重转),则转盘停止后两指针所指扇形区域中的数字的乘积为4的概率是( )A. B. C. D.4.如图,菱形ABCD的对角线AC,BD相交于点O,点E为边CD的中点,若菱形ABCD的周长为16,,则的面积是( )A. B.2 C. D.45.如图,点F是菱形对角线BD上一动点,点E是线段BC上一点,且,连接EF,CF,设BF的长为x,,点F从点B运动到点D时,y随x变化的关系图象,图象最低点的纵坐标是( )A. B. C. D.6.表中记录了某种苹果树苗在一定条件下移植成活的情况:移植的棵数200500800200012000 n成活的棵数187446730179010836 m成活的频率0.9350.8920.9130.8950.903由此估计这种苹果树苗移植成活的概率约为__________.(精确到0.1)7.关于x的方程有两个不相等的实根,,若,则的最大值是________.8.如图,在正方形中,P,H分别为和上的点,与交于点E,.(1)判断与是否互相垂直________;(选填“是”或“否”)(2)若正方形的边长为4,,则线段的长为________.9.计算:(1);(2).10.商场某种商品平均每天可销售30件,每件盈利50元.商场为了减少库存开始降价销售,每件商品每降价1元,商场平均每天可多售出2件.(1)在商场日盈利达到2100元时,每件商品应该降价多少元?(2)若商场要保证每天销售量不少于100件,每件商品最多能盈利多少元?11.我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)王老师采取的调查方式是______(填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共______件,其中B班征集到作品______件,请把图2补充完整;(2)王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?(3)如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,求恰好抽中一男一女的概率.(写出用树状图或列表分析过程)12.某兴趣小组为了测量大楼的高度,先沿着斜坡走了52米到达坡顶点B处,然后在点B处测得大楼顶点C的仰角为,已知斜坡的坡度为,点A到大楼的距离为72米,求大楼的高度.(参考数据:,,)13.如图,在中,,以CA、CD为边作矩形ACDE,直线AB与直线CE、DE分别交于点F、G.(1)如图所示,点D在线段CB上,四边形ACDE是正方形.①求证:;②若点G为DE的中点,求FG的长;③若,求BC的长.(2)已知,是否存在点D,使得是等腰三角形?若存在,若不存在,说明理由.答案以及解析1.答案:B解析:观察可知,两个空白部分的长相等,宽也相等,重叠部分也为正方形,空白部分的面积为,一个空白长方形面积,大正方形面积为12,重叠部分面积为3,大正方形边长,重叠部分边长,空白部分的长,设空白部分宽为x,可得:,解得:,小正方形的边长=空白部分的宽+阴影部分边长,小正方形面积,故选:B.2.答案:D解析:,是一元二次方程的两个根,.故选:D.3.答案:D解析:根据题意,画树状图如下.由树状图可知,共有12种等可能的结果,其中转盘停止后两指针所指扇形区域中的数字的乘积为4的结果有2种,故所求概率为.4.答案:A解析:菱形ABCD的周长为16,菱形ABCD的边长为4. ,是等边三角形.又O是菱形对角线AC,BD的交点,.在中,,,.又O,E分别是AC,DC的中点,,,,,,故选A.5.答案:B解析:由函数图象可知:当F与B重合时,,即,,,,,当F与D重合时,,连接AC交BD于点O,连接FA,ABCD是菱形,AC和BD互相垂直平分,,,当A,E,F三点共线时,y取最小值为AE,作交于点P,,,,,,,即,,,,.故选:B6.答案:0.9解析:本题考查概率.∵表中的树苗移植成活率稳定在0.9附近,∴由概率的定义可知,估计这种苹果树苗移植成活的概率约为0.9.7.答案:解析:关于x的方程有两个不相等的实根,,,,,,即,,,,,,的最大值是6.故答案为:6.8.答案:是;//2.4解析:(1)四边形是正方形,,,在与中,,,,,,,.(2)正方形的边长为4,,,,,,,,,,,,.故答案为:①是;②.9.答案:(1);(2);解析:(1)原式;(2)原式.10.答案:(1)每件商品降价20元时,商场日盈利可达到2100元(2)商场要保证每天销售量不少于100件,每件商品最多能盈利15元解析:(1)设每件商品降价m元时,商场日盈利可达到2100元,根据题意得:,解得或,为了尽快减少库存,销量尽可能大,m取20,答:每件商品降价20元时,商场日盈利可达到2100元;(2)设每件商品降价x元,每件商品盈利为y元,则,商场要保证每天销售量不少于100件,,解得:,,y随x的增大而减小,当时,y最大,最大值为15,商场要保证每天销售量不少于100件,每件商品最多能盈利15元.11.答案:(1)抽样调查;12;3;补全图形见解析(2)四个班平均每个班征集作品3(件),计全年级征集到参展作品:42(件)(3)恰好抽中一男一女的概率是解析:(1)王老师采取的调查方式是抽样调查,所调查的4个班征集到作品数为:件,B班征集作品的件数为:件,故答案为:抽样调查;12;3;把图2补充完整如下:(2)王老师所调查的四个班平均每个班征集作品(件),所以,估计全年级征集到参展作品:(件);(3)画树状图如下:共有20种机会均等的结果,其中一男一女占12种,所以,P(一男一女),即恰好抽中一男一女的概率是.12.答案:大楼的高度为52米解析:如下图,过点B作于点E,作于点F,在中,,,又,,解得:,;,四边形是矩形,,;在中,,即:,,.答:大楼的高度为52米.13.答案:(1)①见解析;②;③;(2)存在,等腰的腰长为4或20或或.解析:(1)①四边形ACDE是正方形,CE是对角线,,,,;②在正方形ACDE中,,,点G为DE中点,,在中,,,,,,;③如图中,正方形ACDE中,,,,,,设;,,,,在中,,,解得,,,,在中,;(2)在中,,当点D在线段BC上时,此时只有,,,设,则,,则;,,,,整理得:.解得或5(舍弃),腰长.当点D在线段BC的延长线上,且直线ABCE的交点中AE上方时,此时只有,如图,设,则,,,,,,解得或﹣2(舍弃),腰长.当点D在线段BC的延长线上,且直线AB,EC的交点中BD下方时,此时只有,过点D作,如图,设,则,,.,,,,,,解得或(舍去).腰长,当点D在线段CB的延长线上时,此时只有,作于H,如图:设,则,,,,,,,,,,解得或(舍去).腰长,综上所述,等腰的腰长为4或20或或.。
华师大九年级数学(上)期末大复习及答案

华师大九年级数学(上)期末大复习第Ⅰ卷(满分48分)一、选择题:(每小题3分,共48分)1、下列条件中,不一定能使两个三角形全等的条件是( ) (A )两边一角对应相等 (B )两角一边对应相等 (C )三边对应相等 (D )两边和它们的夹角对应相等2、计算:21424m m ++-的结果是( ) A 、m+2 B 、m -2 C 、12m + D 、12m - 3、方程(a+2)|a|+3ax+1=0是关于x 的一元二次方程,则a 的值为( )A 、a =±2B 、a=2C 、a=-2D 、a ≠-2 4、若x <2,则2|2|x x --的值为( ) A 、-1 B 、0 C 、1 D 、2 5、如图1,AC 是⊙O 的直径,BD 是⊙O 的弦,EC ∥AB 交⊙O于E ,则图中与12∠BOC 相等的角共有( ) A 、2个 B 、3个 C 、4个 D 、5个6、如果关于x 的一元二次方程Kx 2-6x+9=0有两个不相等的实数根,那么K 的取值范围是( )A 、K <1B 、K ≠0C 、K <1且K ≠0D 、K >1 7、如图2,O为ABCD 的对角线AC 、BD 的交点,过O 的直线与边AD 、BC 分别交于点E 、F,则图中全等的三角形共有( )A 、2对B 、3对C 、5对D 、6对 8、圆心都在x 轴上的两圆有一个公共点是(1,2),那么这两圆的关系是( ) A 、内切 B 、外切 C 、相交 D 、外离9、如果圆锥的底面半径为3cm ,母线长为4cm ,那么它的侧面积等于( ) A 、24πcm 2 B 、12πcm 2 C 、12cm 2 D 、6πcm 2 10、下面是赵明同学在一次测验中解答的填空题,其中,正确的是( )A 、若x 2 =4,则x=2B 、方程x(2x -1)=2x -1的解为x =1C 、关于x 的方程x 2-3x +m=0的一个根是1, 那么m = 2图1D图2F EDCABOD 、若分式2321x x x -+-的值为零,则x = 1或x = 211、下列命题中,真命题是( )A 、有两边相等的平行四边形是菱形。
华师大版九年级数学上册期末考试试卷(附带答案)

华师大版九年级数学上册期末考试试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________ 一、选择题(本题共10小题,每小题4分,共40分)1.下列根式中,与20是同类二次根式的是()A.15B.45C.35 D.182.关于x的一元二次方程x2=1的根是()A.x=1 B.x1=1,x2=-1C.x=-1 D.x1=x2=13.用配方法解方程x2+4x-1=0时,配方结果正确的是()A.(x+4)2=5 B.(x+2)2=5 C.(x+4)2=3 D.(x+2)2=34.下列事件中,是必然事件的是()A.掷一次骰子,向上一面的点数是6B.13个同学参加一个聚会,他们中至少有2个同学的生日在同一个月C.射击运动员射击一次,命中靶心D.经过有交通信号灯的路口,遇到红灯5.某班一同学在老师的培训后学会了某个物理实验操作,回到班上后第一节课教会了若干名同学,第二节课会做该实验的同学又各自教会了同样多的同学,这样全班共有36名同学会做这个实验.若设1名同学每次都能教会x名同学,则可列方程为()A.x+(x+1)x=36 B.1+x+(1+x)x=36C.1+x+x2=36 D.x+(x+1)2=3663的整数部分为x,小数部分为y,则3x-y的值是()A.3 3-3 B.3C.1D.37.定义运算:a*b=2ab, 若a、b是方程x2+x-m=0(m>0)的两个根,则(a+1)*b+2a的值为()A.m B.2-2m C.2m-2 D.-2m-28.如图,在矩形ABCD中,DE⊥AC于点E,设∠ADE=α,且cos α=35,AB=4,则AC的长为( ) A .3B.165C.203D.163(第8题)(第9题) 9.如图,在菱形ABCD 中,∠ABC =60°,连结AC 、BD ,则ACBD =( )A.12B.22C.32D.3310.如图,正方形ABCD 的边AB =3,对角线AC 和BD 交于点O ,P 是边CD 上靠近点D 的三等分点,连结P A 、PB ,分别交BD 、AC 于点M 、N ,连结MN .有下列结论:①OM =MD ;②S △OMA S △ONB=52;③MN =35820;④S △MDP =38,其中正确的是( )(第10题)A .①②③B .①②④C .②③④D .①②③④二、填空题(本题共6小题,每小题4分,共24分) 11.计算:12+27=________.12.一个不透明的袋子里装有3个红球和5个黑球,它们除颜色外其余都相同.从袋中任意摸出1个球是红球的概率为________.13.若关于x 的方程x 2+(k -3)x -k 2=0的两根互为相反数,则k =________.14.如图,添加一个条件:__________________________,使△ADE ∽△ABC .(写一个即可)(第14题)(第15题)15.如图,在三角形纸片ABC 中,点D 、E 、F 分别在边AB 、AC 、BC 上,BF =4,CF =6.将这张纸片沿直线DE 翻折,点A 与点F 重合.若DE ∥BC ,AF =EF ,则四边形ADFE 的面积为________.16.如图,菱形ABCD的顶点A在函数y=3x(x>0)的图象上,函数y=kx(k>3,x>0)的图象关于直线AC对称,且过B、D两点.若AB=2,∠BAD=30°,则k=________.(第16题)三、解答题(本题共9小题,共86分)17.(8分)计算:(-3)2-2sin 45°+||2-1.18.(8分)解方程:2x2-7x-4=0.19.(8分)如图,在平面直角坐标系中,△OAB的顶点坐标分别为O(0,0)、A(2,1)、B(1,-2).(1)以原点O为位似中心,在y轴的右侧按21放大,画出△OAB的一个位似图形△OA1B1;(2)画出将△OAB向左平移2个单位长度,再向上平移1个单位长度后得到的△O2A2B2;(3)△OA1B1与△O2A2B2是位似图形吗?若是,请在图中标出位似中心点M,并写出点M的坐标.(第19题)20.(8分)如图,将Rt△AOB绕直角顶点O按顺时针方向旋转,得到△A′OB′,使点A的对应点A′落在边AB上,过点B′作B′C∥AB,交AO的延长线于点C.(第20题)(1)求证:∠BA′O=∠C;(2)若OB=2OA,求tan∠OB′C的值.21.(8分)如图,已知▱ABCD,点F在AB的延长线上,CF⊥AB.(1)尺规作图:在边BC上找一点E,使得△DCE∽△CBF(保留作图痕迹,不写作法,不必证明)(2)在(1)的条件下,若E为BC的中点,AD=8,BF=3,求AB的长.(第21题)22.(10分)定义:如果关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根互为相反数,那么称这样的方程是“对称方程”.例如:一元二次方程x2-4=0的两个根是x1=2,x2=-2,2和-2互为相反数,则方程x2-4=0是“对称方程”.(1)通过计算,判断下列方程是否是“对称方程”:①x2+x-2=0;②x2-12=0.(2)已知关于x的一元二次方程x2-(k2-4)x-3k=0 (k是常数)是“对称方程”,求k的值.23.(10分)如图,在等腰三角形ADC中,AD=AC,B是DC上的一点,连结AB,且有AB=DB.(1)若∠BAC=90°,AC=3,求CD的长;(第23题)(2)若ABCD=13,求证:∠BAC=90°.24.(12分)在如今智能手机的功能中,都可以利用手势密码进行锁屏和解锁.其中最常见的就是利用3×3的正方形点阵设置密码,我们将其称为“9点码”.通常,在设置“9点码”时,只能连结相邻的两点(如图,不妨将9个点依次对应数字1到9,例如图中路线Ⅰ,Ⅱ是可行的,路线Ⅲ,Ⅳ是不可行的),不能走重复的路线,从而形成相应的密码线段,线段越多,密码越复杂.已知小明设置的“9点码”从右上角的点“3”出发,且用了3个数字.(1)已知横向和纵向的相邻两点距离为1,且以小明设置的“9点码”所经过的点为顶点的三角形恰好是等腰三角形,则该等腰三角形的面积所有可能的值为________;(2)用概率知识并结合树状图回答:若小明设置的“9点码”用了3个数字,对于一个不知道该密码的人(已知出发点和用了3个数字),通过画树状图,求其一次尝试能将小明手机解锁的概率.(第24题)25.(14分)如图,在正方形ABCD中,AB=4,P、Q分别是边AD、AC上的动点.(1)填空:AC=________;(2)若AP=3PD,且点A关于PQ的对称点A′落在边CD上,求tan∠A′QC的值;(3)设AP=a,直线PQ交直线BC于点T,求△APQ与△CTQ面积之和S的最小值.(用含a的代数式表示)(第25题)参考答案一、1.B 2.B 3.B 4.B 5.B 6.C7.D8.C9.D10.D二、11.5 312.3 813.314.∠ADE=∠B(答案不唯一) 15.5 316.6+2 3三、17.解:原式=3-2×22+2-1=2.18.解:原方程可化为(x -4)(2x +1)=0 ∴x -4=0或2x +1=0 ∴x 1=4,x 2=-12.19.解:(1)如图,△OA 1B 1为所作.(2)如图,△O 2A 2B 2为所作.(3)△OA 1B 1与△O 2A 2B 2是位似图形.如图,点M 为所求,其坐标为(-4,2).(第19题)20.(1)证明:如图,∵B ′C ∥AB ,∴∠A +∠C =180°.由旋转,得OA ′=OA ,∴∠1=∠A .∵∠1+∠BA ′O =180°,∴∠A +∠BA ′O =180° ∴∠BA ′O =∠C .(第20题)(2)解:如图,由旋转,得OB ′=OB ∠A ′OB ′=∠AOB =90°,∴∠2+∠3=90°. ∵∠3+∠4=90°,∴∠2=∠4. 由(1)得,∠BA ′O =∠C∴△A ′OB ≌△COB ′,∴∠B =∠OB ′C . 在Rt △AOB 中,OB =2OA∴tan B=OAOB=12.∴tan∠OB′C=tan B=1 2.21.解:(1)如图,点E即为所求.(第21题)(2)∵四边形ABCD是平行四边形,AD=8∴BC=AD=8,AB=CD.∵E为BC的中点,∴CE=BE=12BC=4.∵△DCE∽△CBF,∴CEBF=DCBC∴43=DC8,∴DC=323,∴AB=DC=323.22.解:(1)①x2+x-2=0,即(x+2)(x-1)=0∴x1=-2,x2=1.∵-2和1不互为相反数,∴不是“对称方程”.②由题意,得x=±12=±2 3即x1=2 3,x2=-2 3.∵2 3与-2 3互为相反数,∴是“对称方程”.(2)设x1,x2为原方程的解,∵该方程为“对称方程”∴x1+x2=k2-4=0,即k2=4,解得k=±2.当k=-2时,方程为x2+6=0,无解,不符合题意.当k=2时,方程为x2-6=0,符合题意.∴k的值为2.23.(1)解:∵AD=AC,AB=DB∴∠C=∠D,∠D=∠DAB,∴∠C=∠D=∠DAB.∵∠BAC=90°,∠C+∠D+∠DAC=∠C+∠D+∠DAB+∠BAC=180°,∴∠C+∠D+∠DAB=90°∴∠C=∠D=∠DAB=30°.在△ABC中,∠BAC=90°,∠C=30°∴AB=AC·tan 30°=3×33=1∴BC=2AB=2,BD=AB=1 ∴CD=BD+BC=1+2=3.(2)证明:∵ABCD=13,AB=DB∴BC=2AB,DC=3AB.∵∠DAB=∠C,∠D=∠D∴△DAB∽△DCA,∴ABAC=ADCD.∵AD=AC,∴AC2=3AB2.∵BC=2AB,∴BC2=4AB2.∴AB2+AC2=BC2,∴∠BAC=90°.24.解:(1)12或1(2)如图.(第24题)由树状图可得,所有等可能的结果有15种,而符合条件的结果只有1种,所以一次尝试能将小明手机解锁的概率为1 15.25.解:(1)4 2(2)∵在正方形ABCD中,AB=4,AC为对角线∴AD=AB=4,∠DAC=∠DCA=45°,∠ADC=90°.∵点A关于PQ的对称点A′落在CD边上∴△APQ和△A′PQ关于PQ对称∴AP=A′P,∠P AQ=∠P A′Q=45°.∵∠DA′Q=∠DCA+∠A′QC=∠P A′Q+∠P A′D∴∠A′QC=∠P A′D.∵AP=3PD,AD=4,∴A′P=AP=3,PD=1第 11 页 共 11 页 ∴A ′D =A ′P 2-PD 2=2 2∴tan ∠A ′QC =tan ∠P A ′D =PD A ′D =12 2=24. (3)如图,过点Q 作直线MN ⊥AD 于点M ,交BC 于点N ,则MN ⊥BC .(第25题)∵AP ∥CT ,∴△APQ ∽△CTQ ,∴AP CT =QM QN .设QM =h ,则QN =4-h ,∴a CT =h 4-h解得CT =a (4-h )h∴S =12ah +12·a (4-h )h ·(4-h )=12ah +a (4-h )22h整理得ah 2-(4a +S )h +8a =0.∵方程有实数根∴[-(4a +S )]2-4a ·8a ≥0,即(4a +S )2≥32a 2.又∵4a +S >0,a >0,∴4a +S ≥4 2a∴S ≥(4 2-4)a .当S =(4 2-4)a 时,由方程可得h 1=h 2=2 2,满足题意.故当h =2 2时,△APQ 与△CTQ 面积之和S 最小,最小值为(4 2-4)a .。
华东师大版九年级数学上册期末考试题及答案【全面】

华东师大版九年级数学上册期末考试题及答案【全面】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列二次根式中能与 )A B C D2.若实数m 、n 满足 02m =-,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是 ( )A .12B .10C .8或10D .63.如果a b -=22()2a b a b a a b+-⋅-的值为( )A B .C .D .4.把函数y x =向上平移3个单位,下列在该平移后的直线上的点是( )A .()2,2B .()2,3C .()2,4D .(2,5)5.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x 名同学,那么依题意,可列出的方程是( )A .x (x+1)=210B .x (x ﹣1)=210C .2x (x ﹣1)=210D .12x (x ﹣1)=210 6.对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1、x 2,且x 1<1<x 2,则c 的取值范围是( )A .c <﹣3B .c <﹣2C .c <14D .c <17.如图,点B ,C ,D 在⊙O 上,若∠BCD =130°,则∠BOD 的度数是( )A .50°B .60°C .80°D .100°8.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD9.如图,已知⊙O 的直径AE =10cm ,∠B =∠EAC ,则AC 的长为( )A .5cmB .52cmC .53cmD .6cm10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)1368______________.2.因式分解:x 3﹣4x=_______.3.已知二次函数y=x 2﹣4x+k 的图象的顶点在x 轴下方,则实数k 的取值范围是__________.4.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为_____________.5.如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为________.6.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学计数法表示为___________.三、解答题(本大题共6小题,共72分)1.解方程:12133xx x -+=--2.先化简,再求值(32m++m﹣2)÷2212m mm-++;其中m23.如图,已知点A(﹣1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c 上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=∠BAC?若存在,求出Q点坐标;若不存在,说明理由.4.如图,已知P是⊙O外一点,PO交圆O于点C,OC=CP=2,弦AB⊥OC,劣弧AB的度数为120°,连接PB.(1)求BC的长;(2)求证:PB是⊙O的切线.5.元旦期间,某超市开展有奖促销活动,凡在超市购物的顾客均有转动圆盘的机会(如图),如果规定当圆盘停下来时指针指向8就中一等奖,指向2或6就中二等奖,指向1或3或5就中纪念奖,指向其余数字不中奖.(1)转动转盘中奖的概率是多少?(2)元旦期间有1000人参与这项活动,估计获得一等奖的人数是多少?6.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、A4、D5、B6、B7、D8、D9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)12、x (x+2)(x ﹣2)3、k <44、10.5、6、2.5×10-6三、解答题(本大题共6小题,共72分)1、1x =2、11m m +-,原式=.3、(1)抛物线的解析式为y=﹣13x 2+23x+1;(2)点P 的坐标为(1,43)或(2,1);(3)存在,理由略.4、(1)2(2)略5、(1)34;(2)1256、(1)120件;(2)150元.。
华师大版九年级上册数学期末测试卷及含答案(必考题)

华师大版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、点A(﹣1,2)绕坐标原点O逆时针方向旋转90°得到的点A'的坐标是()A.(﹣2,﹣1)B.(2,﹣1)C.(1,﹣2)D.(2,1)2、如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D ,如果AC=3,AB=6,那么AD的值为()A. B. C. D.3、在△ABC中,,, 那么的值是()A. B. C. D.4、x取()时,式子在实数范围内有意义.A.x≥1且x≠2B.x≥2且x≠1C.x≥2D.都错误5、如图,先锋村准备在坡角为的山坡上栽树,要求相邻两树之间的水平距离为米,那么这两树在坡面上的距离为()A. B. C. D.6、如图,在Rt△ABC中,∠ACB=90°,AC=BC,点M在AC边上,且AM=1,MC=4,动点P在AB边上,连接PC,PM,则PC+PM的最小值是()A. B.6 C. D.77、如图,ABC中,正方形DEFG的顶点D,G分别在AB,AC上,顶点E,F 在BC上.若△ADG、△BED、△CFG的面积分别是1、3、1,则正方形的边长为()A. B. C.2 D.28、如图,己知在矩形ABCD中,AB=2,BC=6,点E从点D出发,沿DA方向以每秒1个单位的速度向点A运动,点F从点B出发,沿射线AB以每秒3个单位的速度运动,当点E运动到点A时,E、F两点停止运动.连接BD,过点E作EH⊥BD,垂足为H,连接口,交BD于点G,交BC于点旭连接CF.给出下列结论:①△CDE∽△CBF;②∠DBC=∠EFC;③=;④GH的值为定值;上述结论中正确的个数为()A.1B.2C.3D.49、小明同时向上掷两枚质地均匀、同样大小的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数之和是3的倍数的概率是( )A. B. C. D.10、如图,在△ABC中,∠C=90°,AB=15,sinB=,则AC等于()A.3B.9C.4D.1211、某超市一月份的营业额是100万元,月平均增加的百分率相同,第一季度的总营业额是364万元,若设月平均增长的百分率是x,那么可列出的方程是()A. B.C. D.12、如图,已知D、E分别为AB、AC上的两点,且DE∥BC,AE=3CE,AB=8,则AD的长为()A.3B.4C.5D.613、下列事件中,属于必然事件的是 )A.三角形的外心到三边的距离相等B.某射击运动员射击一次,命中靶心 C.任意画一个三角形,其内角和是 D.抛一枚硬币,落地后正面朝上14、下列各数中是有理数的是()A. B.4π C.sin45° D.15、已知为锐角,且,则()A. B. C. D.二、填空题(共10题,共计30分)16、若直角三角形的一锐角为30°,而斜边与较短边之和为24.那么斜边的长为________.17、已知m,n是方程x2+2x﹣5=0的两个实数根,则m2﹣mn+3m+n=________.18、比较大小:________ .19、如图,AC与BC为⊙O的切线,切点分别为A,B,OA=2,∠ACB=60°,则阴影部分的面积为________.20、在一个不透明的袋中装有2个黑色小球和若干个红色小球,每个小球除颜色外都相同,每次摇匀后随机摸出一个小球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红色小球的频率稳定于0.8,则可估计这个袋中红色小球的个数约为________.21、如图,在△中,, ∥,的平分线交于, = ________.22、计算:•=________.23、如图,正八边形ABCDEFGH的边长为a,I、J、K、L分别是各自所在边的中点,且四边形IJKL是正方形,则正方形IJKL的边长为________(用含a的代数式表示).24、在平面直角坐标系中,点A的坐标为(-1,3),线段AB∥x轴,且AB=4,则点B的坐标为________.25、如图,已知△ABC,AB=AC=1,∠A=36°,∠ABC的平分线BD交AC于点D,则AD的长是________,cosA的值是________.(结果保留根号)三、解答题(共5题,共计25分)26、计算:tan30°cos60°+tan45°cos30°.27、为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置个平面镜E,使得B,E,D在同一水平线上,如图所示.该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED).在F处测得旗杆顶A的仰角为39.3°,平面镜E的俯角为45°,FD=1.8米,问旗杆AB的高度约为多少米? (结果保留整数)(参考数据:tan39.3°≈0.82,tan84.3°≈10.02)28、如图,强强同学为了测量学校一棵笔直的大树OE的高度,先在操场上点A 处放一面平面镜,从点A处后退1m到点B处,恰好在平面镜中看到树的顶部E 点的像;再将平面镜向后移动4m(即AC=4m)放在C处,从点C处向后退1.5m到点D处,恰好再次在平面镜中看到大树的顶部E点的像,测得强强的眼睛距地面的高度FB、GD为1.5m,已知点O,A,B,C,D在同一水平线上,且GD⊥OD,FB⊥OD,EO⊥OD.求大树OE的高度.(平面镜的大小忽略不计)29、下图是投影仪安装截面图.教室高EF=3.5m,投影仪A发出的光线夹角∠BAC=30°,投影屏幕高BC=1.2m.固定投影仪的吊臂AD=0.5m,且AD⊥DE,AD∥EF,∠ACB=45°.求屏幕下边沿离地面的高度CF(结果精确到0.1 m).(参考数据:tan15°≈0.27,tan30°≈0.58)30、已知x= +2,y= ﹣2,求x2+2xy+y2的值.参考答案一、单选题(共15题,共计45分)2、A3、B4、C5、B6、C7、C8、C9、A10、B11、B12、D13、C14、D15、A二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
华师大版九年级上册数学期末测试卷及含答案(配有卷)

华师大版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、下列二次根式中,最简二次根式是()A. B. C. D.2、如图,已知圆锥的母线长为6,圆锥的高与母线所夹的角为,且sin =,则该圆锥的侧面积是()A. B.24π C.16π D.12π3、下列方程中,是一元二次方程的是()A. B. C. D.4、等腰三角形的三边长分别为3x-2,4x-3,6-2x,则该三角形的周长为( )A.6B.6或9或8.5C.9或8.5D.与x的取值有关5、如图,正方形中,点F是边上一点,连接,以为对角线作正方形,边与正方形的对角线相交于点H,连接.以下四个结论:①;②;③;④.其中正确的个数为()A.1个B.2个C.3个D.4个6、下列事件中,不可能事件是( )A.掷一枚六个面分别刻有1~6数码的均匀正方体骰子,向上一面的点数是“5”B.任意选择某个电视频道,正在播放动画片C.肥皂泡会破碎D.在平面内,度量一个三角形的内角度数,其和为360°7、下列长度的木棒可以组成三角形的是()A.1,2,3B.3,4,5C.2,3,6D.2,2,48、若关于x的一元二次方程的两根之和为3,两根之积为2,则这个方程是()A.x 2+3x﹣2=0B.x 2﹣3x+2=0C.x 2﹣2x+3=0D.x2+3x+2=09、将点,先向右平移4个单位,再向下平移4个单位,则平移后得到点为()A. B. C. D.10、如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段.在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为()A. B. C. D.11、如图,正方形ABCD的两边BC,AB分别在平面直角坐标系的x轴、y轴的正半轴上,正方形A′B′C′D′与正方形ABCD是以AC的中点O′为中心的位似图形,已知AC=3 ,若点A′的坐标为(1,2),则正方形A′B′C′D′与正方形ABCD的相似比是()A. B. C. D.12、若一元二次方程9x2﹣12x﹣39996=0的两根为a,b,且a<b,则a+3b的值为()A.136B.268C.D.13、从﹣2,0,1,2,3中任取一个数作为a,既要使关于x一元二次方程ax2+(2a﹣4)x+a﹣8=0有实数解,又要使关于x的分式方程=3有正数解,则符合条件的概率是()A. B. C. D.14、如图,在中,,,于点D.则与的周长之比为()A.1:2B.1:3C.1:4D.1:515、如图,DE是△ABC的中位线,点F在DE上,且∠AFC=90°.若AC=10,BC=16,则DF的长为A.5B.3C.8D.10二、填空题(共10题,共计30分)16、如图,在△ABC中,DE∥BC , AD=1,AB=3,DE=2,则BC=________。
华师大版九年级上册数学期末测试卷及含答案(综合题)

华师大版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,动点P从(1,2)出发,沿图中箭头所示方向运动,每当碰到长方形的边时反弹(反弹时反射角等于入射角),假设反弹可以无限进行下去,则在点P运动路径上的点是()A.(0,5)B.(5,0)C.(3,3)D.(7,3)2、如图,从A点出发的光线,经C点反射后垂直地射到B点,然后按原路返回A点.若∠AOC=33°,OC=1,则光线所走的总路线约为( )A.3.8B.2.4C.1.9D.1.23、如图,中,的平分线与边的垂直平分线相交于交的延长线于于F,现有下列结论:①;②;③平分;④若,则.其中正确的个数为()A.1个B.2个C.3个D.4个4、下列计算正确的是()A. B. C. D.5、如图,正方形OABC的边长为6,D为AB中点,OB交CD于点Q,Q是y=上一点,k的值是()A.4B.8C.16D.246、一元二次方程4x2-2x-1=0的根的情况为()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根7、在平面直角坐标系中,若点P(x-2,x)在第二象限,则x的取值范围是( )A.0<x<2B.x<2C.x>0D.x>28、方程x2-=(-)x化为一般形式,它的各项系数之和可能是()A. B.- C. D.9、如图,在Rt△ABC中,BC 2,∠BAC 30°,斜边AB的两个端点分别在相互垂直的射线OM,ON上滑动,下列结论:①若C,O两点关于AB对称,则OA ;②C,O两点距离的最大值为4;③若AB平分CO,则AB⊥CO;④斜边AB的中点D运动路径的长为.其中正确的是()A.①②B.①②③C.①③④D.①②④10、某林业部门要查某种幼树在一定条件的移植成活率.在同样条件下,大量地对这种幼树进行移植,并统计成活情况,计算成活的频率.如下表:移植总数(n)成活数(m)成活的频率()10 8 0.80 50 47 0.94 270 235 0.870400 369 0.923750 662 0.8831500 1335 0.893500 3203 0.9157000 6335 0.9059000 8073 0.89714000 12628 0.902所以可以估计这种幼树移植成活的概率为()A.0.1B.0.2C.0.8D.0.911、已知a<0,那么点P(,2-a)关于x轴对称的对应点P'所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限12、下列方程中有两个相等实数根的是()A.x 2﹣1=0B.(x+2)2=0C.x 2+3=0D.(x﹣3)(x+5)=013、一个三角形的两边长为3和7,第三边长为偶数,则第三边为()A.6B.6或8C.4D.4或614、某单位要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排10场比赛,则参加比赛的球队应有()A.7队B.6队C.5队D.4队15、下列运算正确的是( ).A. + =B. ×=C.( -1) 2=3-1 D. =5-3二、填空题(共10题,共计30分)16、已知△ABC∽△A1B1C1,△ABC的周长与△A1B1C1的周长的比值是,BE、B 1E1分别是它们对应边上的中线,且BE=6,则B1E1=________.17、如图,在8×4的正方形网格中,每个小正方形的边长都是1,若△ABC的三个顶点都在图中相应的格点上,则tan∠ACB=________ .18、在坐标平面内,已知点A(2,-3),那么点A关于x轴的对称点A'的坐标为________,点A关于y轴的对称点A″的坐标为________.19、计算________ ________20、菱形ABCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为________ .21、计算:=________22、有一个三角形的三边长为2,4,5,若另一个和它相似的三角形的最短边为4,则第二个三角形的周长为________。
华师大版九年级上册数学期末测试卷及含答案

华师大版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、在直角坐标系中,将点P(3,6)向左平移4个单位长度,再向下平移8个单位长度后,得到的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2、等腰三角形的周长是 16cm,其中一边长为4cm,则该等腰三角形的底边长为()A.8cmB.4cmC.10cmD.4cm或8cm3、下列事件中,属于必然事件的是()A.任意购买一张电影票,座位号是奇数B.明天晚上会看到太阳C.五个人分成四组,这四组中有一组必有2人D.三天内一定会下雨4、点关于轴对称的点的坐标为()A. B. C. D.5、在Rt△ABC中,∠ACB=90°,∠A=30°,BC=1,则AB边上的中线长为()A.1B.2C.1.5D.6、已知关于的一元二次方程有两个相等的实数根,设两根分别为,,则的值为()A.2B.-2C.4D.-47、如图,∠ XOY=900,OW平分∠XOY,PA⊥OX,PB ⊥OY,PC⊥OW.若OA+OB+OC=1,则OC=( ).A.2-B. -1C. -2D.2 -38、如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影长DE=1.8m,窗户下檐到地面的距离BC=1m,EC=1.2m,那么窗户的高AB为()A.1.5mB.1.6mC.1.86mD.2.16m9、在平面直角坐标系中,若轴上的点到轴的距离为2,则点的坐标为()A. B. 或C. D. 或10、关于x的方程的两个实数根同号,则a的取值范围是()A. B. a>0 C. a≥0 D. a≤111、如图,折叠直角三角形纸片的直角,使点C落在斜边AB上的点E处.已知AB=,∠B=30°,则DE的长是()A. B.6 C.4 D.212、将代数式x2﹣10x+5配方后,发现它的最小值为()A.﹣30B.﹣20C.﹣5D.013、为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下的探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如下图所示的测量方案:把一面很小的镜子水平放置在离树底(B)8.4米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=3.2米,观察者目高CD=1.6米,则树(AB)的高度约为()A.4.2米B.4.8米C.6.4米D.16.8米14、如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE~△ECH;其中,正确的结论有( )A.1个B.2个C.3个D.4个15、如图,,与相交于点,若,,,则的值是()A. B. C. D.二、填空题(共10题,共计30分)16、已知是关于x的一元二次方程的一个根,则m的值为________.17、如图,AB是半圆直径,半径OC⊥AB于点O,AD平分∠CAB交弧BC于点D,AD与OC交于点E,连接CD、OD,给出以下四个结论:①AC∥OD;②CE=OE;③∠CDE=∠COD;④2CD2=CE•AB.其中正确结论的序号是________(在横线上填上你认为所有正确结论的代号).18、为了弘扬中华传统文化,营造书香校园文化氛围,12月1 1日,兴义市新屯学校举行中华传统文化知识大赛活动.该学校从三名男生和两名女生中选出两名同学担任本次活动的主持人,则选出的恰为一男一女的概率是________19、受非洲猪瘟及供求关系影响,去年猪肉价格经过连续两轮涨价,价格从40元/kg涨到90元/kg,若两轮涨价的百分率相同,则这个百分率是________.20、方程(k﹣1)x2﹣x+ =0有两个实数根,则k的取值范围是________.21、如图,在△ABC中,AC=6,BC=5,sinA= ,则tanB=________.22、将点A(2,0)绕着原点O顺时针方向旋转60°角到对应点A′,则点A′的坐标是________.23、某瓷砖厂在相同条件下抽取部分瓷砖做耐磨试验,结果如下表所示,则这个厂生产的瓷砖是合格品的概率估计值是________。
华东师大版九年级数学上册期末考试题及完整答案

华东师大版九年级数学上册期末考试题及完整答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列二次根式中能与)A B C D2.如果y,那么y x的算术平方根是()A.2 B.3 C.9 D.±3 3.已知α、β是方程x2﹣2x﹣4=0的两个实数根,则α3+8β+6的值为()A.﹣1 B.2 C.22 D.304.若实数a、b满足a2﹣8a+5=0,b2﹣8b+5=0,则1111b aa b--+--的值是()A.﹣20 B.2 C.2或﹣20 D.1 25.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D.12x(x﹣1)=2106.对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1、x2,且x1<1<x2,则c的取值范围是( )A.c<﹣3 B.c<﹣2 C.c<14D.c<17.如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是()A .50°B .60°C .80°D .100°8.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD9.如图,已知⊙O 的直径AE =10cm ,∠B =∠EAC ,则AC 的长为( )A .5cmB .52cmC .53cmD .6cm10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)181__________.2.因式分解:a 3-ab 2=____________.3.已知二次函数y=x 2﹣4x+k 的图象的顶点在x 轴下方,则实数k 的取值范围是__________.4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.5.如图,已知正方形ABCD 的边长是4,点E 是AB 边上一动点,连接CE ,过点B 作BG ⊥CE 于点G ,点P 是AB 边上另一动点,则PD+PG 的最小值为________.6.如图是一张矩形纸片,点E 在AB 边上,把BCE 沿直线CE 对折,使点B 落在对角线AC 上的点F 处,连接DF .若点E ,F ,D 在同一条直线上,AE =2,则DF =_____,BE =__________.三、解答题(本大题共6小题,共72分)1.解分式方程:2311x x x x +=--2.先化简,再求值:22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中3x =3.如图,已知点A (﹣1,0),B (3,0),C (0,1)在抛物线y=ax 2+bx+c 上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=∠BAC?若存在,求出Q点坐标;若不存在,说明理由.4.周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D 竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.5.元旦期间,某超市开展有奖促销活动,凡在超市购物的顾客均有转动圆盘的机会(如图),如果规定当圆盘停下来时指针指向8就中一等奖,指向2或6就中二等奖,指向1或3或5就中纪念奖,指向其余数字不中奖.(1)转动转盘中奖的概率是多少?(2)元旦期间有1000人参与这项活动,估计获得一等奖的人数是多少?6.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、C5、B6、B7、D8、D9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±32、a (a+b )(a ﹣b )3、k <44、10.5、6、 1三、解答题(本大题共6小题,共72分)1、x=32、3x 3、(1)抛物线的解析式为y=﹣13x 2+23x+1;(2)点P 的坐标为(1,43)或(2,1);(3)存在,理由略.4、河宽为17米5、(1)34;(2)1256、(1)4元或6元;(2)九折.。
华东师大版九年级数学上册期末考试【带答案】

华东师大版九年级数学上册期末考试【带答案】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-2019的相反数是( )A .2019B .-2019C .12019D .12019- 2.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是( )A .100B .被抽取的100名学生家长C .被抽取的100名学生家长的意见D .全校学生家长的意见3.若抛物线2y x ax b =++与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线1x =,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )A .()3,6--B .()3,0-C .()3,5--D .()3,1--4.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1)5.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x 名同学,那么依题意,可列出的方程是( )A .x (x+1)=210B .x (x ﹣1)=210C .2x (x ﹣1)=210D .12x (x ﹣1)=210 6.正十边形的外角和为( )A .180°B .360°C .720°D .1440° 7.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .18.如图,已知BD 是ABC 的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A .6B .5C .4D .339.如图,四边形ABCD 内接于⊙O ,点I 是△ABC 的内心,∠AIC=124°,点E 在AD 的延长线上,则∠CDE 的度数为( )A .56°B .62°C .68°D .78°10.已知0ab <,一次函数y ax b =-与反比例函数a y x =在同一直角坐标系中的图象可能( )A .B .C.D.二、填空题(本大题共6小题,每小题3分,共18分)1.计算:2131|32|2218-⎛⎫---+÷=⎪⎝⎭____________.2.分解因式:3244a a a-+=__________.3.函数132y xx=--+中自变量x的取值范围是__________.4.(2017启正单元考)如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点G、F,若FG=4,ED=8,求EB+DC=________.5.如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是__________.6.如图是一张矩形纸片,点E在AB边上,把BCE沿直线CE对折,使点B落在对角线AC上的点F处,连接DF.若点E,F,D在同一条直线上,AE=2,则DF=_____,BE=__________.三、解答题(本大题共6小题,共72分)1.解方程:12133x x x -+=--2.先化简,再求值:233()111a a a a a -+÷--+,其中a=2+1.3.如图,已知点A (﹣1,0),B (3,0),C (0,1)在抛物线y=ax 2+bx+c 上.(1)求抛物线解析式;(2)在直线BC 上方的抛物线上求一点P ,使△PBC 面积为1;(3)在x 轴下方且在抛物线对称轴上,是否存在一点Q ,使∠BQC=∠BAC ?若存在,求出Q 点坐标;若不存在,说明理由.4.周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A ,在他们所在的岸边选择了点B ,使得AB 与河岸垂直,并在B 点竖起标杆BC ,再在AB 的延长线上选择点D 竖起标杆DE ,使得点E 与点C 、A 共线.已知:CB ⊥AD ,ED ⊥AD ,测得BC =1m ,DE =1.5m ,BD =8.5m .测量示意图如图所示.请根据相关测量信息,求河宽AB .5.某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整统计图.请你根据图中信息,回答下列问题:(1)本次共调查了名学生.(2)在扇形统计图中,“歌曲”所在扇形的圆心角等于度.(3)补全条形统计图(标注频数).(4)根据以上统计分析,估计该校2000名学生中最喜爱小品的人数为人.(5)九年一班和九年二班各有2名学生擅长舞蹈,学校准备从这4名学生中随机抽取2名学生参加舞蹈节目的编排,那么抽取的2名学生恰好来自同一个班级的概率是多少?6.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、B4、C5、B6、B7、B8、D9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、2+2、2(2)a a -;3、23x -<≤4、125、x=26、 1三、解答题(本大题共6小题,共72分)1、1x =2、3、(1)抛物线的解析式为y=﹣13x 2+23x+1;(2)点P 的坐标为(1,43)或(2,1);(3)存在,理由略.4、河宽为17米5、(1)50;(2)72°;(3)补全条形统计图见解析;(4)640;(5)抽取的2名学生恰好来自同一个班级的概率为13. 6、(1)120件;(2)150元.。
华东师大版九年级数学上册期末考试题及答案【可打印】

华东师大版九年级数学上册期末考试题及答案【可打印】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是()A.2-B.2 C.12D.12-2.若实数m、n满足402nm-+=-,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A.12 B.10 C.8或10 D.63.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是()A.4B.5C.6D.74.若实数a、b满足a2﹣8a+5=0,b2﹣8b+5=0,则1111b aa b--+--的值是()A.﹣20 B.2 C.2或﹣20 D.1 25.下列说法正确的是()A.负数没有倒数B.﹣1的倒数是﹣1C.任何有理数都有倒数D.正数的倒数比自身小6.正十边形的外角和为()A.180°B.360°C.720°D.1440°7.下面四个手机应用图标中是轴对称图形的是()A.B.C.D.8.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD9.如图,已知⊙O 的直径AE =10cm ,∠B =∠EAC ,则AC 的长为( )A .5cmB .52cmC .53cmD .6cm10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)1.计算368⨯-的结果是______________.2.分解因式:2x 3﹣6x 2+4x =__________.3.已知抛物线21y x x =--与x 轴的一个交点为(0)m ,,则代数式m ²-m+2019的值为__________.4.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是__________.5.如图,AB 为△ADC 的外接圆⊙O 的直径,若∠BAD=50°,则∠ACD=_____°.6.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为___________.三、解答题(本大题共6小题,共72分)1.解方程:12133x x x-+=--2.先化简,再求值:233()111a a a a a -+÷--+,其中a=2+1.3.如图,已知点A (﹣1,0),B (3,0),C (0,1)在抛物线y=ax 2+bx+c 上.(1)求抛物线解析式;(2)在直线BC 上方的抛物线上求一点P ,使△PBC 面积为1;(3)在x 轴下方且在抛物线对称轴上,是否存在一点Q ,使∠BQC=∠BAC ?若存在,求出Q 点坐标;若不存在,说明理由.4.如图,四边形ABCD 内接于⊙O ,∠BAD=90°,点E 在BC 的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.5.老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.(1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.6.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、C4、C5、B6、B7、D8、D9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)12、2x(x﹣1)(x﹣2).3、20204、425、406、2.5×10-6三、解答题(本大题共6小题,共72分)1、1x2、3、(1)抛物线的解析式为y=﹣13x2+23x+1;(2)点P的坐标为(1,43)或(2,1);(3)存在,理由略.4、(1)略;(2)AC.5、(1)条形图中被遮盖的数为9,册数的中位数为5;(2)选中读书超过5册的学生的概率为512;(3)36、(1)4元或6元;(2)九折.。
【华东师大版】九年级数学上期末试卷(及答案)

一、选择题1.下列事件中,必然事件是( )A .抛掷1个均匀的骰子,出现6点向上B .两直线被第三条直线所截,同位角相等C .366人中至少有2人的生日相同D .实数的绝对值是非负数2.如图,正方形ABCD 内接于⊙O ,⊙O 的直径为2分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD 内的概率是( )A .2π B .2π C .12πD .2π 3.从2,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是( ) A .15 B .25 C .35 D .454.在一个不透明的箱子中有3张红卡和若干张绿卡,它们除了颜色外其他完全相同,通过多次抽卡试验后发现,抽到绿卡的概率稳定在75%附近,则箱中卡的总张数可能是( ) A .1张 B .4张 C .9张 D .12张5.如图,在三角形ABC 中,AB=22,∠B=30°,∠C=45°,以A 为圆心,以AC 长为半径作弧与AB 相交于点E ,与BC 相交于点F ,则弧EF 的长为( )A .6πB .2πC .23πD .π6.已知△ABC 的外心为O ,连结BO ,若∠OBA=18°,则∠C 的度数为( )A .60°B .68°C .70°D .72° 7.如图,正方形ABCD 内接于O ,直径//MN AD ,则阴影部分的面积占圆面积的( )A .12B .16C .13D .148.若圆锥的底面半径为5cm ,侧面积为265cm π,则该圆锥的高是( )A .13cmB .12cmC .11cmD .10cm9.下列图形:线段、等边三角形、平行四边形、矩形、菱形、正方形、直角梯形,既是轴对称图形又是中心对称图形的个数是( )A .6B .5C .4D .310.如图①是3×3正方形方格,将其中两个方格涂黑,并且使得涂黑后的整个图案是轴对称图形,约定绕正方形ABCD 的中心旋转能重合的图案都视为同一种,例②中四幅图就视为同一种,则得到不同共有( )A .4种B .5种C .6种D .7种 11.设函数()()24310y kx k x k =+++<,若当x m <时,y 随着x 的增大而增大,则m 的值可以是( )A .1B .0C .1-D .2-12.《代数学》中记载,形如2833x x +=的方程,求正数解的几何方法是:“如图1,先构造一个面积为2x 的正方形,再以正方形的边长为一边向外构造四个面积为2x 的矩形,得到大正方形的面积为331649+=,则该方程的正数解为743-=.”小聪按此方法解关于x 的方程2100x x m ++=时,构造出如图2所示的图形,已知阴影部分的面积为50,则该方程的正数解为( ).A .6B .3532-C .532-D .535-二、填空题13.有五张卡片(形状、大小、质地都相同),上面分别画有下列图形:①线段;②正三角形;③平行四边形;④正八边形;⑤圆.将卡片背面朝上洗匀,从中任取一张,其正面图形既是轴对称图形,又是中心对称图形的概率是________.14.六张大小、质地均相同的卡片上分别标有1、2、3、4、5、6,现将标有数字的一面朝下扣在桌面上,从中随机抽取一张(放回洗匀),再随机抽取第二张.记前后两次抽得的数字分别为m 、n ,若把m 、n 分别作为点A 的横坐标和纵坐标,则点A (m ,n )在函数y =12x的图象上的概率是_____. 15.从2,-18,5中任取两个不同的数分别作为点的横纵坐标,点在第二象限的概率为___.16.如图,,PA PB 切⊙O 于,A B ,点C 在AB 上,DE 切⊙O 于C ,10cm,PO =⊙O 的半径为6cm ,则PDE △的周长是_________cm .17.若点M (3,a ﹣2),N (b ,a )关于原点对称,则ab =_____.18.如图,⊙O 的半径为3,点A 是⊙O 外一点,OA =6,B 是⊙O 上的动点,线段AB 的中点为P ,连接 OA 、OP .则线段 OP 的最大值是______.19.如图,直线y =x +4与x 、y 轴分别交于A 、B 两点,点O 为坐标原点,点C 是点A 关于y 轴的对称点,动点D 在线段AC 上,连接BD ,作以BD 为直角边的等腰Rt △BDE ,则线段OE 的最小值为_________.20.为解决民生问题,国家对某药品价格分两次降价,该药品的原价是48元,降价后的价格是30元,若平均每次降价的百分率均为x ,可列方程.为____________.三、解答题21.两个不透明的箱子里各装有两个完全相同的球,分别标有数字1,2和3,4.每次分别从两个箱子里各摸出一个球,计算两个球上的数字之积.(1)利用树状图或列表法表示这两个球上的数字之积可能出现的结果;(2)求积的结果为3的倍数的概率是多少?22.如图,依据闯关游戏规则,请你探究“闯关游戏”的奥秘:(1)用列表的方法表示有可能的闯关情况;(2)求出闯关成功的概率.23.如图,AB 是O 的弦,CD 是O 的直径,CD AB ⊥,垂足为E .1CE =,3ED =.(1)求O 的半径.(2)求AB 的长.24.如图,等腰Rt △ABC 中,∠A =45°,∠ABC =90°,点D 在AC 上,将△ABD 绕点B 沿顺时针方向旋转90°后,得到△CBE .(1)求∠DCE 的度数;(2)若AB =4,CD =3AD ,求DE 的长.25.阅读下列材料:春节回家是中国人的一大情结,春运车票难买早已是不争的事实.春节回家一般都要给父母、亲戚带点年货,坐车回去不好携带,加上普通小客车中签率低以及重大节假日高速公路小客车免费通行等因素,所以选择春节租车回家的人越来越多.这都对汽车租赁市场起到明显的拉动作用,出现了很多的租赁公司.某租赁公司拥有20辆小型汽车,公司平均每日的各项支出共6250元.当每辆车的日租金为500元时,可全部租出;当每辆车的日租金每增加50元,未租出的车将增加1辆.根据以上材料解答下列问题:设公司每日租出x 辆车时,日收益为y 元(日收益=日租金收入-平均每日各项支出). (1)公司每日租出x 辆车时,每辆车的日租金收入为______元(用含x 的代数式表示); (2)当每日租出多少辆时,租赁公司日收益最大?最大是多少元?(3)当每日租出多少辆时,租赁公司的日收益才能盈利?26.把一个足球垂直水平地面向上踢,时间为t (秒)时该足球距离地面的高度h (米)适用公式2205h t t =-.(1)经过多少秒后足球回到地面,(2)经过多少秒时足球距离地面的高度为10米?(3)小明同学说:“足球高度不可能达到21米!”你认为他说得对吗?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据概率、平行线的性质、负数的性质逐项进行判断即可得答案.解:A 、抛掷1个均匀的骰子,出现6点向上的概率为16,故A 错误; B 、两条平行线被第三条直线所截,同位角相等,故B 错误; C 、366人中平年至少有2人的生日相同,闰年可能每个人的生日都不相同,故C 错误; D 、实数的绝对值是非负数,故D 正确,故选D .【点睛】本题考查了必然事件、不可能事件、随机事件的概念.理解概念是解决这类基础题的主要方法.2.A解析:A【分析】在这个圆面上随意抛一粒豆子,落在圆内每一个地方是均等的,因此计算出正方形和圆的面积,利用几何概率的计算方法解答即可.【详解】因为⊙O 2分米,⊙O 的面积为22ππ=⎝⎭平方分米;1=分米,面积为1平方分米;因为豆子落在圆内每一个地方是均等的,所以P (豆子落在正方形ABCD 内)122ππ==. 故答案为A .【点睛】此题主要考查几何概率的意义:一般地,如果试验的基本事件为m ,随机事件A 所包含的基本事件数为n ,我们就用来描述事件A 出现的可能性大小,称它为事件A 的概率,记作P (A ),即有 P (A )=n m. 3.C解析:C【解析】∵?0? 3.14?6π、、、 这5个数中只有0、3.14和6为有理数,∴?0? 3.14?6π、、、这5个数中随机抽取一个数,抽到有理数的概率是35. 故选C . 4.D【分析】设箱中卡的总张数可能是x 张,则绿卡有(x-3)张,根据抽到绿卡的概率稳定在75%附近,利用概率公式列方程求出x 的值即可得答案.【详解】设箱中卡的总张数可能是x 张,∵箱子中有3张红卡和若干张绿卡,∴绿卡有(x-3)张,∵抽到绿卡的概率稳定在75%附近, ∴375%x x-=, 解得:x=12, ∴箱中卡的总张数可能是12张,故选:D.【点睛】本题考查等可能情形下概率的计算,概率=所求情况数与总情况数的比;熟练掌握概率公式是解题关键.5.A解析:A【分析】过A 作AD ⊥BC ,连接AF ,求出∠FAE ,再利用弧长计算公式计算EF 的长即可.【详解】解:过A 作AD 垂直BC ,连接AF ,如图,∵2,30,45AB B C =∠=︒∠=︒,可得2∴AC=2,∵AC=AF∴∠AFC=∠C=45°,∴∠FAE=∠AFC-∠B=45°-30°=15°∴EF 的长为:152180π⨯=6π 故选:A【点睛】此题主要考查了弧长的计算,关键是掌握弧长计算公式. 6.D【分析】连接OA ,则OA=OB ,可得∠OBA=∠OAB ,再结合∠OBA=18°即可求得∠AOB=144°,再根据圆周角的性质即可求得∠C=72°.【详解】解:如图,连接OA ,∵点O 为ABC 的外心,∴OA=OB ,∴∠OBA=∠OAB ,又∵∠OBA=18°,∴∠OAB=∠OBA=18°,∴∠AOB=180°-∠OAB-∠OBA=144°,∴∠C=12∠AOB=72°, 故选:D .【点睛】本题考查了三角形的外心,圆周角定理,熟练掌握相关定义及性质是解决本题的关键. 7.D解析:D【分析】连接OC 、OD ,设O 半径为r ,利用正方形性质得:MN ∥BC ,根据三角形面积公式得:S △DON =S △AON ,S △CON =S △BON ,利用面积差可得S 阴影部分=S 扇形COD ,再利用正方形的性质得到∠COD =90°,则S 扇形=214r π,所以阴影部分面积是圆的面积的14 【详解】解:如图,连接OC 、OD ,设O 半径为r ,∵直径//MN AD ,AD ∥BC∴MN ∥BC ,根据三角形面积公式得:S △DON =S △AON ,S △CON =S △BON ,∴S 阴影部分=S 扇形COD ,∵四边形ABCD 是正方形∴∠COD =90°, ∴S 扇形=290360r π︒︒=214r π,∵圆的面积为2r∴所以阴影部分面积是圆的面积的14故选:D【点睛】本题考查扇形面积计算公式、正方形的性质,利用了面积的和差计算不规则图形的面积,解题的关键是掌握扇形的面积公式.8.B解析:B【分析】先根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到12•2π•5•OA=65π,可求出OA=13,然后利用勾股定理计算圆锥的高.【详解】解:根据题意得12•2π•5•OA=65π,解得:OA=13,所以圆锥的高2213512.故选:B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.9.C解析:C【分析】根据轴对称图形与中心对称图形的定义解答即可.【详解】解:线段,既是中心对称图形,又是轴对称图形;等边三角形,不是中心对称图形,是轴对称图形;平行四边形,是中心对称图形,不是轴对称图形;矩形,既是中心对称图形,又是轴对称图形;菱形,既是中心对称图形,又是轴对称图形;正方形,既是中心对称图形,又是轴对称图形;直角梯形,既不是中心对称图形,又不是轴对称图形;所以,既是中心对称图形,又是轴对称图形的有:线段,矩形,菱形,正方形共4个. 故选C .【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 10.B解析:B【解析】分析:根据轴对称的定义及题意要求画出所有图案后即可得出答案:得到的不同图案有:共5个.故选B .11.D解析:D【分析】当k <0时,抛物线对称轴为直线432k x k +=-,在对称轴左侧,y 随x 的增大而增大,根据题意,得m≤-432k k +,而当k <0时,-432k k +=-2-32k >-2,可确定m 的范围, 【详解】 对称轴:直线433222k x k k+=-=--, 0k <, 3222k∴-->-, x m <时,y 随x 的增大而增大,322m k ∴≤--, 2m ∴≤-,∴m 的值可以是-2,故选D .【点睛】本题考查了二次函数的性质,根据题意得出二次函数图象的对称轴是解题的关键. 12.D解析:D 【分析】仿照题目中的做法可得空白部分小正方形的边长为52,先计算出大正方形的面积=阴影部分的面积+4个小正方形的面积,从而可得大正方形的边长,再用其减去两个空白正方形的边长即可.【详解】解:如图2,先构造一个面积为2x的正方形,再以正方形的边长为一边向外构造四个面积为52x的矩形,得到大正方形的面积为255045025752⎛⎫+⨯=+=⎪⎝⎭,∴5252⨯=.故选:D.【点睛】本题考查了一元二次方程的几何解法,读懂题意并数形结合是解题的关键.二、填空题13.【分析】由五张卡片①线段;②正三角形;③平行四边形;④正八边形;⑤圆中既是轴对称图形又是中心对称图形的①④⑤直接利用概率公式求解即可求得答案【详解】解:∵五张卡片①线段;②正三角形;③平行四边形;④解析:3 5【分析】由五张卡片①线段;②正三角形;③平行四边形;④正八边形;⑤圆中,既是轴对称图形,又是中心对称图形的①④⑤,直接利用概率公式求解即可求得答案.【详解】解:∵五张卡片①线段;②正三角形;③平行四边形;④正八边形;⑤圆中,既是轴对称图形,又是中心对称图形的①④⑤,∴从中抽取一张,正面图形一定满足既是轴对称图形,又是中心对称图形的概率是:35.故填:35.【点睛】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.14.【分析】根据反比例函数的性质找出符合点在函数y=图象上的点即可根据概率公式求解【详解】解:列表得:∴一共有36种情况在函数y=的图象上的有(26)(34)(43)(62)共4种;∴在函数y=的图象上解析:1 9【分析】根据反比例函数的性质,找出符合点在函数y=12x图象上的点,即可根据概率公式求解.【详解】解:列表得:∴一共有36种情况,在函数y=12x的图象上的有(2,6)(3,4)(4,3)(6,2)共4种;∴在函数y=12x 的图象上的概率是436=19,故答案为:19.【点睛】本题为反比例函数与概率的综合,考查的是用列表法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比;反比例函数上的点的横纵坐标的积为比例系数.15.【分析】首先根据题意画出树状图然后由树状图求得所有等可能的结果与该点在第二象限的情况再利用概率公式求解即可求得答案【详解】解:画树状图得:∵共有6种等可能的结果该点在第二象限的有2种情况∴该点在第二解析:1 3【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与该点在第二象限的情况,再利用概率公式求解即可求得答案【详解】解:画树状图得:∵共有6种等可能的结果,该点在第二象限的有2种情况,∴该点在第二象限的概率是:2163.故答案为:13.【点睛】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.16.16【分析】连接OAOB由切线长定理可得:PA=PBDA=DCEC=EB;由勾股定理可得PA的长△PDE的周长=PD+DC+CE+PE=PD+DA+PE+EB=PA+PB即可求得△PDE的周长【详解解析:16【分析】连接OA、OB,由切线长定理可得:PA=PB,DA=DC,EC=EB;由勾股定理可得PA的长,△PDE的周长=PD+DC+CE+PE=PD+DA+PE+EB=PA+PB,即可求得△PDE的周长.【详解】解:连接OA、OB,如图所示:∵PA、PB为圆的两条切线,∴由切线长定理可得:PA=PB,同理可知:DA=DC,EC=EB;∵OA⊥PA,OA=6cm,PO=10cm,∴由勾股定理得:PA=8cm,∴PA=PB=8cm;∵△PDE的周长=PD+DC+CE+PE,DA=DC,EC=EB;∴△PDE的周长=PD+DA+PE+EB=PA+PB=16cm,故答案为:16.【点睛】本题考查的是切线长定理,分析图形时关键是要仔细探索,找出图形的各对相等切线长.17.﹣3【分析】直接利用关于原点对称点的性质得出ab的值即可得出答案【详解】∵点M(3a﹣2)N(ba)关于原点对称∴b=﹣3a﹣2=﹣a解得:a=1则ab=1×(﹣3)=﹣3故答案为:﹣3【点睛】本题解析:﹣3【分析】直接利用关于原点对称点的性质得出a,b的值,即可得出答案.【详解】∵点M(3,a﹣2),N(b,a)关于原点对称,∴b=﹣3,a﹣2=﹣a,解得:a=1,则ab=1×(﹣3)=﹣3.故答案为:﹣3.【点睛】本题主要考查了关于原点对称点的性质,正确得出a,b的值是解题关键.18.【分析】如图连接OB设OA交⊙O于点T连接PT利用三角形中位线定理求出PT根据OP≤PT+OT可得结论【详解】如图连接OB设OA交⊙O于点T连接PT∵OA=6OT=3∴OT=TA∵AP=PB∴PT=解析:9 2【分析】如图,连接OB,设OA交⊙O于点T,连接PT.利用三角形中位线定理求出PT,根据OP≤PT+OT,可得结论.【详解】如图,连接OB,设OA交⊙O于点T,连接PT.∵OA=6,OT=3,∴OT=TA,∵AP=PB,∴PT=12OB=32,∵OP≤PT+OT,∴OP≤92,故答案为:92. 【点睛】 本题考查点与圆的位置关系,三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造三角形的中位线解决问题.19.【分析】作交x 轴于点F 证明△DBO ≌△EDF 得设设D (t0)则根据勾股定理得进一步可得结论【详解】解:∵△BDE 是以BD 为直角边的等腰直角三角形∴作交x 轴于点F 如图∴∠EFO=∠DOB=90°又∠∴解析:22【分析】作EF AC ⊥交x 轴于点F ,证明△DBO ≌△EDF 得FE OD FD BO ==,,设设D (t ,0),则(4,)E t t +,根据勾股定理得222(2)8OE t =++,进一步可得结论.【详解】解:∵△BDE 是以BD 为直角边的等腰直角三角形,∴BD DE =作EF AC ⊥交x 轴于点F ,如图,∴∠EFO=∠DOB=90°又∠90OBD BDO BDO FDE +∠=∠+∠=︒∴∠DBD FDE =∠在△DBO 和△EDF 中DBO EDF DOB EFD DB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DBO ≌△EDF∴FE OD FD BO ==,对于y=x+4,当x=0,则y=4,当y=0,则x=-4,∴()40A -,,4(0)B ,, ∵点C 是点A 关于y 轴的对称点,∴0(4)C ,设D (t ,0),则(4,)E t t +∴22224)2((2)8OE t t t =++=++∴当t=-2时,取最小值,即OE ==,故OE 的最小值为故答案为:【点睛】此题主要考查了全等三角形的判定与性质以及勾股定理等知识,运用勾股定理得出22224)2((2)8OE t t t =++=++是解答此题的关键.20.48(1-x)2=30【分析】本题的等量关系为:第一次降价后的价格×第二次降价占第一次降价的百分比=30由此即可求解【详解】解:设平均每次降价的百分率为x 则第一次降价后的价格为48(1-x)第二次降解析:48(1-x)2=30【分析】本题的等量关系为:第一次降价后的价格×第二次降价占第一次降价的百分比=30,由此即可求解.【详解】解:设平均每次降价的百分率为x ,则第一次降价后的价格为48(1-x),第二次降价后的价格为48(1-x)(1-x),由题意,可列方程为:48(1-x)2=30.故答案为:48(1-x)2=30.【点睛】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到相应的等量关系,注意第二次降价后的价格是在第一次降价后的价格的基础上得到的.三、解答题21.(1)见解析;(2)12【分析】(1)画树状图即可得出两个球上的数字之积可能出现的结果;(2)找出是3的倍数的结果,利用概率公式计算即可.【详解】解:(1)画树状图如下:由树状图可知,这两个球上的数字之积共有4种等可能的结果,即3,4,6,8;(2)∵这个积为3的倍数的结果有2种,∴P(这个积为3的倍数)=2142.【点睛】本题考查了树状图法或列表法求概率、概率公式,熟练掌握树状图法求概率的步骤是解答的关键.22.(1)(1,1),(1,2),(2,1),(2,2);(2)14.【分析】(1)用列举法列举出可能闯关的所有情况,即可得出答案;(2)根据图表得出所有可能,进而得出闯关成功的概率.【详解】(1)所有可能闯关的情况列表如下:121(1,1)(1,2)2(2,1)(2,2)(2)只有(1,2)组合才能闯关,故闯关成功的可能性为14.【点睛】此题主要考查了列表法求概率,用到的知识点为:概率=所求情况数与总情况数之比.23.(1)2;(2)23【分析】(1)求出CD,即可得出答案;(2)求出OA、OE,根据勾股定理求出AE,根据垂径定理求出AB=2AE,即可求出答案.【详解】解:(1)∵CE=1,ED=3,∴CD=CE+DE=4,∴⊙O的半径为2;(2)∵直径CD⊥AB,∴AB=2AE ,∠OEA=90°,连接OA ,则OA=OC=2,OE=OC-CE=2-1=1,在Rt △OEA 中,由勾股定理得:2222213OA OE --,∴3【点睛】本题考查了勾股定理,垂径定理的应用,能根据垂径定理求出AB=2AE 是解此题的关键. 24.(1)90°;(2)5【分析】(1)根据旋转的性质和等腰直角三角形的性质即可得∠DCE 的度数;(2)根据勾股定理求出AC 的长,根据CD =3AD ,可得CD 和AD 的长,根据旋转的性质可得AD =EC ,再根据勾股定理即可得DE 的长.【详解】解:(1)∵△ABC 为等腰直角三角形,∴∠BAD =∠BCD =45°,由旋转的性质可知∠BAD =∠BCE =45°,∴∠DCE =∠BCE +∠BCA =45°+45°=90°;(2)∵BA =BC ,∠ABC =90°, ∴2242AC AB BC =+= ∵CD =3AD , ∴2AD =32DC =由旋转的性质可知:AD =EC 2, ∴2225DE CE DC =+=【点睛】本题考查了旋转的性质、等腰直角三角形,解决本题的关键是掌握旋转的性质. 25.(1)150050x -(020x ≤≤,x 为整数);(2)当日租出15辆时,租赁公司的日收益最大,最大值为5000元;(3)当每日租出520x <≤(x 为整数)辆时,租赁公司的日收益才能盈利.【分析】(1)根据题意可直接进行求解;(2)由题意得日租金收入=每辆车的日租金×日租出车辆的数量,日收益=日租金收入-平均每日各项支出,据此可求函数关系式,然后根据二次函数的性质进行求解即可; (3)当租赁公司的日收益不盈也不亏时,即0y =,求解,进而可根据题意求解.【详解】解:(1)每辆车的日租金是()5005020150050x x +-=-(元)(020x ≤≤,x 为整数);故答案为()150050x -;(2)∵日租金收入=每辆车的日租金×日租出车辆的数量,∴日租金收入()150050x x =-,又∵日收益=日租金收入-平均每日各项支出,∴()1500506250y x x =--,()22501500625050155000x x x =-+-=--+,∵租赁公司拥有20辆小型汽车,∴020x ≤≤,∴当15x =时,y 有最大值5000,答:当日租出15辆时,租赁公司的日收益最大,最大值为5000元.(3)当租赁公司的日收益不盈也不亏时,即0y =,∴()2501550000x --+=,解得125x =,25x =, ∴当525x <<时,0y >,∵租赁公司拥有20辆小型汽车,答:当每日租出520x <≤(x 为整数)辆时,租赁公司的日收益才能盈利.【点睛】本题主要考查二次函数的实际应用,熟练掌握二次函数的应用是解题的关键.26.(1)4;(2)(2+秒或(2-秒;(3)小明说得对,理由见解析【分析】(1)求出0h =时t 的值即可得多少秒后足球回到地面;(2)根据高度为10米列方程可得;(3)列方程由根的判别式可作出判断.【详解】解:(1)当0h =时,22050t t -=,解得:0t =或4t =,答:经4秒后足球回到地面;(2)令220510h t t =-=,解得:2t =+2t =即经过(2+秒或(2-秒时足球距离地面的高度为10米.(3)小明说得对,理由如下:假设足球高度能够达到21米,即21h =,将21h =代入公式得:221205t t =-由判别式计算可知:2(20)4521200=--⨯⨯=-<△, 方程无解,假设不成立,所以足球确实无法到达21米的高度.【点睛】本题主要考查一元二次方程的应用,解题的关键是熟练掌握一元二次方程的解法.。
华师大版九年级数学(上册)期末复习测试题(含答案详解)

小明通过多次摸球试验后发现其中摸到红色球、 黑色球的频率稳定在
和 ,则口袋中
白色球的个数可能是(
)
A.24
B.18
C.16
D.6
7. 从分别写有数字 4 、 3 、 2 、 1、 0 、 1、 2 、 3 、 4 的九张一样的卡片中,任意抽
取一张卡片,则所抽卡片上数字的绝对值小于
2 的概率是( )
A. 1 9
期末检测题
(时间: 120 分钟,满分: 120 分)
一、选择题(每小题 3 分,共 36 分)
1. .若
, 则 的值为( )
A.
B.8
2.一个正偶数的算术平方根是 是( )
C. 9
D.
那么与这个正偶数相邻的下一个正偶数的算术平方根
A.
B.
C.
D.
3. 如果关于 x 的一元二次方程 k 2 x2 (2 k 1)x 1 0 有两个不相等的实数根,那么 k 的取
的根 , 则三 角形的周 长 是
15. 已
的取值范围是 ________.
16. 如图所示,一个圆形转盘被等分成五个扇形区域,上面分别标有数字
,
角 为 30°.她们又测出
两点的距离为 30 米.假设她们的眼睛离头顶都为
,则
可计算出塔高约为 (结果精确到
,参考数据: 2
,3
)(
)
A.36.21 米
B.37.71 米
C.40.98 米
D.42.48 米
12. 如图,菱形
的周长为
, DE
AB ,垂足为 E , sin A
3
,则下列结论正确
5
D
的有(
形的面积是(
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华师大九年级数学(上)期末大复习第Ⅰ卷(满分48分)一、选择题:(每小题3分,共48分)1、下列条件中,不一定能使两个三角形全等的条件是( ) (A )两边一角对应相等 (B )两角一边对应相等 (C )三边对应相等 (D )两边和它们的夹角对应相等2、计算:21424m m ++-的结果是( ) A 、m+2 B 、m -2 C 、12m + D 、12m - 3、方程(a+2)|a|+3ax+1=0是关于x 的一元二次方程,则a 的值为( )A 、a =±2B 、a=2C 、a=-2D 、a ≠-2 4、若x <2,则2|2|x x --的值为( ) A 、-1 B 、0 C 、1 D 、2 5、如图1,AC 是⊙O 的直径,BD 是⊙O 的弦,EC ∥AB 交⊙O于E ,则图中与12∠BOC 相等的角共有( ) A 、2个 B 、3个 C 、4个 D 、5个6、如果关于x 的一元二次方程Kx 2-6x+9=0有两个不相等的实数根,那么K 的取值范围是( )A 、K <1B 、K ≠0C 、K <1且K ≠0D 、K >1 7、如图2,O为ABCD 的对角线AC 、BD 的交点,过O 的直线与边AD 、BC 分别交于点E 、F ,则图中全等的三角形共有( )A 、2对B 、3对C 、5对D 、6对 8、圆心都在x 轴上的两圆有一个公共点是(1,2),那么这两圆的关系是( ) A 、内切 B 、外切 C 、相交 D 、外离9、如果圆锥的底面半径为3cm ,母线长为4cm ,那么它的侧面积等于( ) A 、24πcm 2 B 、12πcm 2 C 、12cm 2 D 、6πcm 2 10、下面是赵明同学在一次测验中解答的填空题,其中,正确的是( )A 、若x 2 =4,则x=2B 、方程x(2x -1)=2x -1的解为x =1C 、关于x 的方程x 2-3x +m=0的一个根是1, 那么m = 2图1D图2F EDCABOD、若分式2321x xx-+-的值为零,则x = 1或x = 211、下列命题中,真命题是()A、有两边相等的平行四边形是菱形。
B、有一个角是直角的四边形是矩形。
C、直径是圆中最长的弦。
D、三点确定一个圆。
12、下列命题中,假命题是()A、两个三角形全等,则它们的周长相等。
B、成轴对称的两个三角形全等。
C、底边和顶角对应相等的两个等腰三角形全等。
D、有一边和一个角对应相等的两个三角形全等。
13、如图3,AB是半圆O的直径,弦AD、BC相交于P,那么CDAB等于()A、sin∠BPDB、cos∠BPDC、tan∠BPDD、cot∠BPD 图314、已知两圆的半径分别为5cm和7cm,当两圆相离时,它们的圆心距d的大小应满足()A、d>2B、d<2C、2<d<12 D 、d<2或d>1215、一项工程,甲需6天完成,乙需4天完成,求两人合作完成需要的天数。
如果设两人合作需要x天完成,则所列方程正确的是()A、6+4=2xB、11164x+=C、11246x+=D、x=6+416、抛掷一枚普通的硬币,连续出现三个正面的概率是()A、12B、14C、16D、18第Ⅱ卷二、填空题:(每小题3分,共18分)1、一种细菌的半径为0.00004m,用科学记数法把它表示为____________m2、计算:(-2xy2)2·3x2y÷(-x3y4) =____________。
3、为了了解一批灯泡的使用寿命,适合采用__________调查方式。
4、如图4,在⊙O中,AB为弦,OC⊥AB,垂足为C,若AO=5cm,OC=3cm,则弦AB的长为_______cm。
5、若15xx c-=,则221xx+=_______。
6、如图5,在同心圆中,两圆的半径分别为20cm和图 4CBOAOBA120︒10cm ,∠AOB=120°。
则图中阴影部分的面积为_______ 图5三、(每小题6分,共12分)1、计算:20(0.5)|1sin 45|--+-2、先化简,再求值:3241(1)3111x x x x x x ++-÷-+-+,其中:1x =四、解方程:(每小题6分,共12分) (1)21194416x x x +=+-- (2)23230x x +-=五、(每小题8分,共16分)1、关于x 的一元二次方程mx 2-(3m -1)x + 2m -1=0的根的判别式的值为1,求m 的值及该方程的根。
2、如图6是一个直角三角形材料,现要在上面截一个正方形。
要求:以C 为一个顶点,其余三个顶点分别在BC 、AB 、AC 边上,请你用尺规作图方法,画出所要求的正方形。
(不写画法,保留作图痕迹)BAC六、(每小题8分,共24分) 1、如图7,已知E 、F 是ABCD 的对角线AC 上两点,AE = CF 。
求证:BE = DF2、如图8,已知DC ∥AB ,且DC =12AB ,E 为AB 的中点。
(1) 求证:AED EBC ∆≅∆。
(2) 观察图形,在不添加辅助线的情况下,除EBC ∆外,还有与AED ∆的面积相等的三角形吗?若有请写写。
3、盒子里装三个红球,二个黄球和一个蓝球,它们除颜色外完全相同。
(1)从盒子里任意摸出一个球,出现哪种颜色的球的概率最大?为什么? (2)从盒子里任意摸出两个球,可能会出现哪些结果?七、(每小题10分,共20分)1、如图9,在⊙O 中,AB AC CD ==,AB=3,AE ·ED=5 (1) 求证:△AEC ∽ △ACD 。
(2) 求EC 的长。
图7EFCBDA图8DCE AB图92、如图10,用同样规格的黑白两色的正方形瓷砖铺设矩形地面,请观察图形并解答下列问题。
n =1 n = 2n = 3(1) 在第n 个图中,每一横行共有_____块瓷砖,每一竖列共有____块瓷砖。
(2) 按以上铺设方案,铺一块这样的矩形地面共用了506块瓷砖,求此时n 的值。
(3) 若黑瓷砖每块4元,白瓷砖每块3元,在问题②中,共花多少钱购买瓷砖?期末综合练习参考答案一、1、A 2、D 3、B 4、A 5、C 6、A 7、D 8、C 9、B10、C 11、C 12、D 13、B 14、D 15、B 16、D 二、1、4×10-5 2、-12xy 3、简单的随机抽样 4、8 5、2252c+ 6、100πcm 2 三、1、5 2、21x +,当31x =-时,原式=233四、(1)92x =(2) 1103x -±=五、1、由(3m -1)2-4m(2m -1) = 1,得m 1=2, m 2 =0(不合题意,应舍去)故m =2。
此时原方程的根为132x =21x = 2、提示:作CD 平分∠ACB 交AB 于D ,再作DE ⊥AC 于E ,作DF ⊥BC于F 。
CEDF 就是所求作的正方形。
六、1、证:∵ ABCD 是平行四边形 ∴ AB CD∴ ∠DCF=∠CAB又∵ AE = CF ∴ CDF ABE ∆≅∆ ∴BE = DF 2、(1)∵ DC =12AB ,E 为AB 的中点 ∴ AE = BE =DC 又∵ DC ∥AB∴ ∠AED = ∠B BEDC 是平行四边形 ∴ ED =BC∴AED EBC ∆≅∆(2)EDC ACD AEC AED S S S S ∆∆∆∆=== 3、(1) 出现红球的概率最,因为12P =摸出红球 13P =摸出黄球 16P =摸出蓝球 (2) 一红一黄,一红一蓝,一黄一蓝,两个红球,两个黄球。
七、1、(1)∵ AB AC =∴ ∠ACB = ∠ADC 又∵ ∠EAC = ∠CAD ∴ △AEC ∽ △ACD(2)∵ AB AC CD ==∴ AC = AB = CD = 3 ∠ECA = ∠EAC ∴ AE = EC∵ △AEC ∽ △ACD ∴AC AEAD AC= 故 AC 2 = AE ·AD AC 2 = AE (AE + ED ) AC 2 = AE 2 + AE ·ED ∵ AC = 3 AE ·ED = 5 ∴ AE 2 = 4 故 AE = 2 = EC 2、(1)n + 3 , n + 2(2)由题意,得(n +3)(n+2) = 506解之,n 1 =-25(舍去) n 2 =20(3)需白瓷砖:20×(20 +1)= 420(块)故共需黑瓷砖:506-420 =86(块)在问题(2)中,购买瓷砖共花费:420×3 + 86×4 = 1604(元)答:共花1604元钱购买瓷砖。