(完整版)1数学归纳法习题(含答案)

合集下载

(完整版)数学归纳法经典例题详解

(完整版)数学归纳法经典例题详解

例1.用数学归纳法证明:()()1212121751531311+=+-++⨯+⨯+⨯n n n n Λ. 请读者分析下面的证法:证明:①n =1时,左边31311=⨯=,右边31121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即:()()1212121751531311+=+-++⨯+⨯+⨯k k k k Λ. 那么当n =k +1时,有:()()()()3212112121751531311++++-++⨯+⨯+⨯k k k k Λ ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛+--++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=3211211211217151513131121k k k k Λ 322221321121++⋅=⎪⎭⎫ ⎝⎛+-=k k k ()1121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立.由①、②可知,对一切自然数n 等式成立.评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求.正确方法是:当n =k +1时.()()()()3212112121751531311++++-++⨯+⨯+⨯k k k k Λ ()()3212112++++=k k k k ()()()()()()321211232121322++++=++++=k k k k k k k k()1121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立,例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式:a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立,并证明你的结论.分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组.⎪⎩⎪⎨⎧=++=+=60322426321211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3.故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立.下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立.因为起始值已证,可证第二步骤.假设n =k 时,等式成立,即a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2)那么当n =k +1时,a 1+2a 2+3a 3+…+ka k +(k +1)a k +1= k (k +1)(k +2)+ (k +1)[3(k +1)+3]=(k +1)(k 2+2k +3k +6)=(k +1)(k +2)(k +3)=(k +1)[(k +1)+1][(k +1)+2]这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立.例3.证明不等式n n 2131211<++++Λ (n ∈N).证明:①当n =1时,左边=1,右边=2.左边<右边,不等式成立.②假设n =k 时,不等式成立,即k k 2131211<++++Λ.那么当n =k +1时,11131211++++++k k Λ1112112+++=++<k k k k k ()()12112111+=++=++++<k k k k k k这就是说,当n =k +1时,不等式成立.由①、②可知,原不等式对任意自然数n 都成立.说明:这里要注意,当n =k +1时,要证的目标是1211131211+<++++++k k k Λ,当代入归纳假设后,就是要证明: 12112+<++k k k .认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标.例4.已知数列{a n }满足a 1=0,a 2=1,当n ∈N 时,a n +2=a n +1+a n .求证:数列{a n }的第4m +1项(m ∈N )能被3整除.分析:本题由a n +1=a n +1+a n 求出通项公式是比较困难的,因此可考虑用数学归纳法.①当m =1时,a 4m +1=a 5=a 4+a 3=(a 3+a 2)+(a 2+a 1)=a 2+a 1+a 2+a 2+a 1=3,能被3整除.②当m =k 时,a 4k +1能被3整除,那么当n =k +1时,a 4(k +1)+1=a 4k +5=a 4k +4+a 4k +3=a 4k +3+a 4k +2+a 4k +2+a 4k +1=a 4k +2+a 4k +1+a 4k +2+a 4k +2+a 4k +1=3a 4k +2+2a 4k +1由假设a 4k +1能被3整除,又3a 4k +2能被3整除,故3a 4k +2+2a 4k +1能被3整除.因此,当m =k +1时,a 4(k +1)+1也能被3整除.由①、②可知,对一切自然数m ∈N ,数列{a n }中的第4m +1项都能被3整除.例5.n个半圆的圆心在同一条直线l上,这n个半圆每两个都相交,且都在直线l的同侧,问这些半圆被所有的交点最多分成多少段圆弧?分析:设这些半圆最多互相分成f (n)段圆弧,采用由特殊到一般的方法,进行猜想和论证.当n=2时,由图(1).两个半圆交于一点,则分成4段圆弧,故f (2)=4=22.当n=3时,由图(2).三个半径交于三点,则分成9段圆弧,故f (3)=9=32.由n=4时,由图(3).三个半圆交于6点,则分成16段圆弧,故f (4)=16=42.由此猜想满足条件的n个半圆互相分成圆弧段有f (n)=n2.用数学归纳法证明如下:①当n=2时,上面已证.②设n=k时,f (k)=k2,那么当n=k+1时,第k+1个半圆与原k个半圆均相交,为获得最多圆弧,任意三个半圆不能交于一点,所以第k+1个半圆把原k个半圆中的每一个半圆中的一段弧分成两段弧,这样就多出k条圆弧;另外原k个半圆把第k+1个半圆分成k+1段,这样又多出了k+1段圆弧.∴ f (k+1)=k2+k+(k+1)=k2+2k+1=(k+1)2∴满足条件的k+1个半圆被所有的交点最多分成(k+1)2段圆弧.由①、②可知,满足条件的n个半圆被所有的交点最多分成n2段圆弧.说明:这里要注意;增加一个半圆时,圆弧段增加了多少条?可以从f (2)=4,f (3)=f (2)+2+3,f (4)=f (3)+3+4中发现规律:f (k+1)=f (k)+k+(k+1).。

(完整版)高二数学归纳法经典例题

(完整版)高二数学归纳法经典例题

例1.用数学归纳法证明:()()1212121751531311+=+-++⨯+⨯+⨯n n n n . 请读者分析下面的证法:证明:①n =1时,左边31311=⨯=,右边31121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即:()()1212121751531311+=+-++⨯+⨯+⨯k k k k . 那么当n =k +1时,有:()()()()3212112121751531311++++-++⨯+⨯+⨯k k k k ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛+--++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=3211211211217151513131121k k k k 322221321121++⋅=⎪⎭⎫ ⎝⎛+-=k k k ()1121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立.由①、②可知,对一切自然数n 等式成立.评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求.正确方法是:当n =k +1时.()()()()3212112121751531311++++-++⨯+⨯+⨯k k k k ()()3212112++++=k k k k ()()()()()()321211232121322++++=++++=k k k k k k k k()1121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立,例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式:a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立,并证明你的结论.分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组.⎪⎩⎪⎨⎧=++=+=60322426321211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3.故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立.下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立.因为起始值已证,可证第二步骤.假设n =k 时,等式成立,即a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2)那么当n =k +1时,a 1+2a 2+3a 3+…+ka k +(k +1)a k +1= k (k +1)(k +2)+ (k +1)[3(k +1)+3]=(k +1)(k 2+2k +3k +6)=(k +1)(k +2)(k +3)=(k +1)[(k +1)+1][(k +1)+2]这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立.例3.证明不等式n n 2131211<++++ (n ∈N).证明:①当n =1时,左边=1,右边=2.左边<右边,不等式成立.②假设n =k 时,不等式成立,即k k 2131211<++++ .那么当n =k +1时,11131211++++++k k1112112+++=++<k k k k k ()()12112111+=++=++++<k k k k k k这就是说,当n =k +1时,不等式成立.由①、②可知,原不等式对任意自然数n 都成立.说明:这里要注意,当n =k +1时,要证的目标是1211131211+<++++++k k k ,当代入归纳假设后,就是要证明: 12112+<++k k k .认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标.例4.已知数列{a n }满足a 1=0,a 2=1,当n ∈N 时,a n +2=a n +1+a n .求证:数列{a n }的第4m +1项(m ∈N )能被3整除.分析:本题由a n +1=a n +1+a n 求出通项公式是比较困难的,因此可考虑用数学归纳法.①当m =1时,a 4m +1=a 5=a 4+a 3=(a 3+a 2)+(a 2+a 1)=a 2+a 1+a 2+a 2+a 1=3,能被3整除.②当m =k 时,a 4k +1能被3整除,那么当n =k +1时,a 4(k +1)+1=a 4k +5=a 4k +4+a 4k +3=a 4k +3+a 4k +2+a 4k +2+a 4k +1=a 4k +2+a 4k +1+a 4k +2+a 4k +2+a 4k +1=3a 4k +2+2a 4k +1由假设a 4k +1能被3整除,又3a 4k +2能被3整除,故3a 4k +2+2a 4k +1能被3整除.因此,当m =k +1时,a 4(k +1)+1也能被3整除.由①、②可知,对一切自然数m ∈N ,数列{a n }中的第4m +1项都能被3整除.例5.n个半圆的圆心在同一条直线l上,这n个半圆每两个都相交,且都在直线l的同侧,问这些半圆被所有的交点最多分成多少段圆弧?分析:设这些半圆最多互相分成f (n)段圆弧,采用由特殊到一般的方法,进行猜想和论证.当n=2时,由图(1).两个半圆交于一点,则分成4段圆弧,故f (2)=4=22.当n=3时,由图(2).三个半径交于三点,则分成9段圆弧,故f (3)=9=32.由n=4时,由图(3).三个半圆交于6点,则分成16段圆弧,故f (4)=16=42.由此猜想满足条件的n个半圆互相分成圆弧段有f (n)=n2.用数学归纳法证明如下:①当n=2时,上面已证.②设n=k时,f (k)=k2,那么当n=k+1时,第k+1个半圆与原k个半圆均相交,为获得最多圆弧,任意三个半圆不能交于一点,所以第k+1个半圆把原k个半圆中的每一个半圆中的一段弧分成两段弧,这样就多出k条圆弧;另外原k个半圆把第k+1个半圆分成k+1段,这样又多出了k+1段圆弧.∴ f (k+1)=k2+k+(k+1)=k2+2k+1=(k+1)2∴满足条件的k+1个半圆被所有的交点最多分成(k+1)2段圆弧.由①、②可知,满足条件的n个半圆被所有的交点最多分成n2段圆弧.说明:这里要注意;增加一个半圆时,圆弧段增加了多少条?可以从f (2)=4,f (3)=f (2)+2+3,f (4)=f (3)+3+4中发现规律:f (k+1)=f (k)+k+(k+1).。

数学归纳法 (有答案)

数学归纳法 (有答案)

数学归纳法2015高考会这样考 1.考查数学归纳法的原理和证题步骤;2.用数学归纳法证明与等式、不等式或数列有关的命题,考查分析问题、解决问题的能力.复习备考要这样做 1.理解数学归纳法的归纳递推思想及其在证题中的应用;2.规范书写数学归纳法的证题步骤. 一、知识梳理数学归纳法一般地,证明一个与正整数n 有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n 取第一个值n 0 (n 0∈N *)时命题成立;(2)(归纳递推)假设n =k (k ≥n 0,k ∈N *)时命题成立,证明当n =k +1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立.上述证明方法叫作数学归纳法. [难点正本 疑点清源]1.数学归纳法是一种重要的数学思想方法,主要用于解决与正整数有关的数学问题.证明时步骤(1)和(2)缺一不可,步骤(1)是步骤(2)的基础,步骤(2)是递推的依据.2.在用数学归纳法证明时,第(1)步验算n =n 0的n 0不一定为1,而是根据题目要求,选择合适的起始值.第(2)步,证明n =k +1时命题也成立的过程,一定要用到归纳假设,否则就不是数学归纳法. 小试牛刀1.凸k 边形内角和为f (k ),则凸k +1边形的内角和为f (k +1)=f (k )+________. 答案 π解析 易得f (k +1)=f (k )+π.2.用数学归纳法证明:“1+12+13+…+12n -1<n (n >1)”,由n =k (k >1)不等式成立,推证n =k +1时,左边应增加的项的项数是________. 答案 2k解析 n =k 时,左边=1+12+…+12k -1,当n =k +1时,左边=1+12+13+…+12k -1+…+12k +1-1.所以左边应增加的项的项数为2k . 3.用数学归纳法证明1+a +a 2+…+a n +1=1-a n +21-a(a ≠1,n ∈N +),在验证n =1成立时,左边需计算的项是( ) A .1 B .1+aC .1+a +a 2D .1+a +a 2+a 3答案 C解析 观察等式左边的特征易知选C.4.已知n 为正偶数,用数学归纳法证明1-12+13-14+…-1n =2⎝⎛⎭⎫1n +2+1n +4+…+12n 时,若已假设n =k (k ≥2且k 为偶数)时命题为真,则还需要用归纳假设再证( ) A .n =k +1时等式成立 B .n =k +2时等式成立 C .n =2k +2时等式成立 D .n =2(k +2)时等式成立 答案 B解析 因为假设n =k (k ≥2且k 为偶数),故下一个偶数为k +2,故选B.5.已知f (n )=1n +1n +1+1n +2+…+1n2,则( )A .f (n )中共有n 项,当n =2时,f (2)=12+13B .f (n )中共有n +1项,当n =2时,f (2)=12+13+14C .f (n )中共有n 2-n 项,当n =2时,f (2)=12+13D .f (n )中共有n 2-n +1项,当n =2时,f (2)=12+13+14答案 D解析 从n 到n 2共有n 2-n +1个数, 所以f (n )中共有n 2-n +1项. 二、典型例题题型一 用数学归纳法证明等式例1 已知n ∈N *,证明:1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n .思维启迪:等式的左边有2n 项,右边有n 项,左边的分母是从1到2n 的连续正整数,末项与n 有关,右边的分母是从n +1到n +n 的连续正整数,首、末项都与n 有关.证明 ①当n =1时,左边=1-12=12,右边=12,等式成立;②假设当n =k (k ∈N *)时等式成立,即 1-12+13-14+…+12k -1-12k =1k +1+1k +2+…+12k ,那么当n =k +1时,左边=1-12+13-14+…+12k -1-12k +12(k +1)-1-12(k +1)=⎝ ⎛⎭⎪⎫1k +1+1k +2+…+12k +12k +1-12(k +1)=1k +2+1k +3+…+12k +12k +1+⎣⎢⎡⎦⎥⎤1k +1-12(k +1) =1(k +1)+1+1(k +1)+2+…+1(k +1)+k +1(k +1)+(k +1) =右边, 所以当n =k +1时等式也成立. 综合①②知对一切n ∈N *,等式都成立.探究提高 用数学归纳法证明恒等式应注意:明确初始值n 0的取值并验证n =n 0时命题的真假(必不可少).“假设n =k (k ∈N *,且k ≥n 0)时命题正确”并写出命题形式分析“n =k +1时”命题是什么,并找出与“n =k ”时命题形式的差别.弄清左端应增加的项,明确等式左端变形目标,掌握恒等式变形常用的方法:乘法公式、因式分解、添拆项、配方等.简言之:两个步骤、一个结论;递推基础不可少,归纳假设要用到,结论写明莫忘掉.【变式1】 用数学归纳法证明:对任意的n ∈N *,11×3+13×5+…+1(2n -1)(2n +1)=n2n +1.证明 (1)当n =1时,左边=11×3=13,右边=12×1+1=13,左边=右边,所以等式成立.(2)假设当n =k (k ∈N *)时等式成立,即 11×3+13×5+…+1(2k -1)(2k +1)=k 2k +1, 则当n =k +1时, 11×3+13×5+…+1(2k -1)(2k +1)+1(2k +1)(2k +3) =k 2k +1+1(2k +1)(2k +3)=k (2k +3)+1(2k +1)(2k +3) =2k 2+3k +1(2k +1)(2k +3)=k +12k +3=k +12(k +1)+1,所以当n =k +1时,等式也成立. 由(1)(2)可知,对一切n ∈N *等式都成立.题型二 用数学归纳法证明不等式 例2 用数学归纳法证明:1+n 2≤1+12+13+…+12n ≤12+n (n ∈N *). 思维启迪:利用假设后,要注意不等式的放大和缩小.证明 (1)当n =1时,左边=1+12,右边=12+1,∴32≤1+12≤32,即命题成立. (2)假设当n =k (k ∈N *)时命题成立,即 1+k 2≤1+12+13+…+12k ≤12+k , 则当n =k +1时, 1+12+13+…+12k +12k +1+12k +2+…+12k +2k >1+k 2+2k ·12k +2k =1+k +12. 又1+12+13+…+12k +12k +1+12k +2+…+12k +2k<12+k +2k ·12k =12+(k +1), 即n =k +1时,命题成立.由(1)(2)可知,命题对所有n ∈N *都成立.探究提高 (1)用数学归纳法证明与n 有关的不等式一般有两种具体形式:一是直接给出不等式,按要求进行证明;二是给出两个式子,按要求比较它们的大小,对第二类形式往往要先对n 取前几个值的情况分别验证比较,以免出现判断失误,最后猜出从某个n 值开始都成立的结论,常用数学归纳法证明.(2)用数学归纳法证明不等式的关键是由n =k 时成立得n =k +1时成立,主要方法有①放缩法;②利用基本不等式法;③作差比较法等.【变式2】 用数学归纳法证明:对一切大于1的自然数,不等式⎝⎛⎭⎫1+13⎝⎛⎭⎫1+15·…·⎝⎛⎭⎫1+12n -1>2n +12均成立.证明 (1)当n =2时,左边=1+13=43;右边=52.∵左边>右边,∴不等式成立. (2)假设当n =k (k ≥2,且k ∈N *)时不等式成立,即⎝⎛⎭⎫1+13⎝⎛⎭⎫1+15·…·⎝ ⎛⎭⎪⎫1+12k -1>2k +12. 则当n =k +1时,⎝⎛⎭⎫1+13⎝⎛⎭⎫1+15·…·⎝ ⎛⎭⎪⎫1+12k -1⎣⎢⎡⎦⎥⎤1+12(k +1)-1 >2k +12·2k +22k +1=2k +222k +1=4k2+8k+422k+1>4k2+8k+322k+1=2k+32k+122k+1=2(k+1)+12.∴当n=k+1时,不等式也成立.由(1)(2)知,对于一切大于1的自然数n,不等式都成立.题型三用数学归纳法证明整除性问题例3用数学归纳法证明42n+1+3n+2能被13整除,其中n为正整数.思维启迪:当n=k+1时,把42(k+1)+1+3k+3配凑成42k+1+3k+2的形式是解题的关键.证明(1)当n=1时,42×1+1+31+2=91能被13整除.(2)假设当n=k(k∈N+)时,42k+1+3k+2能被13整除,则当n=k+1时,方法一42(k+1)+1+3k+3=42k+1·42+3k+2·3-42k+1·3+42k+1·3=42k+1·13+3·(42k+1+3k+2),∵42k+1·13能被13整除,42k+1+3k+2能被13整除.∴42(k+1)+1+3k+3能被13整除.方法二因为[42(k+1)+1+3k+3]-3(42k+1+3k+2)=(42k+1·42+3k+2·3)-3(42k+1+3k+2)=42k+1·13,∵42k+1·13能被13整除,∴[42(k+1)+1+3k+3]-3(42k+1+3k+2)能被13整除,因而42(k+1)+1+3k+3能被13整除,∴当n=k+1时命题也成立,由(1)(2)知,当n∈N+时,42n+1+3n+2能被13整除.探究提高用数学归纳法证明整除问题,P(k)⇒P(k+1)的整式变形是个难点,找出它们之间的差异,然后将P(k+1)进行分拆、配凑成P(k)的形式,也可运用结论:“P(k)能被p整除且P(k+1)-P(k)能被p整除⇒P(k+1)能被p整除.”【变式3】已知n为正整数,a∈Z,用数学归纳法证明:a n+1+(a+1)2n-1能被a2+a+1整除.证明(1)当n=1时,a n+1+(a+1)2n-1=a2+a+1,能被a2+a+1整除.(2)假设n=k(k∈N+)时,a k+1+(a+1)2k-1能被a2+a+1整除,那么当n=k+1时,a k+2+(a+1)2k+1=(a+1)2[a k+1+(a+1)2k-1]+a k+2-a k+1(a+1)2=(a +1)2[a k +1+(a +1)2k -1]-a k +1(a 2+a +1)能被a 2+a +1整除. 即当n =k +1时命题也成立.根据(1)(2)可知,对于任意n ∈N +,a n +1+(a +1)2n -1能被a 2+a +1整除.题型四 归纳、猜想、证明【例4】在各项为正的数列{a n }中,数列的前n 项和S n 满足S n =12⎝⎛⎭⎫a n +1a n . (1)求a 1,a 2,a 3;(2)由(1)猜想数列{a n }的通项公式,并且用数学归纳法证明你的猜想. 审题视角 (1)数列{a n }的各项均为正数,且S n =12⎝⎛⎭⎫a n +1a n ,所以可根据解方程求出a 1,a 2,a 3;(2)观察a 1,a 2,a 3猜想出{a n }的通项公式a n ,然后再证明. 规范解答解 (1)S 1=a 1=12⎝⎛⎭⎫a 1+1a 1得a 21=1. ∵a n >0,∴a 1=1,[1分]由S 2=a 1+a 2=12⎝⎛⎭⎫a 2+1a 2, 得a 22+2a 2-1=0,∴a 2=2-1.[2分]又由S 3=a 1+a 2+a 3=12⎝⎛⎭⎫a 3+1a 3 得a 23+22a 3-1=0,∴a 3=3- 2.[3分] (2)猜想a n =n -n -1 (n ∈N *)[5分]证明:①当n =1时,a 1=1=1-0,猜想成立.[6分] ②假设当n =k (k ∈N *)时猜想成立, 即a k =k -k -1,则当n =k +1时,a k +1=S k +1-S k =12⎝⎛⎭⎪⎫a k +1+1a k +1-12⎝⎛⎭⎫a k +1a k , 即a k +1=12⎝ ⎛⎭⎪⎫a k +1+1a k +1-12⎝ ⎛⎭⎪⎫k -k -1+1k -k -1=12⎝ ⎛⎭⎪⎫a k +1+1a k +1-k ,∴a 2k +1+2ka k +1-1=0,∴a k +1=k +1-k . 即n =k +1时猜想成立.[11分] 由①②知,a n =n -n -1 (n ∈N *).[12分]温馨提醒 (1)本题运用了从特殊到一般的探索、归纳、猜想及证明的思维方式去探索和发现问题,并证明所得结论的正确性,这是非常重要的一种思维能力.(2)本题易错原因是,第(1)问求a 1,a 2,a 3的值时,易计算错误或归纳不出a n 的一般表达式.第(2)问想不到再次利用解方程的方法求解,找不到解决问题的突破口.方法与技巧1.在数学归纳法中,归纳奠基和归纳递推缺一不可.在较复杂的式子中,注意由n=k到n =k+1时,式子中项数的变化,应仔细分析,观察通项.同时还应注意,不用假设的证法不是数学归纳法.2.对于证明等式问题,在证n=k+1等式也成立时,应及时把结论和推导过程对比,以减少计算时的复杂程度;对于整除性问题,关键是凑假设;证明不等式时,一般要运用放缩法.3.归纳—猜想—证明属于探索性问题的一种,一般经过计算、观察、归纳,然后猜想出结论,再用数学归纳法证明.由于“猜想”是“证明”的前提和“对象”,务必保证猜想的正确性,同时必须注意数学归纳法步骤的书写.失误与防范1.数学归纳法仅适用于与正整数有关的数学命题.2.严格按照数学归纳法的三个步骤书写,特别是对初始值的验证不可省略,有时要取两个(或两个以上)初始值进行验证;初始值的验证是归纳假设的基础.3.注意n=k+1时命题的正确性.4.在进行n=k+1命题证明时,一定要用n=k时的命题,没有用到该命题而推理证明的方法不是数学归纳法.课堂练习一、选择题(每小题5分,共20分)1.用数学归纳法证明“1+2+22+…+2n+2=2n+3-1”,在验证n=1时,左边计算所得的式子为()A.1 B.1+2C.1+2+22D.1+2+22+23答案 D解析左边的指数从0开始,依次加1,直到n+2,所以当n=1时,应加到23,故选D.2.用数学归纳法证明“2n>n2+1对于n≥n0的正整数n都成立”时,第一步证明中的起始值n0应取()A.2 B.3 C.5 D.6答案 C解析令n0分别取2,3,5,6,依次验证即得.3.用数学归纳法证明1+2+3+…+n 2=n 4+n 22,则当n =k +1时左端应在n =k 的基础上加上( )A .k 2+1B .(k +1)2 C.(k +1)4+(k +1)22D .(k 2+1)+(k 2+2)+…+(k +1)2答案 D解析 当n =k 时,左端=1+2+3+…+k 2.当n =k +1时,左端=1+2+3+…+k 2+(k 2+1)+(k 2+2)+…+(k +1)2,故当n =k +1时,左端应在n =k 的基础上加上(k 2+1)+(k 2+2)+…+(k +1)2.故应选D. 4.用数学归纳法证明:“(n +1)·(n +2)·…·(n +n )=2n ·1·3·…·(2n -1)”,从“k 到k +1”左端需增乘的代数式为( ) A .2k +1 B .2(2k +1)C.2k +1k +1D.2k +3k +1 答案 B解析 n =k +1时,左端为(k +2)(k +3)·…·[(k +1)+(k -1)][(k +1)+k ][(k +1)+(k +1)]=(k +2)(k +3)·…·(k +k )(2k +1)(2k +2)=(k +1)(k +2)·…·(k +k )[2(2k +1)], ∴应乘2(2k +1).二、填空题(每小题5分,共15分)5.用数学归纳法证明“2n +1≥n 2+n +2(n ∈N +)”时,第一步验证为________. 答案 当n =1时,左边=4≥右边,不等式成立 解析 由n ∈N +可知初始值为1.6.若f (n )=12+22+32+…+(2n )2,则f (k +1)与f (k )的递推关系式是________. 答案 f (k +1)=f (k )+(2k +1)2+(2k +2)2 解析 ∵f (k )=12+22+…+(2k )2,∴f (k +1)=12+22+…+(2k )2+(2k +1)2+(2k +2)2; ∴f (k +1)=f (k )+(2k +1)2+(2k +2)2.7.用数学归纳法证明“当n 为正奇数时,x n +y n 能被x +y 整除”,当第二步假设n =2k -1(k ∈N +)命题为真时,进而需证n =________时,命题亦真. 答案 2k +1解析 因为n 为正奇数,所以与2k -1相邻的下一个奇数是2k +1. 三、解答题(共22分)8.(10分)若n 为大于1的自然数,求证:1n +1+1n +2+…+12n >1324.证明 (1)当n =2时,12+1+12+2=712>1324.(2)假设当n =k (k ∈N +)时不等式成立,即1k +1+1k +2+…+12k >1324,那么当n =k +1时,1k +2+1k +3+…+12(k +1)=1k +2+1k +3+…+12k +12k +1+12k +2+1k +1-1k +1=⎝ ⎛⎭⎪⎫1k +1+1k +2+1k +3+…+12k +12k +1+12k +2-1k +1>1324+12k +1+12k +2-1k +1=1324+12k +1-12k +2 =1324+12(2k +1)(k +1)>1324. 这就是说,当n =k +1时,不等式也成立.由(1)(2)可知,原不等式对任意大于1的自然数都成立. 9.(12分)已知点P n (a n ,b n )满足a n +1=a n ·b n +1,b n +1=b n1-4a 2n(n ∈N *)且点P 1的坐标为(1,-1). (1)求过点P 1,P 2的直线l 的方程;(2)试用数学归纳法证明:对于n ∈N *,点P n 都在(1)中的直线l 上. (1)解 由P 1的坐标为(1,-1)知a 1=1,b 1=-1.∴b 2=b 11-4a 21=13.a 2=a 1·b 2=13. ∴点P 2的坐标为⎝⎛⎭⎫13,13, ∴直线l 的方程为2x +y =1. (2)证明 ①当n =1时, 2a 1+b 1=2×1+(-1)=1成立. ②假设当n =k (k ∈N *)时,2a k +b k =1成立,则当n =k +1时,2a k +1+b k +1=2a k ·b k +1+b k +1=b k1-4a 2k (2a k +1)=b k1-2a k =1-2a k 1-2a k=1, ∴当n =k +1时,命题也成立.由①②知,对于n ∈N *,都有2a n +b n =1, 即点P n 在直线l 上.课后练习一、选择题(每小题5分,共15分)1.对于不等式n 2+n <n +1(n ∈N *),某同学用数学归纳法证明的过程如下: (1)当n =1时,12+1<1+1,不等式成立.(2)假设当n =k (k ∈N *)时,不等式成立,即k 2+k <k +1,则当n =k +1时,(k +1)2+(k +1)=k 2+3k +2<(k 2+3k +2)+(k +2)=(k +2)2=(k +1)+1, ∴当n =k +1时,不等式成立,则上述证法( ) A .过程全部正确 B .n =1验得不正确 C .归纳假设不正确D .从n =k 到n =k +1的推理不正确 答案 D解析 在n =k +1时,没有应用n =k 时的假设,不是数学归纳法.2.用数学归纳法证明不等式1n +1+1n +2+…+12n <1314 (n ≥2,n ∈N *)的过程中,由n =k 递推到n =k +1时不等式左边( )A .增加了一项12(k +1)B .增加了两项12k +1、12k +2C .增加了B 中两项但减少了一项1k +1D .以上各种情况均不对 答案 C解析 ∵n =k 时,左边=1k +1+1k +2+…+12k ,n =k +1时,左边=1k +2+1k +3+…+12k +12k +1+12k +2,∴增加了两项12k +1、12k +2,少了一项1k +1.3.用数学归纳法证明不等式1+12+14+…+12n -1>12764 (n ∈N *)成立,其初始值至少应取( )A .7B .8C .9D .10 答案 B解析 左边=1+12+14+…+12n -1=1-12n1-12=2-12n -1,代入验证可知n 的最小值是8.二、填空题(每小题5分,共15分)4.已知整数对的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,则第60个数对是________.答案 (5,7)解析 本题规律:2=1+1;3=1+2=2+1;4=1+3=2+2=3+1;5=1+4=2+3=3+2=4+1;…;一个整数n 所拥有数对为(n -1)对.设1+2+3+…+(n -1)=60,∴(n -1)n 2=60, ∴n =11时还多5对数,且这5对数和都为12,12=1+11=2+10=3+9=4+8=5+7,∴第60个数对为(5,7).5.用数学归纳法证明⎝⎛⎭⎫1+13⎝⎛⎭⎫1+15⎝⎛⎭⎫1+17…⎝⎛⎭⎫1+12k -1>2k +12(k >1),则当n =k +1时,左端应乘上____________________________,这个乘上去的代数式共有因式的个数是__________.答案 ⎝⎛⎭⎫1+12k +1⎝⎛⎭⎫1+12k +3…⎝⎛⎭⎫1+12k +1-1 2k -1 解析 因为分母的公差为2,所以乘上去的第一个因式是⎝ ⎛⎭⎪⎫1+12k +1,最后一个是⎝ ⎛⎭⎪⎫1+12k +1-1,根据等差数列通项公式可求得共有(2k +1-1)-(2k+1)2+1=2k -2k -1=2k -1项.6.在数列{a n }中,a 1=13且S n =n (2n -1)a n ,通过计算a 2,a 3,a 4,猜想a n 的表达式是________. 答案 a n =1(2n -1)(2n +1)解析 当n =2时,a 1+a 2=6a 2,即a 2=15a 1=115; 当n =3时,a 1+a 2+a 3=15a 3, 即a 3=114(a 1+a 2)=135; 当n =4时,a 1+a 2+a 3+a 4=28a 4, 即a 4=127(a 1+a 2+a 3)=163. ∴a 1=13=11×3,a 2=115=13×5,a 3=135=15×7,a 4=17×9, 故猜想a n =1(2n -1)(2n +1). 三、解答题7.(13分)已知函数f (x )=ax -32x 2的最大值不大于16,又当x ∈⎣⎡⎦⎤14,12时,f (x )≥18. (1)求a 的值;(2)设0<a 1<12,a n +1=f (a n ),n ∈N *,证明:a n <1n +1. (1)解 由题意,知f (x )=ax -32x 2=-32⎝⎛⎭⎫x -a 32+a 26. 又f (x )max ≤16,所以f ⎝⎛⎭⎫a 3=a 26≤16. 所以a 2≤1.又当x ∈⎣⎡⎦⎤14,12时,f (x )≥18, 所以⎩⎨⎧ f ⎝⎛⎭⎫12≥18,f ⎝⎛⎭⎫14≥18,即⎩⎨⎧ a 2-38≥18,a 4-332≥18,解得a ≥1.又因为a 2≤1,所以a =1.(2)证明 用数学归纳法证明:①当n =1时,0<a 1<12,显然结论成立. 因为当x ∈⎝⎛⎭⎫0,12时,0<f (x )≤16, 所以0<a 2=f (a 1)≤16<13. 故n =2时,原不等式也成立.②假设当n =k (k ≥2,k ∈N *)时,不等式0<a k <1k +1成立. 因为f (x )=ax -32x 2的对称轴为直线x =13,所以当x ∈⎝⎛⎦⎤0,13时,f (x )为增函数. 所以由0<a k <1k +1≤13,得0<f (a k )<f ⎝ ⎛⎭⎪⎫1k +1. 于是,0<a k +1=f (a k )<1k +1-32·1(k +1)2+1k +2-1k +2=1k +2-k +42(k +1)2(k +2)<1k +2. 所以当n =k +1时,原不等式也成立.根据①②,知对任何n ∈N *,不等式a n <1n +1成立.。

数学归纳法经典例题及答案

数学归纳法经典例题及答案

数学归纳法经典例题及答案数学归纳法是解决数学问题中常用的一种证明方法,它基于两个基本步骤:证明基准情况和证明归纳假设,通过这两个步骤逐步推导证明,从而得到结论。

下面将介绍一些经典的数学归纳法例题及其答案。

例题一:证明1 + 2 + 3 + ... + n = n(n+1)/2,其中n∈N(自然数)。

解答:首先,我们先验证这个等式在n=1时是否成立。

当n=1时,左边等式为1,右边等式为1(1+1)/2=1,两边相等,因此基准情况成立。

其次,我们假设对于任意的k∈N,当n=k时等式成立,即1+2+3+...+k=k(k+1)/2。

接下来,我们需要证明当n=k+1时等式也成立。

根据归纳假设,我们已经知道1+2+3+...+k=k(k+1)/2,现在我们要证明1+2+3+...+k+(k+1)=(k+1)(k+2)/2。

将左边等式的前k项代入归纳假设得到:(k(k+1)/2)+(k+1)=(k+1)(k/2+1)= (k+1)(k+2)/2。

所以,当n=k+1时,等式也成立。

根据数学归纳法的原理,我们可以得出结论,对于任意的n∈N,都有1+2+3+...+n=n(n+1)/2。

例题二:证明2^n > n,其中n∈N,n>1。

解答:首先,我们验证这个不等式在n=2时是否成立。

当n=2时,左边等式为2^2=4,右边等式为2,显然不等式成立。

其次,我们假设对于任意的k∈N,当n=k时不等式成立,即2^k > k。

接下来,我们需要证明当n=k+1时不等式也成立。

根据归纳假设,我们已经知道2^k > k,现在我们要证明2^(k+1) > k+1。

我们可以将左边等式进行展开得到:2^(k+1) = 2^k * 2。

由归纳假设可知,2^k > k,所以2^(k+1) = 2^k * 2 > k * 2。

我们可以观察到当k>2时,k * 2 > k + 1,当k=2时,k * 2 = k + 1。

高二数学数学归纳法试题答案及解析

高二数学数学归纳法试题答案及解析

高二数学数学归纳法试题答案及解析1. 用数学归纳法证明1+2+3+ +n 2=,则当n =k +1时左端应在n =k 的基础上加上( )A .k 2+1B .(k +1)2C .D .(k 2+1)+(k 2+2)+ +(k +1)2【答案】D 【解析】当时,,当时,,所以时左端应在的基础上加上. 【考点】数学归纳法.2. 某地区为了绿化环境进行大面积植树造林,如图,在区域 内植树,第一棵 树在点A l (0,1),第二棵树在点.B 1(l , l ),第三棵树在点C 1(1,0),第四棵树在点C 2(2,0),接着按图中箭头方向每隔一个单位种一棵树,那么(1)第n 棵树所在点坐标是(44,0),则n= .(2)第2014棵树所在点的坐标是 .【答案】(1);(2)【解析】(1)从图上可以看出:第3棵树在点,第4颗树在点,第15棵数在点,第16棵数在点,设第棵树在点,显然可以归纳出,∴;由图可知,以,为左右端点的正方形区域内共有棵树,而, ∴第2014的数应是,为左右端点的正方形区域内的依次种植的倒数第11棵树,∴第2014棵树的所在点的坐标为. 【考点】归纳推理.3. 用数学归纳法证明1+++…+(,),在验证成立时,左式是____.【答案】1++ 【解析】当时,;所以在验证成立时,左式是.【考点】数学归纳法.4. 是否存在常数使得对一切恒成立?若存在,求出的值,并用数学归纳法证明;若不存在,说明理由. 【答案】【解析】先探求出的值,即令,解得.用数学归纳法证明时,需注意格式.第一步,先证起始项成立,第二步由归纳假设证明当n="k" 等式成立时,等式也成立.最后由两步归纳出结论.其中第二步尤其关键,需利用归纳假设进行证明,否则就不是数学归纳法.解:取和2 得解得 4分即以下用数学归纳法证明:(1)当n=1时,已证 6分(2)假设当n=k,时等式成立即 8分那么,当时有10分12分就是说,当时等式成立 13分根据(1)(2)知,存在使得任意等式都成立 15分【考点】数学归纳法5.已知,不等式,,,…,可推广为,则等于 .【答案】【解析】因为,……,所以该系列不等式,可推广为,所以当推广为时,.【考点】归纳推理.)时,该命题成立,那么可6.某个命题与正整数有关,如果当n=k(k∈N+推得当n=k+1时命题也成立.现在已知当n=5时,该命题不成立,那么可推得( ).A.当n=6时该命题不成立B.当n=6时该命题成立C.当n=4时该命题不成立D.当n=4时该命题成立【答案】C【解析】依题意,若n=4时该命题成立,则n=5时该命题成立;而n=5时该命题不成立,却无法判断n=6时该命题成立还是不成立,故选C.7.用数学归纳法证明“当n为正奇数时,x n+y n能被x+y整除”的第二步是( ).A.假使n=2k+1时正确,再推n=2k+3正确B.假使n=2k-1时正确,再推n=2k+1正确C.假使n=k时正确,再推n=k+1正确D.假使n≤k(k≥1),再推n=k+2时正确(以上k∈N+)【答案】B【解析】因为n为正奇数,据数学归纳法证题步骤,第二步应先假设第k个正奇数也成立,本题即假设n=2k-1正确,再推第k+1个正奇数即n=2k+1正确.8.用数学归纳法证明等式时,第一步验证时,左边应取的项是A.1B.C.D.【答案】D【解析】根据题意,数学归纳法证明等式时,第一步验证时,坐标表示的为前4项的和,因为最后一项为4,且从1开始,因此可知左边为,选D.【考点】数学归纳法点评:主要是考查了数学归纳法的基本原理的运用,属于基础题。

(完整版)数学归纳法练习题

(完整版)数学归纳法练习题

2.3数学归纳法第1课时数学归纳法1.用数学归纳法证明“2n>n2+1对于n≥n0的自然数n都成立”时,第一步证明中的起始值n0应取().A.2 B.3 C.5 D.6解析当n取1、2、3、4时2n>n2+1不成立,当n=5时,25=32>52+1=26,第一个能使2n>n2+1的n值为5,故选C.答案 C2.用数学归纳法证明等式1+2+3+…+(n+3)=(n+3)(n+4)2(n∈N+),验证n=1时,左边应取的项是().A.1 B.1+2C.1+2+3 D.1+2+3+4解析等式左边的数是从1加到n+3.当n=1时,n+3=4,故此时左边的数为从1加到4.答案 D3.设f(n)=1+12+13+…+13n-1(n∈N+),那么f(n+1)-f(n)等于().A.13n+2B.13n+13n+1C.13n+1+13n+2D.13n+13n+1+13n+2解析∵f(n)=1+12+13+…+13n-1,∵f(n+1)=1+12+13+…+13n-1+13n+13n+1+13n+2,∴f(n+1)-f(n)=13n+13n+1+13n+2.答案 D4.用数学归纳法证明关于n的恒等式,当n=k时,表达式为1×4+2×7+…+k(3k+1)=k(k+1)2,则当n=k+1时,表达式为________.答案1×4+2×7+…+k(3k+1)+(k+1)(3k+4)=(k+1)(k+2)25.记凸k边形的内角和为f(k),则凸k+1边形的内角和f(k+1)=f(k)+________.解析由凸k边形变为凸k+1边形时,增加了一个三角形图形,故f(k+1)=f(k)+π.答案π6.用数学归纳法证明:1 1×2+13×4+…+1(2n-1)·2n=1n+1+1n+2+…+1n+n.证明(1)当n=1时,左边=11×2=12,右边=12,等式成立.(2)假设当n=k(k∈N*)时,等式成立,即1 1×2+13×4+…+1(2k-1)·2k=1k+1+1k+2+…+12k.则当n=k+1时,1 1×2+13×4+…+1(2k-1)·2k+1(2k+1)(2k+2)=1k+1+1k+2+…+12k+1(2k+1)(2k+2)=1k+2+1k+3+…+12k+⎝⎛⎭⎪⎫12k+1-12k+2+1k+1=1k+2+1k+3+…+12k+12k+1+12k+2=1(k+1)+1+1(k+1)+2+…+1(k+1)+k+1(k+1)+(k+1).即当n=k+1时,等式成立.根据(1)(2)可知,对一切n∈N*,等式成立.7.若命题A(n)(n∈N*)在n=k(k∈N*)时命题成立,则有n=k+1时命题成立.现知命题对n=n0(n0∈N*)时命题成立,则有().A.命题对所有正整数都成立B.命题对小于n0的正整数不成立,对大于或等于n0的正整数都成立C.命题对小于n0的正整数成立与否不能确定,对大于或等于n0的正整数都成立D.以上说法都不正确解析由已知得n=n0(n0∈N*)时命题成立,则有n=n0+1时命题成立;在n =n0+1时命题成立的前提下,又可推得n=(n0+1)+1时命题也成立,依此类推,可知选C.答案 C8.用数学归纳法证明(n+1)(n+2)(n+3)…(n+n)=2n·1·3·…·(2n-1)(n∈N*),从n=k到n=k+1,左边增加的代数式为().A.2k+1 B.2(2k+1)C.2k+1k+1D.2k+3k+1解析n=k时,左边=(k+1)(k+2)…(2k);n=k+1时,左边=(k+2)(k+3)…(2k+2)=2(k+1)(k+2)…(2k)(2k+1),故选B.答案 B9.分析下述证明2+4+…+2n=n2+n+1(n∈N+)的过程中的错误:证明假设当n=k(k∈N+)时等式成立,即2+4+…+2k=k2+k+1,那么2+4+…+2k+2(k+1)=k2+k+1+2(k+1)=(k+1)2+(k+1)+1,即当n=k+1时等式也成立.因此对于任何n∈N+等式都成立.__________________.答案缺少步骤归纳奠基,实际上当n=1时等式不成立10.用数学归纳法证明(1+1)(2+2)(3+3)…(n+n)=2n-1·(n2+n)时,从n=k到n =k+1左边需要添加的因式是________.解析当n=k时,左端为:(1+1)(2+2)…(k+k),当n =k +1时,左端为:(1+1)(2+2)…(k +k )(k +1+k +1), 由k 到k +1需添加的因式为:(2k +2). 答案 2k +2 11.用数学归纳法证明12+22+…+n 2=n (n +1)(2n +1)6(n ∈N *).证明 (1)当n =1时,左边=12=1, 右边=1×(1+1)×(2×1+1)6=1,等式成立.(2)假设当n =k (k ∈N *)时等式成立,即 12+22+…+k 2=k (k +1)(2k +1)6那么,12+22+…+k 2+(k +1)2 =k (k +1)(2k +1)6+(k +1)2=k (k +1)(2k +1)+6(k +1)26=(k +1)(2k 2+7k +6)6=(k +1)(k +2)(2k +3)6=(k +1)[(k +1)+1][2(k +1)+1]6,即当n =k +1时等式也成立.根据(1)和(2),可知等式对任何n ∈N *都成立.12.(创新拓展)已知正数数列{a n }(n ∈N *)中,前n 项和为S n ,且2S n =a n +1a n ,用数学归纳法证明:a n =n -n -1. 证明 (1)当n =1时.a 1=S 1=12⎝ ⎛⎭⎪⎫a 1+1a 1,∴a 21=1(a n >0),∴a 1=1,又1-0=1, ∴n =1时,结论成立.(2)假设n =k (k ∈N *)时,结论成立, 即a k =k -k -1. 当n =k +1时, a k +1=S k +1-S k=12⎝⎛⎭⎪⎫a k +1+1a k +1-12⎝ ⎛⎭⎪⎫a k +1a k =12⎝ ⎛⎭⎪⎫a k +1+1a k +1-12⎝⎛⎭⎪⎫k -k -1+1k -k -1 =12⎝⎛⎭⎪⎫a k +1+1a k +1-k∴a 2k +1+2k a k +1-1=0,解得a k +1=k +1-k (a n >0), ∴n =k +1时,结论成立.由(1)(2)可知,对n ∈N *都有a n =n -n -1.。

高二数学数学归纳法试题答案及解析

高二数学数学归纳法试题答案及解析

高二数学数学归纳法试题答案及解析1.若,则对于,.【答案】【解析】【考点】数学归纳法2.用数学归纳法证明:“1+a+a2++a n+1=(a≠1,n∈N*)”在验证n=1时,左端计算所得的项为( )A.1B.1+aC.1+a+a2D.1+a+a2+a3【答案】C【解析】当n=1时,左端为1+a+a2,故选C.考点:数学归纳法3.已知,,,,…,由此你猜想出第n个数为【答案】【解析】观察根式的规律,和式的前一项与后一项的分子相同,是等差数列,而后一项的分母可表示为,故答案为【考点】归纳推理.4.用数学归纳法证明1+++…+(,),在验证成立时,左式是____.【答案】1++【解析】当时,;所以在验证成立时,左式是.【考点】数学归纳法.5.利用数学归纳法证明“, ()”时,在验证成立时,左边应该是.【答案】【解析】用数学归纳法证明“, ()”时,在验证成立时,将代入,左边以1即开始,以结束,所以左边应该是.【考点】数学归纳法.6.已知,不等式,,,…,可推广为,则等于 .【答案】【解析】因为,……,所以该系列不等式,可推广为,所以当推广为时,.【考点】归纳推理.)能被9整除”,要利7.用数学归纳法证明“n3+(n+1)3+(n+2)3,(n∈N+用归纳法假设证n=k+1时的情况,只需展开( ).A.(k+3)3B.(k+2)3C.(k+1)3D.(k+1)3+(k+2)3【答案】A【解析】假设n=k时,原式k3+(k+1)3+(k+2)3能被9整除,当n=k+1时,(k+1)3.+(k+2)3+(k+3)3为了能用上面的归纳假设,只须将(k+3)3展开,让其出现k3即可.故应选A.8.用数学归纳法证明:【答案】通过两步(n=1,n=k+1)证明即可得出结论。

【解析】解:当n=1时,等式左边为2,右边为2,左边等于右边,当n=k时,假设成立,可以得到(k+1)+(k+2)+…+(k+k)=n=k+1时等式左边与n=k时的等式左边的差,即为n=k+1时等式左边增加的项,由题意,n=k时,等式左边=(k+1)+(k+2)+…+(k+k),n=k+1时,等式左边=(k+2)+(k+3)+…+(k+k+1)+(k+1+k+1),比较可得n=k+1时等式左边等于右边,进而综上可知,满足题意的所有正整数都成立,故证明。

数学归纳法一(讲解,练习及答案)

数学归纳法一(讲解,练习及答案)

数学归纳法⼀(讲解,练习及答案)数学归纳法(Ⅰ)数学归纳法的定义:⼀般地,证明⼀个与正整数n有关的命题,可按下列步骤进⾏:(1)(归纳奠基)证明当n取第⼀个值n0时,命题成⽴;(2)(归纳递推)假设时,命题成⽴,证明当时,命题也成⽴.只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成⽴.其证明的⽅法叫做数学归纳法.说明:1、适⽤范围:常⽤来证明与⾃然数有关的命题.2、归纳奠基与归纳递推这两步缺⼀不可.(1)缺少第⼆步归纳递推致错举例:例如:⼀个数列的通项公式是,容易验证,如果由此作出结论对于任何,都成⽴,那就是错误的,事实上.可见,只有归纳奠基,⽽没有归纳递推得到的结论是靠不住的.(2)缺少第⼀步归纳奠基致错举例:例如:证明等式时,假设n=k时等式成⽴,即.那么.这就是说当时等式也成⽴.但是当n=1时,左边=2,右边=3,显然等式不成⽴.3、起始值n0不⼀定等于1.4、注意从k到k+1的跨度,即k到k+1增加了多少项.例1、⽤数学归纳法证明:n∈N*时,证明:(1)当n=1时,左边==,右边===左边,所以等式成⽴.(2)假设当n=k(k∈N*)时等式成⽴,即有++…+=,则当n=k+1时,++…++=+====所以当n=k+1时,等式也成⽴.∴由(1)(2)得等式成⽴.例2、试证:当n为正整数时,能被64整除.证明:(1)当n=1时,f(1)=34-8-9=64,能被64整除.(2)假设当n=k(k≥1,k∈N*)时,f(k)=32k+2-8k-9能被64整除.当n=k+1时,f(k+1)=32(k+1)+2-8(k+1)-9=9(32k+2-8k-9)+9×8k+9×9-8(k+1)-9=9(32k+2-8k-9)+64(k+1).即f(k+1)能被64整除.∴由(1)(2)得所求证成⽴.例3、平⾯内有n个圆,其中每两个圆都交于两点,且⽆三个圆交于⼀点,求证:这n个圆将平⾯分成n2-n+2个部分.证明:(1)当n=1时,1个圆将平⾯分成2个部分,显然结论成⽴.(2)假设当n=k(k∈N*)时,k个圆将平⾯分成k2-k+2个部分.当n=k+1时,第k+1个圆交前⾯k个圆于2k个点,这2k个点将圆分成2k段,每段将各⾃所在区域⼀分为⼆,于是增加了2k个区域,所以这k+1个圆将平⾯分成k2-k+2+2k个部分,即(k+1)2-(k+1)+2个部分.故n=k+1时,结论成⽴.∴由(1),(2)可知所求证成⽴.例4、数列{b n}的通项为,证明:对任意的,不等式成⽴.证明:(1)当n=1时,左边=,右边==左边(备注:视频中书写有误),∴结论成⽴.(2)假设当n=k时,不等式成⽴,即成⽴.当n=k+1时,左边所以当n=k+1时,不等式也成⽴.∴由①、②可得不等式恒成⽴.练习:⼀、选择题1、设f(n)=+++…+(n∈N*),那么f(n+1)-f(n)等于()A.B.C.+D.-2、凸n边形有f(n)条对⾓线,则凸n+1边形有对⾓线条数f(n+1)为()A.f(n)+n+1 B.f(n)+nC.f(n)+n-1 D.f(n)+n-23、⽤数学归纳法证明“(n+1)(n+2)·…·(n+n)=2n·1·3·…·(2n-1)”,从“k到k+1”左端需增乘的代数式为()A.2k+1 B.2(2k+1)C.D.4、⽤数学归纳法证明“1+++…+<n(n∈N*,n>1)”时,由n=k(k>1)不等式成⽴,推证n=k+1时,左边应增加的项数是()A.2k-1B.2k-1C.2k D.2k+1⼆、填空题5、⽤数学归纳法证明:“++…+≥1(n∈N*)”时,在验证初始值不等式成⽴时,左边的式⼦应是“__________”.三、解答题6、⽤数学归纳法证明:对任意的n∈N*,1-+-+…+-=++…+.、7、⽤数学归纳法证明(3n+1)·7n-1(n∈N*)能被9整除.8、⽤数学归纳法证明:1+++…+≥(n∈N*).9、平⾯内有n条直线,其中⽆任何两条平⾏,也⽆任何三条共点,求证:这n条直线把平⾯分割成(n2+n+2)块.10、求证:.参考答案:1、D解析:f(n+1)-f(n)=++…+++-(++…+)=+-=-.2、C解析:由n边形到n+1边形,增加的对⾓线是增加的⼀个顶点与原n-2个顶点连成的n-2条对⾓线,以及原先的⼀条边成了对⾓线.3、B解析:当n=1时,显然成⽴.当n=k时,左边=(k+1)(k+2)·…·(k+k),当n=k+1时,左边=(k+1+1)(k+1+2)·…·(k+1+k)(k+1+k+1)=(k+2)(k+3)·…·(k+k)(k+1+k)(k+1+k+1)=(k+1)(k+2)·…·(k+k)=(k+1)(k+2)·…·(k+k)2(2k+1).4、C解析:左边的特点:分母逐渐增加1,末项为;由n=k,末项为到n=k+1,末项为=,∴应增加的项数为2k.5、++6、(1)当n=1时,左边=1-===右边,∴等式成⽴.(2)假设当n=k(k≥1,k∈N*)时,等式成⽴,即1-+-+…+-=++…+.则当n=k+1时,1-+-+…+-+-=++…++-=++…+++(-)=++…+++,即当n=k+1时,等式也成⽴,所以由(1)(2)知对任意的n∈N*等式成⽴.7、证明:(1)当n=1时,4×7-1=27能被9整除,命题成⽴.(2)假设n=k (k≥1,k∈N*)时命题成⽴,即(3k+1)·7k-1能被9整除.当n=k+1时,[(3k+3)+1]·7k+1-1=(3k+1+3)·7·7k-1=7·(3k+1)·7k-1+21·7k=[(3k+1)·7k-1]+18k·7k+6·7k+21·7k=[(3k+1)·7k-1]+18k·7k+27·7k,由归纳假设(3k+1)·7k-1能被9整除,⼜因为18k·7k+27·7k能被9整除,所以[3(k+1)+1] ·7k+1-1能被9整除,即n=k+1时命题成⽴.由(1)(2)知,对所有的正整数n,命题成⽴.9、证明:(1)当n=1时,1条直线把平⾯分成2块,⼜(12+1+2)=2,命题成⽴.(2)假设n=k,k≥1时命题成⽴,即k条满⾜题设的直线把平⾯分成(k2+k+2)块,那么当n=k +1时,第k+1条直线被k 条直线分成k+1段,每段把它们所在的平⾯块⼜分成了2块,因此,增加了k +1个平⾯块.所以k+1条直线把平⾯分成了(k2+k+2)+k+1=[(k+1) 2+(k+1)+2]块,这说明当n=k+1时,命题也成⽴.由(1)(2)知,对⼀切n∈N*,命题都成⽴.10、证明:(1)当n=1时,左边=,不等式成⽴.(2)假设n=k时命题成⽴,即,则当n=k+1时,=()++>1+=1+.这就是说,当时,不等式成⽴.由(1)(2)知原不等式成⽴.。

(完整版)数学归纳法测试题及答案

(完整版)数学归纳法测试题及答案

选修2-2 2. 3 数学归纳法一、选择题1.用数学归纳法证明1+12+13+…+12n -1<n (n ∈N *,n >1)时,第一步应验证不等式( ) A .1+12<2 B .1+12+13<2 C .1+12+13<3 D .1+12+13+14<3 [答案] B[解析] ∵n ∈N *,n >1,∴n 取第一个自然数为2,左端分母最大的项为122-1=13, 2.用数学归纳法证明1+a +a 2+…+an +1=1-a n +21-a(n ∈N *,a ≠1),在验证n =1时,左边所得的项为( ) A .1 B .1+a +a 2 C .1+a D .1+a +a 2+a 3[答案] B[解析] 因为当n =1时,a n +1=a 2,所以此时式子左边=1+a +a 2.故应选B.3.设f (n )=1n +1+1n +2+…+12n (n ∈N *),那么f (n +1)-f (n )等于( ) A.12n +1 B.12n +2C.12n +1+12n +2D.12n +1-12n +2[答案] D[解析] f (n +1)-f (n )=⎣⎢⎡⎦⎥⎤1(n +1)+1+1(n +1)+2+…+12n +12n +1+12(n +1) -⎣⎢⎡⎦⎥⎤1n +1+1n +2+…+12n =12n +1+12(n +1)-1n +1=12n +1-12n +2. 4.某个命题与自然数n 有关,若n =k (k ∈N *)时,该命题成立,那么可推得n =k +1时该命题也成立.现在已知当n =5时,该命题不成立,那么可推得( )A .当n =6时该命题不成立B .当n =6时该命题成立C.当n=4时该命题不成立D.当n=4时该命题成立[答案] C[解析]原命题正确,则逆否命题正确.故应选C.5.用数学归纳法证明命题“当n是正奇数时,x n+y n能被x+y整除”,在第二步的证明时,正确的证法是()A.假设n=k(k∈N*),证明n=k+1时命题也成立B.假设n=k(k是正奇数),证明n=k+1时命题也成立C.假设n=k(k是正奇数),证明n=k+2时命题也成立D.假设n=2k+1(k∈N),证明n=k+1时命题也成立[答案] C[解析]∵n为正奇数,当n=k时,k下面第一个正奇数应为k+2,而非k+1.故应选C.6.凸n边形有f(n)条对角线,则凸n+1边形对角线的条数f(n+1)为()A.f(n)+n+1B.f(n)+nC.f(n)+n-1D.f(n)+n-2[答案] C[解析]增加一个顶点,就增加n+1-3条对角线,另外原来的一边也变成了对角线,故f(n+1)=f(n)+1+n+1-3=f(n)+n-1.故应选C.7.用数学归纳法证明“对一切n∈N*,都有2n>n2-2”这一命题,证明过程中应验证() A.n=1时命题成立B.n=1,n=2时命题成立C.n=3时命题成立D.n=1,n=2,n=3时命题成立[答案] D[解析]假设n=k时不等式成立,即2k>k2-2,当n=k+1时2k+1=2·2k>2(k2-2)由2(k2-2)≥(k-1)2-4⇔k2-2k-3≥0⇔(k+1)(k-3)≥0⇒k≥3,因此需要验证n=1,2,3时命题成立.故应选D.8.已知f (n )=(2n +7)·3n +9,存在自然数m ,使得对任意n ∈N *,都能使m 整除f (n ),则最大的m 的值为( )A .30B .26C .36D .6[答案] C[解析] 因为f (1)=36,f (2)=108=3×36,f (3)=360=10×36,所以f (1),f (2),f (3)能被36整除,推测最大的m 值为36.9.已知数列{a n }的前n 项和S n =n 2a n (n ≥2),而a 1=1,通过计算a 2、a 3、a 4,猜想a n =( )A.2(n +1)2B.2n (n +1)C.22n -1D.22n -1[答案] B[解析] 由S n =n 2a n 知S n +1=(n +1)2a n +1∴S n +1-S n =(n +1)2a n +1-n 2a n∴a n +1=(n +1)2a n +1-n 2a n∴a n +1=n n +2a n (n ≥2). 当n =2时,S 2=4a 2,又S 2=a 1+a 2,∴a 2=a 13=13a 3=24a 2=16,a 4=35a 3=110. 由a 1=1,a 2=13,a 3=16,a 4=110猜想a n =2n (n +1),故选B. 10.对于不等式n 2+n ≤n +1(n ∈N +),某学生的证明过程如下:(1)当n =1时,12+1≤1+1,不等式成立.(2)假设n =k (k ∈N +)时,不等式成立,即k 2+k <k +1,则n =k +1时,(k +1)2+(k +1)=k 2+3k +2<(k 2+3k +2)+(k +2)=(k +2)2=(k +1)+1,∴当n =k +1时,不等式成立,上述证法( )A .过程全都正确B .n =1验证不正确C .归纳假设不正确D .从n =k 到n =k +1的推理不正确[答案] D[解析] n =1的验证及归纳假设都正确,但从n =k 到n =k +1的推理中没有使用归纳假设,而通过不等式的放缩法直接证明,不符合数学归纳法的证题要求.故应选D.二、填空题11.用数学归纳法证明“2n +1≥n 2+n +2(n ∈N *)”时,第一步的验证为________.[答案] 当n =1时,左边=4,右边=4,左≥右,不等式成立[解析] 当n =1时,左≥右,不等式成立,∵n ∈N *,∴第一步的验证为n =1的情形.12.已知数列11×2,12×3,13×4,…,1n (n +1),通过计算得S 1=12,S 2=23,S 3=34,由此可猜测S n =________.[答案] n n +1 [解析] 解法1:通过计算易得答案.解法2:S n =11×2+12×3+13×4+…+1n (n +1)=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1 =1-1n +1=n n +1. 13.对任意n ∈N *,34n +2+a 2n+1都能被14整除,则最小的自然数a =________.[答案] 5[解析] 当n =1时,36+a 3能被14整除的数为a =3或5,当a =3时且n =3时,310+35不能被14整除,故a =5.14.用数学归纳法证明命题:1×4+2×7+3×10+…+n (3n +1)=n (n +1)2.(1)当n 0=________时,左边=____________,右边=______________________;当n =k 时,等式左边共有________________项,第(k -1)项是__________________.(2)假设n =k 时命题成立,即_____________________________________成立.(3)当n =k +1时,命题的形式是______________________________________;此时,左边增加的项为______________________.[答案] (1)1;1×(3×1+1);1×(1+1)2;k ;(k -1)[3(k -1)+1](2)1×4+2×7+3×10+…+k (3k +1)=k (k +1)2(3)1×4+2×7+…+(k +1)[3(k +1)+1]=(k +1)[(k +1)+1]2;(k +1)[3(k +1)+1]三、解答题15.求证:12-22+32-42+…+(2n -1)2-(2n )2=-n (2n +1)(n ∈N *).[证明] ①n =1时,左边=12-22=-3,右边=-3,等式成立.②假设n =k 时,等式成立,即12-22+32-42+…+(2k -1)2-(2k )2=-k (2k +1)2. 当n =k +1时,12-22+32-42+…+(2k -1)2-(2k )2+(2k +1)2-(2k +2)2=-k (2k +1)+(2k +1)2-(2k +2)2=-k (2k +1)-(4k +3)=-(2k 2+5k +3)=-(k +1)[2(k +1)+1],所以n =k +1时,等式也成立.由①②得,等式对任何n ∈N *都成立.16.求证:12+13+14+…+12n -1>n -22(n ≥2). [证明] ①当n =2时,左=12>0=右, ∴不等式成立.②假设当n =k (k ≥2,k ∈N *)时,不等式成立.即12+13+…+12k -1>k -22成立. 那么n =k +1时,12+13+…+12k -1 +12k -1+1+…+12k -1+2k -1>k -22+12k -1+1+…+12k >k -22+12k +12k +…+12k =k -22+2k -12k =(k +1)-22, ∴当n =k +1时,不等式成立.据①②可知,不等式对一切n ∈N *且n ≥2时成立.17.在平面内有n 条直线,其中每两条直线相交于一点,并且每三条直线都不相交于同一点.求证:这n 条直线将它们所在的平面分成n 2+n +22个区域.[证明] (1)n =2时,两条直线相交把平面分成4个区域,命题成立.(2)假设当n =k (k ≥2)时,k 条直线将平面分成k 2+k +22块不同的区域,命题成立. 当n =k +1时,设其中的一条直线为l ,其余k 条直线将平面分成k 2+k +22块区域,直线l 与其余k 条直线相交,得到k 个不同的交点,这k 个点将l 分成k +1段,每段都将它所在的区域分成两部分,故新增区域k +1块.从而k +1条直线将平面分成k 2+k +22+k +1=(k +1)2+(k +1)+22块区域. 所以n =k +1时命题也成立.由(1)(2)可知,原命题成立.18.(2010·衡水高二检测)试比较2n +2与n 2的大小(n ∈N *),并用数学归纳法证明你的结论.[分析] 由题目可获取以下主要信息:①此题选用特殊值来找到2n +2与n 2的大小关系;②利用数学归纳法证明猜想的结论.解答本题的关键是先利用特殊值猜想.[解析] 当n =1时,21+2=4>n 2=1,当n =2时,22+2=6>n 2=4,当n =3时,23+2=10>n 2=9,当n =4时,24+2=18>n 2=16,由此可以猜想,2n +2>n 2(n ∈N *)成立下面用数学归纳法证明:(1)当n =1时,左边=21+2=4,右边=1,所以左边>右边,所以原不等式成立.当n =2时,左边=22+2=6,右边=22=4,所以左边>右边;当n=3时,左边=23+2=10,右边=32=9,所以左边>右边.(2)假设n=k时(k≥3且k∈N*)时,不等式成立,即2k+2>k2.那么n=k+1时,2k+1+2=2·2k+2=2(2k+2)-2>2·k2-2.又因:2k2-2-(k+1)2=k2-2k-3=(k-3)(k+1)≥0,即2k2-2≥(k+1)2,故2k+1+2>(k+1)2成立.根据(1)和(2),原不等式对于任何n∈N*都成立.。

数学归纳法经典例题及答案

数学归纳法经典例题及答案

数学归纳法(2016.4.21)一、用数学归纳法证明与正整数有关命题的步骤是:(1)证明当n 取第一个值0n (如01n =或2等)时结论正确;(2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),……注意:数学归纳法使用要点: 两步骤,一结论。

二、题型归纳:题型1.证明代数恒等式例1.用数学归纳法证明:()()1212121751531311+=+-++⨯+⨯+⨯n n n n 证明:①n =1时,左边31311=⨯=,右边31121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即:()()1212121751531311+=+-++⨯+⨯+⨯k k k k . 当n =k +1时.()()()()3212112121751531311++++-++⨯+⨯+⨯k k k k ()()3212112++++=k k k k ()()()()()()321211232121322++++=++++=k k k k k k k k ()1121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立,由①、②可知,对一切自然数n 等式成立.题型2.证明不等式例2.证明不等式n n 2131211<++++ (n ∈N).证明:①当n =1时,左边=1,右边=2.左边<右边,不等式成立.②假设n =k 时,不等式成立,即k k 2131211<++++.那么当n =k +1时, 11131211++++++k k1112112+++=++<k k k k k ()()12112111+=++=++++<k k k k k k这就是说,当n =k +1时,不等式成立.由①、②可知,原不等式对任意自然数n 都成立.说明:这里要注意,当n =k +1时,要证的目标是1211131211+<++++++k k k ,当代入归纳假设后,就是要证明: 12112+<++k k k .认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标.题型3.证明数列问题例3 (x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n (n ≥2,n ∈N *).(1)当n =5时,求a 0+a 1+a 2+a 3+a 4+a 5的值.(2)设b n =a 22n -3,T n =b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时,T n =n (n +1)(n -1)3. 解: (1)当n =5时,原等式变为(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243.(2)因为(x +1)n =[2+(x -1)]n ,所以a 2=C n 2·2n -2b n =a 22n -3=2C n 2=n (n -1)(n ≥2) ①当n =2时.左边=T 2=b 2=2,右边=2(2+1)(2-1)3=2,左边=右边,等式成立. ②假设当n =k (k ≥2,k ∈N *)时,等式成立,即T k =k (k +1)(k -1)3成立 那么,当n =k +1时,左边=T k +b k +1=k (k +1)(k -1)3+(k +1)[(k +1)-1]=k (k +1)(k -1)3+k (k +1) =k (k +1)⎝⎛⎭⎫k -13+1=k (k +1)(k +2)3 =(k +1)[(k +1)+1][(k +1)-1]3=右边. 故当n =k +1时,等式成立.综上①②,当n ≥2时,T n =n (n +1)(n -1)3.。

高三数学数学归纳法练习题及答案

高三数学数学归纳法练习题及答案

高三数学数学归纳法练习题及答案数学归纳法是高中数学中非常重要的一种证明方法,它在数学推理和证明中具有广泛的应用。

通过运用归纳法,我们可以推出一般性的结论,从而能够解决更加复杂的数学问题。

在高三数学的学习中,熟练掌握数学归纳法的使用对于解题至关重要。

下面将为大家提供一些高三数学数学归纳法练习题及答案,希望能帮助大家更好地掌握该方法。

练习题一:证明:对于任意正整数n,都有1 + 2 + 3 + ... + n = n(n + 1)/2答案一:首先,我们需要明确归纳假设的内容。

假设当n=k时,等式成立,即1 + 2 + 3 + ... + k = k(k + 1)/2。

然后,我们需要证明当n=k+1时,等式也成立。

即1 + 2 + 3 + ... + (k+1) = (k+1)(k + 2)/2。

根据归纳假设,1 + 2 + 3 + ... + k = k(k + 1)/2。

我们需要证明:1 + 2 + 3 + ... + k + (k+1) = (k+1)(k + 2)/2。

将左边的式子进行展开得到: [1 + 2 + 3 + ... + k] + (k+1)。

由归纳假设,我们可以将其中的[1 + 2 + 3 + ... + k]替换成k(k + 1)/2,得到: k(k + 1)/2 + (k+1)。

化简该式子: k(k + 1) + 2(k+1)。

再进一步化简: (k+1)(k + 2) / 2。

可以看出,我们得到了(k+1)(k + 2)/2这个形式,就证明了当n=k+1时,等式也成立。

因此,根据数学归纳法原理,对于任意正整数n,都有1 + 2 + 3 + ... + n = n(n + 1)/2。

练习题二:证明:对于任意正整数n,2^n > n^2。

答案二:同样使用数学归纳法进行证明。

首先,当n=1时,2^1 = 2,1^2 = 1,2 > 1,等式成立。

假设当n=k时,2^k > k^2 成立。

数学归纳法经典例题及参考答案

数学归纳法经典例题及参考答案

由①、②可知,对一切自然数 n 等式成立. 题型 2.证明不等式
例 2.证明不等式1 1 1 1 2 n (n∈N).
23
n
证明:①当 n=1 时,左边=1,右边=2. 左边<右边,不等式成立.
②假设 n=k 时,不等式成立,即1 1 1 1 2 k .
认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标.
题型 3.证明数列问题 例 3(x+1)n=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+…+an(x-1)n(n≥2,
n∈N*). (1)当 n=5 时,求 a0+a1+a2+a3+a4+a5 的值. (2)设 bn=,Tn=b2+b3+b4+…+bn.试用数学归纳法证明:当 n≥2 时,Tn
=. 解: (1)当 n=5 时, 原等式变为(x+1)5=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+a4(x-1)4+a5(x-
1)5 令 x=2 得 a0+a1+a2+a3+a4+a5=35=243. (2)因为(x+1)n=[2+(x-1)]n,所以 a2=Cn2·2n-2 bn==2Cn2=n(n-1)(n≥2) ①当 n=2 时.左边=T2=b2=2, 右边==2,左边=右边,等式成立. ②假设当 n=k(k≥2,k∈N*)时,等式成立, 即 Tk=成立 那么,当 n=k+1 时, 左边=Tk+bk+1=+(k+1)[(k+1)-1]=+k(k+1) =k(k+1)= ==右边. 故当 n=k+1 时,等式成立. 综上①②,当 n≥2 时,Tn=.
例 1.用数学归纳法证明:
证明:①n=1 时,左边 1 1 ,右边 1 1 ,左边=右边,等式成立.

数学归纳法练习题

数学归纳法练习题
n n
① n 4 时,
显然成立;
k
② 设 n k 时,结论成立, 即 3 ( k 1)!
则 n k 1 时 (∵ k 4, 3 k 2 )
3k 1 3k 3 (k 1)! 3 (k 1)! (k 2) (k 2)!
即 3
k 1
a2 2 1 ,
a3 3 2
an n n 1
① n 1 显然正确. ② 设 n k 正确即
an k k 1

n k 1 时
1 1 1 ak 1 S k 1 S k [(ak 1 ) ( k k 1 )] 2 ak 1 k k 1
n
*
存在,求出 m ;若不存在,请说明理由. 12. 正数数列 an 中, S n
*
1 1 (an ) .⑴ 求 a1、a2、a3 ;⑵ 猜想 an 的表达式并证明. 2 an
13. 设 n N ,试比较 3 和( n 1)! 的大小.
n
2
3
【答案】 一、选择题 1. C 2. D 二、填空题 4.
1
数学归纳法练习题
一、选择题 1. 用数学归纳法证明 1 a a a
2 n 1

1 a n 1 (n N * , a 1) ,在验证 n 1 成立 1 a
时,左边所得的项为( A. 1
) C. 1 a a
2
B. 1+ a
D. 1 a a a
2
3
2. 用数学归纳法证明 1
1 1 1 1 1 1 1 1 2 3 4 2n 1 2n n 1 n 2 2n

数学归纳法典型例题

数学归纳法典型例题

课前探究学习
课堂讲练互动
活页规范训练
题型四 “归纳、猜想、证明”问题
【例4】 (12分)在数列{an},{bn}中,a1=2,b1=4,且an, bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n∈N+). 求a2,a3,a4及b2,b3,b4,由此猜测{an},{bn}的通项公 式,并证明你的结论. 审题指导 归纳——猜想——证明是高考重点考查的内容之一, 此类问题可分为归纳性问题和存在性问题,本例中归纳性问 题需要从特殊情况入手,通过观察、分析、归纳、猜想,探 索出一般规律.
课前探究学习
课堂讲练互动
活页规范训练
【解题流程】 由条件得an,bn,an+1,bn+1之间的关系 ―→ 代入a1=2,b1=4,求出a2,a3,a4,b2,b3,b4的值 ―→ 归纳猜想an,bn的通项公式 ―→ 用数学归纳法证明所得结论 [规范解答] 由条件得 2bn=an+an+1, a2n+1=bnbn+1. 由此可以得 a2=6,b2=9,a3=12,b3=16,a4=20,b4=25. 猜测 an=n(n+1),bn=(n+1)2. 用数学归纳法证明: ①当 n=1 时,由上可得结论成立.
课前探究学习
课堂讲练互动
活页规范训练
=k+1 1+k+1 2+…+31k+3k+1 1+3k+1 2+3k+1 3-k+1 1 >56+3k+1 1+3k+1 2+3k+1 3-k+1 1 >56+3×3k+1 3-k+1 1=56. 所以当 n=k+1 时,不等式也成立. 由(1),(2)可知,原不等式对一切 n≥2,n∈N+都成立.
活页规范训练
【训练4】 设数列{an}满足an+1=an2-nan+1,n=1,2,3,… (1)当a1=2时,求a2,a3,a4,并由此猜想出an的一个通项 公式;

(完整版)数学归纳法经典例题及答案

(完整版)数学归纳法经典例题及答案

数学归纳法(2016.4.21)一、用数学归纳法证明与正整数有关命题的步骤是:(1)证明当 取第一个值 (如或2等)时结论正确;n 0n 01n =(2)假设当 时结论正确,证明时结论也正确. 0(N ,)n k k k n *=∈≥1n k =+综合(1)、(2),……注意:数学归纳法使用要点: 两步骤,一结论。

二、题型归纳:题型1.证明代数恒等式例1.用数学归纳法证明:()()1212121751531311+=+-++⨯+⨯+⨯n n n n 证明:①n =1时,左边,右边,左边=右边,等式成立.31311=⨯=31121=+=②假设n =k 时,等式成立,即:.()()1212121751531311+=+-++⨯+⨯+⨯k k k k 当n =k +1时.()()()()3212112121751531311++++-++⨯+⨯+⨯k k k k ()()3212112++++=k k k k ()()()()()()321211232121322++++=++++=k k k k k k k k ()1121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立,由①、②可知,对一切自然数n 等式成立.题型2.证明不等式例2.证明不等式 (n ∈N).n n 2131211<++++ 证明:①当n =1时,左边=1,右边=2.左边<右边,不等式成立.②假设n =k 时,不等式成立,即.k k 2131211<++++那么当n =k +1时,11131211++++++k k 1112112+++=++<k k k k k ()()12112111+=++=++++<k k k k k k 这就是说,当n =k +1时,不等式成立.由①、②可知,原不等式对任意自然数n 都成立.说明:这里要注意,当n =k +1时,要证的目标是,当代入归纳假设后,就是要证明:1211131211+<++++++k k k .12112+<++k k k 认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标.题型3.证明数列问题例3 (x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n (n ≥2,n ∈N *).(1)当n =5时,求a 0+a 1+a 2+a 3+a 4+a 5的值.(2)设b n =,T n =b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时,T n =a 22n -3.n (n +1)(n -1)3解: (1)当n =5时,原等式变为(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243.(2)因为(x +1)n =[2+(x -1)]n ,所以a 2=C n 2·2n -2b n ==2C n 2=n (n -1)(n ≥2)a 22n -3①当n =2时.左边=T 2=b 2=2,右边==2,左边=右边,等式成立.2(2+1)(2-1)3②假设当n =k (k ≥2,k ∈N *)时,等式成立,即T k =成立k (k +1)(k -1)3那么,当n =k +1时,左边=T k +b k +1=+(k +1)[(k +1)-1]=+k (k +1)k (k +1)(k -1)3k (k +1)(k -1)3=k (k +1)=(k -13+1)k (k +1)(k +2)3==右边.(k +1)[(k +1)+1][(k +1)-1]3故当n =k +1时,等式成立.综上①②,当n ≥2时,T n =.n (n +1)(n -1)3。

数学归纳法

数学归纳法

数学归纳法一、选择题(每小题5分,共20分) 1.对于不等式n 2+n ≤n +1(n ∈N *),某学生的证明过程如下: (1)当n =1时,12+1 ≤1+1,不等式成立.(2)假设n =k(k ∈N *)时,不等式成立,即k 2+k <k +1,则n =k +1时,(k +1)2+(k +1) =k 2+3k +2 <(k 2+3k +2)+(k +2) =(k +2)2 =(k +1)+1,所以当n =k +1时,不等式成立,上述证法( ) A .过程全都正确 B .n =1验证不正确 C .归纳假设不正确D .从n =k 到n =k +1的推理不正确【解析】选D.n =1的验证及归纳假设都正确,但从n =k 到n =k +1的推理中没有使用归纳假设,而通过不等式的放缩法直接证明,不符合数学归纳法的证题要求.2.用数学归纳法证明等式1+a +a 2+…+a n -1=1-a n1-a ⎝⎛⎭⎫a≠1,n ∈N * ,在验证n =1成立时,左边需计算的项是( ) A .1B .1+aC .1+a +a 2D .1+a +a 2+a 3【解析】选A 当n =1时,等式左边=1.3.凸n 边形有f(n)条对角线,则凸n +1边形对角线的条数f(n +1)为( )A.f(n)+n+1 B.f(n)+nC.f(n)+n-1 D.f(n)+n-2【解析】选C.增加一个顶点,就增加n+1-3条对角线,另外原来的一边也变成了对角线,故f(n+1)=f(n)+1+n+1-3=f(n)+n-1.4.设S k=1k+1+1k+2+1k+3+…+12k,则S k+1为()A.S k+12k+2B.S k+12k+1+12k+2C.S k+12k+1-12k+2D.S k+12k+2-12k+1【解析】选C.因式子右边各分数的分母是连续正整数,则由S k=1k+1+1 k+2+…+12k,①得S k+1=1k+2+1k+3+…+12k+12k+1+12(k+1).②由②-①,得S k+1-S k=12k+1+12(k+1)-1k+1=1 2k+1-12(k+1).故S k+1=S k+12k+1-12(k+1).二、填空题(每小题5分,共10分)5.用数学归纳法证明12+22+…+(n-1)2+n2+(n-1)2+…+22+12=n(2n2+1)3(n∈N*)时,由n=k的假设到证明n=k+1时,等式左边应增加的式子是__________________.【解析】根据等式左边的特点,各数是先递增再递减,由于n=k,左边=12+22+…+(k-1)2+k2+(k-1)2+…+22+12,n=k+1时,左边=12+22+…+(k-1)2+k 2+(k +1)2+k 2+(k -1)2+…+22+12,比较两式,可知等式左边应增加的式子是(k +1)2+k 2. 答案:(k +1)2+k 26.设f(x)=2xx +2 ,x 1=1,x n =f(x n -1)(n≥2,n ∈N *).则x 2=________;数列{x n }的通项公式为________,【解析】(1)x 2=f(x 1)=23 ,x 3=f(x 2)=2×2323+2 =12 =24 ,x 4=f(x 3)=2×1212+2 =25 .(2)根据计算结果,可以归纳出x n =2n +1.证明:①当n =1时,x 1=21+1 =1,与已知相符,归纳出的公式成立.②假设当n =k(k ∈N *)时,公式成立,即x k =2k +1 ,那么,x k +1=2x k x k +2 =2×2k +12k +1+2 =42k +4=2(k +1)+1 ,所以当n =k +1时,公式也成立. 由①②知,当n ∈N *时,x n =2n +1.答案:23 x n =2n +1三、解答题(每小题10分,共20分)7.用数学归纳法证明1+n 2 ≤1+12 +13 +…+12n ≤12 +n(n ∈N *).【证明】(1)当n =1时,左式=1+12 ,右式=12 +1, 所以32 ≤1+12 ≤32 ,命题成立. (2)假设当n =k(k ∈N *)时,命题成立, 即1+k 2 ≤1+12 +13 +…+12k ≤12 +k ,则当n =k +1时,1+12 +13 +…+12k +12k +1 +12k +2 +…+12k +2k>1+k2 +2k·12k+1=1+k +12 . 又1+12 +13 +…+12k +12k +1 +12k +2 +…+12k +2k <12 +k +2k·12k =12 +(k +1),即当n =k +1时,命题成立.由(1)和(2)可知,命题对所有的n ∈N *都成立.8.在数列{a n },{b n }中,a 1=2,b 1=4,且a n ,b n ,a n +1成等差数列,b n ,a n +1,b n +1成等比数列(n ∈N *),求a 2,a 3,a 4及b 2,b 3,b 4,由此猜测数列{a n },{b n }的通项公式,证明你的结论.【解析】由题意得2b n =a n +a n +1,a 2n +1 =b n b n +1,由此可得a 2=6,b 2=9,a 3=12,b 3=16,a 4=20,b 4=25.猜测a n =n(n +1),b n =(n +1)2,n ∈N *. 用数学归纳法证明如下:①当n =1时,由a 1=2,b 1=4可得结论成立. ②假设当n =k(k≥2且k ∈N *)时,结论成立,即a k =k(k +1),b k =(k +1)2,那么当n =k +1时,a k +1=2b k -a k =2(k +1)2-k(k +1)=(k +1)(k +2)=(k +1)[(k +1)+1],b k +1=a 2k +1 b k =(k +1)2(k +2)2(k +1)2 =(k +2)2=[(k +1)+1]2.所以当n =k +1时,结论也成立.由①②可知,a n =n(n +1),b n =(n +1)2对一切n ∈N *都成立. 【拓展提升】应用数学归纳法证题时应注意(1)验证是基础:找准起点,奠基要稳,有些问题中验证的初始值不一定为1. (2)递推是关键:正确分析由n =k 到n =k +1时式子项数的变化是应用数学归纳法成功证明问题的保障.(3)利用假设是核心:在第二步证明中一定要利用归纳假设,这是数学归纳法证明的核心环节,否则这样的证明就不是数学归纳法证明.(30分钟 60分)一、选择题(每小题5分,共20分)1.用数学归纳法证明“凸n(n≥3,n ∈N *)边形的内角和公式”时,由n =k 到n =k +1内角和增加了( )A .π2B .πC .3π2 D .2π【解析】选B.如图,由n =k 到n =k +1时,凸n 边形的内角和增加的是∠1+∠2+∠3=π.2.用数学归纳法证明(n +1)(n +2)·…·(n +n)=2n ·1·3·…·(2n -1),从n =k 到n =k +1,左边需要增乘的代数式为( )A .2k +1B .2(2k +1)C .2k +1k +1D .2k +3k +1【解析】选B.当n =k 时,等式左边为(k +1)(k +2)·…·(k +k),而当n =k +1时,等式左边为(k +1+1)(k +1+2)·…·(k +1+k +1)=(k +2)·(k +3)·…·(k +k +2),前边少了一项(k +1),后边多了两项(k +k +1)(k +k +2),故增乘的代数式为(k +k +1)(k +k +2)k +1=2(2k +1).3.当n =1,2,3,4,5,6时,比较2n 和n 2的大小并猜想得到的结论为( ) A .n≥1时,2n >n 2 B .n≥3时,2n >n 2 C .n≥4时,2n >n 2 D .n≥5时,2n >n 2【解析】选D.当n =1时,21>12,即2n >n 2;当n =2时,22=22,即2n =n 2;当n =3时,23<32,即2n <n 2;当n =4时,24=42,即2n =n 2;当n =5时,25>52,即2n >n 2;当n =6时,26>62,即2n >n 2;…猜想当n≥5时,2n >n 2;下面我们用数学归纳法证明猜想成立,(1)当n =5时,由以上可知猜想成立, (2)设n =k(k≥5)时,命题成立,即2k >k 2,当n =k +1时,2k +1=2·2k >2k 2=k 2+k 2>k 2+(2k +1)=(k +1)2,即n =k +1时,命题成立,由(1)和(2)可得n≥5时,2n >n 2;故当n =2或4时,2n =n 2;n =3时,2n <n 2;n =1及n 取大于4的正整数时,都有2n >n 2.4.已知f(n)=(2n+7)·3n+9,存在自然数m,使得对任意n∈N*,都能使m整除f(n),则最大的m的值为()A.30 B.26 C.36 D.6【解析】选C.因为f(1)=36,f(2)=108=3×36,f(3)=360=10×36,所以f(1),f(2),f(3)能被36整除,猜想f(n)能被36整除.证明:当n=1,2时,由上得证,设当n=k(k≥2)时,f(k)=(2k+7)·3k+9能被36整除,则当n=k+1时,f(k+1)-f(k)=(2k+9)·3k+1-(2k+7)·3k=(6k+27)·3k -(2k+7)·3k=(4k+20)·3k=36(k+5)·3k-2(k≥2)⇒f(k+1)能被36整除.因为f(1)不能被大于36的数整除,所以所求的最大的m的值等于36.二、填空题(每小题5分,共20分)5.用数学归纳法证明“当n为正奇数时,x n+y n能被x+y整除”,当第二步假设n=2k-1(k∈N*)命题为真时,进而需证n=__________时,命题为真.【解析】因为n为正奇数,所以奇数2k-1之后的奇数是2k+1.答案:2k+16.观察下列等式:1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49……按照以上式子的规律:则第5个等式为________,猜想第n⎝⎛⎭⎫n∈N*个等式________;【解析】(1)第5个等式为5+6+7+8+9+10+11+12+13=92.第n个等式为n +(n+1)+(n+2)+…+(3n-2)=(2n-1)2,n∈N*.证明:①当n=1时,等式左边=1,等式右边=(2-1)2=1,所以等式成立.②假设n=k时,命题成立,即k+(k+1)+(k+2)+…+(3k-2)=(2k-1)2,则当n=k+1时,(k+1)+[(k+1)+1]+[(k+1)+2]+…+[3(k+1)-2]=(k+1)+(k+2)+(k+3)+…+(3k+1)=k+(k+1)+(k+2)+…+(3k-2)+(3k-1)+3k+(3k+1)-k=(2k-1)2+8k=4k2-4k+1+8k=(2k+1)2=[2(k+1)-1]2,即n=k+1时等式成立.根据①和②,可知对任意n∈N*等式都成立.答案:5+6+7+8+9+10+11+12+13=92n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2,n∈N*7.在用数学归纳法证明“34n+2+52n+1(n∈N*)能被14整除”的过程中,当n=k+1时,式子34(k+1)+2+52(k+1)+1应变形为________.答案:(34k+2+52k+1)34+52k+1(52-34)8.用数学归纳法证明“n3+5n能被6整除”的过程中,当n=k+1时,式子(k+1)3+5(k+1)应变形为__________.【解析】采取凑配法,凑出归纳假设k3+5k来,(k+1)3+5(k+1)=k3+3k2+3k +1+5k+5=(k3+5k)+3k(k+1)+6.答案:(k3+5k)+3k(k+1)+6三、解答题(每小题10分,共20分)9.求证:a n+1+(a+1)2n-1能被a2+a+1整除,n∈N*.【证明】(1)当n=1时,a1+1+(a+1)2×1-1=a2+a+1,命题显然成立.(2)假设当n=k(k∈N*,k≥1)时,a k+1+(a+1)2k-1能被a2+a+1整除,则当n=k +1时,a k+2+(a+1)2k+1=a·a k+1+(a+1)2·(a+1)2k-1=a[a k+1+(a+1)2k-1]+(a+1)2(a+1)2k-1-a(a+1)2k-1=a[a k+1+(a+1)2k-1]+(a2+a+1)(a+1)2k-1.由归纳假设,上式中的两项均能被a2+a+1整除,故n=k+1时命题成立.由(1)(2)知,对任意n∈N*,命题成立.10.数列{}a n满足S n=2n-a n(n∈N*).(1)计算a1,a2,a3,a4,并由此猜想通项公式a n;(2)用数学归纳法证明(1)中的猜想.【解析】(1)a1=1,a2=32,a3=74,a4=158,由此猜想a n=2n-12n-1;(2)当n=1时,a1=1,结论成立;假设n=k(k≥1,且k∈N+),结论成立,即a k=2k-12k-1,当n=k+1(k≥1,且k∈N+)时,a k+1=S k+1-S k=2⎝⎛⎭⎫k+1-a k+1-2k+a k=2+a k-a k+1,即2a k+1=2+a k,所以a k+1=2+a k2=2+2k-12k-12=2k+1-12k,这表明当n=k+1时,结论成立,综上所述,a n =2n -12n -1 ⎝⎛⎭⎫n ∈N + .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1# 数学归纳法一、选择题(每小题5分,共25分)1.(2011·怀化模拟)用数学归纳法证明命题“当n 是正奇数时,x n +y n 能被x +y 整除”,在第二步时,正确的证法是 ( )A .假设n =k (k ∈N +),证明n =k +1命题成立B .假设n =k (k 是正奇数),证明n =k +1命题成立C .假设n =2k +1(k ∈N +),证明n =k +1命题成立D .假设n =k (k 是正奇数),证明n =k +2命题成立2.(2011·鹤壁模拟)用数学归纳法证明“1+12+13+…+12n -1<n (n ∈N *,n >1)”时,由n = k (k >1)不等式成立,推证n =k +1时,左边应增加的项数是 ( )A .2k -1 B .2k -1C .2kD .2k +13.(2011·巢湖联考)对于不等式n 2+n <n +1(n ∈N *),某同学用数学归纳法的证明过程如下:(1)当n =1时,12+1<1+1,不等式成立. (2)假设当n =k (k ∈N *)时,不等式成立,即k 2+k <k +1,则当n =k +1时,(k +1)2+(k +1)=k 2+3k +2<(k 2+3k +2)+(k +2)=(k +2)2=(k +1)+1,∴当n =k +1时,不等式成立,则上述证法 ( )A .过程全部正确B .n =1验得不正确C .归纳假设不正确D .从n =k 到n =k +1的推理不正确4.用数学归纳法证明“n 2+(n +1)3+(n +2)3(n ∈N *)能被9整除”,要利用归纳假设证n =k+1时的情况,只需展开 ( ) A .(k +3)3 B .(k +2)3C .(k +1)3D .(k +1)3+(k +2)35.用数学归纳法证明不等式1n +1+1n +2+…+12n <1314(n ≥2,n ∈N *)的过程中,由n =k 递推 到n =k +1时不等式左边 ( )A .增加了一项12(k +1)B .增加了两项12k +1、12k +2C .增加了B 中两项但减少了一项1k +1D .以上各种情况均不对二、填空题(每小题4分,共16分) 6.(2011·淮南调研)若f (n )=12+22+32+…+(2n )2,则f (k +1)与f (k )的递推关系式是_____. 7.观察不等式:1>12,1+12+13>1,1+12+13+…+17>32,1+12+13+…+115>2,1+12+13+…+131>52,…,由此猜测第n 个不等式为________(n ∈N *). 8.(2011·东莞调研)已知整数对的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4), (2,3),(3,2),(4,1),(1,5),(2,4),…,则第60个数对是________.9.如下图,在杨辉三角形中,从上往下数共有n(n∈N*)行,在这些数中非1的数字之和是________________.11 112 1133 11464 1……三、解答题(共3小题,共34分)10.(本小题满分10分)试证:当n∈N*时,f(n)=32n+2-8n-9能被64整除.11.(本小题满分12分)已知数列{a n}的各项都是正数,且满足:a0=1,a n+1=12a n·(4-a n)(n∈N).12.(本小题满分12分)(2011·开封调研)在数列{a n},{b n}中,a1=2,b1=4,且a n,b n,a n+1成等差数列,b n,a n+1,b n+1成等比列(n∈N*),求a2,a3,a4与b2,b3,b4的值,由此猜测{a n},{b n}的通项公式,并证明你的结论.1#答案:1.解析:A 、B 、C 中,k +1不一定表示奇数,只有D 中k 为奇数,k +2为奇数. 答案:D2.解析:增加的项数为(2k +1-1)-(2k -1)=2k +1-2k =2k .答案:C3. 解析:在n =k +1时,没有应用n =k 时的假设,不是数学归纳法.答案:D4. 解析:假设当n =k 时,原式能被9整除,即k 2+(k +1)3+(k +2)3能被9整除. 当n =k +1时,(k +1)3+(k +2)3+(k +3)3为了能用上面的归纳假设,只需将(k +3)3展开,让其出现k 3即可.答案:A5. 解析:∵n =k 时,左边=1k +1+1k +2+…+12k ,n =k +1时,左边=1k +2+1k +3+ (12)+12k +1+12k +2, ∴增加了两项12k +1、12k +2,少了一项1k +1. 答案:C6. 解析:∵f (k )=12+22+…+(2k )2,∴f (k +1)=12+22+…+(2k )2+(2k +1)2+(2k +2)2;∴f (k +1)=f (k )+(2k +1)2+(2k +2)2.答案:f (k +1)=f (k )+(2k +1)2+(2k +2)27. 解析:3=22-1,7=23-1,15=24-1,可猜测:1+12+13+…+12n -1>n 2. 答案:1+12+13+…+12n -1>n 28. 解析:本题规律:2=1+1;3=1+2=2+1;4=1+3=2+2=3+1;5=1+4=2+3=3+2=4+1;…;一个整数n 所拥有数对为(n -1)对.设1+2+3+…+(n -1)=60,∴(n -1)n 2=60, ∴n =11时还多5对数,且这5对数和都为12,12=1+11=2+10=3+9=4+8=5+7,∴第60个数对为(5,7).答案:(5,7)9. 解析:所有数字之和S n =20+2+22+…+2n -1=2n -1,除掉1的和2n -1-(2n -1)=2n-2n .答案:2n -2n10. 证明:证法一:(1)当n =1时,f (1)=64,命题显然成立.(2)假设当n =k (k ∈N *,k ≥1)时,f (k )=32k +2-8k -9能被64整除.当n =k +1时,由于32(k+1)+2-8(k +1)-9 =9(32k +2-8k -9)+9·8k +9·9-8(k +1)-9=9(32k +2-8k -9)+64(k +1),即f (k +1)=9f (k )+64(k +1),∴n =k +1时命题也成立.根据(1)、(2)可知,对于任意n ∈N *,命题都成立.证法二:(1)当n =1时f (1)=64命题显然成立.(2)假设当n =k (k ∈N *,k ≥1)时,f (k )=32k +2-8k -9能被64整除.由归纳假设,设32k +2-8k -9=64m (m 为大于1的自然数),将32k +2=64m +8k +9代入到f (k +1)中得f (k +1)=9(64m +8k +9)-8(k +1)-9=64(9m +k +1),∴n =k +1时命题也成立. 根据(1)(2)知,对于任意n ∈N *,命题都成立.11. 证明:a n <a n +1<2(n ∈N ).证明:证法一:用数学归纳法证明:(1)当n =0时,a 0=1,a 1=12a 0(4-a 0)=32,所以a 0<a 1<2,命题正确. (2)假设n =k -1(k ∈N *)时命题成立,即a k -1<a k <2.则当n =k 时,a k -a k +1=12a k -1(4-a k -1)-12a k (4-a k )=2(a k -1-a k )-12(a k -1-a k )(a k -1+a k ) =12(a k -1-a k )(4-a k -1-a k ). 而a k -1-a k <0,4-a k -1-a k >0,所以a k -a k +1<0.又a k +1=12a k (4-a k )=12[4-(a k -2)2]<2.所以n =k 时命题成立. 由(1)(2)可知,对一切n ∈N 时有a n <a n +1<2.证法二:用数学归纳法证明:(1)当n =0时,a 0=1,a 1=12a 0(4-a 0)=32,所以0<a 0<a 1<2;(2)假设n =k -1(k ∈N *)时有a k -1<a k <2成立,令f (x )=12x (4-x ),f (x )在[0,2]上单调递增, 所以由假设有:f (a k -1)<f (a k )<f (2),即12a k -1(4-a k -1)<12a k (4-a k )<12×2×(4-2), 也即当n =k 时,a k <a k +1<2成立.所以对一切n ∈N ,有a k <a k +1<2.12. 解:由条件得2b n =a n +a n +1,a 2n +1=b n b n +1. 又a 1=2,b 1=4,由此可得a 2=6,b 2=9,a 3=12,b 3=16, a 4=20,b 4=25,猜测a n =n (n +1),b n =(n +1)2. 用数学归纳法证明:①当n =1时,a 1=2,b 1=4,结论成立. ②假设当n =k (k ∈N *)时结论成立,即a k =k (k +1),b k =(k +1)2,那么当n =k +1时, a k +1=2b k -a k =2(k +1)2-k (k +1)=(k +1)[(k +1)+1],b k +1=a 2k +1b k=(k +2)2=[(k +1)+1]2, ∴当n =k +1时,结论也成立.由①②知,a n =n (n +1),b n =(n +1)2对一切正整数都成立.。

相关文档
最新文档