工频变压器设计

合集下载

高频变压器设计解读

高频变压器设计解读

高频变压器设计解读高频变压器是现在电子变压器行业关注的热点,想来很多工程师对高频变压器的设计方法应该都挺感兴趣的,今天和大家分享高频变压器设计方法的详解,希望对大家有用。

高频变压器的设计包括:线圈参数的设计,磁芯材料的选择,磁芯结构的选择,磁芯参数的设计,组装结构的选择等内容。

下面对高频变压器线圈参数的计算与选择、磁芯材料的选择、磁芯结构的选择、磁芯参数的设计和组装结构的选择进行详细介绍。

高频变压器线圈参数的计算与选择高频变压器的线圈参数包括:匝数、导线截面(直径)、导线形式、绕组排列和绝缘安排。

原绕组匝数根据外加激磁电压或者原绕组激磁电感(储存能量)来决定,匝数不能过多也不能过少。

如果匝数过多,会增加漏感和绕线工时;如果匝数过少,在外加激磁电压比较高时,有可能使匝间电压降和层间电压降增大,而必须加强绝缘[5]。

副绕组匝数由输出电压决定。

导线截面(直径)决定于绕组的电流密度。

还要注意的是导线截面(直径)的大小还与漏感有关。

高频变压器的绕组排列形式有:①如果原绕组电压高,副绕组电压低,可以采用副绕组靠近磁芯,接着绕反馈绕组,原绕组在最外层的绕组排列形式,这样有利于原绕组对磁芯的绝缘安排②如果要增加原和副绕组之间耦合,可以采用一半原绕组靠近磁芯,接着绕反馈绕组和副绕组,最外层再绕一半原绕组的绕组排列形式,这样有利于减少漏感。

另外,当原绕组为高压绕组时,匝数不能太少,否则,匝间或者层间电压相差大,会引起局部短路。

对于绝缘安排,首先要注意使用的电磁线和绝缘件的绝缘材料等级要与磁芯和绕组允许的工作温度相匹配。

等级低,满足不了耐热要求,等级过高,会增加不必要的材料成本。

其次,对在圆柱形磁路上绕线的线圈,最好采用线圈骨架,既可以保证绝缘,又可以简化绕线工艺。

另外,线圈最外层和最里层,高压和低压绕组之间都要加强绝缘。

如果一般绝缘只垫一层绝缘薄膜,加强绝缘应垫2~3层绝缘薄膜。

高频变压器磁芯材料的选择高频变压器磁芯一般使用软磁材料。

工频变压器设计步骤

工频变压器设计步骤

工频变压器设计步骤1.根据负载的实际需要,确定变压器的输出功率2P 及输出电流2I :0.91U 3P I 222==式中:2U ——次级绕组相电压有效值,要求带负载后为220伏。

NOTE :在变压器参数计算中,忽略电力电子电路的损耗,因此整机输出功率可视为变压器输出功率。

2.计算变压器的输入功率1P 及输入电流1I :ηP P 21=式中:η——变压器的效率。

当容量小于1KW 时,η在0.8~0.9之间取值,此处取η=0.8。

()111U 3P 1.2~1.1I =式中:1.1~1.2——考虑变压器励磁电流分量的经验系数。

1U ——初级绕组相电压有效值。

3.确定变压器磁芯截面积S 和选用硅钢片尺寸:变压器磁芯材料选用硅钢片,磁芯形状选用E 型。

1P K S =式中:K ——经验系数,其大小与变压器的功率有关,功率越大,K 越小,此处取 1.35K =。

根据变压器磁芯截面积S 查相关技术手册,即可确定硅钢片尺寸。

4.计算初、次级绕组的匝数1W 、2W :由电磁感应定律可知,每匝线圈上产生的感应电动势为:SfwB 4.44Φf 4.44E m m ==ω式中:f ——频率,此处为50Hz 。

m B ——磁芯磁感应强度。

m B 的大小与采用材料有关,对于一般硅钢片,取T 8.0GS 8000B m ==。

初级绕组匝数为:SfB 4.44U E U W m 111==整流变压器是Y −∆型联结方式,为了保证初、次级绕组绕组相电压均为220V ,则匝大比特电子变压器论坛 h t t p ://b b s .b i g -b i t .c o m数比应满足:13W W 21=次级绕组匝数为:12W 31W =5.计算初、次级绕组的导线截面积q 及选用导线:导线截面积:2mm jIq =式中:j ——电流密度,按长期工作制考虑,取2mm A/2.5j =。

根据导线实际截面积q 查相关技术手册,即可确定初、次级绕组的导线型号。

高频电源变压器设计原则要求和程序

高频电源变压器设计原则要求和程序

高频电源变压器设计原则要求和程序电源变压器的功能是功率传送、电压变换和绝缘隔离,作为一种主要的软磁电磁元件,在电源技术中和电力电子技术中得到广泛的应用.根据传送功率的大小,电源变压器可以分为几档:10kVA以上为大功率,10kVA~0.5kVA为中功率,0.5kVA~25VA为小功率,25VA以下为微功率.传送功率不同,电源变压器的设计也不一样,应当是不言而喻的.有人根据它的主要功能是功率传送,把英文名称“Power Transformers”译成“功率变压器”,在许多文献资料中仍然在使用.究竟是叫“电源变压器”,还是叫“功率变压器”好呢?有待于科技术语方面的权威机构来选择决定.同一个英文名称“PowerTransformer”,还可译成“电力变压器”.电力变压器主要用于电力输配系统中起功率传送、电压变换和绝缘隔离作用,原边电压为6kV以上的高压,功率最小5kVA,最大超过上万kVA.电力变压器和电源变压器,虽然工作原理都是基于电磁感应原理,但是电力变压器既强调功率传送大,又强调绝缘隔离电压高,无论在磁芯线圈,还是绝缘结构的设计上,都与功率传送小、绝缘隔离电压低的电源变压器有显著的差别,更不能将电力变压器设计的优化设计条件生搬硬套地应用到电源变压器中去.电力变压器和电源变压器的设计方法不一样,也应当是不言而喻的.高频电源变压器是工作频率超过中频(10kHz)的电源变压器,主要用于高频开关电源中作高频开关电源变压器,也有用于高频逆变电源和高频逆变焊机中作高频逆变电源变压器的.按工作频率高低,可分为几个档次:10kHz~50kHz、50kHz~100kHz、100kHz~500kHz、 500kHz~1MHz、1MHz以上.传送功率比较大的,工作频率比较低;传送功率比较小的,工作频率比较高.这样,既有工作频率的差别,又有传送功率的差别,工作频率不同档次的电源变压器设计方法不一样,也应当是不言而喻的.如上所述,作者对高频电源变压器的设计原则、要求和程序不存在错误概念,而是在2003年7月初,阅读《电源技术应用》2003年第6期特别推荐的2篇高频磁性元件设计文章后,产生了疑虑,感到有些问题值得进一步商讨,因此才动笔写本文.正如《电源技术应用》主编寄语所说的那样:“具体地分析具体的情况”,写的目的,是尝试把最难详细说明和选择的磁性元件之一的高频电源变压器的设计问题弄清楚.如有说得不对的地方,敬请几位作者和广大读者指正.2 高频电源变压器的设计原则高频电源变压器作为一种产品,自然带有商品的属性,因此高频电源变压器的设计原则和其他商品一样,是在具体使用条件下完成具体的功能中追求性能价格比最好.有时可能偏重性能和效率,有时可能偏重价格和成本.现在,轻、薄、短、小,成为高频电源的发展方向,是强调降低成本.其中成为一大难点的高频电源变压器,更需要在这方面下功夫.所以在高频电源变压器的“设计要点”一文中,只谈性能,不谈成本,不能不说是一大缺憾,如果能认真考虑一下高频电源变压器的设计原则,追求更好的性能价格比,传送不到10VA的单片开关电源高频变压器,应当设计出更轻、薄、短、小的方案来.不谈成本,市场的价值规律是无情的!许多性能好的产品,往往由于价格不能为市场接受而遭冷落和淘汰.往往一种新产品最后被成本否决.一些“节能不节钱”的产品为什么在市场上推广不开值得大家深思.产品成本,不但包括材料成本,生产成本,还包括研发成本,设计成本.因此,为了节约时间,根据以往的经验,对高频电源变压器的铁损铜损比例、漏感与激磁电感比例、原边和副边绕组损耗比例、电流密度提供一些参考数据,对窗口填充程度,绕组导线和结构推荐一些方案,有什么不好?为什么一定要按步就班地来回进行推算和仿真,才不是概念错误?作者曾在20世纪80年代中开发高频磁放大器式开关电源,以温升最低为条件,对高频电源变压器进行过优化设计.由于热阻难以确定,结果与试制样品相差甚远,不得不再次修正.现在有些公司的磁芯产品说明书中,为了缩短用户设计高频电源变压器的时间,有的列出简化的设计公式,有的用表列出磁芯在某种工作频率下的传送功率.这种既为用户着想,又推广公司产品的双赢行为,是完全符合市场规律的行为,绝不是什么需要辨析的错误概念.问题是提供的参考数据,推荐的方案是否是经验的总结?有没有普遍性?包括“辨析”一文中提出的一些说法,都需要经过实践检验,才能站得住脚.总之,千万记住:高频电源变压器是一种产品(即商品),设计原则是在具体的使用条件下完成具体的功能中追求性能价格比最好.检验设计的唯一标准是设计出的产品能否经受住市场的考验.3 高频电源变压器的设计要求以设计原则为出发点,可以对高频电源变压器提出4项设计要求:使用条件,完成功能,提高效率,降低成本.3.1 使用条件使用条件包括两方面内容:可靠性和电磁兼容性.以前只注意可靠性,现在由于环境保护意识增强,必须注意电磁兼容性.可靠性是指在具体的使用条件下,高频电源变压器能正常工作到使用寿命为止.一般使用条件对高频电源变压器影响最大的是环境温度.有些软磁材料,居里点比较低,对温度敏感.例如:锰锌软磁铁氧体,居里点只有215℃,其磁通密度,磁导率和损耗都随温度发生变化,故除正常温度25℃外,还要给出60℃, 80℃,100℃时的各种参考数据.因此,将锰锌软磁铁氧体磁芯的工作温度限制在100℃以下,也就是环境温度为40℃时,温升只允许低于60℃,相当于 A级绝缘材料温度.与锰锌软磁铁氧体磁芯相配套的电磁线和绝缘件,一般都采用E级和B级绝缘材料,采用H级绝缘的三重绝缘电磁线和聚酰胺薄膜,是不是大材小用?成本增加多少?是不是因为H级绝缘的高频电源变压器优化的设计方案,可以使体积减少1/2~1/3的缘故?如果是,请举具体实例数据.作者曾开发H 级绝缘工频50Hz,10kVA干式变压器,与B级绝缘工频50Hz,10kVA干式变压器相比,体积减小15%到20%,已经相当可观了.本来体积就比较小的高频100kHz10VA高频电源变压器,如次级绕组采用三重绝缘线,能把体积减小1/2~1/3,那一定是很宝贵的经验.请有关作者详细介绍优化设计方案,以便广大读者学习.电磁兼容性是指高频电源变压器既不产生对外界的电磁干扰,又能承受外界的电磁干扰.电磁干扰包括可闻的音频噪声和不可闻的高频噪声.高频电源变压器产生电磁干扰的主要原因之一是磁芯的磁致伸缩.磁致伸缩大的软磁材料,产生的电磁干扰大.例如,锰锌软磁铁氧体,磁致伸缩系数λS为21×10-6,是取向硅钢的7倍以上,是高磁导坡莫合金和非晶合金的20倍以上,是微晶纳米晶合金的10倍以上.因此锰锌软磁铁氧体磁芯产生的电磁干扰大.高频电源变压器产生电磁干扰的主要原因还有磁芯之间的吸力和绕组导线之间的斥力.这些力的变化频率与高频电源变压器的工作频率一致.因此,工作频率为100kHz左右的高频电源变压器,没有特殊原因是不会产生20kHz以下音频噪声的.既然提出10W以下单片开关电源的音频噪声频率,约为10kHz~20kHz,一定有其原因. 由于没有画出噪声频谱图,具体原因说不清楚,但是由高频电源变压器本身产生的可能性不大,没有必要采用玻璃珠胶合剂粘合磁芯.至于采用这种粘合工艺可将音频噪声降低5dB,请给出实例与数据以及对噪声原因的详细说明,才会令人可信.屏蔽是防止电磁干扰,增加高频电源变压器电磁兼容性的好办法.但是为了阻止高频电源变压器的电磁干扰传播,在设计磁芯结构和设计绕组结构也应当采取相应的措施,只靠加外屏蔽带并不一定是最佳方案,因为它只能阻止辐射干扰,不能阻止传导干扰.3.2 完成功能高频电源变压器完成功能有3个:功率传送,电压变换和绝缘隔离.功率传送有两种方式.第一种是变压器功率的传送方式,加在原绕组上的电压,在磁芯中产生磁通变化,使副绕组感应电压,从而使电功率从原边传送到副边.在功率传送过程中,磁芯又分为磁通单方向变化和双方向变化两种工作模式.单方向变化工作模式, 磁通密度从最大值Bm变化到剩余磁通密度Br,或者从Br变化到Bm.磁通密度变化值ΔB=Bm-Br.为了提高ΔB,希望Bm大,Br小.双方向变化工作模式磁通度从+Bm变化到-Bm,或者从-Bm变化到+Bm.磁通密度变化值ΔB=2Bm,为了提高ΔB,希望Bm大,但不要求Br小,不论是单方向变化工作模式还是双方向变化工作模式,变压器功率传送方式都不直接与磁芯磁导率有关.第二种是电感器功率传送方式,原绕组输入的电能,使磁芯激磁,变为磁能储存起来,然后通过去磁使副绕组感应电压,变成电能释放给负载.传送功率决定于电感磁芯储能,而储能又决定于原绕组的电感.电感与磁芯磁导率有关,磁导率高,电感量大,储能多,而不直接与磁通密度有关.虽然功率传送方式不同,要求的磁芯参数不一样,但是在高频电源变压器设计中,磁芯的材料和参数的选择仍然是设计的一个主要内容.在电源变压器“设计要点”一文中,很遗憾缺少这一个主要内容.只是在“交流损耗”一条中,提出BAC典型值为 0.04~0.075T.显然,文中的高频电源变压器是采用电感功率传送方式,为什么不提磁导率,而提BAC弄不清楚.经查阅,在《电源技术应用》2003年1/2期,同一主要作者写的开关电源“设计要点”一文中,列出了“磁芯的选择”,也没有提磁导率,只是提出最大磁通密度Bm为0.275T.由于没有画磁通密度变化波形,弄不清楚前文中的BAC和后文中的Bm是否一致:为什么BAC和Bm相差6.8~3.7倍?更不清楚,选的是哪一种软磁铁氧体材料?为什么选这种型号?两文中都没有一点说明,只好让读者自己去猜想了.电压变换通过原边和副边绕组匝数比来完成.不管功率传送是哪一种方式,原边和副边的电压变换比等于原绕组和副绕组匝数比,只要不改变匝数比,就不影响电压变换.但是,绕组匝数与高频电源变压器的漏感有关.漏感大小与原绕组匝数的平方成正比.有趣的是,漏感能不能规定一个数值?《电源技术应用》2003年第6期同时刊登的两篇文章有着不同的说法.“设计要点”一文中说:“对于一符合绝缘及安全标准的高频变压器,其漏感量应为次级开路时初级电感量的1% ~3%”.“辨析”一文中说:“在很多技术单上,标注着漏感=1%的磁化电感或漏感<2%的磁化电感等类似的技术要求.其实这种写法或设计标准很不专业.电源设计者应当根据电路正常工作要求,对所能接受的漏感值作一个数值限制.在制作变压器的过程中,应在不使变压器的其他参数(如匝间电容等)变差的情况下尽可能减小漏感值,而非给出漏感与磁化电感的比例关系作为技术要求”.“否则这将表明你不理解漏感知识或并不真正关心实际的漏感值”.虽然两篇文章说法不一样,但是有一点是共同的,就是尽可能减小漏感值.因为漏感值大,储存的能量也大,在电源开关过程中突然释放,会产生尖峰电压,增加开关器件承受的电压峰值,对绝缘不利,也产生附加损耗和电磁干扰.绝缘隔离通过原边和副边绕组的绝缘结构来完成.为了保证绕组之间的绝缘,必须增加两个绕组之间的距离,从而降低绕组间的耦合程度,使漏感增大.还有,原绕组一般为高压绕组,匝数不能太少,否则,匝间或者层间电压相差大,会引起局部短路.这样,匝数有下限,使漏感也有下限.总之,在高频电源变压器绝缘结构和总体结构设计中,要统筹考虑漏感和绝缘强度问题.3.3 提高效率提高效率是对电源和电子设备的普遍要求.虽然从单个高频电源变压器来看,损耗不大.例如,100VA高频电源变压器,效率为98%时,损耗只有2W,并不多.但是成十万个,成百万个高频电源变压器,总损耗可能达到上100kW,甚至上MW.还有,许多高频电源变压器一直长期运行,年总损耗相当可观,有可能达到上10GW·h.这样,提高高频电源变压器效率,可以节约电力.节约电力后,可以少建发电站.少建发电站后,可以少消耗煤和石油,可以少排放CO2, SO2,NOx,废气,废水,烟尘和灰渣,减少对环境的污染.既具有节约能源,又具有环境保护的双重社会经济效益.因此,提高效率是高频电源变压器一个主要的设计要求,一般效率要提高到95%以上,损耗要减少到5%以下.高频电源变压器损耗包括磁芯损耗(铁损)和绕组损耗(铜损).有人关心变压器的铁损和铜损的比例.这个比例是随变压器的工作频率发生变化的.如果变压器的外加电压不变,工作频率越低,绕组匝数越多,铜损越大.因此在50Hz工频下,铜损远远超过铁损.例如:50Hz,100kVAS9型三相油浸式硅钢电力变压器,铜损为铁损的5倍左右.50Hz,100kVASH11型三相油浸式非晶合金电力变压器,铜损为铁损的20倍左右.并不存在“辨析”一文中所说那样,工频变压器从热稳定热均匀角度出发,把铜损等于铁损作为经验设计规则.随着工作频率升高,绕组匝数减少,虽然由于趋表效应和邻近效应存在而使绕组损耗增加,但是总的趋势是铜损随着工作频率升高而下降.而铁损包括磁滞损耗和涡流损耗,随着工作频率升高而迅速增大.在某一段工作频率,有可能出现铜损和铁损相等的情况,超过这一段工作频率,铁损就大于铜损.造成铁损不等于铜损的原因,也并不象“辨析”一文中所说那样是由于“高频变压器采用非常细的漆包线作为绕组”.导线粗细的选择,虽然受趋表效应影响,但主要由高频电源变压器的传送功率来决定,与工作频率不存在直接关系.而且,选用非常细的漆包线作为绕组,反而会增加铜损,延缓铜损的下降趋势.说不定在设计选定的工作频率下,还有可能出现铜损等于铁损的情况.根据有的资料介绍,中小功率高频电源变压器的工作频率在100kHz左右,铁损已经大于铜损,而成为高频电源变压器损耗的主要部分.正因为铁损是高频电源变压器损耗的主要部分,因此根据铁损选择磁芯材料是高频电源变压器设计的一个主要内容.铁损也成为评价软磁芯材料的一个主要参数.铁损与磁芯的工作磁通密度工作频率有关,在介绍软磁磁芯材料铁损时,必须说明在什么工作磁通密度下和在什么工作频率下损耗.用符号表示时,也必须标明PB/f〔式中工作磁通密度B的单位是T(特斯拉),工作频率f的单位是Hz(赫芝)〕.例如,P0.5/400表示工作磁通密度为0.5T,工作频率为 400Hz时的损耗.又例如,P0.1/100k表示工作磁通密度为0.1T,工作频率为100kHz时的损耗.铁损还与工作温度有关,在介绍软磁磁芯材料铁损时,必须指明它的工作温度,特别是软磁铁氧体材料,对温度变化比较敏感,在产品说明书中都要列出25℃至100℃的铁损.软磁材料的饱和磁通密度并不完全代表使用的工作磁通密度的上限,常常是铁损限制了工作磁通密度的上限.所以,在新的电源变压器用软磁铁氧体材料分类标准中,把允许的工作磁通密度和工作频率乘积B×f,作为材料的性能因子,并说明在性能因子条件下允许的损耗值.新的分类标准根据性能因子把软磁铁氧体材料分为PW1,PW2,PW3,PW4,PW5等5类,性能因子越高的,工作频率越高,极限频率也越高.例如,PW3类软磁铁氧体材料,工作频率为 100kHz,极限频率为300kHz,性能因子B×f为10000mT×kHz,即在100mT(0.1T)和100kHz下,100℃时损耗a 级≤300kW/m(300mW/cm3),b级≤150kW/m3(150mW/cm3).日本TDK公司生产的PC44型软磁铁氧体材料达到PW3a级标准,达不到PW3b级标准.“设计要点”一文中提出高频变压器使用的铁氧体磁芯在100kHz时的损耗应低于50mW/cm3,没指明是选哪一类软磁铁氧体材料,也没说明损耗对应的工作磁通密度.读者只好去猜:损耗对应的工作磁通密度是《电源技术应用》2003年6期“设计要点”一文中的BAC典型值0.04~0.075T?还是《电源技术应用》2003年1/2期“设计要点”一文中的Bm值0.237T?不管是0.075T,还是0.237T?要达到100kHz下铁损低于 50mW/cm3的铁氧体材料是非常先进的.请介绍一下是哪家公司哪种型号产品,以便读者也去购买.在某一段工作频率下,高频电源变压器的绕组损耗(铜损)与铁损相接近时,例如,铜损/铁损=100%~25%范围内,铜损也不能忽视,也应当考虑采取措施来减少铜损.由于原绕组和副绕组承担的功率相近,往往在设计中取原绕组的铜损等于副绕组的铜损,以便简化设计计算过程,这并不象“辨析”一文中所说的那样:“只是工频变压器设计的一种经验规则,”对一定工作频率下高频电源变压器设计也适用.不能只强调依靠温升来设计高频电源变压器,由于热阻不容易准确确定,设计计算相当麻烦.因此,为了简化计算,有时根据经验预先推荐一些原则和数据是必要的.同样,为了简化计算,对不同工作频率,不同功率的高频电源变压器推荐不同的绕组电流密度,也是必要的,但不限于某一个电流密度值,例如,2A/mm2~3A/mm2.应当看到:实现高频电源变压器设计要求的方法并不限于一种,应当允许进行多种多样的探索.“你走你的阳关道,我走我的独木桥”.为什么一定要按你指定的道路走,才不是“错误概念”呢?3.4 降低成本降低成本是高频电源变压器的一个主要设计要求,有时甚至是决定性的要求.高频电源变压器作为一种产品,和其他商品一样,都面临着市场竞争.竞争的内容包括性能和成本两个方面,缺一不可.不注意降低成本,往往会在竞争中被淘汰.高频电源变压器的成本包括材料成本,制造成本和管理成本.设计是高频电源变压器降低成本的主要手段.高频电源变压器所用的材料和零部件的贵贱和数量的多少?是否方便采购?是否要备有多少库存量?磁芯,线圈和总体结构的加工和装配工艺复杂还是简单?需要人工占的比例多大(实现生产过程的机械化和自动化,可以减少人工工时,更能保证产品的一致性和质量)?是否需要工模具?质量控制中需要检测的工序和参数:哪些参数要在加工过程中检测?哪些参数要在出厂试验中检测(出厂试验的参数应选择能决定性能的关键参数,数量不要多,以便能即时判断产品质量.)?哪些参数要在型式试验中检测?要用什么检测仪器和设备,价格如何?等等,都是由设计来决定的.因此,高频电源变压器的设计者除了要了解高频电源变压器的理论和设计方法而外,还要了解各种软磁材料和磁芯的性能和价格,各种电磁线的性能和价格,各种绝缘材料的性能和价格;还要了解磁芯加工热处理工艺,线圈绕制和绝缘处理工艺及变压器组装工艺;还要了解实现质量控制的检测参数和仪器设备;还要了解生产管理的基本知识以及高频电源变压器的市场动态等等.只有知识全面的设计者,才能设计出性能好,成本低的高频电源变压器产品.降低成本是促进高频电源变压器技术发展的一种推动力.为什么轻、薄、短、小成为高频电源变压器的发展方向?原因之一是这样既能降低材料成本,又能降低制造成本.提高工作频率,可以使高频电源变压器的重量和体积下降.但是,要克服高频带来的负面影响,必须采用新的软磁材料和导电材料并增加抑制高频电磁干扰的措施,因此,对具体使用条件下的高频电源变压器究竟选用多高的工作频率?要在综合考虑性能和总体成本后决定.提高效率,降低损耗发生的热量,可以减少高频电源变压器散热的表面积,从而使体积和重量下降.但是,降低损耗必须采用新材料和新工艺.因此,对具体使用条件下的高频电源变压器究竟达到多高的效率?也要在综合考虑性能和总体成本后决定. 4高频电源变压器的设计程序高频电源变压器的设计程序,包括磁芯材料,磁芯结构,磁芯参数,线圈参数,组装结构和温升校核等内容.下面分别进行讨论.4.1 磁芯材料根据高频电源变压器的设计要求,选择软磁材料本来应当是设计程序的第一项.但是,现在一般都认为高频电源变压器应当选择软磁铁氧体,是自然而然的事情.许多有关高频电源变压器的论文,专著和教材,只针对软磁铁氧体进行讨论,而对其他软磁材料有时说明一下,有时只字不提.而且究竟选择哪一类软磁铁氧体,也不加以说明,好象大家都知道.《电源技术应用》2003年第6期中的两篇文章就是一例.和任何软磁磁芯材料一样,软磁铁氧体有自己的优缺点.软磁铁氧体的优点是电阻率高、交流涡流损耗小,价格便宜,易加工成各种形状的磁芯.缺点是工作磁通密度低,磁导率不高,磁致伸缩大,对温度变化比较敏感.因此,有些高频电源变压器并不适合选择软磁铁氧体.例如,工作频率比较低(50kHz以下),功率比较大的高频电源变压器,如果选择软磁铁氧体,由于工作磁通密度低,用材料多,磁芯体积大,加工困难,易碎,成品率不高,显不出价格便宜的优势.又例如,工作频率高(500kHz以上),功率比较小的高频电源变压器,磁芯重量和体积本来都小,如果选择软磁铁氧体,必须用PW4、PW5类材料,价格也不便宜, 与其他软磁材料相比,磁芯价格基本相当,有时反而由于体积大,而处于不利地位.即使在适合于软磁铁氧体的工作频率范围内,也要对选择哪一类软磁铁氧体更能全面满足高频电源变压器的设计要求,进行认真考虑,才可以使设计出来的高频电源变压器达到比较理想的性能价格比.4.2 磁芯结构高频电源变压器设计中选择磁芯结构时考虑的因素有:降低漏磁和漏感,增加线圈散热面积,有利于屏蔽,线圈绕线容易,装配接线方便等.漏磁和漏感与磁芯结构有直接关系.如果磁芯不需要气隙,则尽可能采用封闭的环形和方框型结构磁芯,特别是工作频率高的电源变压器,因为,有一点漏感,就容易产生比较大的漏阻抗.封闭磁芯的磁通基本上集中在磁芯里面,漏磁小.同时,不论外界干扰磁场从哪个方向侵入,都在磁芯中分为两个方向通过,产生的干扰互相抵消.但是,封闭磁芯绕线困难,且环形磁芯散热要通过线圈,而且内层引出线也要穿过线圈引出,故必须加强绝缘.不封闭磁芯绕线容易,磁芯散热面大,可直接散热,引出线也容易.建议装线圈的磁路部分为圆柱形截面,减少平均匝长,降低损耗.矮胖圆柱形磁芯的漏磁和漏感比瘦高圆柱形磁芯大,一个原因是胖,圆柱形大,漏磁辐射面大;另一个原因是矮,上下两磁轭距离近,容易形成漏磁通的路径.不封闭磁芯中的气隙大小和位置与漏磁和漏感有密切关系.在保证完成功能所需的气隙条件下,尽可能减少气隙尺寸.因为,气隙尺寸增大,不但增加漏磁和漏感,还减少等值磁导率,增加激磁功率,对高频电源变压器工作不利.另外,气隙的位置最好处于线圈的中间部位,可以起到减少气隙漏磁通的作用.窗口面积的大小与线圈发热损耗和散热面积有关.窗口面积大,绕的电磁线截面。

工频变压器设计简介

工频变压器设计简介

;保密等级机密★20年Q/DX 青岛鼎信通讯股份有限公司技术文档^工频变压器设计简介2015 - 04 - 08发布2015 - 04 - 09 实施青岛鼎信通讯股份有限公司发布目录1 概述............................................................... 错误!未定义书签。

变压器的基本工作原理............................................ 错误!未定义书签。

变压器空载工作状态.............................................. 错误!未定义书签。

变压器负载工作状态.............................................. 错误!未定义书签。

2 电子变压器的基本结构和材料......................................... 错误!未定义书签。

铁心及材料...................................................... 错误!未定义书签。

铁心的加工方法.................................................. 错误!未定义书签。

铁心材料........................................................ 错误!未定义书签。

3 电源变压器的主要技术参数........................................... 错误!未定义书签。

功率容量........................................................ 错误!未定义书签。

功率因数........................................................ 错误!未定义书签。

高频变压器设计与参数设计

高频变压器设计与参数设计

高频变压器设计与参数设计高频变压器设计与参数设计是一项重要的技术,它能够帮助电子设备充分发挥性能。

高频变压器是指使用高频信号来改变交流电压的变压器,它通常用在微波炉、通信设备、打印机和医疗设备等领域,并且也用于高频功率转换、无线电、太阳能应用等等。

高频变压器的设计涉及到许多因素,包括电气特性,例如变压器的电压比、额定电流、变压器的绝缘耐压、损耗和过载能力。

同时,还必须考虑到变压器尺寸大小、重量、成本和可靠性等机械特性。

这些特性都会影响变压器的性能,从而影响其最终的性能表现。

在设计高频变压器时,首先应考虑变压器的工作频率。

一般来说,高频变压器的工作频率范围在1kHz~100MHz 之间,而且高频变压器的工作频率越高,其尺寸越小,耗散越低,性能也越好。

随后,应该考虑高频变压器的结构设计,采用的线圈数目,线圈的绕组方式,芯股的结构,冷却方式和绝缘材料等。

其中,线圈绕制方式和线圈的绕组方式是影响高频变压器的主要要素,它们会影响变压器的额定输出功率、输出纹波、温升和其他电气特性。

此外,还必须考虑到变压器的电压比以及母线电压。

电压比是指输出电压与输入电压之间的比率,它影响变压器的输出功率。

母线电压是指用于变压器的输入电压,它会影响变压器的最大输出功率,而且也会影响变压器的可靠性。

另外,在设计高频变压器时还应考虑变压器的外壳结构,这不仅影响变压器的重量和体积,还会影响变压器的热效应。

外壳结构应考虑到变压器的散热性能,以及变压器内部温度的分布情况等。

最后,需要重点考虑变压器的绝缘系统。

绝缘系统是高频变压器的核心部件,它具有高的绝缘强度和耐温性能,可以有效防止电路受到外界环境的干扰,也可以提高变压器的可靠性和安全性。

总之,高频变压器的设计与参数设计是一项复杂的工作,从上述内容可以看出,在设计高频变压器时,需要考虑变压器的电气特性、机械特性、工作频率、结构设计、电压比和母线电压、外壳结构以及绝缘系统等多个方面。

最终,变压器的设计与参数设计都是为了满足应用需求,并且有效地提高变压器的性能,以及提高变压器的可靠性和安全性。

工频变压器设计的计算

工频变压器设计的计算

《纯正弦波逆变器制作学习资料工频篇》,由发烧电子DIY 空间提供!绕制工频变压器铁心匝数计算法变压器功率铁芯的选用按公式预计算:S=1。

25×根号P,(S是套着线圈部位铁芯的截面积,怎么算下面再讲,单位:CM,P为功率:W) 1. 计算每伏需要绕多少匝(圈数)可按公式N :线圈匝数B—-硅钢片的磁通密度(T),一般高硅钢片可达1.2-1。

4T,中等的约1-1.2T,低等的约0.7-1T,最差的约0.5-0。

7T。

S:铁心面积S=0。

9ab /平方cmf: 频率50Hz(我国)B—-为磁通密度(T)小知识:B值根据铁芯材料不同,A2和A3黑铁皮选0。

8T;D11和D12(低硅片)选1。

1T到1。

2T;D21和D22(中硅片)选1.2T到1。

4T;D41和D42(高硅片)选1.4T到1。

6T;D310和D320(冷轧片)选1。

6T到1。

8T; 磁感应强度有一个过时的单位:高斯,其符号为G:1 T = 10000 G。

穿过一块面积的磁力线数目,称做磁磁通量,简称磁通,用Φ示。

磁通量的单位是韦伯,用Wb表示,以前还有麦克斯韦用Mx表示。

如果磁场中某处的磁感应强度为B,在该处有一块与磁通垂直的面,它的面积为S,则穿过它的磁通量就是Φ = BS公式:Φ=BS,适用条件是B与S平面垂直。

当B与S存在夹角θ时,Φ=B*S*cosθ。

Φ读“fai”四声。

单位:在国际单位制中,磁通量的单位是韦伯,符号是Wb,1Wb=1T*m^2;=1V*S,是标量,但有正负,正负仅代表穿向, 磁感应强度B的单位是高斯(Gs),1 T = 10000 G;面积S的单位是平方厘米;磁通量的单位是麦克斯韦(Mx)。

当B与S存在夹角θ时,Φ=B*S*cosθ。

Φ读“fai”四声。

在国际单位制中,磁通量的单位是韦伯,符号是Wb,1Wb=1T*m2;=1V * S,是标量,但有正负,正负仅代表穿向。

S—-为铁芯有效面积(单位为平方厘米)S =0。

500kv串级工频试验变压器设计

500kv串级工频试验变压器设计

500kv串级工频试验变压器设计
要设计一个500kV串级工频试验变压器,需要考虑以下几个关键因素:
1. 额定电压:根据试验需求,所设计的变压器的额定电压应为500kV。

2. 容量:根据试验需求,确定所需的容量。

容量大小会影响变压器的外形尺寸和重量。

3. 绕组结构:串级工频试验变压器一般采用螺绕式绕组结构。

根据电场分布的需要,可以考虑采用分层和分相绕组等结构。

4. 绝缘结构:由于额定电压较高,变压器的绝缘结构需要特别注意。

采用绝缘油或绝缘纸来实现绝缘。

5. 冷却方式:变压器在运行过程中会产生热量,需要采用合适的冷却方式来保证变压器的正常运行。

常用的冷却方式有自然冷却和强迫冷却等。

6. 绝缘材料:由于高电压试验需要承受较高电场强度,变压器绝缘材料需要具备较高的绝缘性能和耐电压能力。

绝缘材料可以选择油纸、油纸复合等。

7. 结构材料:变压器的外壳和支撑结构需要采用具有足够强度和耐腐蚀能力的结构材料。

设计一个500kV串级工频试验变压器是一项复杂的任务,需要考虑很多因素。

上述只是其中的一些关键因素,还需要根据具体要求进行更加详细的设计和计算。

(工频)变压器的工作原理及设计(新)

(工频)变压器的工作原理及设计(新)

变压器的工作原理及设计 在电路和磁路中,变压器不但作为电磁能量的传送工具,而且可以改变电路中的电压和电流的大小和相位,在某种情况下可以起电的隔离作用,在各种电力、电子等电路中被广泛应用。

电磁感应是变压器工作原理的基础,因此要想了解变压器的工作原理及性能,进而应用、设计变压器,就必须具备电、磁方面的基础理论知识。

电路方面的知识大家比较了解,下面对磁路方面的知识进行必要的补充。

一、电磁感应和磁路中的概念及一些定律1、电磁感应磁场变化时,将在它所能影响到的区域内的的电回路中产生电压以至电流。

用数学式子来描述:dtd N dt de Φ-=ψ-= 实际上这种过程是可逆的,即变化的电场产生变化的磁场,变化的磁场产生变化的电电场。

从能量的观点来看,在变压器的工作过程中,电路的电能转换为变压器铁芯内的磁能,然后再转换为二次侧的电能,完成能量的传送。

2、磁路中的概念磁路——磁通通过的区域磁感应强度B ——表示磁场强弱的一个物理量磁通Φ——BA =Φ,A 为与磁场方向垂直的片面的面积 磁导率μ——表示物质磁性质的物理量,0μμμr =,70104-⨯=πμ磁场强度H ——μB H =磁势∑=NI F磁压降Hl U m =3、磁路的基本定律(1) 安培环路定律(全电流定律)⎰∑=lI dl H . (2) 磁路的基尔霍夫第一定律∑=Φ0(3) 磁路的基尔霍夫第二定律∑∑∑==Ni I Hl 图1 安培环路定律图2 磁路基尔霍夫第一定律 图3 磁路基尔霍夫第二定律(4) 磁路的欧姆定律φφμμm m R A l l B Hl U ==== 4、铁磁物质的磁化曲线(1) 原始磁化曲线:将一块尚未磁化的铁磁物质进行磁化,在磁场强度H由0开始逐渐增加时,磁感应强度也逐渐增加,这种曲线称为原始磁化曲线。

图4 磁畴 图5 原始磁化曲线(2) 磁滞回线:当铁磁物质在-H m 到+H m 之间反复磁化若干次最后得到对原点对称的封闭曲线。

高频变压器设计方法

高频变压器设计方法

8、效率η; 9、温升∝。

二、计算步骤:1、计算视在功率PT ;视在功率PT 因工作电路不同而别,如下图:7、选用磁芯型式;高频变压器的设计方法之一一、设计条件: 1、工作电路; 2、原边电压Vp ; 3、输出电压Vo; 4、输出电流Io ; 5、开关工作频率fs ; 6、工作磁通密度Bw ; AP=Aw · Ae视在功率与线路结构关系线路(b ) PT=Po ( + 1 )线路(a ) PT=Po (1+ )线路(b) PT=Po ( +√ )AP 值是磁芯窗口面积Aw 与磁芯有效截面积Ae 的乘积,即各种磁芯的AP 示意图如下:1η1η1η2EI 叠片铁芯GC 型铁芯环形铁芯R( b )R( a )AP=()Ae Aw Le Wt Ml 其中:V01=KvAP 0.75 Wt=KwAP 0.75As=KsAP 0.5根据选取的磁芯,查出(计算)出如下参数:Le ——磁芯有效磁路长度(cm ); Wt ——磁芯重量(KG ); Ml ——绕组平均匝长(cm )。

式中:AP ——为Aw 和Ae 两面积乘积(cm 4); PT ——变压器视在功率(w ); Bw ——工作磁通密度(T ); Fs ——开关工作频率(Hz ); Ko ——窗口使用系数,一般取0.4;Kf ——波形系数,方波Kf =4.0,正弦波Kf =4.44; Kj ——电流密度比例系数; X ——与磁芯有关常数。

J= KjAP X带绕铁芯罐形铁芯KoKf FsBwKjPT ×10411 + XNp=(匝)Ip=(A)(A/cm 2)(cm )(cm 2)(Ω)(W )3、计算原边绕组匝数Np :平均匝长计算如下图:4、计算原边电流I p :5、计算电流密度J :J=Kj (Aw · Ae )X6、计算原边绕组裸线直径dP 和截面积Axp :Ppcu = I p 2Rp 8、计算副边绕组匝数:dP=1.13※式中,在有中心抽头电路时,Ip 需乘0.707的修正因素,根据计算的dP 值选取初级导线,并查出带漆皮的线径、截面积和每cm 电阻(Ω/cm )值。

变压器设计方案

变压器设计方案

变压器的设计磁性材料以及变压器的设计,主要说三种,一是硅钢片构成的工频变压器,一种铁硅铝铁粉芯磁环,还有一种是锰锌镍锌材料构成的磁环。

三种应用于不同场合,其中硅钢片主要用于工频变压器,因为U 值在1.5K附近,适中,Bsat值大,达1.5T,因此抗磁饱和强度。

铁硅铝铁粉芯材料U值低,一般在百附近,B值相对硅钢片小,但是比高导材料(锰芯镍锌)大很多,主要用于直流分量大的场合。

比如用于BUCK连续电流电路。

而锰芯镍锌磁导率很高,最高最达10K,因此耦合性很好,主要用于小信号耦合传输。

比如驱动信号以及电压电流采样。

这种材料主要绕几匝就能满足感量要求以及合适的激励电流。

说说变压器的设计首先我们知道变压器是一个激励电感和理想变压器构成,当然还有初次级漏感。

但我们可以先假设漏感忽略不记。

那么变压器主要参数就是激励电流和匝数了,也就是磁动势。

这直接和B值有关。

其他条件不变下,NI越大,B值越大,越容易磁饱和。

那么好了,现在讨论下NI值怎么取才能让B值处在一个安全的范围内。

相信大家知道B=UH,这是定义出来的,U就是磁导率,就是B 与H的比值,U不是常数,但是在小H下B与H成线性关系(一般材料),而H=KNI,K是比例常数,N是匝数,I是激励电流。

那好了,如果要减小B值就得减小NI乘积(同一磁环)。

激励电流I是和电感量成反比的。

如果增大电感量则激励流会下降,但是N就得增大,否则电感量如何上升。

我们知道电感量又和N成正比,L∝N*N?μ。

而U=LI/T,把L值代进去得U∝N*N?μ?I/T。

所以B=μH=kμNI=k(μNUT)/(N *μ)=KUT/N由此式可知B∝1/N。

所以增大N就能减小B值,所以理论上我们最好让N值无穷大,这样B不容易饱和,但是实际情况总有个度,首先就是我们的变压器功率。

因为我们总要输出一定功率,否则变压器就失去了作用。

既然要输出功率那么肯定有一的电流过绕线,若取得很细,则线压降很大,线损很大。

工频变压器设计简介.

工频变压器设计简介.

保密等级机密★20年Q/DX 青岛鼎信通讯股份有限公司技术文档工频变压器设计简介V1.02015 -04- 08发布2015- 04 - 09实施目录1 概述 (1)1.1 变压器的基本工作原理 (1)1.2 变压器空载工作状态 (1)1.3 变压器负载工作状态 (3)2 电子变压器的基本结构和材料 (5)2.1 铁心及材料 (5)2.2 铁心的加工方法 (7)2.3 铁心材料 (7)3 电源变压器的主要技术参数 (8)3.1 功率容量 (8)3.2 功率因数 (8)3.3 效率 (9)3.4 电压调整率 (9)3.5 空载电流及其百分比 (9)3.6 空载损耗 (10)3.7 温升 (10)3.8 设计电源电压器所必需的技术参数 (11)4 电源变压器的基本计算公式 (11)4.1 空载工作时 (11)4.2 负载工作时 (13)4.3 匝数计算 (14)5 电源变压器铁心选择和电磁参量确定方法 (15)5.1 电源变压器铁心选择 (15)5.2 电源变压器电磁参数的确定 (15)6 电源变压器结构参数计算 (16)6.1 窗口利用系数 (16)6.2 散热面积 (17)7 实例设计 (19)8 国网单相表(0527)电源设计 (24)8.1 原理图 (24)8.2 电气参数: (24)8.3 变压器参数计算 (24)9 设计计算时应注意其他问题 (28)9.1 漏感计算 (28)9.2 绕组的分布 (28)9.3 屏蔽 (28)10 文档使用范围 (28)1 概述1.1 变压器的基本工作原理变换电能以及把电能从一个电路传递到另一个电路的静止电磁装置称为变压器。

在交流电路中,0感应电动势。

按电磁感应定律,其有效值为4m 1Φ110*f 4-=C S B N K E (1)4m 2Φ210*f 4-=c S B N K E (2) 式中 1E -----初级自感电动势(V ); 2E -----次级互感电动势(V )ΦK -----电压的波形因数,对于正弦波,ΦK =1.11;对于方波ΦK =1; f -----交流电源的频率(Hz ); 1N -----初次绕组匝数; 2N -----次级绕组匝数m B -----磁感应强度振幅值(T ); c S -----铁心的有效截面积(2c m )绕组中的感应电动势正比于该绕组的匝数,式(1)除以式(2)得;2121N N E E =(3) 如果忽略初级绕组和铁心的损耗,并假定所有磁通量都沿着铁心的磁路而闭合,则在初级绕组中的磁通量Φ0所产生的自感电动势E 1,按楞次定律,其数值与所加电压相等,而其符号相反,即11-E U =实际上,变压器空载电流,除了为在变压器铁心中建立磁通Φ0所需的磁化分量I Φ之外,还包括由于铁心损耗所引起的有用功分量Ic ,因此,空载电流 C I I I +=Φ0此外,变压器初级绕组具有直流电阻r 1,因而在初次绕组中产生有功电压降Δu 1 al E r I -==101Δu式中 E al -----补偿初级绕组电压降而假定的电动势。

基于工频变压器的独立逆变电源设计

基于工频变压器的独立逆变电源设计

文 章 编 号 :6 4 6 3 (00 0 — 12 0 17 — 2 62 1 )5 0 7 — 2
De i n fpo r s p y b s d n i e nd ntf e ue y i v r e r n f r e s g o we up l a e o nd pe e r q nc n e t r t a s o m r
摘 要 : 出一 种 基 于工 频 变压 器 的 逆 变 电源 设 计 方 案 。 该 控 制 电路 采 用U 9 8 提 3 8 为控 制 器 。 出P 输 WM波形 来控 制 逆 变
电路 功 率 管 , 同时U 98 3 8 内部 具 有 各 种 电路 保 护 作 用 , 使 逆 变 电 源数 字化 , 化 电 路 ; 无 工 频 变 压 器 逆 变 电路 相 可 简 与 比 , 电路 设 计 采 用 工 频 变 压 器起 到 隔 离保 护 的作 用 。 电路 具 有 系统 可 靠性 功 能 。 该 使 实验 结 果表 明 , 于传 统 逆 变器 , 对
Ke r s n e r o e o r e;U 9 8 r q e c r n f r e ;ioa in y wo d :iv  ̄e w rs u p c 3 8 ;f u n yta so e m r s lt o
随着 科 技 的不 断 进 步 , 变 技 术 有 更 广 泛 的 发 展 。逆 变 逆
b 9 8, h c up t P M a eo o t l n n e e i u tp we u e y U3 8 w ih o t u W w v f r c n r l g i v r r cr i o r t b .W h l U3 8 i a it f cr u t m o i t c i e, 9 8 w t a v r y o i i h e c

有关工频变压器线圈设计

有关工频变压器线圈设计

有关工频变压器线圈设计1. 引言工频变压器是电力系统中常用的电力转换装置,其线圈设计是保证变压器性能和可靠性的关键因素之一。

本文旨在介绍工频变压器线圈设计的基本原理、要点和注意事项。

2. 线圈设计的基本原理工频变压器的线圈设计主要涉及到匝数、绕组方式、线径选择和绝缘材料等方面。

以下是线圈设计中的基本原理:2.1 匝数的确定匝数是工频变压器线圈设计中最重要的参数之一,它决定了变压器的变比和变压器的性能。

匝数的确定需要考虑到变换比率、输入输出功率以及线圈所能承受的电流等因素。

2.2 绕组方式的选择绕组方式通常有圆形绕组、长方形绕组、螺旋绕组等。

选择合适的绕组方式可以提高线圈的稳定性和效率。

不同的绕组方式适用于不同的应用场景,需要根据具体情况进行选择。

2.3 线径选择线径的选择与工频变压器的输出功率和电流密度有关。

较大的输出功率和电流密度需要采用较大的线径,以确保线圈的导电性能和散热性能。

2.4 绝缘材料的选择绝缘材料的选择直接关系到工频变压器线圈的绝缘能力和耐电压能力。

常见的绝缘材料有绝缘纸、绝缘漆、绝缘塑料等。

选择合适的绝缘材料可以提高变压器的安全性和可靠性。

3. 线圈设计的要点和注意事项线圈设计过程中需要注意以下要点和注意事项:3.1 线圈间的绝缘保证线圈之间的良好绝缘是线圈设计的关键之一。

绝缘层的厚度和绝缘材料的选择应根据变压器所处的环境和工作条件确定,并符合相应的绝缘标准和规定。

3.2 输电损耗的考虑线圈设计应合理控制电流密度,以减小输电损耗。

高电流密度会导致线圈温升过高,影响线圈的寿命和工作效果。

3.3 线圈的散热设计线圈的散热设计直接关系到变压器的工作效果和寿命。

应确保线圈的散热能力,避免过高的温度导致线圈绝缘性能下降或烧毁。

3.4 线圈的维护和检测线圈设计完成后,需要进行定期的维护和检测,以确保线圈的正常运行和故障的及时发现和处理。

维护和检测工作应符合相关的标准和规定。

4. 结论工频变压器线圈设计是确保变压器性能和可靠性的关键因素之一。

高频变压器设计 (2)

高频变压器设计 (2)

高频变压器设计引言高频变压器是在高频电路中广泛使用的一种电子元件,它能够将电能从一个电路传递到另一个电路,同时改变电压的大小。

高频变压器在电力转换、通信设备、医疗设备等领域具有重要的应用价值。

本文将介绍高频变压器的基本概念、工作原理和设计要点。

基本概念变压器的定义变压器是一种互感器,它是由两个或多个线圈(即初级线圈和次级线圈)共享同一个磁场而构成。

通过改变初级线圈与次级线圈的匝数比,可以实现输入电压和输出电压之间的变换。

高频变压器的特点高频变压器与低频变压器相比,具有以下特点: 1. 工作频率高:高频变压器的工作频率通常在几十kHz至上百MHz之间,远高于50Hz的低频变压器。

2. 体积小:由于高频变压器的工作频率高,变压器的尺寸可以大大缩小,适用于紧凑型电子设备的应用。

3. 能量损耗大:由于高频变压器的工作频率高,导致变压器在传递电能过程中会发生更多的损耗,需要合理设计以降低能量损失。

4. 绝缘要求高:高频变压器中由于电磁感应作用,会产生高峰值的电压,对变压器的绝缘要求较高。

工作原理高频变压器的工作原理与低频变压器类似,都是基于电磁感应原理。

当交流电流通过初级线圈时,会在铁芯内产生一个交变磁场。

这个交变磁场通过铁芯传递到次级线圈中,从而诱导出次级线圈中的交流电流。

设计要点1. 确定变压器的需求在设计高频变压器之前,首先需要确定变压器的输入电压、输出电压和功率等需求。

根据这些需求来选择合适的铁芯材料和线圈匝数比。

2. 选择合适的铁芯材料铁芯材料在高频变压器设计中起着至关重要的作用。

常见的铁芯材料有铁氧体、磁性不良合金等。

选择合适的铁芯材料可以降低能量损耗,提高变压器的效率。

3. 计算线圈匝数比线圈匝数比的确定对于高频变压器的设计也是非常重要的。

通过合理的线圈匝数比,可以实现输入电压和输出电压之间的变换。

4. 考虑绝缘问题由于高频变压器中存在较高峰值的电压,对于绝缘性能的要求也较高。

合理的绝缘设计可以确保变压器的安全性和稳定性。

工频变压器的设计计算

工频变压器的设计计算

工频变压器的设计计算2010-9-15,这个U2),从上可知,变压器是通过铁芯的磁场来传递电功率的。

借助于磁场实现了初级电路和次级电路的电隔离;又通过改变绕组匝比,来改变次级的输出电压。

二、变压器特性参数和设计要求1、磁通密度B和电流密度J磁通密度(又叫磁感应强度)B和电流密度J是变压器设计的关键参数,直接关系着变压器的体积和重量,B 、J值越高,变压器越轻,但是B 、J的取值受到一定条件的限制,因此,变压器的体积和重量也受到这些条件的限制。

H的关系曲线,在图3中,Bs —饱和磁感应强度;Bs —过压保护磁感应强度Bm —最大磁感应强度(计算值)导磁率: HB ΔΔ=μ 饱和磁通密度为Bs 和导磁率μ是曲线的两个重要参数。

对于磁性材料,要求Bs 、μ 越高越好。

Bs 高,变压器体积可减小;μ高,变压器空载电流小。

另外,还要求电阻率ρ高,这样损耗小、发热小。

⑵ 电流密度J电流密度J : 电路单位截面积的电流量,单位 :安/厘米²(A/cm ²)。

变压器绕组导线的电阻:ql R cu ρ= 电流导线中所产生的损耗(铜损):l IJ R I P cu cu cu ρ2==可以看出,铜损与电流和电流密度的乘积成正比,就是说,随着电流增加,要保持同样的绕组损耗和温升,必须相应地降低电流密度。

2、铁心、导线和绝缘材料⑴ 铁心形状和材料铁心形状:卷绕的有O 型、CD/XCD 型、ED/XED 型、R 型、HSD 型(三相),冲片的有EI 、CI 型;这是我们常用两种冲片。

铁心材料牌号:硅钢(含硅量在2.3~3.6%)冷轧无取向硅钢带:含硅量低(在0.5~2.5%);厚0.35、0.5、0.65mm,我们常用0.5mm ; B 高、μ高,铁损大,价格较低,多用于小功率工频变压器。

冷轧取向硅钢带:含硅量较高(在2.5~3%),厚0.27、0.3、0.35mm, 我们常用0.35mm ;B 高、μ高,铁损小,价格较高,多用于中大功率工频变压器。

工频变压器的计算方法(300W以下)

工频变压器的计算方法(300W以下)

工频变压器的计算方法(300W以下)工频变压器的计算方法(300W以下)很多业余的电子爱好者都喜欢自己制作电子电路,那么首先是要制作小功率电源来给电路供电,有的需要制作主电源变压器。

之前也有很多网友在网上询问我关于这种工频小变压器的设计方法,这里教大家一下简单的计算方法,大功率工频变压器由于矽钢片材质不一样以及绕制方法不一样不适用此计算方法。

变压器材料:矽钢片按照市场上常用的E470规格计算,矽钢片单片厚度0.5mm,EI型矽钢片。

例如:我们需要一个小辅助源变压器,输出电压交流15V0.5A两组,这个变压器输出经过整流、滤波,加上LM7812和LM7912三端稳压块就制作成了正、负12V电源了。

一、计算变压器功率15V×0.5A=7.5W,7.5W×2=15W这里乘以2,是因为输出两路。

二、计算铁芯截面积15W(功率)×1.44=21.6√21.6(开根)×1.06=4.926平方厘米=492.6平方毫米(铁芯截面积)三、计算矽钢片叠厚492.6(截面积)/ 18mm(矽钢片舌宽)= 27.4mm(叠厚)参照变压器骨架规格表,可以选用E18×30mm(叠厚)的骨架,也有叠厚25mm的骨架,这时候选择骨架的叠厚,就根据你的电路实际情况决定了,如果不是满载工作可以选薄一点的,满载工作就往厚的选择,我们这里选择叠厚30mm来计算。

四、重新计算实际铁芯截面积18mm(矽钢片舌宽)×30mm(叠厚)=540平方毫米=5.4平方厘米这里肯定有人会问,为什么选用矽钢片舌宽为18mm的规格,教大家一个方法:计算出来的叠厚(27.4mm)/ 16mm(舌宽)= 1.71,(绕不下)计算出来的叠厚(27.4mm)/ 18mm(舌宽)= 1.52,(可以绕下)如果结果大于1.6倍,说明变压器窗口小了,绕不下,选用大一规格的矽钢片就可以了。

五、计算初级(220V)的线圈匝数45 / 5.4(实际铁芯截面积)×220(输入电压)=1833匝六、计算次级(15V)的线圈匝数1833(初级匝数)/ 220(输入电压)×15V(次级电压)=125匝因为两组电压一样,那么匝数都是125匝七、计算变压器初级线径15W(变压器功率)/ 220(输入电压)= 0.068A√0.068A(开根)×0.7= 0.18mm(漆包线直径)八、计算变压器次级线径√0.5A(开根)×0.7=0.49mm有时候计算出来的线径从规格表里查不到,那就选择靠近的规格,绕制就可以了。

EI工频变压器设计的几个问题

EI工频变压器设计的几个问题

EI 工频变压器设计的几个问题中国三江航天集团 黄永吾工频变压器在被大家称为低频变压器,以示与开关电源用高频变压器有区别。

工频变压器在过去传统的电源中大量使用,而这些电源的稳定方式又是采用线性调节的,所以那些传统的电源又被称为线性电源工频变压器的原理非常简单,理论上推导出相关计算式也不复杂,所以大家形成了看法:太简单了,就那三、四个计算公式,没什么可研究的。

设计时只要根据那些简单的公式,立马成功。

掌握了电压高了拆掉几圈,电压低了加几圈,空载电流大了,适当增加初级圈数,也觉的低工频变压器的非常简单。

我认为上面的认识既有可取之处,也有值得研究的地方。

可取之处:根据计算式或自己打样,可以很快就得出结果,解决了问题;加上有六七年以上得实际工作经验,可说是在某单位得心应手,鹤立鸡群。

值得研究的地方是:你是否了解自己设计出的产品性能?设计合理吗?设计优化过吗?经济性如何?过去电源变压器的设计由电子部牵头组织专家学者成立变压器工作组,编写典型计算免费发放各单位,作为计算依据,每个单位都有自己的变压器设计人员,由于有了参数表的存在,各厂设计出来的变压器各参数基本一致,连圈数和线径都可能一一模一样。

验收的规则也是统一到变压器总技术条件上来。

改革开放以后国营企业的变压器设计人员,除极少数外,下海的不多。

典型计算资料本不可多得,要按失密论处。

加上典型计算是原苏联的一套铁心规格与现行得EI 铁心片规格不符,无参照价值。

目前基本上是采用师傅带徒第的方式带出来一大批变压器工程人员。

与过去不同现有的工程技术人员大都是自己打样,由于工频变压器市场广泛,小单子很多。

而这些单子很多是从关系接来的。

不十分计较价格,因此理论水平一般,实际经验丰富的工程技术人员大有人在。

从设计角度来看师师傅带徒第的方式带出来一大批变压器工程人员,他门的设计风格各不相同。

A. 根据功率选铁芯规格就是个很繁杂的问题,因为涉及的因素比较多,有以下几种方法1. 采用下面的半经验公式去选取:)1(---⨯=P K A fe式中A fe --铁心有效截面积cm 2K--- 系数P —变压器输出功率 w定下A fe 后,然后进行其它的计算。

小功率整流工频变压器设计-大

小功率整流工频变压器设计-大

小功率整流工频变压器设计一般工频硅钢片C型O型变压器工作在50HZ到400HZ,设计方法和材料都是一样的。

用非晶材料频率可从50HZ到20KHZ,作出的变压器体积很小。

现在大容量变压器几乎全用非晶材料代替了硅钢片。

工频变压器工作在磁滞回线的1、3象限,铁芯的利用率比较大,变压器在负载状态下初级线圈匝数比次级线圈匝数等于初级电压比次级电压,初级电流反比于次级电流,除耗散功率,初次级能量相等。

,P1=η*P2, η=0.8~0.9一.确定初级输入功率P1,额定功率P0由于变压器存在着铜损和铁损,次级功率P2总小于初级功率P1,效率η一般在0.8~0.9,功率越小的变压器效率越低,变压器的额定功率 :2. 铁心选择:P0 伏安5—1010—5050—100100—500500—1000K2—1.75 1.75—1.51.5—1.351.35—1.251.25—1铁心截面积也可表示为a是E1型铁心,b是铁心叠厚。

变压器设计数据表。

3. 计算每伏匝数N0根据法拉第电磁感应定律 (系数正弦波=4.44,方波=4)工频变压器f=50HZ初级每伏匝数:Sc为铁心截面积单位,B为硅钢片磁感应强度单位高斯 1T(特斯拉)= CTS(高斯)一般硅钢片B取7000~8000高斯,优质硅钢片10000~18000高斯,次级绕组可按初级每伏匝数乘以本组电压再乘以1.05。

4. 选导线外径 :环境温度比较高的场合电流密度可按,Φ,一般室内温度可按,Φ 也可根据美国线规安培400cm查表求得。

5. 设计举例输入电压220V50HZ(160V~242V),次级N o1:16.5V 200mA ,No2:17V250ma(1) .求P0,选铁心:P2=16.5*0.20+17*0.25=2.475+4.25=7.55P1=P2/0.85=8.12,选η=0.85P0=(P1+P2)/2=(7.55+8.12)/2=7.8358VA根据变压器设计经验数据表选出8VA变压器用铁心为a 16mm,b 23mm因考虑高绝缘特性下限低电压160V,尼龙阻燃框架式骨架内带保护可恢复保险器,叠厚改为28mm。

变压器技术-工频变压器低频变压器设计原理

变压器技术-工频变压器低频变压器设计原理

变压器技术:工频变压器低频变压器设计原理工频变压器被大家称为低频变压器,以示与开关电源用高频变压器有区别,工频变压器在过去传统的电源中大量使用,而这些电源的稳定方式又是采用线性调节的,所以那些传统的电源又被称为线性电源。

 工频变压器的原理非常简单,理论上推导出相关计算式也不复杂,所以大家形成了看法:太简单了,就那三、四个计算公式,没什幺可研究的。

设计时只要根据那些简单的公式,立马成功。

 我认为上面的认识既有可取之处,也有值得研究的地方。

可取之处:根据计算式,可以很快就计算出结果,解决了问题;值得研究的地方是:你是否了解自己设计出的产品性能?设计合理吗?设计优化过吗?经济性如何? 举个例子吧,根据功率选铁芯规格就是个很繁杂的问题,因为涉及的因素比较多。

有些书推荐采用下面的半经验公式去选取: S = K·Sqrt(P) (1) 定下S后,然后进行其它的计算。

这确实是一种实用的方法,但也要认识到,这也是一种简化了的设计方法,大多数情况下存在着浪费。

这种设计方法对业余爱好者来说用不着讨论(只是偶尔设计一个变压器自己用),但对企业来说,值得讨论,产品中大批量采用这种设计时,体现的是降低了经济效益。

 那幺,在专业的场合,比如变压器生产企业,他们是怎样的方法? 原理上,是根据导线在窗口中的占用系数去选取铁芯规格,但这样的计算很繁,而且关系不简单,比如相关计算式是: P = 0.0222·f·B·J·Sc·Sm (2) 当电流密度由电压调整率决定时,计算式为: P = 0.0555(f·f)(B·B)(Sc·Sc)·Sm·ΔU/(Z·Lm) (3) 这样复杂的关系,要人工拿出一个设计方案是非常头疼的,于是,专家们就根据实际情况,将这些关系结合数据编制成一系列表,设计工程师只要根据不同的设计指标查对应的表,就可以得到一组实用的数据,比如根据功率及其它指标查表,得到铁芯规格等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工频变压器设计
工频变压器是最简单的变压器,基本不用考虑分布电感、分布电容、信号源内阻、等效电路各种指标等复杂因素,直接按标准化步骤操作即可,所以用工频变压器来进行变压器设计入门是最好不过了。

简单说就是根据功率选择铁心,然后计算匝数,再看能否绕下。

不同的人设计标准不同,可能和下面计算有偏差,但是本质思想都是一样的。

有时算到后面需要重新再来,其实相当于一个迭代设计过程,反复设计直至满足要求为止。

理论计算完成后还需要实际测试效果进行验证,因为铁心参数,制作工艺可能和我们假设的不一样,所以设计完成后基本都需要再根据实测结果进行调整。

要求:
高压输出:260V,150ma ;
灯丝1:5V,3A;
灯丝2:6.3v,3A 中心处抽头;
初、次级间应加有屏蔽层。

根据要求铁芯型号采用“GEIB一35”。

计算如下:
(1)计算变压器功率容量(输入视在功率):
P =(1.4×高压交流电压×电流+灯丝1电压×电流+灯丝2电压×电流)/ 效率
=(1.4×260×0.15+5×3+6.3×3)/ 0.9
=(54.6+15+18.9)/ 0.9
= 98.33VA
(2)计算原边电流
I1=1.05×P / 220=0.469A
(3)按照选定的电流密度(由计划的连续时间决定),选取漆包线直径。

如按照3A/mm2计算:D=0.65×√I(0.65×电流的开方)
并规整为产品规格里有的线径(可查资料):
选定:
原边直径D1=0.45mm
高压绕组直径D2=0.25mm
灯丝绕组直径D3=D4=1.12mm
(4)铁心截面面积
S0=1.25√(P)=1.25×√98=12.5CM2
(5)铁心叠厚:
根据他的要求铁芯型号采用“GEIB一35”,
查到:舌宽=35MM=3.5CM
则:叠厚=12.5 / 3.5 =3.6CM
一般地(叠厚/舌宽)在1-2之间是比较合适的。

(6)铁心有效截面积:
S1=舌宽×叠厚 / 1.1 = 11.454 CM2
(7)计算每伏匝数
计算式:每伏匝数n=(45000)/(B×S1)
其中
B=10000-12000(中等质量硅钢片,如原先上海无线电27厂产品铁心)
或15000(Z11等高质量硅硅片)
或8000(电动机用硅钢片)。

S1:铁心有效截面积,等于(舌宽×叠厚)/1.1
假定是中等质量铁心,并且保守点,取B=10000
则:
n=450000 / B×S1
= 450000 /(10000×11.454)
=3.93 (T / V )
(8)计算每组匝数
原边圈数:N1=220n=220×3.93×0.95=822(T)
副边高压:N2=260×1.05×n=1073(T)--这是一半,还要再×2=2146T。

灯丝1(5V): N3=5×1.05×n=21(T)
灯丝2(6.3V):N3=6.3×1.05×n =26(T)
(10)计算每层可绕圈数(窗口高度两端要留下3MM):
查得该铁心窗口高度h=61.5mm,
查表得知:选用的漆包线带漆皮最大外径
D1Max=0.51mm
D2Max=0.30mm
D3Max=1.23mm
D4Max=1.23mm
按照每层可绕:N =(h-0.5-2×3)/(K×DMax)计算
(分子的含义是:由h=61.5mm==》可绕线宽度为61.5-0.5-2×3=55mm)
(分母是排线系数K×最大外径DMax,对于初学者,小于0.3的线K=1.20,0.3-0.8的线K=1.15,大于0.8的线K=1.10。

如您已经有较好的绕线经验,K可以=105~102)
代入上述数据得到:
原边每层可绕:94圈
高压每层可绕:154圈
灯丝每层可绕:39圈(最后有讨论)。

(也可以直接查“每厘米可绕圈数表”得到)
(11)各绕组的层数
前面已经算出各组圈数则,则各绕组的层数:
原边=822/ 94=8.74,取9层
高压=2146/154=13.94,取14层
灯丝1:1层,
灯丝2:1层。

(12)绝缘设计
骨架,用1MM厚红钢纸,外加0.15MM覆膜青壳纸1层+0.08MM电缆纸1层;
原边绕组垫纸用0.08MM电缆纸;
副边高压绕组垫纸用0.05MM电缆纸;
组间绝缘用0.08MM电缆纸1层+0.15MM覆膜青壳纸2层+0.08MM电缆纸1层;
(绕组外绝缘同组间绝缘)
(13)计算线包(压实的)厚度:
=(1+0.15+0.08)(骨架及内层绝缘)
+(9×0.51+8×0.08)(原边绕组)
+(0.08×2+0.15×2)(组间绝缘1)
+(隔离层,如可能用0.05铜箔,如无,就用与高压绕组同直径的线绕一层代)
+(0.08×2+0.15×2)(组间绝缘2)
+(14×0.30+13×0.05)(高压绕组)
+(0.08×2+0.15×2)(组间绝缘3)
+(1.23)(灯丝1)
+(0.08×2+0.15×2)(组间绝缘4)
+(1.23)(灯丝2)
+(0.08×2+0.15×2)(线包外间绝缘)
=1.23+5.23+0.46+0.30+0.46+4.85+0.46+1.23+0.46+1.23+0.46
=16.37mm
(14)检验“蓬松系数”
蓬松系数=铁片窗口宽度 / 线包(压实的)厚度
“蓬松系数”一般可以在1.2-1.3间,蓬松系数小者要注意绕的十分紧才行,蓬松系数过大说明选的铁心规格大了,要重选重算。

对于经验不多的初学者,不妨以1.3-1.35进行检验。

不然可能绕完了发现装不进铁片。

检验:
蓬松系数=22 / 16.37 = 1.34
很合适的呀。

(15)修正方案::
灯丝绕组可以选用0.8nn直径漆包线2根并绕(0.80线最大外径0.89,每层可绕54圈,6.3V绕组26×2,刚好可以绕下)。

这样导线可以分布开来不至于只有半边,绕出来的线包就比较平整。

还可以减小绕组厚度。

这时,
计算线包(压实的)厚度:
=1.23+5.23+0.46+0.30+0.46+4.85+0.46+0.89+0.46+0.89+0.46
=15.69mm
蓬松系数=22 / 15.69 =1.41
这就非常之宽松了,说明选的铁心规格大了,利用手头现有铁心当然可以。

保证可以成功。

计算完毕。

(16)讨论:
当然阿,也可以选用2.5A/mm2的电流密度,不妨计算一下。

相关文档
最新文档