2014年春季新版新人教版七年级数学下学期6.2、立方根教案3
新人教版七下数学 6.2 立方根(教案)
6.2 立方根【知识与技能】1.了解立方根的概念,初步学会用根号表示一个数的立方根.2.了解立方与开立方互为逆运算,会用立方运算或计算器求某数的立方根.3.能用类比平方根的方法学习立方根及开立方运算.【过程与方法】用类比的方法探寻出立方根的运算及表示方法,并能总结出平方根与立方根的异同.【情感态度】发展学生的求同存异思维,使他们能在复杂的环境中明辨是非,并能作出正确的处理.【教学重点】立方根的概念及求法.【教学难点】立方根与平方根的区别.一、情境导入,初步认识问题 填写,并探求交流立方值与平方值的不同.鼓励学生踊跃发言表述各自总结的结论.【教学说明】求立方运算时,当底数互为相反数,其立方值也互为相反数,这与平方运算不同,平方运算的底数为相反数时,平方值相等.故一个正数的平方根有两个值,但一个正数的立方根只有一个值.引出立方根定义:若x 3=a,则x 为a 的立方根,记为3a .根据上述定义,请学生口述下列问题的结果,并推广到一般规律.【教学总结】由教师汇总得出下列结论:1.正数的立方根是正数,负数的立方根是负数,0的立方根是0.2.33a a -=-.二、思考探究,获取新知例1 求下列各数的立方根.分析:依据立方根的定义,先写出这四个数分别是由哪个数的立方得到的,从而求出立方根.【教学说明】被开方数是带分数时,先将其化成假分数.例2 求下列各式的值.分析:先要分清符号的实际意义,如3512表示求-512的立方根,而-3512表示求512的立方根的相反数.解:(1)-8;(2)29;(3)-0.2;(4)6. 【教学说明】以上两例中可总结得到:(1)任何数的立方根只有一个,而且被开方数的符号与立方根的符号相同;(2)被开方数是算式,可先算出结果.例3 求下列各式中的x.分析:可根据立方根的定义求得x 的大小.(2)(3)(4)中分别把(x+2),(x-1),(2x+3)看作一个整体.三、运用新知,深化理解1.计算下列各题2.某金属冶炼厂将27个大小相同的立方体钢铁在炉火中熔化后浇铸成一个长方体钢铁,此长方体的长,宽,高分别为160cm,80cm和40cm,求原来立方体钢铁的边长.3.有一边长为6cm的正方体的容器中盛满水,将这些水倒入另一正方体容器时,还需再加水127cm3才满,求另一正方体容器的棱长.4.若3x+16的立方根是4,求2x+4的平方根.【教学说明】通过上述几道题目的练习,可进一步巩固对本节知识的理解和领悟.四、师生互动,课堂小结按下列问题顺序让学生表达,并补充完善.1.立方和开立方的意义.2.正数、0、负数的立方根的特征.3.立方根与平方根的异同.1.布置作业:从教材“习题6.2”中选取.2.完成练习册中本课时的练习.本课时教学要突出体现“创设情境——提出问题——建立模型——解决问题”的思路,提倡学生自主学习,利用平方根的知识类比学习立方根的知识.。
人教版数学七年级下册6.2《立方根》教学设计3
人教版数学七年级下册6.2《立方根》教学设计3一. 教材分析《立方根》是人教版数学七年级下册第六章第二节的内容,这一节主要介绍了立方根的概念和求法。
通过这一节的学习,学生能够理解立方根的定义,掌握求立方根的方法,并能运用到实际问题中。
教材通过例题和练习题的形式,帮助学生巩固所学知识,提高解决问题的能力。
二. 学情分析学生在学习这一节内容前,已经学习了有理数、实数等基础知识,对数学运算有一定的掌握。
但是,对于立方根这一概念,学生可能较为陌生,需要通过实例和操作来理解和掌握。
同时,学生可能存在对数学概念理解不深、运算速度慢等问题,需要教师在教学过程中进行针对性的引导和辅导。
三. 教学目标1.知识与技能:理解立方根的概念,掌握求立方根的方法,能够运用立方根解决实际问题。
2.过程与方法:通过实例和操作,培养学生的观察能力、思考能力和运算能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的耐心和细心,使学生感受到数学在生活中的应用。
四. 教学重难点1.重点:立方根的概念和求法。
2.难点:理解立方根的概念,掌握求立方根的方法。
五. 教学方法1.情境教学法:通过实例和实际问题,引导学生理解立方根的概念和应用。
2.引导发现法:教师引导学生观察、思考和发现立方根的规律,培养学生的思维能力。
3.实践操作法:让学生通过实际操作,掌握求立方根的方法。
六. 教学准备1.教具准备:黑板、粉笔、多媒体教学设备。
2.学具准备:练习本、笔、计算器。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本节课的内容,如:“一个正方体的体积是27立方米,求这个正方体的棱长。
”让学生思考并回答,引导学生认识到立方根的重要性。
2.呈现(10分钟)教师通过PPT或者黑板,呈现立方根的定义和求法,让学生初步了解立方根的概念。
3.操练(10分钟)教师给出一些简单的立方根运算题,让学生现场解答,并及时给予指导和反馈。
4.巩固(10分钟)教师给出一些有一定难度的立方根运算题,让学生独立完成,并分组讨论,共同解决问题。
人教版数学七年级下册6.2《立方根》教学设计
人教版数学七年级下册6.2《立方根》教学设计一. 教材分析人教版数学七年级下册6.2《立方根》是初中数学中重要的一部分,主要让学生了解立方根的概念,掌握求立方根的方法,并能够应用立方根解决实际问题。
本节内容在学生的数学知识体系中起到了承上启下的作用,为后续学习四次根式等知识打下基础。
二. 学情分析学生在学习本节内容前,已经学习了有理数、实数等知识,对数的概念有一定的了解。
但学生对立方根的概念和求法还比较陌生,需要通过实例和练习来逐步理解和掌握。
同时,学生可能对负数的立方根存在疑惑,需要通过具体例子进行解释和引导。
三. 教学目标1.了解立方根的概念,掌握求立方根的方法。
2.能够应用立方根解决实际问题。
3.培养学生的数学思维能力和解决问题的能力。
四. 教学重难点1.立方根的概念和求法。
2.负数的立方根的理解。
3.应用立方根解决实际问题。
五. 教学方法采用问题驱动法、实例教学法、小组合作学习法等,通过引导、讲解、实践、讨论等方式,帮助学生理解和掌握立方根的知识。
六. 教学准备1.PPT课件。
2.练习题和实际问题。
3.教学工具,如黑板、粉笔等。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节内容,如“一个正方体的体积是27立方米,求这个正方体的棱长。
”引导学生思考和讨论,引出立方根的概念。
2.呈现(15分钟)讲解立方根的定义,通过PPT展示立方根的图像,让学生直观地理解立方根的概念。
同时,讲解如何求一个数的立方根,以及负数的立方根。
3.操练(15分钟)让学生进行一些立方根的练习题,巩固所学知识。
练习题包括求一个数的立方根,以及判断一个数的立方根的正负等。
4.巩固(10分钟)通过一些实际问题,让学生应用立方根的知识解决问题,巩固所学内容。
如“一个立方体的体积是-8立方米,求这个立方体的棱长。
”5.拓展(10分钟)讲解立方根在实际生活中的应用,如计算物质的体积、求解方程等。
引导学生思考和讨论,培养学生的数学思维能力。
人教版七年级下册6.2立方根教学设计
人教版七年级下册6.2立方根教学设计一、教学目标1.了解立方根的定义及其计算方法;2.掌握简单的立方根计算方法;3.了解立方根在实际应用中的作用。
二、教学重点1.理解立方根的定义和计算方法;2.掌握简单的立方根计算方法。
三、教学难点1.立方根的计算方法;2.立方根在实际应用中的作用。
四、教学方法1.演示法;2.实践法;3.讨论法;4.合作学习法。
五、教学过程1. 导入环节1.向学生介绍本节课的学习目标和重点;2.引出重点词汇“立方根”,询问学生是否听说过此词汇,对其有什么了解。
2. 新课讲解1.运用白板或投影仪,向学生展示立方根的定义和计算方法;2.运用简单的计算例子,讲授立方根的计算方法,并强调其与平方根的区别;3.介绍立方根在实际应用中的作用,引导学生思考并讨论。
3. 练习环节1.分组让学生自主进行立方根的计算练习,实践中逐渐掌握计算方法;2.师生互动,让学生通过讲解和分享方式表达对本节课学习内容的理解。
4. 拓展延伸1.以生活中例子的方式,让学生体会立方根的实际应用,如建筑工地上混凝土浇筑时的计算;2.让学生练习利用立方根进行计算,比如球体的体积计算等。
5. 总结归纳1.向学生展示本节课的重点和难点,再次强调立方根的应用;2.教师引导学生总结本节课的主要知识点,并用自己的话进行概括。
六、教学评价1.以小组形式进行教学反思并分享;2.利用学生练习时的练习作业或课后作业进行成果确认;3.教师对学生的评价应与课堂讲解内容匹配,注重宏观评价和重点评价。
七、板书设计1.立方根的定义及公式;2.立方根的计算方法;3.立方根与平方根的区别;4.在实际生活中的应用。
八、教学资源准备1.投影仪或白板;2.课本、教学PPT、练习题等教具。
(新人教版)数学七年级下册:6.2《立方根》教案(3份)
《立方根》教案一、教学目标:1、知识技能:(1)了解立方根和开立方的概念,掌握立方根的性质.(2)会用根号表示一个数的立方根.(3)能用开立方运算求数的立方根,体会立方与开立方运算的互逆性.2、能力目标:培养学生的理解能力和运算能力.3、情感目标:体会立方根与平方根的区别与联系.二、教学重点难点:1、教学重点:本节重点是立方根的意义、性质.2、教学难点:本节难点是立方根的求法,立方根与平方根的联系及区别.三、教法分析:定义推导上:采用引导探索法.定义应用上:采用递进练习法.用类比及引导探索由浅入深,由特殊到一般地提出问题,引导学生自主探索,合作交流,得出立方根的定义,将定义的应用融入到探究活动中.四、学习方法:观察、猜测、交流、讨论、分析、推理、归纳、总结.五、教学过程:(一)知识回顾:口答:(1)平方根的概念?如何用符号表示数a(≥0)的平方根?(2)正数有几个平方根?它们之间的关系是什么?负数有没有平方根?0平方根是什么?(二)合作学习:给出一个3×3×3魔方,并提问这是由几个大小相同的单位立方体组成的魔方?(三)想一想:1、要做一个体积为27立方厘米的立方体模型,它的棱要多少长?你是怎么知道的?2、什么数的立方等于-27?归纳:1.立方根的概念:一般地,如果一个数的立方等于a,这个数就叫做a的立方根(也叫做三次方根).即X3=a,把X叫做a的立方根.如53=125则把5叫做125的立方根.(-5)3=-125则把-5叫做-125的立方根.数a”表示,读作“三次根号a”.2.开立方:求一个数的立方根的运算,叫做开立方.开立方与立方也是互为逆运算,因此求一个数的立方根可以通过立方运算来求.(四)例题讲解例1、求下列各数的立方根:(1)-8 (2) 8(3) (4)0.216 (5)0 引导学生根据平方根的性质得出立方根的性质:1、正数有一个正的立方根.2、负数有一个负的立方根.3、0的立方根还是0.让学生说出平方根,算术平方根以及立方根是本身的数分别是多少?.练一练:抢答1.判断下列说法是否正确,并说明理由.(1)827的立方根是±23(2)25的平方根是5 (3)-64没有立方根 (4)-4的平方根是±2 (5)0的平方根和立方根都是0(6)互为相反数的两个数的立方根也互为相反数.例2、求下例各式的值:(教师讲解,可以提问学生)(五)当堂检测计算:(六)归纳小结:学生概括:1、通过本节课的学习你获得了那些知识?2、你能总结出平方根和立方根的异同点吗?教师概括:相同点: (1)0的平方根、立方根都有一个是0(2)平方根、立方根都是开方的结果.不同点: (1)定义不同.(2)个数不同.(3)表示方法不同.(4)被开方数的取值范围不同.(七)布置作业827-+《立方根》教案教学目标:1、了解立方根的概念,初步学会用根号表示一个数的立方根.2、了解开立方与立方互为逆运算,会用立方运算求某些数的立方根.3、让学生体会一个数的立方根的唯一性.4、分清一个数的立方根与平方根的区别.教学重点:立方根的概念和求法。
人教版数学七年级下册6.2《立方根》教案
人教版数学七年级下册6.2《立方根》教案一. 教材分析《立方根》是人教版数学七年级下册第六章第二节的内容,本节课主要让学生掌握立方根的概念,理解立方根的性质,学会求一个数的立方根。
通过本节课的学习,培养学生观察、思考、归纳的能力,为后续学习四次根式打下基础。
二. 学情分析学生在六年级时已经学习了平方根的概念和性质,对求一个数的平方根已经有一定掌握。
但是,立方根与平方根虽然在概念和性质上有相似之处,也有很大区别。
因此,在教学过程中,要引导学生正确理解立方根的概念,把握立方根与平方根的联系与区别。
三. 教学目标1.知识与技能:理解立方根的概念,掌握立方根的性质,学会求一个数的立方根。
2.过程与方法:通过观察、思考、归纳,培养学生探索数学问题的能力。
3.情感态度与价值观:培养学生对数学的兴趣,激发学生学习数学的积极性。
四. 教学重难点1.重点:立方根的概念和性质,求一个数的立方根。
2.难点:立方根与平方根的联系与区别。
五. 教学方法1.情境教学法:通过生活实例引入立方根的概念,激发学生的学习兴趣。
2.启发式教学法:引导学生观察、思考、归纳立方根的性质,培养学生探索数学问题的能力。
3.小组合作学习:分组讨论,培养学生的团队协作能力。
六. 教学准备1.课件:制作与教学内容相关的课件,以便于展示和讲解。
2.黑板:准备黑板,用于板书重要知识点和示例。
3.练习题:准备一定数量的练习题,用于巩固所学知识。
七. 教学过程1. 导入(5分钟)通过生活实例引入立方根的概念。
例如,一个正方体的体积是27立方厘米,求这个正方体的棱长。
引导学生思考正方体的棱长与体积的关系,从而引出立方根的概念。
2. 呈现(10分钟)讲解立方根的性质,与平方根进行对比,让学生理解立方根与平方根的联系与区别。
通过PPT展示立方根的性质,让学生观察、思考、归纳。
3. 操练(10分钟)让学生独立完成一些求立方根的练习题,巩固所学知识。
教师在旁边巡回指导,解答学生的疑问。
人教版七年级数学下册6.2《立方根》教学设计
人教版七年级数学下册6.2《立方根》教学设计一. 教材分析人教版七年级数学下册6.2《立方根》是学生在掌握了有理数的乘方、平方根的基础上,进一步研究立方根的概念和性质。
本节内容主要让学生了解立方根的定义,掌握求一个数的立方根的方法,以及会运用立方根解决实际问题。
教材通过引入立方根的概念,引导学生探究立方根的性质,培养学生的逻辑思维能力和空间想象能力。
二. 学情分析学生在学习本节内容前,已经掌握了有理数的乘方、平方根的概念和性质,具备了一定的数学基础。
但部分学生对平方根的概念还不是很清晰,可能在理解立方根时会受到干扰。
因此,在教学过程中,教师需要关注学生的学习情况,及时解答学生的疑问,帮助学生建立清晰的概念。
三. 教学目标1.知识与技能:让学生掌握立方根的概念和性质,学会求一个数的立方根,会用立方根解决实际问题。
2.过程与方法:通过观察、探究、总结,培养学生的逻辑思维能力和空间想象能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生勇于探索、积极思考的精神。
四. 教学重难点1.重点:立方根的概念和性质,求一个数的立方根的方法。
2.难点:立方根在实际问题中的应用。
五. 教学方法1.引导法:教师通过提问、引导,激发学生的思考,帮助学生建立概念。
2.互动法:教师与学生相互交流,共同探讨问题,提高学生的参与度。
3.实例法:教师运用实际例子,让学生更好地理解立方根的应用。
六. 教学准备1.课件:制作与立方根相关的课件,包括图片、动画、实例等。
2.练习题:准备一些有关立方根的练习题,用于巩固所学知识。
3.教学工具:黑板、粉笔、直尺等。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引出立方根的概念,如“一个正方体的体积是27立方厘米,求这个正方体的棱长。
”让学生思考并讨论,激发学生的学习兴趣。
2.呈现(10分钟)教师给出立方根的定义,解释立方根的概念,并通过动画、图片等形式展示立方根的性质。
同时,引导学生回顾平方根的知识,对比二者之间的异同。
人教版数学七年级下册6.2《立方根》教学设计4
人教版数学七年级下册6.2《立方根》教学设计4一. 教材分析人教版数学七年级下册6.2《立方根》是学生在学习了有理数的乘方、实数等知识的基础上,进一步探究立方根的概念及运算法则。
本节课的内容主要包括立方根的定义、求一个数的立方根的方法、立方根的性质和运算法则。
教材通过丰富的例题和练习题,帮助学生掌握立方根的知识,并能运用到实际问题中。
二. 学情分析学生在学习本节课之前,已经掌握了有理数的乘方知识,对实数的概念有了一定的了解。
但是,对于立方根的概念和运算法则,可能还存在一定的困惑。
因此,在教学过程中,需要关注学生的认知基础,通过引导和启发,让学生逐步理解和掌握立方根的知识。
三. 教学目标1.理解立方根的概念,掌握求一个数的立方根的方法。
2.掌握立方根的性质和运算法则。
3.能够运用立方根的知识解决实际问题。
四. 教学重难点1.立方根的概念和求法。
2.立方根的性质和运算法则。
五. 教学方法采用问题驱动法、案例分析法、小组合作学习法等,引导学生主动探究、积极思考,通过师生互动、生生互动,使学生在实践中掌握立方根的知识。
六. 教学准备1.PPT课件2.教学视频或图片素材七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的主题:一个正方体的体积是27立方米,求这个正方体的棱长。
让学生思考如何解决这个问题,从而引出立方根的概念。
2.呈现(10分钟)讲解立方根的定义,并通过PPT展示立方根的图形形象。
让学生理解立方根的概念,并掌握求一个数的立方根的方法。
3.操练(10分钟)让学生独立完成教材中的例题和练习题,巩固对立方根的理解。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)通过一组练习题,让学生进一步巩固立方根的知识。
教师及时反馈,纠正学生的错误。
5.拓展(10分钟)讲解立方根的性质和运算法则,让学生掌握立方根的运算规律。
6.小结(5分钟)对本节课的内容进行总结,让学生回顾和巩固所学知识。
7.家庭作业(5分钟)布置一道有关立方根的实际问题,让学生课后思考和解答。
2014年春季新版新人教版七年级数学下学期6.2、立方根导学案3
课题:立方根
自研课(时段:晚自习时间:10分钟)
1、旧知链接:(1)平方根的定义:
(2)正数有几个平方根?正数平方根之间的关系?0的平方根呢?负数呢?
(3
a必须满足:;
2、新知自研:自研教材P49-P50的内容。
展示课(时段:正课时间:60分钟)
一、学习主题1.理解并掌握立方根的概念,会用符号表示一个数的立方根;2.类比平方根、学习立方根。
训练课(时段:晚自习 , 时间:30分钟)
“日日清巩固达标训练题” 自评: 师评: 基础题:
1.求下列各式的值:
(1 (2 (3 (4)
发展题:
2.求下列各式中x 的值:
(1)30.008x = (2)3383x -= (3)
3(1)8x -=
3.比较下列各组数的大小:
(1 2.5 (23 2
提高题:
5.
6.
290
x-=
,求3x+6y的立方根。
培辅课(时段:大自习附培辅单)
1、今晚你需要培辅吗?(需要,不需要)
2、效果描述:
反思课
1、病题诊所:
2、精题入库:
【教师寄语】新课堂,我展示,我快乐,我成功………今天你展示了吗!!!。
(人教版)七年级下册数学配套教案:6.2《 立方根》
(人教版)七年级下册数学配套教案:6.2《立方根》一. 教材分析人教版七年级下册数学第6.2节《立方根》是学生在学习了有理数、整式乘法等基础知识后的进一步拓展。
本节内容主要介绍立方根的概念、性质和求法,旨在让学生理解并掌握立方根的知识,能够运用立方根解决一些实际问题。
教材通过引入立方根的概念,让学生通过观察、操作、思考,培养学生的空间想象能力和逻辑思维能力。
二. 学情分析学生在学习本节内容前,已经掌握了有理数、整式乘法等基础知识,具备了一定的数学思维能力。
但部分学生对抽象的数学概念理解起来较为困难,需要通过具体的操作和实例来帮助理解。
此外,学生的学习兴趣和学习积极性也需要进一步激发。
三. 教学目标1.知识与技能目标:让学生理解立方根的概念,掌握立方根的性质和求法,能够运用立方根解决一些实际问题。
2.过程与方法目标:通过观察、操作、思考,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观目标:激发学生的学习兴趣,培养学生的合作意识,使学生感受到数学在生活中的应用。
四. 教学重难点1.重点:立方根的概念、性质和求法。
2.难点:立方根的应用和解决实际问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生观察、操作、思考,培养学生的空间想象能力和逻辑思维能力。
同时,学生进行小组合作学习,激发学生的学习兴趣,培养学生的合作意识。
六. 教学准备1.准备相关教学案例和实例。
2.准备教学课件和板书设计。
3.准备练习题和作业。
七. 教学过程1.导入(5分钟)通过设置问题,引导学生回顾已学知识,如整式乘法、有理数等,为新课的学习做好铺垫。
2.呈现(10分钟)介绍立方根的概念,让学生通过观察、操作、思考,理解立方根的定义和性质。
通过PPT展示立方根的图形,帮助学生形成直观的认识。
3.操练(10分钟)让学生通过实际操作,求解一些立方根的问题。
教师引导学生运用立方根的性质和求法,培养学生的动手能力和解决问题的能力。
人教版七年级数学下册6.2立方根(教案)
再者,我发现学生在小组讨论环节表现得非常积极,这说明他们渴望与他人交流和分享自己的想法。因此,在今后的教学中,我应更多地设置这样的环节,鼓励学生积极参与,提高他们的合作能力和口头表达能力。
2.发展学生的逻辑推理能力:在探讨立方根的性质和运算过程中,引导学生运用逻辑推理,掌握正确的数学证明方法。
3.提升学生的数学建模素养:培养学生运用立方根知识解决实际问题的能力,将现实问题转化为数学模型,并求解。
4.增强学生的数学运算能力:让学生熟练掌握立方根的计算方法,提高运算速度和准确性。
5.培养学生的数学应用意识:通过立方根在实际生活中的应用,使学生体会数学的价值,激发学习兴趣。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“立方根在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
2.教学难点
-立方根性质的理解:学生对立方根性质的理解可能存在困难,如立方根的唯一性、正负数的立方根等。
-立方根的运算技巧:特别是分数和负数的立方根计算,学生可能会感到困惑。
-立方根的估算:如何快速准确地估算一个数的立方根,对于学生来说是一个挑战。
举例:解释为什么一个数的立方根具有唯一性;展示如何计算分数∛(1/8)(等于1/2的立方根)和负数∛(-27)(等于-3);在估算∛1000时,如何利用已知的知识(如10的立方是1000)来快速判断其立方根大约是10。
2014年春季新版新人教版七年级数学下学期6.2、立方根教学设计3
辽宁省瓦房店市第八初级中学八年级数学上册《13.2 立方根》教学设计(3)人教新课标版教材地位本节内容安排了1个学时完成.主要是通过对立方根与平方根的比较与归类,探索立方根的概念、计算和简单性质.因此,除了具体的知识技能(如知道一个数的立方根的意义,会用根号表示一个数的立方根,掌握立方根运算,掌握求一个数的立方根的方法和技巧)外,还需要昂学生感受类比的思想方法,为今后的学习打下基础.二、课标解读在学习了平方根概念的基础上学习立方根的概念,学生比较容易接受,因此教学重点放在立方根具有唯一性(实数范围内)的讨论上.在学生对数的立方根概念及个数的唯一性有了一定理解的基础上,再提出数的立方根与数的平方根有什么区别,学生就容易解决问题.三、教学目标知识与技能目标1.了解立方根的概念,会用根号表示一个数的立方根.2.会用立方运算求一个数的立方根,了解开立方与立方互为逆运算.3.了解立方根的性质.4.区分立方根与平方根的不同.过程与方法目标1.经历对立方根的探究过程,在探究中学会解决立方根的一些基本方法和策略.2.在学习了平方根的基础上,学生经历用类比的方法学习立方根的有关知识,领会类比思想..情感与态度目标:在立方根概念、符号、运算及性质的探究过程中,培养学生联系实际、善于观察、勇于探索和勤于思考的精神.四、教学重点立方根的概念及计算.五、教学难点立方根的求法,立方根与平方根的联系及区别.六、教法学法类比法.七、教学过程本节课共设置六个环节,第一环节温故知新,第二环节讲授新知,第三环节例题讲解,第四环节随堂检测,第五环节本课小结,第六环节布置作业。
第一环节:温故知新下列各数是否有平方根?如有,请计算出来.225,49,-121,0,1,0.36一般的,如果一个数的平方等于a,这个数就叫做a的平方根.如果一个数的立方等于a,这个数叫什么呢?这节课我们就来学习《立方根》.目的:回顾平方根、平方根的性质以及开平方运算的概念,引入新课题。
人教版数学七年级下册6.2立方根优秀教学案例
在作业小结环节,我会布置一些与立方根相关的练习题,让学生在课后进行巩固和提高。同时,我会提醒学生及时总结和反思自己的学习情况,找出自己的不足之处,为今后的学习做好准备。在下一节课开始时,我会及时批改作业,并对学生的学习情况进行反馈,帮助他们纠正错误,提高解题能力。
五、案例亮点
1.启发式教学:本案例中,我运用启发式教学法,通过提问和引导,激发学生的思维,培养他们的抽象思维和逻辑推理能力。例如,在讲解立方根的概念时,我提出问题:“什么是立方根?”“如何快速找出一个数的立方根?”等问题,引导学生进行思考和探索。
在学生小学生进行思考和讨论。例如,我会让学生探讨如何快速找出一个数的立方根,以及立方根在实际生活中的应用。学生可以结合自己的经验和知识,与小组成员进行交流和讨论。通过小组讨论,学生可以互相学习,共同提高。
(四)总结归纳
在总结归纳环节,我会让学生回顾本节课所学的立方根的知识,让他们自己总结和归纳立方根的性质和计算方法。我会引导学生通过整理和概括,形成系统化的知识结构。同时,我会强调立方根在数学和其他学科中的应用,让学生认识到学习立方根的重要性。
为了达到这个目标,我会在课堂上运用生动的例子和动画演示,帮助学生直观地理解立方根的概念。通过大量的练习题,让学生在实践中掌握立方根的计算方法。此外,我还会在课堂上引导学生思考立方根在实际生活中的应用,激发他们的学习兴趣。
(二)过程与方法
在本节课中,我将采用启发式教学法和小组合作学习法,引导学生主动探索、发现和总结立方根的性质和计算方法。
2.小组合作学习:我组织学生进行小组合作学习,让他们在小组活动中共同探索立方根的性质和计算方法。通过小组合作,学生可以互相学习、互相启发,从而提高他们的合作能力和解决问题的能力。
人教版七年级数学下册教学设计:6.2立方根
3.提问:“我们已经知道一个数的平方根是什么,那么立方根又是什么呢?它们之间有什么联系和区别?”让学生带着问题进入新课的学习。
(二)讲授新知
1.介绍立方根的定义,通过具体例子解释立方根的含义,如:2的立方是8,那么2就是8的立方根。
b.请列举立方根在实际生活中的应用。
c.分析立方根与平方根的联系和区别。
2.教师巡回指导,解答学生在讨论过程中遇到的问题。
3.各小组汇报讨论成果,分享学习心得。
(四)课堂练习
1.设计不同难度的练习题,涵盖立方根的定义、计算和应用等方面,让学生独立完成。
2.练习题包括选择题、填空题和解答题,分别针对不同层次的学生。
(三)情感态度与价值观
1.培养学生积极主动探索数学知识的兴趣,使学生感受到数学学习的乐趣。
2.培养学生严谨、细心的学习态度,养成认真审题、规范答题的良好习惯。
3.培养学生面对困难不退缩,勇于克服困难的意志品质,增强学生的自信心。
4.培养学生将数学知识与实际生活相结合的意识,认识到数学在生活中的重要性,提高学生的数学素养。
1.关注学生对立方根定义的理解,通过实例演示和讲解,帮助学生掌握立方根的含义。
2.关注学生计算能力的培养,设计不同难度的练习题,使学生逐步掌握立方根的计算方法。
3.关注学生解决实际问题的能力,结合生活情境,引导学生运用立方根知识解决实际问题。
4.关注学生的个体差异,针对不同学生的学习需求,提供有针对性的指导,使每个学生都能在课堂上获得成功的体验。
教学活动:展示立方体和平方体的模型,让学生观察并总结它们的特性,引导他们发现立方根与立方的关系。
(新人教版)数学七年级下册:6.2《立方根》教案
《立方根》教案课程目标一、知识与技能目标1.了解立方根的概念,能够用根号表示一个数的立方根.2.能用类比平方根的方法学习立方根,及开立方运算,并区分立方根与平方根的不同.二、过程与方法目标用类比的方法探寻出立方根的运算及表示方法,并能自我总结出平方根与立方根的异同.三、情感态度与价值观目标发展学生的求同存异思维,使他们能在复杂的环境中明辨是非,并做出正确的处理.教材解读由正方体的边长与体积的关系引出立方运算,转入立方根运算.于是发现立方根运算与立方运算互为逆运算,很容易联想到平方运算与平方根运算之间的关系,于是立方根的表示,运算等问题就留给同学去发现.学情分析在学习完平方根运算后继而学习立方根运算,通过列举一些有代表意义的数求立方运算可发现立方根比平方根更容易掌握.教学过程一、创设情境,导入新课问题1.问题2.两个不同形状的水晶一样的透明饰物,一个是圆球形的,一个是正方形,经过测算,其体积都是125cm3.同学们,你们知道这两个饰物除了形状不同以外还有什么不同吗?那就是球的半径与正方体的边长,你能求出这个半径和边长吗?要求出这两个量,我们就来学习开方中的另一种运算:开立方运算.二、师生互动,课堂探究(一)导入知识,解释疑难对于问题1我们如果设棱长为x米,则不难得出x3=0.125,也就是要求一个数,使它的立方为0.125,我们知道0.53=0.125,所以正方体木块的棱长为0.5米;由此我们给出立方根的概念:一般地,如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根(cube root).即如果x3=a,则x叫做a的立方根,记为,读作三次根号a.注意:表示一个数的立方根时不需要正负号;符号中的指数3不能省略.在学习平方根的运算时,首先是找出一些数的平方,然后才根据其逆运算过程确定某数的平方根,同样,我们先来算一算一些数的立方.23=______;(−2)3=______;0.53=_____;(−0.5)3=______;()3=_____;−()3=_____;03=______.(1)经计算发现正数,0,负数的立方根与平方根有何不同之处?23=8;(−2)3=−8;0.53=0.125;(−0.5)3=−0.125;()3=;−()3=−;03=0.我们发现,求立方运算时,当底数互为相反数时,其立方也是一对互为相反数,这与平方运算不同,平方运算的底数为相反数,但其平方相等,故一个正数的平方根有两个值,但一个正数的立方根却只有一个.(2)开平方与平方运算互为逆运算,同样开立方与立方运算也互逆,故请根据上述等式,写出这些互为相反数的立方根.8的立方根为2,−8的立方根为−2,记为=2,=−20.125的立方根为0.5,−0.125的立方根为−0.5,记为=0.5,=−0.5的立方根为,−的立方根为−,记为=,=−0的立方根为0,记为=0上述过程都是求一个数的立方根的运算,我们把求一个数的立方根的运算,叫做开立方(extr a ction of cube root),开立方与立方运算互为逆运算.前面问题2中正方体的边长为=5,而球的体积为r3=125时,r≈3.1.归纳:正数的立方根为正数,负数的立方根为负数,0的立方根是0,可记为=a(a 为任意数),或者若a3=M,则有=a,其中M为被开方数,3为根指数,且根指数3不能省略,只有当根指数为2时,才能省略不写.并且有规律:=−(二)例题求解例1:求下列各式的值:①;②;③;④()3解:①=−=−2;②==0.4;③=−=−;④()3=a.例2:求下列各数的立方根.①−27;②;③−0.216;④−5.解:①∵(−3)3=−27,∴=−3;②∵()3=,=;③∵(−0.6)3=−0.216,=−=−0.6;④对−5这个数,作如下尝试:13=1,23=8,1.53=3.375,1.73=4.193.发现4.193最接近5,故不能口算出其值,得借助计算器求值,且通过计算器检验知是一个无限不循环小数,用计算器计算知=−≈−1.71是一个近似数.(三)探究活动①若正方体的棱长为1,则其体积为1;若正方体的棱长为2,则其体积为8;若正方体的棱长为4,则其体积为64;若其棱长为8,则其体积为512……当棱长为2n时,其体积为多少?②某正方体的体积为1时,其棱长为1;体积为2时,棱长为;体积为3时,棱长为……;若体积扩大到原来的n倍,则棱长扩大多少倍?解:①正方体棱长为1,则体积为1,棱长为2,体积为8,比较两者棱长扩大了2倍,体积扩大了8倍,棱长又扩大了1倍,其体积相应增大7倍,为原来的8倍,故当棱长为2n时,体积为8n3.②当体积扩大到原来的n倍时,棱长扩大到原来的倍.(四)归纳总结,知识回顾这节课学习了立方根的概念,立方根的表示方法以及如何求一个数的立方根.用计算器求任意数的立方根时,只能先求出该数的绝对值的立方根,再根据任意数的正负性决定其值,注意区分平方根与立方根.。
人教版数学七年级下册6-2 立方根 教案
6.2 立方根教学设计课题 6.2 立方根单元第六单元学科初中数学年级七下学习目标1.了解立方根的概念,初步学会用根号表示一个数的立方根,让学生体会一个数的立方根的唯一性.2.了解开立方与立方互为逆运算,会用立方运算求某些数的立方根,分清一个数的立方根与平方根的区别.3.通过立方根的学习,认识数学与人类生活的密切联系,激发学生的学习兴趣.重点了解立方根的概念,初步学会用根号表示一个数的立方根.难点经历用类比的方法探寻出立方根的运算及表示方法,并能总结出平方根与立方根的异同.教学过程教学环节教师活动学生活动设计意图导入新课【创设情境】问题如图,已知小正方体的棱长为2,那么它的体积是多少?反过来,如果大正方体的体积V=64,你能不能求出它的棱长x呢?追问:x3 =64,如何求x呢?学生思考并回答通过创设情境,引出新知,为接下来的学习埋下伏笔.讲授新课【合作探究】【合作探究】要制作一种容积为27 m3 的正方体形状的包装箱,这种包装箱的棱长应该是多少?解:设这种包装箱的棱长为x m,则x3=27.这就是要求一个数,使它的立方等于27. 因为33=27,所以x=3. 学生思考,回答问题.结合生活实际,引出立方根的概念.因此这种包装箱的棱长应为3m.【知识归纳】你能类比平方根的概念给出立方根的概念吗?一般地,如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果x3=a,那么x叫做a的立方根.一个数a的立方根可以表示为:读作:三次根号a,其中a是被开方数,3是根指数,3不能省略.【合作探究】类似开平方运算,求一个数的立方根的运算叫做开立方.开立方与立方互为逆运算,可以利用开立方求一个数的立方根,也可以利用立方来检验一个数是不是某个数的立方根.【合作探究】根据立方根的意义填空.你能发现正数、0和负数的立方根各有什么特点吗?因为23 =8,所以8的立方根是( 2 );因为(0.4)3=0.064,所以0.064的立方根是( 0.4 );因为(0)3=0,所以0的立方根是( 0 );因为(-2)3=-8,所以-8的立方根是( -2 );因为()3=-,所以-的立方根是().【归纳】立方根的性质:1.正数的立方根是正数. 学生齐声朗读学生说一说学生小组交流,思考问题.巩固立方根的概念,体会立方根根的表示法和读法.结合平方根的概念进行类比归纳出立方根的概念,有助于培养学生类比推理能力.引导学生思考,促进学生协作交流能力,及主动交流的意识.2. 0 的立方根是0.3.负数的立方根是负数.注意:立方根是它本身的数有1, 1,0.此处合作探究,由各小组学生独立完成,最后各组代表汇报立方根的性质,各组代表可互相补充发现的性质,教师最后整理出立方根的性质.你能说说数的平方根与数的立方根有什么不同吗?【合作探究】因为= ,= ,所以;因为= ,= ,所以.请你再试几个不同的数a,观察与是否仍相等?归纳总结:.【典型例题】例1 求下列各式的值:(1) ;(2) ;(3) . 解:(1) ;(2) ;(3) .【拓展延伸】一些计算器设有键,用它可以求出一个数的立方根(或其近似值).实际上,很多有理数的立方根是无限不循环小数,我们可以用有理数近似地表示它们. 学生代表回答问题,其他学生补充.学生独立思考后,举手回答问题.学生思考,回答问题.巩固平方根与立方根的概念,培养学生的数学抽象能力.通过计算,比较互为相反数的两个数,立方根也互为相反数.通过例题,巩固立方根的概念、计算方法.如:用计算器求,可以按照下面的步骤进行:解:依次按键按,显示12.26494081∴有些计算器需要用第二功能键求一个数的立方根.可依次按键,显示:12.26494081【合作探究】用计算器计算…,,,,,…,你能发现什么规律?教师通过课件展示计算结果,学生通过思考、运算、观察等学习活动,在教师的引导下,归纳规律.【想一想】用计算器计算(精确到0.001),并利用你发现的规律求,的近似值.由,得≈0.04642被开方数的小数点向右或向左移动3位.立方根的小数点相应地向右或向左移动1位. 学生小组讨论,计算完成问题,并写出答案.应用规律进行求解计算.巩固练习.【课堂练习】1.判断下列说法是否正确.(1)827的立方根是23(2) 25的平方根是5 (3) -64没有立方根 (4) -4的平方根是±2(5) 0的平方根和立方根都是0答案:(1)×,(2)×,(3)×,(4×,(5)√ 2.下列说法中正确的是 ( D ) A.负数没有立方根B.一个数的立方根不是正数,就是负数C.一个数的立方根等于它本身,这个数一定是0D.一个非负数的立方根和这个数同好,0的立方根是03.求下列各式的值 :()()()()()33333818;20.064;3;49.125--答案:-2,0.4,-0.4,9学生自主练习通过课堂练习巩固新知,加深对平方根的概念及性质的理解.课堂小结以思维导图的形式呈现本节课所讲解的内容.回顾本节课所讲的内容通过小结让学生进一步熟悉巩固本节课所学的知识.板书1.立方根 (1)定义 (2)性质:①正数的立方根是正数. ②0 的立方根是 0. ③负数的立方根是负数. (3)立方根关系式:33--a a =2.例题讲解。
人教版七年级数学下册:6.2立方根教学设计
b.学生在家长的帮助下,录制一段讲解立方根计算方法的视频,分享到班级群,促进同学间的交流和学习。
5.复习作业:
a.学生复习本节课所学内容,整理立方根的定义、性质、计算方法等方面的知识,为下节课的学习做好准备。
b.家长协助学生检查作业,关注学生在立方根学习中的困难和问题,并及时与教师沟通,共同帮助学生提高。
(二)过程与方法
1.通过引导学生自主探究、合作交流,让学生经历从具体实例中抽象出立方根概念的过程,培养学生发现问题和提出问题的能力。
2.通过对立方根性质的探究,让学生掌握数学归纳和推理的方法,提高学生的逻辑思维能力。
3.通过实际问题的解决,培养学生运用数学知识解决实际问题的能力,增强学生的应用意识。
3.演示立方根的计算方法:首先,可以通过试除法找到立方根的近似值;其次,可以通过数学软件或计算器求解精确值。
4.结合实例,讲解立方根在实际问题中的应用,如体积、密度等计算问题。
(三)学生小组讨论
1.将学生分成小组,每组讨论以下问题:
a.举例说明立方根在生活中的应用。
b.讨论立方根的计算方法,并总结计算技巧。
作业布置要注重层次性和针对性,以满足不同学生的学习需求。同时,教师应关注学生的作业完成情况,及时给予反馈和指导,以提高学生的学习效果。
3.学生对立方根性质的理解和运用,注意培养学生的逻辑思维能力和归纳推理能力。
4.学生在实际问题中运用立方根的能力,关注学生应用意识的培养,提高学生解决实际问题的能力。
5.针对不同学生的认知水平和学习风格,因材施教,激发学生的学习兴趣,提高课堂参与度。
在教学过程中,教师应关注学生的个体差异,充分调动学生的主观能动性,让学生在探究、合作、交流中掌握立方根的知识,从而提高学生的数学素养。同时,注重培养学生的自主学习能力,使学生在面对新的数学知识时,能够主动探究、积极思考,为学生的可持续发展奠定基础。
七年级数学下册 6.2 立方根教案 (新版)新人教版-(新版)新人教版初中七年级下册数学教案
总结:正数的立方是;负数的立方是;0的立方是
【新知预习】1、立方根的定义:
。ห้องสมุดไป่ตู้作:。
2、求下列各数的立方根
(1)64 (2) (3)9 (4) (5)
三、质疑探究
1、下列各数有立方根吗?如果有,请写出来;如果没有,请说明理由
,0.001,9,-3,-64, ,0
总结:任何数都有立方根,一个数的立方根不改变它的 。
即:正数的立方根是,负数的立方根是,0的立方根是。
2、求下列各式的值
, , ,
3、求下列各式的值
(1) (2) (3)
四、精讲点拨
讨论:1.
2.
你能用符号总结一下刚才的结论吗?
五、当堂检测
A、1.立方根等于本身的数是 ( )
A.±1 B.1,0C.±1,0 D.以上都不对
2.若一个数的算术平方根等于这个数的立方根,则这个数是( )
A.±1 B.±1,0C.0 D.0,1
3.下列说法正确的是( )
A.1的立方根与平方根都是1 B.
C. 的平方根是 D.
B、4.求下列各式的值
(1) (2) (3) (4) (5)
5.若 ,若
6.8的立方根与25的平方根之差是
C、1、若
2.已知 ,求
六、作业布置
板
书
设
计
教学反思
自主探究 合作交流 适时引导 集体反馈
教具
课堂设计
一、目标展示
1.了解立方根的概念,会用根号表示一个数的立方根;
2.会求一个数的立方根;
3. 培养学生数学学习兴趣
二、预习检测
【旧知回顾】1.7的平方根是,5的算术平方根是, 的平方根是
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1) 3 64 ; (2) 27 ; (3) 3 2 10 27 (4) 3 三、练 习: 课本 P79 练习 1、2、3 四、小结: 1.立方根和开 立方的定义.
1 ; (5) 64 ; (6) 64 1000
2.正数、0、负数的立方根的特征. 3.立 方根与平方根的异同. 五、作业: P80 习题 13.2 第 1、3、5、6 题
3
2
)
8 2 因为 ,所 以 8 的立方根是( 27 3
3
2 3
)
【总结归纳】
一个正数有一个正的立方根 0 有一个立方根,是它本身 一个负数有一个负的立方根 任何数都有唯一的立方根
一个数 a 的立 方根,记作 3 a ,读作: “三次根号 a ” ,其中 a 叫 被开方数,3 叫根指数,不能 省略,若 省略表示平方。例如: 3 27 表 示 27 的立方根, 3 27 3 ; 3 27 表示 27 的立方根, 3 27 3 . 3、探究: 因为 3 8 ____, 3 8 ____, 所以 3 8 因为
海南省万宁市思源实验学校八年级数学上册第十三章第 2 节《立方 根》第二课时教案 新人教版
教学重点: 立方根的 概念和求法。 教学难点: 立方根与平方根的区别。 教学过程设计: 教学过程 一、情境导入: 问题:要制作一种 容积为 27 m3 的正方 体形状的包装箱,这种包 装箱的边长应该是多少? 设这种包装箱的边长为 x m,则 x =27 这就是求一 个数,使它的立 方等于 27. 因为 3 =27, 所以 x=3. 即这种包装箱 的边长 应为 3 m 二、新课: 1、 归纳 : 如果一个数的立方等于 a , 这个数叫做 a 的立方根 (也 叫做三次方根) ,即如果 x a ,那么 x 叫做 a 的立方根
教学反思:ຫໍສະໝຸດ 3=38=
27 ____, 3 27 ____ , 所 以 3 27
3 27
利用开立方和立方互为逆运 算关系,求一个数的立方 根,就可以 利用这种互逆关系,检验其正确性,求负数的立方根,可以先求出这 个负数的绝对值的立方根,再取其相反数,即 3 a 3 a a 0 。 4、 例 求下列各式的值:
3
修改与备注
3
3
2、探究: 根据立方根的意义填空,看看正数、0、负数的立方 根各有什么特点? 因为 2 8 ,所以 8 的立方根是( 2
3
)
因为 0.5 0.125 , 所以 0 .1 25 的立方根是( 0.5
3
)
因为 0 0 ,所以 8 的立方根 是( 0
3
)
因为 2 8 ,所 以 8 的立方根是(