药代动力学主要参数意义
药代动力学参数及其意义
1.生物半衰期(biological half life)t1/2 hrt1/2=0.693/k吸收半衰期ti/2(a)消除半衰期ti/耶)PK参数的意义T1/2:反映药物在体内消除的快慢,常川来决定给约间隔Cmax:反映勿物在体内达到峰位时的浓度,决定驾物是杏产生约效或带来不以反应。
Tmax:反映药物讪到饭高浓度时的时间,决定药物产生. 药效或不厘反应的快慢Vd:反映约物在体内的分布大小Ke(P):消除速率,活数,反映%物*体内消除的快慢LCL:消除率,反II史药物从体内消除的快慢。
AUC:反映驾物吸收的大小F:试验药的AUC相X、j「对照药的AUC大小,反映药物的吸收相对比(生•物等效性)单次给药试验起始剂量的估计■有同样药临床耐受性试验参考(国外文献):取其起始剂量的1/2•有同类药临床耐受性试推参考:取其起始剂量的1/4•同类药临床有效最:取该剂吊:的1/10,作为起始剂量•无参考时:根据临床前动物试验结果,推算起始剂量2013/1/30由临床前资料估算单次给药起始剂量■ Blachwell 法敏感动物LDso的1/600或最低有毒量的1/60.改良Bkichwell法(考虑安全性)两种动物急毒试流LD网的"600及两种动物长毒的有彪量的1/60以其中最低者为起始齐Ipg-Dolh?法(考虑有效性)最敏感动物最小有效量的1/50-U100■改良Fibonucciy;(起始量较大,用于抗癌药)小鼠急4LD10的i/ioo或大动物最低毒性剂量的1/40-1/3016单次给药最大剂量的估计.同样药、同类药,或结构相近的药物:单次最大剂量-动物长荏试验:引起中卤症状,或脏器出现侦逆性变化剂量的1/10 -动物长质试验:最大耐受量的1/5〜1/2■最大剂量范围内应包括预期的有效剂量-注意可操作性2O13/L/3O19单次给药剂量递增方案(爬坡试验)⑴费氏递增法(改良Fibonacci法):开始递增快,以后按+1/3递增:+100%, +67%, +50%, +3。
药代动力学参数及其意义
药代动力学参数及其意义【原创版】目录1.药代动力学参数的定义2.药代动力学参数的意义3.常见药代动力学参数及其作用4.药代动力学参数的临床应用5.药代动力学参数的研究方法正文药代动力学参数是指在药物吸收、分布、代谢和排泄等过程中所涉及到的一系列参数,它可以用来描述药物在体内的动态变化规律。
药代动力学参数对于药物研发、临床应用和个体化治疗等方面具有重要的意义。
首先,药代动力学参数可以反映药物在体内的吸收、分布、代谢和排泄等过程,有助于研究药物在体内的生物转化和消除机制。
通过药代动力学参数的研究,可以优化药物的剂量、给药途径和治疗方案等,从而提高药物的疗效和安全性。
其次,药代动力学参数可以为药物的个体化治疗提供依据。
不同的个体在药物吸收、分布、代谢和排泄等方面可能存在差异,通过研究药代动力学参数,可以制定更符合患者个体特征的治疗方案,提高药物治疗的针对性和有效性。
常见的药代动力学参数包括生物利用度、表观分布容积、消除速率常数、半衰期等。
这些参数分别反映了药物的吸收程度、分布特点、消除速度和持续时间等方面的信息。
在药物研发和临床应用过程中,需要对这些参数进行详细研究和分析。
药代动力学参数的研究方法主要包括实验法和模型法。
实验法是通过动物实验或临床试验等手段,直接观测药物在体内的动态变化过程。
模型法则是通过建立数学模型,模拟药物在体内的药代动力学过程,从而预测药物的药代动力学参数。
总之,药代动力学参数对于药物研发、临床应用和个体化治疗等方面具有重要意义。
了解药代动力学参数的定义、意义、常见参数及其作用,有助于更好地应用药物,提高药物治疗的效果和安全性。
药代动力学参数及其意义
药代动力学参数及其意义
药代动力学参数是指描述药物在体内的吸收、分布、代谢和排泄过程的定量指标,常见的药代动力学参数包括:
1. 绝对生物利用度(absolute bioavailability):衡量药物在口服后被吸收到循环系统的百分比,是评价给药途径有效性的重要指标。
2. 血浆最高浓度(peak plasma concentration,Cmax):药物在给药后达到的最高浓度,反映了药物在体内的吸收速度。
3. 血浆最低浓度(trough plasma concentration,Cmin):药物在给药间隔期内达到的最低浓度,用于评价维持药物疗效的药物剂量。
4. 血浆半衰期(plasma half-life,t1/2):药物在体内降解或排除的速度所需的时间,衡量药物代谢和排泄的速度。
5. 消除常数(elimination constant,K):衡量药物在体内消除的速率,通常与血浆半衰期相关。
6. 清除率(clearance):衡量单位时间内从体内完全清除药物的能力,常用于调整药物剂量。
这些参数对于优化药物给药方案、确定药物的剂量和给药频率,以及设计药物动力学模型等方面具有重要意义。
药代动力学参数的测定可以通过体内、体外实验以及药物浓度的测定来获得。
药代动力学主要参数意义及计算
应用:UC常用 于药物的剂量调 整、药物相互作 用研究以及新药 开发过程中的药 代动力学评价。
04
药代动力学参数在药物研发中的应用
药物吸收阶段的预测
预测药物在体内的吸收速率 评估药物在特定组织中的分布情况 预测药物在不同生理条件下的吸收程度 指导药物制剂的改进和优化
药物分布阶段的预测
预测药物在组织中的浓度 分布
添加标题
添加标题
添加标题
添加标题
开发新型药物代谢动力学模型满 足个性化治疗需求
加强国际合作与交流共同推动药 物代谢动力学领域的发展
感谢观看
汇报人:
参数计算方法:药代动力学参数的计算方法有多种包括非房室模型和房室 模型等需要据具体研究情况和数据选择合适的计算方法。
药代动力学参数的分类
吸收参数:描述 药物从给药部位 进入血液循环的 速度和程度
分布参数:描述 药物在体内的分 布情况包括组织 分布和细胞内分 布
代谢参数:描述 药物在体内代谢 的情况包括代谢 速率和代谢产物 的性质
表观分布容积(Vd)
定义:指药物 在体内分布达 到平衡后按测 得的浓度计算 药物应占有的
体液容积
计算方法: Vd=给药量/血
药浓度
意义:反映药 物在体内分布 的 广 泛 程 度 Vd 越大药物在体
内分布越广
影响因素:药 物的脂溶性、 组织亲和力、 血浆蛋白结合
率等
清除率(Cl)
定义:清除率是指 单位时间内从体内 清除的药物量与血 浆药物浓度之间的 比值
利用药代动力学 参数制定个性化 的给药方案
通过药代动力学 研究优化给药方 案以提高疗效和 降低不良反应
根据患者的生理 和病理情况调整 给药方案以确保 药物的有效性和 安全性
药代动力学参数及其意义
药代动力学参数及其意义1. 引言药代动力学(Pharmacokinetics,简称PK)是研究药物在体内吸收、分布、代谢和排泄过程的科学。
药代动力学参数是描述药物在体内动力学过程的定量指标,对于药物的疗效和安全性评价具有重要意义。
2. 药代动力学参数的分类药代动力学参数主要分为吸收动力学参数、分布动力学参数、代谢动力学参数和排泄动力学参数。
2.1 吸收动力学参数吸收动力学参数描述药物从给药部位到达循环系统的过程。
常用的吸收动力学参数有峰浓度(Cmax)、时间峰浓度(Tmax)、面积下曲线(AUC)等。
•Cmax是药物在体内达到的最高血药浓度,反映了药物在给药后的吸收速度和程度。
•Tmax是药物达到最高血药浓度的时间点,可以用来评估药物的快慢吸收。
•AUC是药物在一定时间内血药浓度与时间曲线下的面积,反映了药物在体内的总体吸收程度。
2.2 分布动力学参数分布动力学参数描述药物在体内分布到各组织和器官的过程。
常用的分布动力学参数有分布容积(Vd)和蛋白结合率。
•Vd是药物在体内分布的虚拟容积,反映了药物在体内的分布广度。
•蛋白结合率是药物与血浆蛋白结合的比例,影响药物的分布和药效。
2.3 代谢动力学参数代谢动力学参数描述药物在体内经肝脏等器官代谢的过程。
常用的代谢动力学参数有清除率(CL)和半衰期(t1/2)。
•CL是药物在单位时间内从体内清除的量,反映了药物的代谢速度。
•t1/2是药物在体内消失一半的时间,反映了药物的代谢速度和持续时间。
2.4 排泄动力学参数排泄动力学参数描述药物从体内排除的过程。
常用的排泄动力学参数有排泄率和清除率。
•排泄率是药物从体内排泄的速率,反映了药物的排泄速度。
•清除率是药物从体内清除的速率,反映了药物的总体排泄能力。
3. 药代动力学参数的意义药代动力学参数对于药物的疗效和安全性评价具有重要意义。
3.1 疗效评价药代动力学参数可以反映药物的吸收速度、峰浓度和总体吸收程度,对药物的疗效产生影响。
药效动力学参数
药效动力学参数
摘要:
一、药效动力学参数的概念
二、药效动力学参数的重要性
三、药效动力学参数的分类
1.药代动力学参数
2.药效学参数
四、药效动力学参数的测定方法
五、药效动力学参数在临床应用中的作用
六、药效动力学参数的研究现状与发展趋势
正文:
药效动力学参数是指药物在生物体内发挥作用的过程中,反映药物浓度与生物效应之间关系的参数。
这些参数对于药物研发、临床用药以及个体化治疗等方面具有重要的意义。
药效动力学参数可以分为两大类:药代动力学参数和药效学参数。
药代动力学参数主要描述药物在体内的吸收、分布、代谢和排泄过程,包括药物的生物利用度、半衰期、清除率等。
药效学参数则主要描述药物对生物体的生物效应,如最大效应、效应强度、剂量- 效应关系等。
药效动力学参数的测定方法有多种,包括临床试验、动物实验以及计算机模拟等。
在药物研发过程中,研究人员会通过这些方法来评估药物的安全性、有效性和个体差异。
在临床应用中,医生会根据患者的药效动力学参数来调整
药物剂量,以达到最佳治疗效果。
随着药物研究的深入,药效动力学参数在药物研发和临床应用中的作用越来越受到重视。
研究人员不仅关注药物的化学结构和作用机制,还关注药物在体内的代谢和排泄过程,以及药物对生物体的生物效应。
此外,个体化治疗的理念也促使药效动力学参数的研究不断发展,以便为患者提供更个性化、更有效的治疗方案。
总之,药效动力学参数在药物研发、临床用药以及个体化治疗等方面具有重要意义。
药代动力学主要参数意义及计算
零级消除动力学 dC kC 0 数学表达公式 dt
dC k dt
t C0 Ct k
C t C 0 kt
零级消除动力学特点
t1 / 2 C 0 0.5C 0 2k k
•消除速率与血药浓度无关,属定量消除 •无固定半衰期 • 血药浓度用真数表示时量曲线呈直线 •当体内药量过大,超过机体最大消除能力时,多以零级动
.
分布过程相关参数:
表观分布容积(Vd)
体内药物总量待平衡后,按血药浓度计算所需的体 液总容积。
X:体内药物 总药量;C:血药浓度 若体内药量为X 分布达平衡时血浆浓为度C
则 Vd X /C
.
若体内药量相同,而血药浓度高,则Vd小 (主要分布在血浆中)
若体内药量相同,而血药浓度低,则Vd大 (主要分布在组织中)
概念:在单位时间内肝脏清除药物的总量与当
时血浆药物浓度的比值。
Cout
CLH = QH (Cin-Cout) Cin
.
Vd求解法
面积法:
此法不受房室模型限制。
A U C0 cdt0 c0ektdtc k 0ekt 0 0 c k 0 c k 0
C 0kA U C
Vd
X c0
X k AUC
.
消除过程相关参数
半衰期 清除率 消除动力学
一级消除动力学 零级消除动力学
.
半衰期(half-life,t1/2)
计算公式:
ClVdK
.
总体清除率
表示药物消除速率的另一种方法。 指体内诸器官在单位时间内消除药物的血浆容积,
是肝、肾以及其他消除途径清除率的总和
Cl k Vd
ClAU DCc0D /kkVd
C lC lHC lRC lO th er
药代动力学主要参数意义及计算
力学消除,当血药浓度降低至机体具有消除能力时,转为按
一级动力学消除。
dC kC 1 dt C t C 0 e kt
dC kC 0 dt dC k dt C t C 0 kt
Zero order First order
• 总体清除率(clearance,Cl)
单位时间内有多少分布容积中的药物被清除 (单位:ml/min or L/hr)
概念:在单位时间内肝脏清除药物的总量与当
时血浆药物浓度的比值。
Cout
CLH = QH (Cin-Cout) Cin
EH =
Vd是假想容积,不代表生理容积,但可看出 药物与组织结合程度。
60kg正常人,体液总量36L(占体重的 60%) ,其中血液3.0L(占体重的5%), 细胞内液24L(占体重的40%),细胞外 液12L(占体重的20%)
若Vd<3L,说明只分布在血管中,如酚红 若Vd≤36L,说明分布在体液中 若Vd≥100L,说明与组织特殊结合
Vd求解法
面积法:
此法不受房室模型限制。
A U C 0 cd t0 c0e ktd tc k 0e kt 00 c k 0 c k 0
C 0kA U C
Vd
X c0
X k AUC
消除过程相关参数
半衰期 清除率 消除动力学
一级消除动力学 零级消除动力学
半衰期(half-life,t1/2)
药代动力学主要参数 意义及计算
中国医科大学药理学教研室 刘明妍
吸收过程相关参数
AUC 达峰时间Tmax 峰浓度Cmax 生物利用度
吸收进入血液循环的相对数量和速度
吸收相对数量用AUC 吸收速度通过Cmax,Tmax来估算
药物代谢动力学参数
药物代谢动力学参数
药物代谢动力学参数是描述药物在体内被代谢的速度和程度的量化指标。
常用的药物代谢动力学参数包括:
1. 代谢速率常数(k):表示单位时间内药物被代谢的速度,通常以小时为单位。
2. 清除率(Cl):表示单位时间内清除体内药物的能力,通常以体积单位(如L/h)表示。
3. 生物利用度(F):表示口服给药后药物进入循环系统的比例,通常以百分比表示。
4. 血浆半衰期(t1/2):表示血浆中药物浓度下降到初始浓度的一半所需的时间。
5. 最大浓度(Cmax):表示药物在体内达到的最高浓度。
6. 曲线下面积(AUC):表示药物在一定时间内血浆中存在的总量,通常以浓度-时间单位(如mg·h/L)表示。
这些参数可以通过体内外药动学研究方法获得,进一步了解药物的代谢机制、代谢途径和代谢物的生成情况,对药物的临床应用、药物相互作用等有重要指导意义。
药代动力学主要参数意义讲解学习
一级消除
零级消除
Give 100 mg of a drug
1 half-life ………….. 50 2 half-lives………… 25 3 half-lives …….….. 12.5 4 half-lives ………… 6.25 5 half-lives ………… 3.125 6 half-lives …………. 1.56
药代动力学主要参数 的意义
吸收过程相关参数
AUC 达峰时间Tmax 峰浓度Cmax 生物利用度
吸收进入血液循环的相对数量和速度
吸收相对数量用AUC 吸收速度通过Cmax,Tmax来估算
MTC
MEC
血药浓度—时间曲线下面积(AUC)
与吸收后进入体循环 的药量成正比
反映进入体循环药物 的相对量
若体内药量相同,而血药浓度高,则Vd小 (主要分布在血浆中)
若体内药量相同,而血药浓度低,则Vd大 (主要分布在组织中)
Vd是假想容积,不代表生理容积,但可看出 药物与组织结合程度。
60kg正常人,体液总量36L(占体重的 60%) ,其中血液3.0L(占体重的5%), 细胞内液24L(占体重的40%),细胞外 液12L(占体重的20%)
口服咪达唑仑进入肠粘膜的量是给药量的 100%,肠道首关效应为43%,肝脏首关效 应为44%,口服咪达唑仑的生物利用度是多 少?
F=100%×(1-43%)×(1-44%) =31.92%
绝对生物利用度 口服等量药物AUC
F= 静注等量药物AUC
× 100%
所以,一种药物若以静脉注射的话,它的绝对生物利用度是1;而若 是其他的服用方式,则绝对生物利用度一般会少于1。
二、肾清除率(Renal clearance,CLR )
药代动力学参数及其意义
药代动力学参数及其意义药代动力学参数是描述药物在生物体内的传递、代谢和排泄过程的重要参数,他们是用来衡量药物作用效果的有效工具,可以帮助医生准确地把握病人药物治疗方案。
药代动力学参数主要有六种:入髓率(F),半衰期(T1/2),清除率(CL),平衡分布容积(Vd),多次剂量公式K,最大血药浓度(Cmax)。
入髓率(F):药物经过血脑屏障进入脑内的比例。
入髓率是衡量药物是否可以通过血脑屏障进入脑部的重要参数,它的值越大,表明药物经过血脑屏障进入脑内的可能性越大。
高入髓率的药物往往更容易有较好的疗效。
半衰期(T1/2):衡量药物真正从生物体中消失的时间长短,半衰期越短,药物在体内的滞留时间越短,就更容易实现“短效能”。
清除率(CL):衡量一天内药物从体内通过排泄所被清除的速度。
清除率与药物的性质直接关联,它影响药物在人体内的滞留时间,清除率越快,滞留时间越短,则药物血药量也越低。
平衡分布容积(Vd):是指一种药物在组织与细胞内的平衡态的浓度,它反映的是一种药物的可及性,如果一种药物的Vd值高,说明它的可及性较好,该药物更容易进入细胞内有效,能够发挥药效,达到治疗效果。
多次剂量公式K:是描述药物在某一时间和某一体重的平衡浓度和血药浓度之间的关系的参数。
它代表了一种药物在不断服药的情况下,血药浓度的稳定性,多次剂量公式K的值越小,表示每次新药物的剂量越大,总的血药浓度就越稳定。
最大血药浓度(Cmax):血药浓度的最大值,反映的是药物在服用后在肝脏的代谢水平,服药前后两次血药浓度最大值的差异,可以代表药物的滞留时间,Cmax是药物产生药理作用的标志,影响疗效。
以上这些药代动力学参数,共同反映了药物在人体内的传递、代谢和排泄的过程,是医生衡量药物作用效果的重要参考素。
使用这些参数,可以有效地把握病人的治疗方案,从而提高药物治疗效果,改善病人的治疗结果。
药代动力学参数及其意义
药代动力学参数及其意义
药代动力学是研究药物在体内的吸收、分布、代谢和排泄过程以及这些过程的参数的科学。
药代动力学参数是用来描述药物在体内的动力学行为和性质的指标。
以下是一些常见的药代动力学参数及其意义:
1.生物利用度(Bioavailability):衡量药物经口(口服)给药后进入循环系统的比例,通常以百分比表示。
高生物利用度意味着药物能够有效地被吸收,而低生物利用度可能需要更高的剂量来达到治疗效果。
2.最大浓度(Cmax):在给药后,药物在血浆或组织液中的最高浓度。
Cmax 通常与药物的吸收速率和剂量有关,可以用来评估药物的毒性和疗效。
3.药物清除率(Clearance):描述药物从体内清除的速度,通常以体积单位/时间单位(如L/h)来表示。
高清除率表示药物在体内更快地被代谢和排泄,而低清除率可能需要更长时间才能达到药物的疗效。
4.药物半衰期(Half-life):药物浓度下降一半所需的时间。
半衰期是估计药物在体内停留多长时间的重要参数。
长半衰期意味着药物消失缓慢,可以减少药物剂量和给药频率。
5.分布容积(V olume of distribution):描述药物在体内分布的广度,通常以体积单位(如L)表示。
高分布容积意味着药物能够广泛地分布到组织中,而低分布容积可能说明药物主要停留在血液中。
6.代谢酶饱和度(Enzyme saturation):描述药物代谢过程中参与代谢的酶饱和的程度。
当药物浓度超过酶的饱和度时,药物的代谢速率将不再随剂量的增加而线性增加。
药动学参数及意义
药动学参数及意义
药动学是研究药物在人体内的吸收、分布、代谢和排泄过程的科学。
药动学参数是指通过药物动力学研究得出的数值,用于描述药物在人体内的药代动力学特性。
以下是常见的药动学参数及其意义:
1. 生物利用度(Bioavailability,F):药物经口服、肌肉注射等途径进入人体后,能够到达循环系统中的药物比例称为生物利用度。
生物利用度越高,药物的疗效越好。
2. 最大浓度(Maximum Concentration,Cmax):药物在给药后达到的最高浓度。
Cmax高的药物可以快速发挥作用,但易造成药物浓度过高而导致副作用。
3. 时间-浓度曲线下面积(Area Under the Curve,AUC):药物在给药后的时间-浓度曲线下面积,反映药物在体内的总体积。
AUC值高的药物可以保持足够长的维持血药浓度时间,从而产生持久的疗效。
4. 半衰期(Half-life,t1/2):药物在体内药物浓度减半的时间。
半衰期较长的药物可以保持较长时间的药物浓度,减少用药次数。
5. 清除率(Clearance,Cl):单位时间内清除药物的总量。
清除率高的药物代谢能力强,药物在体内的作用时间较短。
6. 分布容积(Volume of Distribution,Vd):药物分布于体内各组织平衡的程度。
分布容积大的药物在体内分布广泛,分布容积小的药物则在体内分布较为集中。
药动学参数是药物研究的重要指标,对于临床应用、药物剂量的选择等方面具有重要意义。
各个参数之间相互影响,综合考虑才能更好地评估药物的药代动力学特征。
[1]药代动力学主要参数意义及计算
概念:在单位时间内肝脏清除药物的总量与当
QH (Cin-Cout) Cin
EH =
Cin-Cout Cin
EH
CLH = QH × EH FH=1-EH
Cin
QH:肝血流量 Cin :肝入口处血药浓度 Cout :肝出口处血药浓度
Cin=Cout Cout=0
Vd是假想容积,不代表生理容积,但可看出 药物与组织结合程度。
60kg正常人,体液总量36L(占体重的 60%) ,其中血液3.0L(占体重的5%), 细胞内液24L(占体重的40%),细胞外 液12L(占体重的20%)
若Vd<3L,说明只分布在血管中,如酚红 若Vd≤36L,说明分布在体液中 若Vd≥100L,说明与组织特殊结合
分布过程相关参数:
表观分布容积(Vd)
体内药物总量待平衡后,按血药浓度计算所需的体 液总容积。
X:体内药物 总药量;C:血药浓度
若体内药量为 X 分布达平衡时血浆浓度为 C
则 Vd X /C
若体内药量相同,而血药浓度高,则Vd小 (主要分布在血浆中)
若体内药量相同,而血药浓度低,则Vd大 (主要分布在组织中)
当停止用药时间达到5个药物的t1/2时,药物的血浓度 (或体存量)仅余原来的3%,可认为已基本全部消除。
经过5个半衰期,血浆中药物基本完全从体内 消除,这种规律不因给药剂量、给药途径、消 除途径而发生改变
多次给药如每隔一个半衰期给药一次,则5个 半衰期后可达稳态血药浓度。
半衰期的任何变化将反映消除器官功能的变化, 与人体的病理/生理状态有关。
C ss
AUC
R Ass k C ss Vd k
C ss
R k Vd
FD /
药代动力学参数的含义和计算
Time
总面积=各间隔时间内梯形面积和
AUC0→n=(1/2)(C1+C2)(t2-t1)+ (1/2)(C2+C3)(t3-t2) + ⋅⋅⋅ ⋅⋅⋅ ⋅+ (1/2)(Cn-1+Cn)(tn-tn-1)
总清除率(CL, Total body clearance)
n 单位时间内有多少毫升血中的药物被清除 n 正确估算药物从体内消除速度的唯一参数
• 将激动剂的受体动力学公式改为如下:
E = [D] Emax Kd +[D] Kd = 1
K
E = K[D ] Emax 1 + K[D ]
在竞争性拮抗剂存在下:
• 受体动力学方程变为
E' = Emax
[D] Kd(1+ [I]) +[D]
⇒ E' = Emax
1
[D] (1+ K'[I])+[D]
Scott比值法
[D] = K + [D] = K + 1 [D]
E
E max
E max E max
令 X = [D],则 Y = [ D ] E
得到:
Y= K + 1 X Emax Emax
令 则 a = K ,b = 1
Emax
Emax
Emax
=
1 b
K=a b
pA2的计算:
• 原理同pD2 • 采用Schild plot作图法
药代动力学参数的 含义和计算
(单剂静脉注射一级消除动力学)
叶开和
一、常用参数及意义
消除速率常数 (K or Ke)
• 表示单位时间内机体能消除药物的固定分 数或百分比,单位为时间的倒数。如某药 的k=0.2h-1,表示机体每小时可消除该小 时起点时体内药量的20%
药物动力学重要参数
药物动力学重要参数
1.吸收速率常数(ka):药物从吸收部位进入人体循环的速度,即
吸收速度与体内药量之间的比例常数。
用来衡量药物吸收速度的快慢。
2.消除速率常数(K):药物在体内代谢、排泄的速度与体内药量
之间的比例常数。
K值的大小可用来衡量药物从体内消除速度的快慢。
3.吸收分数(F):药物进入体循环的量与所给剂量的比值。
血管
内给药F=1,表示药物全部进入体循环;其他给药途径F<1,用来衡量
血管外给药时进入体循环药物的相对数量,又称生物利用度:
4.表观分布容积):体内药量按血浆中同样浓度分布时所需体液
的总体积。
可用其来表示药物在体内分布的广泛性。
5.生物半衰期(t1/2):药物在体内消除一半所需要的时间。
与K
之间的关系为t1/2=0.693/K.用于衡量药物消除速度的快慢。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Vd是假想容积,不代表生理容积,但可看出 药物与组织结合程度。
2020/11/14
11
60kg正常人,体液总量36L(占体重的 60%) ,其中血液3.0L(占体重的5%), 细胞内液24L(占体重的40%),细胞外 液12L(占体重的20%)
t 1 / 2
kk
20
一级消除动力学特点: 血中药物消除速率与血药浓度成正比, 属定比消除 有固定半衰期,与浓度无关 如浓度用对数表示则时量曲线为直线 绝大多数药物在临床常用剂量或略高于 常用量时,都按一级动力学消除
2020/11/14
21
零级消除动力学 dC kC 0 数学表达公式 dt
半衰期的任何变化将反映消除器官功能的变化, 与人体的病理/生理状态有关。
2020/11/14
19
二种消除方式
2020/11/14
➢一级动力学消除时量曲线
dC kC 1 dt
Ct
C
0
e kt
loC gt loC g0 k t 2.303
t ln C 0 ln C t k
ln 2 0.693
2020/11/14
6
FFabFIFH
ab:通过胃肠粘膜; I:肠内避开首关效应; H:肝脏内避开首关效应
2020/11/14
7
口服咪达唑仑进入肠粘膜的量是给药量的 100%,肠道首关效应为43%,肝脏首关效 应为44%,口服咪达唑仑的生物利用度是多 少?
F=100%×(1-43%)×(1-44%) =31.92%
C 0kA U C
Vd
X c0
X k AUC
2020/11/14
15
消除过程相关参数
半衰期 清除率 消除动力学
一级消除动力学 零级消除动力学
2020/11/14
16
半衰期(half-life,t1/2)
通常指血浆消除半衰期。 药物在体内分布达到平衡后,血浆药物浓度消除一
半所需的时间。 是表达药物在体内消除快慢的重要参数
当停止用药时间达到5个药物的t1/2时,药物的血浓度 (或体存量)仅余原来的3%,可认为已基本全部消除。
2020/11/14
18
经过5个半衰期,血浆中药物基本完全从体内 消除,这种规律不因给药剂量、给药途径、消 除途径而发生改变
多次给药如每隔一个半衰期给药一次,则5个 半衰期后可达稳态血药浓度。
1L
活性炭吸附90mg药物
2020/11/14
13
Vd求解法
图解外推法:
适用于一室模型 半对数坐标纸上
作图,可求得k和 lgC0,药量D 已 知,C0可得,Vd 值可以求出
2020/11/14
14
Vd求解法
面积法:
此法不受房室模型限制。
A U C0 cdt0 c0ektdtc k 0ekt 00 c k 0 c k 0
ln2 0.693
t 1/ 2
kk
t1/ 2 C0 0.5C0 2k k
一级消除
零级消除
2020/11/14
17
Give 100 mg of a drug
1 half-life ………….. 50 2 half-lives………… 25 3 half-lives …….….. 12.5 4 half-lives ………… 6.25 5 half-lives ………… 3.125 6 half-lives …………. 1.56
若Vd<3L,说明只分布在血管中,如酚红 若Vd≤36L,说明分布在体液中 若Vd≥100L,说明与组织特殊结合
2020/11/14
12
药物总量100mg
100mg 1L
Vd
100mg 1L 100mg/ L
与组织或蛋白有特殊亲和
力,贮存在某组织中
10mg
Vd
100mg 10L 10mg/ L
反映进入体循环药物 的相对量
血药浓度随时间变化 的积分值
2020/11/14
4
AUC计算方法
积分法:
AUC0 0 Cdt
梯形法:
AU C0i n0C i12 C i ti
Cdt t
2020/11/14
5
First Pass Elimination (First Pass Metabolism ,First Pass Effect)
dC k dt
t C0 Ct k
C t C 0 kt
零级消除动力学特点
t1 / 2 C 0 0.5C 0 2k k
•消除速率与血药浓度无关,属定量消除 •无固定半衰期 • 血药浓度用真数表示时量曲线呈直线 •当体内药量过大,超过机体最大消除能力时,多以零级动
力学消除,当血药浓度降低至机体具有消除能力时,转为按
一级动力学消除。
2020/11/14
22
2020/11/14
dC kC 1 dt C t C 0 e kt
dC kC 0 dt dC k dt C t C 0 kt
23
Zero order First order
2020/11/14
24
2020/11/14
25
• 总体清除率(clearance,Cl)
药代动力学主要参数意义
吸收过程相关参数
AUC 达峰时间Tmax 峰浓度Cmax 生物利用度
2020/11/14
2
吸收进入血液循环的相对数量和速度
吸收相对数量用AUC 吸收速度通过Cmax,Tmax来估算
MTC
MEC
2020/11/14
3
血药浓度—时间曲线下面积(AUC)
与吸收后进入体循环 的药量成正比
2020/11/14
9
分布过程相关参数:
表观分布容积(Vd)
体内药物总量待平衡后,按血药浓度计算所需的体 液总容积。
X:体内药物 总药量;C:血药浓度
若体内药量为X 分布达平衡时血浆浓为度C
则 Vd X /C
2020/11/14
Байду номын сангаас
10
若体内药量相同,而血药浓度高,则Vd小 (主要分布在血浆中)
2020/11/14
8
绝对生物利用度 口服等量药物AUC
F= 静注等量药物AUC
× 100%
所以,一种药物若以静脉注射的话,它的绝对生物利用度是1;而若 是其他的服用方式,则绝对生物利用度一般会少于1。
相对生物利用度
受试制剂AUC F= 参比制剂AUC
× 100%
相对生物利用度是量度某一种药物相较同一药物的其他处方的生物利 用度,其他处方可以一种已确定的标准,或是 经由其他方式服用。