新人教版七年级下册第八章二元一次方程组练习题
最新人教版初中数学七年级下册第八章二元一次方程组综合训练试题(含解析)
初中数学七年级下册第八章二元一次方程组综合训练(2021-2022学年 考试时间:90分钟,总分100分) 班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、下列方程中,①x +y =6;②x (x +y )=2;③3x -y =z +1;④m +1n=7是二元一次方程的有( ) A .1个B .2个C .3个D .4个2、如图,9个大小、形状完全相同的小长方形,组成了一个周长为46的大长方形ABCD ,若设小长方形的长为x ,宽为y ,则可列方程为( )A .()27,2746x y y x y =⎧⎨++=⎩B .27,746x y y x y =⎧⎨++=⎩C .()27,2746x y x x y =⎧⎨++=⎩D .72,746x y x x y =⎧⎨++=⎩3、甲、乙两城相距1120千米,一列快车从甲城出发120千米后,另一列动车从乙城出发开往甲城,2个小时后两车相遇.若快车平均每小时行驶的路程是动车平均每小时行驶的路程的一半还多5千米,则动车平均每小时比快车平均每小时多行驶的路程为()A.330千米B.170千米C.160千米D.150千米4、己知33x ky k=⎧⎨=-⎩是关于x,y的二元一次方程227x y-=的解,则k的值是()A.3 B.3-C.2 D.2-5、若12xy=⎧⎨=⎩是关于x、y的二元一次方程ax-5y=1的解,则a的值为()A.-5 B.-1 C.9 D.116、已知2xy m=⎧⎨=⎩是二元一次方程531x y+=的一组解,则m的值是()A.3-B.3 C.311-D.3117、根据大马和小马的对话求大马和小马各驮了几包货物.大马说:“把我驮的东西给你1包多好哇!这样咱俩驮的包数就一样多了.”小马说:“我还想给你1包呢!”大马说:“那可不行!如果你给我1包,我驮的包数就是你的2倍了.”小明将这个实际问题转化为二元一次方程组问题.设未知数x,y,已经列出一个方程x﹣1=y+1,则另一个方程应是()A.x+1=2y B.x+1=2(y﹣1)C.x﹣1=2(y﹣1)D.y=1﹣2x8、下列方程组中,属于二元一次方程组的是()A.21x yy z+=⎧⎨-=-⎩B.2103xy x⎧-=⎨-=⎩C.2125x yy x-=⎧⎪⎨+=⎪⎩D.23xyy=⎧⎨=⎩9、下列方程组为二元一次方程组的是()A.510x yxy+=-⎧⎨=-⎩B.22xy=⎧⎨=-⎩C.516x yxy+=⎧⎪⎨-=⎪⎩D.122x yx z+=⎧⎨-=⎩10310a b-+=)A.2 B.-2 C.12D.12-二、填空题(5小题,每小题4分,共计20分)1、已知关于x,y的方程组21x y kx y+=⎧⎨-=-⎩满足3x y+=,则k =_____.2、若方程组51ax yx by+=⎧⎨+=-⎩的解为21xy=⎧⎨=⎩,则点P(a,b)在第__象限.3、若A∠与B互为补角,并且B的一半比A∠小30,则B的度数为_________.4、若实数x、y|x+y+1|=0,则2x﹣4y的平方根是____.5、小明心里想好一个两位数,将十位数字乘2,然后加3,再将所得的新数乘5,最后加原两位数的个位数字,结果是94.算算看小明心里想的两位数是 _____.三、解答题(5小题,每小题10分,共计50分)1、解方程(组)(1)10+2(x﹣12)=7(x﹣2);(2)1.721 0.30.2x x+-=-;(3)34(2)521x x yx y--=⎧⎨-=⎩.2、在解方程组4635ax yx by+⎧⎨+-⎩=①=②时,由于小明看错了方程①中的a,得到方程组的解为12xy⎧⎨⎩==,小华看错了方程②中的b,得到方程组的解为x=2,y=1.(1)求a、b的值;(2)求方程组的正确解.3、判断下列各组数是否是二元一次方程组4221x yx y+=⎧⎨+=-⎩①②的解.(1)35xy=⎧⎨=-⎩(2)21xy=-⎧⎨=⎩4、解下列方程组:(1)54 76 x yx y-=⎧⎨-=⎩(2)111 522x yx y+-⎧-=-⎪⎨⎪+=⎩5、“文明其精神,野蛮其体魄”,为进一步提升学生的健康水平,我市某校计划用760元购买14个体育用品,备选体育用品及单价如表:(1)若760元全部用来购买足球和排球,求足球和排球各购买的数量.(2)若该校先用一部分资金购买了a个排球,再用剩下的资金购买了足球和篮球,且篮球和足球的个数相同,此时正好剩余80元,求a的值.(3)由于篮球和排球都不够分配,该校再补充采购这两种球共花费了480元,其中这两种球都至少购进2个,则有几种补购方案?---------参考答案-----------一、单选题 1、A 【解析】 【分析】含有两个未知数,且含未知数的项的最高次数是1,这样的整式方程是二元一次方程,根据定义逐一分析即可. 【详解】解:①x +y =6是二元一次方程;②x (x +y )=2,即22x xy +=不是二元一次方程; ③3x -y =z +1是三元一次方程; ④m +1n=7不是二元一次方程; 故符合题意的有:①, 故选A 【点睛】本题考查的是二元一次方程的定义,掌握定义,根据定义判断方程是否是二元一次方程是解本题的关键. 2、A 【解析】 【分析】根据图形可知,大长方形的长=7个小长方形的宽=2小长方形的长,大长方形的宽=小长方形的长+小长方形的宽,由此即可列出方程. 【详解】解:设小长方形的长为x ,宽为y ,由题意得:()272746x yy x y =⎧⎨++=⎩ 或()272246x y x x y =⎧⎨++=⎩,故选A . 【点睛】本题主要考查了从实际问题中抽象出二元一次方程组,解题的关键在于能够正确理解题意和掌握长方形周长公式. 3、C 【解析】 【分析】设动车平均每小时行驶x 千米,快车平均每小时行驶y 千米,根据“一列快车从甲城出发120千米后,另一列动车从乙城出发开往甲城,2个小时后两车相遇,且快车平均每小时行驶的路程比动车平均每小时行驶的路程的一半还多5千米”,即可得出关于x ,y 的二元一次方程组,求出动车与快车平均每小时行驶的路程即可解答. 【详解】解:设动车平均每小时行驶x 千米,快车平均每小时行驶y 千米,依题意得:()152********y x x y ⎧=+⎪⎨⎪++=⎩,解得:330170x y =⎧⎨=⎩ ,330170160-= ,故选:C . 【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键. 4、A【分析】将33x ky k=⎧⎨=-⎩代入关于x,y的二元一次方程2x-y=27得到关于k的方程,解这个方程即可得到k的值.【详解】解:将33x ky k=⎧⎨=-⎩代入关于x,y的二元一次方程2x-y=27得:2×3k-(-3k)=27.∴k=3.故选:A.【点睛】本题主要考查了二元一次方程的解和解一元一次方程,将方程的解代入原方程是解题的关键.5、D【解析】【分析】把12xy=⎧⎨=⎩代入ax-5y=1解方程即可求解.【详解】解:∵12xy=⎧⎨=⎩是关于x、y的二元一次方程ax-5y=1的解,∴将12xy=⎧⎨=⎩代入ax-5y=1,得:101a-=,解得:11a=.【点睛】此题考查了二元一次方程解的含义,解题的关键是熟练掌握二元一次方程解的含义.6、A【解析】【分析】把2xy m=⎧⎨=⎩代入5x+3y=1即可求出m的值.【详解】把2xy m=⎧⎨=⎩代入5x+3y=1,得10+3m=1,∴m=-3,故选A.【点睛】本题考查了求二元一次方程的解,能使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解.7、B【解析】【分析】设大马驮x袋,小马驮y袋.本题中的等量关系是:2×(小马驮的﹣1袋)=大马驮的+1袋;大马驮的﹣1袋=小马驮的+1袋,据此可列方程组求解.【详解】解:设大马驮x袋,小马驮y袋.根据题意,得1112(1)x yx y-=+⎧⎨+=-⎩.故选:B.【点睛】此题考查了二元一次方程组应用题,解题的关键是正确分析题目中的等量关系.8、C【解析】【分析】根据二元一次方程组的定义求解即可.二元一次方程组:由两个一次方程组成,并含有两个未知数的方程组叫做二元一次方程组.【详解】解:A、21x yy z+=⎧⎨-=-⎩中有3个未知数,不是二元一次方程组,不符合题意;B、2103xy x⎧-=⎨-=⎩未知数x的次数是2,不是二元一次方程组,不符合题意;C、2125x yy x-=⎧⎪⎨+=⎪⎩由两个一次方程组成,并含有两个未知数,故是二元一次方程组,符合题意;D、23xyy=⎧⎨=⎩中xy的次数是2,不是二元一次方程组,不符合题意.故选:C.【点睛】此题考查了二元一次方程组的定义,解题的关键是熟练掌握二元一次方程组的定义.二元一次方程组:由两个一次方程组成,并含有两个未知数的方程组叫做二元一次方程组.9、B【解析】【分析】根据二元一次方程组的定义,即含有两个未知数,并且所含未知数的项的次数都是 1 的方程组在一起叫做二元一次方程组判断即可;【详解】解A.510x yxy+=-⎧⎨=-⎩中,xy的次数是2,故A不符合题意;B.22xy=⎧⎨=-⎩是二元一次方程组,故B符合题意;C.516x yxy+=⎧⎪⎨-=⎪⎩中y在分母上,故C不符合题意;D.122x yx z+=⎧⎨-=⎩中有3个未知数,故D不符合题意;故选B.【点睛】本题主要考查了二元一次方程组的识别,掌握二元一次方程组的定义,准确分析是解题的关键.10、D【解析】【分析】根据绝对值和算术平方根的非负性,得到关于a b,的二元一次方程组,然后求解即可.【详解】310a b -+=∴50a b +-=,310a b -+=即50310a b a b +-=⎧⎨-+=⎩,化简可得531a b a b +=⎧⎨-=-⎩①②①+②得:44a =,解得1a =将1a =代入①得,15b +=,解得4b =2=12-故选:D【点睛】此题考查了二元一次方程组的求解,涉及了绝对值和算术平方根的非负性,算术平方根的求解以及倒数的概念,解题的关键是灵活运用相关基本知识进行求解.二、填空题1、4【分析】将方程组重新组合31x y x y +=⎧⎨-=-⎩①②,求出关于x 、y 的方程组,再代入求出k 即可. 【详解】解:关于x ,y 的方程组21x y k x y +=⎧⎨-=-⎩满足3x y +=, ∴31x y x y +=⎧⎨-=-⎩①②,∴①+②得:x =1,把x =1代入①得y =2,12x y =⎧⎨=⎩, ∴2x y k +==4.故答案为:4.【点睛】本题考查了解二元一次方程组的解满足二元一次方程,重新组合能求出x 、y 的值是解此题的关键.2、四【分析】把21x y =⎧⎨=⎩代入所给方程组可得a ,b 的值,可得a ,b 的符号,进而可得所在象限. 【详解】解:将21x y =⎧⎨=⎩代入方程组得:21521a b +=⎧⎨+=-⎩,解得:23a b =⎧⎨=-⎩, 则P (2,﹣3)在第四象限.【点睛】查二元一次方程组的解及象限的相关知识.能够正确得到a ,b 的具体值是解决本题的关键. 3、100︒【分析】根据A ∠与B 互为补角,并且B 的一半比A ∠小30,然后根据题意列出关于A ∠、B 的二元一次方程组1801302A B A B ∠+∠=︒⎧⎪⎨∠-∠=︒⎪⎩①②,求解即可.解:根据题意得1801302A B A B ∠+∠=︒⎧⎪⎨∠-∠=︒⎪⎩①②, ①-②得,31502B ∠=︒,解得100B ∠=︒,把100B ∠=︒代入①得,100180A ∠+︒=︒,解得80A ∠=︒.∴80100A B ∠=︒⎧⎨∠=︒⎩, 故答案为:100°.【点睛】本题考查了二元一次方程组在几何中运用,根据题意列出二元一次方程组是解题的关键.4、4±【分析】根据非负数的性质可列出关于x 、y 的二元一次方程,解出x 、y ,代入24x y -中,求出其平方根即可.【详解】解:根据题意可知3212010x y x y --=⎧⎨++=⎩, 解得:23x y =⎧⎨=-⎩. ∴2x -4y的平方根为4±.故答案为:4±.本题考查绝对值和算术平方根的非负性,解二元一次方程以及代数式求值和求一个数的平方根.根据非负数的性质列出关于x、y的二元一次方程是解答本题的关键.5、79【分析】设小明想的两位数的个位数字为a,十位数字为b,根据题意列出方程,然后根据1≤b≤9,0≤a≤9且a,b为整数,从而确定二元一次方程的解.【详解】解:设小明想的两位数的个位数字为a,十位数字为b,由题意可得:5(2b+3)+a=94,整理,可得:10b+a=79,∵1≤b≤9,0≤a≤9且a,b为整数,∴a=9,b=7,∴小明心里想的两位数是79.故答案为:79【点睛】本题主要考查了二元一次方程的应用,明确题意,准确得到等量关系是解题的关键.三、解答题1、(1)x=235;(2)x=﹣4;(3)31xy=⎧⎨=⎩.【分析】(1)方程去括号、移项、合并同类项、系数化为1即可;(2)方程整理后,去分母、移项、合并同类项、系数化为1即可;(3)利用加减消元法解答即可.【详解】解:(1)10+2(x﹣12)=7(x﹣2),去括号、得10+2x﹣1=7x﹣14,移项、得2x﹣7x=1﹣10﹣14,合并同类项、得﹣5x=﹣23,系数化为1,得x=235;(2)1.720.3x+﹣10.2x=-,整理、得1720513xx+-=-,去分母、得17+20x﹣15x=﹣3,移项、得20x﹣15x=﹣3﹣17,合并同类项、得5x=﹣20,系数化为1,得x=﹣4;(3)方程组整理,得85?21?x yx y-+=⎧⎨-=⎩①②,①+②,得6y=6,解得y=1,把y=1代入②,得x﹣2=1,解得x=3,故方程组的解为31xy=⎧⎨=⎩.【点睛】此题考查了解一元一次方程,解二元一次方程组,解题的关键是熟练掌握解一元一次方程和二元一次方程组的步骤.2、(1)1a =,4b =-;(2)14x = ,2316y =【分析】(1)根据方程组的解的定义,12x y ⎧⎨⎩==应满足方程②,x =2,y =1应满足方程①,将它们分别代入方程②①,就可得到关于a ,b 的二元一次方程组,解得a ,b 的值;(2)将a ,b 代入原方程组,求解即可.【详解】解:(1)将12x y =,=代入②得325b +=-,解得:4b =- 将x =2,y =1代入①得246a +=,解得:1a = ,∴1a =,4b =-;(2)方程组为:46345x y x y +⎧⎨-⎩=①=﹣②, ①+②得:365x x +=- ,41x = , 解得:14x = , 将14x =代入①得:1464y += ,2344y = , 解得:2316y =,∴方程组的解为142316x y ⎧=⎪⎪⎨⎪=⎪⎩. 【点睛】本题考查了二元一次方程组的解和解二元一次方程组,能把二元一次方程组转化成一元一次方程是解(1)的关键,能求出a 、b 的值是解(2)的关键.3、(1)35x y =⎧⎨=-⎩不是方程组的解 ;(2)21x y =-⎧⎨=⎩不是方程组的解 【分析】根据二元一次方程的解,将二元一次方程的解代入方程计算即可.【详解】解:(1)把35x y =⎧⎨=-⎩代入方程①中,左边=2,右边=2,所以35x y =⎧⎨=-⎩是方程①的解. 把x =3,y =-5代入方程②中,左边=3(5)2+-=-,右边=1-,左边≠右边,所以35x y =⎧⎨=-⎩不是方程②的解.所以35x y =⎧⎨=-⎩不是方程组的解. (2)把21x y =-⎧⎨=⎩代入方程①中,左边=-6,右边=2,所以左边≠右边,所以21x y =-⎧⎨=⎩不是方程①的解, 再把21x y =-⎧⎨=⎩代入方程②中,左边=x +y =-1,右边=-1,左边=右边,所以21x y =-⎧⎨=⎩是方程②的解,但由于它不是方程①的解,所以它也不是方程组的解.【点睛】本题考查了二元一次方程组的解,检验是否是方程组的解,应把数值代入两个方程,若两个方程同时成立,才是方程组的解,而方程组中某一个方程的某一组解不一定是方程组的解.4、(1)11x y =⎧⎨=⎩;(2)13x y =-⎧⎨=⎩ 【分析】(1)用加减消元法解二元一次方程组即可;(2)先化简方程组,再用加减消元解方程组即可.【详解】解:(1)5476x y x y -=⎧⎨-=⎩①②, ②-①得:22x =,解得1x =,把1x =代入①得:54y -=,解得:1y =,∴方程组的解为11x y =⎧⎨=⎩; (2)111522x y x y +-⎧-=-⎪⎨⎪+=⎩①②, 由②可得y =2-x ,把y =2-x 代入①,可得x =-1,把x =-1代入y =2-x ,可得y =3,∴方程组的解为13x y =-⎧⎨=⎩. 【点睛】本题考查解二元一次方程组,熟练掌握代入法与消元法解方程组,并能准确计算是解题的关键.5、(1)足球购买5个、排球购买9个;(2)a的值为10;(3)则有3种补购方案,分别为篮球购2个,排球购9个,或篮球购4个,排球购6个,或篮球购6个,排球购3个.【分析】(1)设购买足球x个和排球y个,根据两种球共14个,足球支出总钱数+排球支出总钱数=760元,列方程组804076014x yx y+=⎧⎨+=⎩,解方程组即可;(2)设篮球购买b个,篮球和足球的个数相同,足球购买b个,根据三种球共14个,排球支付的总钱数+足球支出总钱数+篮球球支出总钱数=760-80元,列方程组40806076080214a b ba b++=-⎧⎨+=⎩,解方程组即可;(3)设篮球购买m个和排球n个,根据篮球支出总钱数+排球支出总钱数=480元,列二元一次方程60m+40n=480求方程的整数解即可.【详解】解:(1)设购买足球x个和排球y个,根据题意得:804076014x yx y+=⎧⎨+=⎩,解得59xy=⎧⎨=⎩,答足球购买5个、排球购买9个;(2)设篮球购买b个,篮球和足球的个数相同,足球购买b个,根据题意得40806076080214a b ba b++=-⎧⎨+=⎩,解得102ab=⎧⎨=⎩,答a 的值为10;(3)设篮球购买m 个和排球n 个,根据题意得60m +40n =480,整理得3m +2n =24,∵m ≥2,n ≥2, ∴3122m n =-, 当29m n ==,;46m n ==,,63m n ==,,则有3种补购方案,分别为篮球购2个,排球购9个,或篮球购4个,排球购6个,或篮球购6个,排球购3个.【点睛】本题考查列二元一次方程组解应用题,掌握列方程组解应用题的步骤与方法,列二元一次方程,求整数解确定方案是解题关键.。
新人教版七年级下册《第8章二元一次方程组》测试(含答案)
新人教版七年级下册《第8章二元一次方程组》一、选择题1.下列方程中不是二元一次方程的是()A.3x﹣5y=1 B.=y C.xy=7 D.2(m﹣n)=92.已知x=2m+1,y=2m﹣1,用含x的式子表示y的结果是()A.y=x+2 B.y=x﹣2 C.y=﹣x+2 D.y=﹣x﹣23.方程组:的解是()A.B.C.D.4.在等式y=x2+mx+n中,当x=2时,y=5;x=﹣3时,y=﹣5.则x=3时,y=()A.23 B.﹣13 C.﹣5 D.135.如果二元一次方程ax+by+2=0有两个解与,那么下列各组中仍是这个方程的解的是()A.B.C.D.6.已知|3x+2y﹣4|与9(5x+7y﹣3)2互为相反数,则x、y的值是()A.B.C.无法确定D.7.二元一次方程组的解满足方程x﹣2y=5,那么k的值为()A.B.C.﹣5 D.18.已知方程组和有相同的解,则a,b的值为()A.B.C.D.9.用“●”“■”“▲”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三架天平也平衡,那么“?”处应放“■”的个数为()A.5个 B.4个 C.3个 D.2个10.已知方程组与方程组有相同的解,则a、b、c 的值为()A.B.C.D.二、填空题11.在3x+4y=10中,如果2y=6,那么x=.12.由方程3x﹣2y﹣6=0可得到用x表示y的式子是.13.已知是二元一次方程组的解,则a﹣b=.14.四川5•12大地震后,灾区急需帐篷.某企业急灾区所急,准备捐助甲、乙两种型号的帐篷共2000顶,其中甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,共安置9000人.设该企业捐助甲种帐篷x顶、乙种帐篷y顶,可列方程组为.15.学生问老师:“您今年多大年龄?”老师风趣地说:“我像你这样大时,你才1岁,你到我这样大时,我已经37岁了.”那么老师的年龄是岁,学生的年龄是.16.甲、乙两人去商店买东西,他们所带的钱数之比为7:6,甲用掉50元,乙用掉60元,两人余下的钱之比是3:2,则甲余下的钱为元,乙余下的钱为元.17.在一本书上写着方程组的解是,其中y的值被墨渍盖住了,不过,我们可解得出p=.18.对于X、Y定义一种新运算“*”:X*Y=aX+bY,其中a、b为常数,等式右边是通常的加法和乘法的运算.已知:3*5=15,4*7=28,那么2*3=.19.把图折叠成一个正方体,如果相对面的值相等,则一组x,y的值是.20.三个同学对问题“若方程组的解是,求方程组的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是.三、解答题21.解下列方程组:(1);(2).22.李大叔今年五月份购买了一台彩电和一台洗衣机,根据“家电下乡”的补贴标准:农户每购买一件家电,国家将按每件家电售价的13%补贴给农户.因此,李大叔从乡政府领到了390元补贴款.若彩电的售价比洗衣机的售价高1000元,求彩电和洗衣机的售价各是多少元?23.八年级三班在召开期末总结表彰会前,班主任安排班长李小波去商店买奖品,下面是李小波与售货员的对话:李小波:阿姨,您好!售货员:同学,你好,想买点什么?李小波:我只有100元,请帮我安排买10支钢笔和15本笔记本.售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见.根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?24.如图所示,小强和小红一起搭积木,小强所搭的小塔高度为23cm,小红所搭的小树高度为22cm,设每块A型积木的高为x cm,每块B型积木高y cm,请求出x和y的值.25.在“五一”期间,小明和他的父亲坐游船从甲地到乙地观光,在售票大厅他们看到了表(一),在游船上,他又注意到了表(二).爸爸对小明说:“我来考考你,若船在静水中的速度保持不变,你能知道船在静水中的速度和水流速度吗?”小明很快得出了答案,你知道小明是如何算的吗?表(一)表(二)26.某人在电车路轨旁与路轨平行的路上骑车行走,他留意到每隔6分钟有一部电车从他后面驶向前面,每隔2分钟有一部电车从对面驶向后面.假设电车和此人行驶的速度都不变(分别为u1,u2表示),请你根据下面的示意图,求电车每隔几分钟(用t表示)从车站开出一部?新人教版七年级下册《第8章二元一次方程组》一、选择题1.C;2.B;3.D;4.D;5.A;6.B;7.B;8.A;9.A;10.D;二、填空题11.﹣;12.;13.﹣1;14.;15.25;13岁;16.90;60;17.3;18.2;19.x=2,y=3或x=3,y=2;20.;三、解答题21.解下列方程组:(1);(2).解:(1)设x+y=a,x﹣y=b,则原方程组化为:,①+②得:10a=120,解得:a=12,①﹣②得:6b=60,解得:b=10,即,解得:;(2)①+②×2得:8x+12z=28,即2x+3z=7④,②×3﹣③得:4x+8z=20,即x+2z=5⑤,由④和⑤组成方程组,解得:,把x=﹣1,z=3代入①得:﹣2+4y+6=6,解得:y=,即方程组的解是.22.李大叔今年五月份购买了一台彩电和一台洗衣机,根据“家电下乡”的补贴标准:农户每购买一件家电,国家将按每件家电售价的13%补贴给农户.因此,李大叔从乡政府领到了390元补贴款.若彩电的售价比洗衣机的售价高1000元,求彩电和洗衣机的售价各是多少元?解:设一台彩电的售价为x元,一台洗衣机的售价为y元.根据题意得:解得:(7分)答:彩电和洗衣机的售价各是2000,1000元.23.八年级三班在召开期末总结表彰会前,班主任安排班长李小波去商店买奖品,下面是李小波与售货员的对话:李小波:阿姨,您好!售货员:同学,你好,想买点什么?李小波:我只有100元,请帮我安排买10支钢笔和15本笔记本.售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见.根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?解:设钢笔每支为x元,笔记本每本y元,据题意得,解方程组得答:钢笔每支5元,笔记本每本3元.24.如图所示,小强和小红一起搭积木,小强所搭的小塔高度为23cm,小红所搭的小树高度为22cm,设每块A型积木的高为x cm,每块B型积木高y cm,请求出x和y的值.解:根据题意,得.解得.25.(在“五一”期间,小明和他的父亲坐游船从甲地到乙地观光,在售票大厅他们看到了表(一),在游船上,他又注意到了表(二).爸爸对小明说:“我来考考你,若船在静水中的速度保持不变,你能知道船在静水中的速度和水流速度吗?”小明很快得出了答案,你知道小明是如何算的吗?表(一)表(二)解:设船在静水中的速度是x千米/时,水流速度为y千米时,根据题意,得,解得:.答:船在静水中的速度为25千米/时和水流速度为5千米/时.26.某人在电车路轨旁与路轨平行的路上骑车行走,他留意到每隔6分钟有一部电车从他后面驶向前面,每隔2分钟有一部电车从对面驶向后面.假设电车和此人行驶的速度都不变(分别为u1,u2表示),请你根据下面的示意图,求电车每隔几分钟(用t表示)从车站开出一部?解:根据题意得:解得v1=2v2,∴t=3(分钟)答:电车每隔3分钟从车站开出一部.。
七年级数学下册《第八章二元一次方程组》测试卷及答案(人教版)
七年级数学下册《第八章二元一次方程组》测试卷及答案(人教版)一、单选题(本大题共12小题,每小题3分,共36分)1.中国古代数学著作《算法统宗》中记载了这样一个题目:九百九十九文钱,甜果苦果买一千,四文钱买苦果七,十一文钱九个甜,甜苦两果各几个?其大意是:用九百九十九文钱共买了一千个苦果和甜果,其中四文钱可以买苦果七个,十一文钱可以买甜果九个.问:苦、甜果各有几个?设苦果有x个,甜果有y个,则可列方程组为()A.100041199979x yx y+=⎧⎪⎨+=⎪⎩B.100079909411x yx y+=⎧⎪⎨+=⎪⎩C.100079999x yx y+=⎧⎨+=⎩D.1000411999x yx y+=⎧⎨+=⎩2.如图,某农家乐老板计划在一块长130米,宽60米的空地开挖两块形状大小相同的垂钓鱼塘,它们的面积之和为5750平方米,两块垂钓鱼塘之间及周边留有宽度相等的垂钓通道,则垂钓通道的宽度为()A.4.5m B.5m C.5.5m D.6m3.已知方程组23133530.9a ba b-=⎧⎨+=⎩的解是8.31.2ab=⎧⎨=⎩,则()()()()2213313230.951x yx y⎧-=++⎪⎨-=-+⎪⎩的解是()A.8.31.2xy=⎧⎨=⎩B.10.32.2xy=⎧⎨=⎩C.6.32.2xy=⎧⎨=⎩D.10.30.2xy=⎧⎨=⎩4.若关于x,y的二元一次方程组2245x y kx y k+=⎧⎨-=⎩的解满足1x y-=,则k的值是()A.1B.2C.3D.45.方程组233730x yx zx y z+=⎧⎪-=⎨⎪-+=⎩的解为()A .211x y z =⎧⎪=⎨⎪=-⎩B .211x y z =⎧⎪=-⎨⎪=⎩C .211x y z =⎧⎪=-⎨⎪=-⎩D .211x y z =⎧⎪=⎨⎪=⎩6.已知21x y =⎧⎨=-⎩是方程23x y m -=的解,则m 的值为( ) A .7 B .7- C .1 D .1-7.若关于x ,y 的二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是23x y =⎧⎨=-⎩,则关于m ,n 的二元一次方程组()()()()111222a m n b m n c a m n b m n c ⎧-++=⎪⎨-++=⎪⎩的解是( ) A .1252m n ⎧=-⎪⎪⎨⎪=-⎪⎩ B .1252m n ⎧=-⎪⎪⎨⎪=⎪⎩ C .5212m n ⎧=-⎪⎪⎨⎪=-⎪⎩ D .5212m n ⎧=⎪⎪⎨⎪=⎪⎩8.若等式||2(1)3m x m y +-=,是关于x ,y 的二元一次方程,则m 的值是( )A .1±B .1C .1-D .2±9.已知关于x ,y 的二元一次方程组=12+=3ax by ax by -⎧⎨⎩的解为=1=1x y ⎧⎨-⎩,那么代数式2a b -的值为( ) A .-2 B .2 C .3 D .- 310.若关于x 、y 的二元一次方程组3749ax y x y +=⎧⎨+=⎩与5358x y x by -+=⎧⎨+=⎩) A .1 B .1± C .2 D .2±11.若关于x ,y 的方程组()()()()111222a x y b x y c a x y b x y c ⎧+--=⎪⎨+--=⎪⎩,解为20222023x y =⎧⎨=⎩.则关于x ,y 的方程组1112221515a x b y c a x b y c ⎧+=⎪⎪⎨⎪+=⎪⎩的解是( )A .80915x y =⎧⎪⎨=⎪⎩B .40451x y =⎧⎨=⎩C .20222023x y =⎧⎨=⎩D .2022520235x y ⎧=⎪⎪⎨⎪=-⎪⎩12.已知21x y =⎧⎨=-⎩是关于x ,y 的二元一次方程组522ax by bx ay +=-⎧⎨-=⎩的解,则a +b 的值为( ) A .﹣5 B .﹣1 C .3 D .7二、填空题(本大题共8小题,每小题3分,共24分)13.若实数m ,n 满足5240m n m n --+-=∣∣,则3m n +=__________.14.若关于x ,y 的二元一次方程组9876x y m x y n -=⎧⎨+=⎩的解为12x y =⎧⎨=⎩,则关于a ,b 的二元一次方程组()()()()91827162a b m a b n ⎧--+=⎪⎨-++=⎪⎩的解为_______. 15.已知x ,y ,z 满足438324x y z +++==,且212x y z -+=,则x =____________. 16.若关于x ,y 的方程()12m m x y --=是一个二元一次方程,则m 的值为_____________.17.若方程组2439x y ax y -=⎧⎨+=⎩无解,则a 的值为________ 18.重庆某大学对重庆某村实施“技术助农”.该村种植有A 、B 、C 三种经济作物,助农前,A ,B ,C 三种作物亩数比例为2:5:3;助农后,三种经济作物的亩数都得以增加,其中B 作物增加的亩数占总增加亩数的16.助农前,C 作物的亩产量是B 作物亩产量的2.5倍,A ,B 两种作物的亩产量之和恰好是C 作物的亩产量;助农后,A ,B 两种作物的亩产量分别增加了13和12,A ,B 两种作物的亩产量之和恰好仍是C 作物的亩产量.若助农后,B 作物的产量比助农前A ,B 产量之和多332,而C 作物的产量比助农前A ,B ,C 三种作物产量的总和还多5%,则助农前后A 作物的产量之比为__________.19.已知关于x ,y 的二元一次方程组21346x y a x y a +=-+⎧⎨-=+⎩(a 是常数),若不论a 取什么实数,代数式kx y -(k 是常数)的值始终不变,则k =______.20.已知关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是49x y =⎧⎨=⎩,则与方程组111222234234a x b y c a x b y c +=⎧⎨+=''''⎩ 有关的2x y ''-的值为_____.三、解答题(本大题共5小题,每小题8分,共40分)21.解下列二元一次方程组:(1)=23+10=0y x x y -⎧⎨⎩(2)2+3=53+2=5x y x y -⎧⎨⎩22.“冰墩墩”和“雪容融”分别是北京2022年冬奥会和冬残奥会的吉祥物.某冬奥官方特许商品零售店购进了一批同一型号的“冰墩墩”和“雪容融”玩具,连续两个月的销售情况如表:求此款“冰墩墩”和“雪容融”玩具的零售价格.23.解方程组:(1)231915x yx y+=-⎧⎨=-⎩(用代入消元法)(2)49231x yx y-=⎧⎨+=⎩(用加减消元法)24.我们规定:若关于x的一元一次方程ax=b的解为b+a,则称该方程为“和解方程”.例如:方程2x=﹣4的解为x=﹣2,而﹣2=﹣4+2,则方程2x=﹣4为“和解方程”.请根据上述规定解答下列问题:(1)已知关于x的一元一次方程3x=m是“和解方程”,求m的值;(2)请自行写出一个除上述你方程外的“和解方程”:______(3)已知关于x的一元一次方程﹣2x=mn+n是“和解方程”,并且它的解是x=n,求m,n的值.25.已知一个三位数=m abc,如果它的百位数字加上2与十位数字加上5的和等于个位数字加上8,则称这个三位数叫“258数”.如:245,∵()()22455813+++=+=,∵245是“258数”;437,∵()()423514+++= 7815+=,14≠15,∵437不是“258数”.(1)请根据材料判断526和738是不是“258数”,并说明理由;(2)若“258数”=m abc (19a b c ≤<<≤,且a ,b 、c 均为整数)能被3整除,请求出所有符合题意的m 的值.参考答案:1.A2.B3.D4.A5.C6.A7.A8.C9.B10.C11.A12.B13.714.20a b =⎧⎨=⎩ 15.1416.-117.-618.90:27119.-120.16-21.(1)24x y =⎧⎨=⎩;(2)55x y =-⎧⎨=⎩.22.此款“冰墩墩”玩具的零售价格为118元,“雪容融”玩具的零售价格为75元23.(1)143x y =-⎧⎨=⎩ (2)21x y =⎧⎨=-⎩24.(1)92m=-(2)1643x(答案不唯一)(3)23,3m n=-=-25.(1)526是“258数”,738不是“258数”,(2)267、627、357、537。
(精练)人教版七年级下册数学第八章 二元一次方程组含答案
人教版七年级下册数学第八章二元一次方程组含答案一、单选题(共15题,共计45分)1、甲、乙、丙三辆车均在A、B两地间往返,三辆车在A、B两地间往返一次所需时间分别为5小时、3小时和2小时.现在三辆车同时在A地视为第一次汇合,甲车先出发,1 小时后乙车出发,再经过2小时后丙车出发.那么丙车出发()小时后,三辆车第三次同时汇合于A地.A.50B.51C.52D.532、小强到体育用品商店购买羽毛球球拍和乒乓球球拍,已知购买1副羽毛球球拍和1副乒乓球球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍.若设每副羽毛球拍为x元,每副乒乓球拍为y元,根据题意,下面所列方程组正确的是()A. B. C. D.3、某县响应国家“退耕还林”号召,将一部分耕地改为林地,改还后,林地面积和耕地面积共有,耕地面积是林地面积的,设改还后耕地面积为,林地面积为,则下列方程组中正确的是A. B. C. D.4、有甲,乙,丙三种商品,如果购甲3件,乙2件,丙1件共需315元钱,购甲1件,乙2件,丙3件共需285元钱,那么购甲,乙,丙三种商品各一件共需()A.50B.100C.150D.2005、若是方程组的解,那么a-b的值是( )A.5B.1C.-1D.-56、如果单项式2a2m﹣5b n+2与ab3n﹣2的和是单项式,那么m和n的取值分别为()A.2,3B.3,2C.﹣3,2D.3,﹣27、小江去商店购买签字笔和笔记本(签字笔的单价相同,笔记本的单价相同).若购买20支签字笔和15本笔记本,则他身上的钱会不足25元;若购买19支签字笔和13本笔记本,则他身上的钱会剩下15元.若小江购买17支签字笔和9本笔记本,则( )A.他身上的钱会不足95元B.他身上的钱会剩下95元C.他身上的钱会不足105元D.他身上的钱会剩下105元8、已知方程组:的解x,y满足x+3y≥0,则m的取值范围是()A.﹣≤m≤1B.m≥C.m≥1D.m≥﹣9、若方程组的解满足方程,则的值为()A. B. C. D.10、由方程组可得出x与y的关系是( )A.2x+y=4B.2x-y=4C.2x+y=-4D.2x-y=-411、已知关于x、y的方程组和方程组有相同的解,那么(a+b)2007的值为()A.﹣2007B.﹣1C.1D.200712、方程■x﹣2y=x+5是二元一次方程,■是被弄污的x的系数,请你推断■的值属于下列情况中的()A.不可能是﹣1B.不可能是﹣2C.不可能是1D.不可能是213、把一根长的钢管截成长和长两种规格的钢管,如果保证没有余料,那么截取的方法有()A.2种B.3种C.4种D.5种14、若|3x+2y+7|+|5x﹣2y+1|=0,则x,y的值是()A. B. C. D.15、解方程组时,某同学把c看错后得到,而正确的解是,那么a,b,c的值是( )A.a=4,b=5,c=2B.a,b,c的值不能确定C.a=4,b=5,c=-2D.a,b不能确定,c=-2二、填空题(共10题,共计30分)16、已知2x+3y=5,用含x的式子表示y,得:________.17、把方程3x+y-1=0写成用含x的代数式表示y的形式,则y=________.18、方程组的解中,x 与 y 的和等于 5,则 m=________.19、县城3路公交车每隔一定时间发车一次,一天小明在街上匀速行走,发现背后每隔15分钟开过来一辆公交车,而迎面每隔10分钟有一辆公交车驶来,则公交车每隔________分钟发车一次.20、二元一次方程3x+2y=15的正整数解为________21、若=0是关于x、y的二元一次方程,则a的值是________.22、已知关于x,y的二元一次方程组满足,则a的取值范围是________.23、已知是方程的一个解,则的值为________.24、二元一次方程组的解是:________ .25、在关于x,y的方程组:① :② 中,若方程组①的解是,则方程组②的解是________.三、解答题(共6题,共计25分)26、解方程组27、当k取何值时,等式的b是负数.28、将若干吨分别含铁和含铁的两种矿石混合后配成含铁的矿石70吨.求两种矿石分别需要多少吨?29、一农妇在市场卖葱,当时市场上的葱价是1.00元一斤,一葱贩对农妇说:“我想把你的葱分开来买,葱叶0.50元一斤,葱白0.50元一斤.”农妇听了葱贩的话,不假思索就把葱全部卖完.当农妇数过钱之后才发现只卖了一半钱.此时葱贩已不见踪影.聪明的你,请运用数学语言揭穿葱贩的把戏.过程如下:设总量z斤,葱叶x斤,葱白y斤,列方程∵x+y=z,∴卖给葱贩的钱为0.5x+0.5y=0.5z,而实际应卖的钱为1.0x+1.0y=1.0z,结果一目了然,那葱贩只用了一半钱就买了所有葱.(1)生活常识告诉我们,人们在吃葱的时候主要吃的是葱白,葱白应比葱叶卖的贵.假设一根葱的葱叶和葱白重量相同,葱叶和葱白的价钱之和仍是1.00元.请用数学语言说明此时农妇还是只卖了一半的钱.(2)假设一根葱的葱叶和葱白重量不同,且葱叶的重量大于葱白的重量,葱叶0.20元一斤,葱白0.80元一斤.请用数学语言说明此时农妇卖的钱少于一半.30、某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.求该校的大小寝室每间各住多少人?参考答案一、单选题(共15题,共计45分)1、C2、B3、A4、C5、C6、B7、B8、D9、C10、A11、C12、C13、B14、C15、C二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共6题,共计25分)26、27、28、30、。
人教版七年级下第八章二元一次方程组综合练习题(含答案)
人教版七年级下第八章二元一次方程组综合练习题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列方程是二元一次方程的是()A.2x+y=3z B.2x﹣1 y=2C.3x﹣5y=2D.2xy﹣3y=02.在下列方程组5231xy x=⎧⎨-=⎩、35x yx y+=⎧⎨-=⎩、3123xyx y=⎧⎨+=⎩、1111x yx y⎧+=⎪⎨⎪+=⎩、11xy=⎧⎨=⎩中,是二元一次方程组的有()个A.2个B.3个C.4个D.5个3.如图,AB⊥BC,⊥ABD的度数比⊥DBC的度数的两倍少15°,设⊥ABD和⊥DBC的度数分别为x°、y°,那么下面可以求出这两个角的度数的方程组是()A.9015x yx y+=⎧⎨=-⎩B.90215x yx y+=⎧⎨=-⎩C.90152x yx y+=⎧⎨=-⎩D.290215xx y=⎧⎨=-⎩4.方程组1{25x yx y+=-=,的解是().A.1{2.xy=-=,B.2{3.xy,=-=C.2{1.xy==,D.2{1.xy==-,5.用代入法解方程组233210y xx y=-⎧⎨-=⎩①②将方程⊥代入⊥中,所得的正确方程是()A.3x-4x-3=10B.3x-4x+3=10C.3x-4x+6=10D.3x-4x-6=106.如图,宽为50cm的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为()A .2400cmB .2500cmC .2600cmD .2700cm7.若31,21x t y t =+=-,用含y 的式子表示x 的结果是( ) A .253x y -=B .352y x +=C .253x y +=D .352y x -=8.若324432a b a b x y ++--=是关于x ,y 的二元一次方程,则23a b +的值为( ) A .0B .3-C .3D .69.关于x ,y 的方程组3212331x y k x y k +=-⎧⎨+=+⎩的解为x ay b =⎧⎨=⎩,若点P (a ,b )总在直线y =x上方,那么k 的取值范围是( ) A .k >1B .k >﹣1C .k <1D .k <﹣110.若方程组435,(1)8x y kx k y +=⎧⎨--=⎩的解中的x 的值比y 的值的相反数大1,则k 为( )A .3B .-3C .2D .-211.代数式2x ax b ++,当1x =,2时,其值均为0,则当1x =-时,其值为( ) A .0B .6C .6-D .212.李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15分钟.他骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米.如果他骑车和步行的时间分别为x ,y 分钟,列出的方程是( ) A .1{4250802900x y x y +=+=B .15{802502900x y x y +=+=C .1{4802502900x y x y +=+=D .15{250802900x y x y +=+=二、填空题13.请写出一个以21x y =⎧⎨=-⎩为解的二元一次方程:______ .14.(1)若35m =,37=n ,则3m n +=________;(2)若x 、y 是正整数,且5222⋅=x y ,则x 、y 的值分别为________.15.在(1)32xy=⎧⎨=-⎩,(2)453xy=⎧⎪⎨=-⎪⎩,(3)1472xy⎧=⎪⎪⎨⎪=⎪⎩这三组数值中,_______是方程x-3y=9的解,______是方程2x+y=4的解,_________是方程组3924x yx y-=⎧⎨+=⎩的解.16.若二元一次方程组1523210aax yx y-⎧-=⎪⎨⎪-=⎩的解也是方程29x y+=的解,则a=_____.17.二元一次方程组321221x yx y+=⎧⎨-=⎩的解为________.18.已知|2x﹣4|+|x+2y﹣8|=0,则(x﹣y)2022=____.19.已知1,{2xy==是方程ax-3y=5的一个解,则a=________.20.如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x厘米和y厘米,则列出的方程组为________.三、解答题21(2x+3y+1)2互为相反数,求x﹣y的平方根.22.我市某著名景点门票价格规定如下表:小明妈妈的公司有一项短途旅行业务,就是去该景点一日游.学完一元一次方程以后,他妈妈让他给规划一个去该景点游玩的购票方案,给他的提示是:有甲、乙两个团队共32人,其中甲团队3人以上,不足10人.经估算,如果两个团队分别购票,则应付门票费2100元.(1)两个团队各有多少人?(2)如果两个团队联合起来,作为一个团体购票,可省钱元.(3)如果乙团队临时有事不能去了,只有甲团队单独去游玩,通过计算说明如何购票最省钱?23.有甲、乙、丙三种货物,若购甲3件,乙7件,丙1件,共需315元,若购甲4件,乙10件,丙1件,共需420元.现在购甲、乙、丙各一件共需多少元?24.(1)解二元一次方程组5316,350;x y x y -=⎧⎨-=⎩(2)现在你可以用哪些方法得到方程组()()()()5316,350x y x y x y x y ⎧+--=⎪⎨+--=⎪⎩的解?请你对这些方法进行比较.25.先阅读下列解法,再解答后面的问题. 已知2343212x A Bx x x x -=+-+--,求A 、B 的值.解法一:将等号右边通分,再去分母,得:()()3421x A x B x -=-+-,即:()()342x A B x A B -=+-+,⊥()324A B A B +=⎧⎨-+=-⎩解得12A B =⎧⎨=⎩.解法二:在已知等式中取0x =时,有22BA -+=--,整理得24AB +=; 取3x =,有522A B +=,整理得25A B +=. 解2425A B A B +=⎧⎨+=⎩,得:12A B =⎧⎨=⎩.(1)已知21131424643x A B x x x x=+--++-,用上面的解法一或解法二求A 、B 的值.(2)计算:()111111(1)(1)(1)(3)(3)(5)(9)(11)x x x x x x x x x ⎡⎤+++⋅⋅⋅++⎢⎥-+++++++⎣⎦,并求x 取何整数时,这个式子的值为正整数.参考答案:1.C【详解】A 、2x+y=3z 不是二元一次方程,因为有3个未知数; B 、2x -1y=2不是二元一次方程,因为不是整式方程; C 、3x -5y=2是二元一次方程;D 、2xy -3y=0不是二元一次方程,因为最高项的次数为2. 故选C . 2.B【分析】根据二元一次方程组的定义逐个判断即可.【详解】解:方程组5231x y x =⎧⎨-=⎩,035x y x y +=⎧⎨-=⎩,11x y =⎧⎨=⎩符合二元一次方程组的定义,是二元一次方程组.方程组3121xy x y =⎧⎨+=⎩属于二元二次方程组,不是二元一次方程组.方程组1111x y x y ⎧+=⎪⎨⎪+=⎩中的第一个方程不是整式方程,不是二元一次方程组.故选:B .【点睛】本题考查了二元一次方程组的定义,解题关键是明确二元一次方程组的定义,准确进行判断. 3.B【详解】⊥AB⊥BC , ⊥⊥ABD+⊥DBC=90°,又⊥⊥ABD 的度数比⊥DBC 的度数的两倍少15度, ⊥当设⊥ABD 和⊥DBC 度数分别为x y 、时,由题意可得:90215x y x y +=⎧⎨=-⎩ . 故选:B. 4.D【详解】方程组1{25x y x y +=-=①②,由⊥+⊥得3x =6,x =2,把x =2代入⊥中得y =-1, 所以方程组1{25x y x y +=-=的解是2{1x y ==-. 故选D. 5.C 【解析】略 6.A【分析】设小长方形的宽为x cm ,长为y cm ,根据题意列方程组求解即可.【详解】设小长方形的宽为x cm ,长为y cm ,根据题意得504x y y x +=⎧⎨=⎩,解得1040x y =⎧⎨=⎩,∴一个小长方形的面积为21040400cm ⨯=,故选:A .【点睛】本题考查了二元一次方程组的实际应用,能够根据题意列出方程组并准确求解是解题的关键. 7.B【分析】根据21y t =-得,t =12y +,然后将其代入31x t =+即可求解. 【详解】解:由21y t =-,得t =12y +, ⊥31x t =+=3×12y ++1=352y +, 即x =352y +. ⊥用含y 的式子表示x 的结果是x =352y + 故选:B .【点睛】本题主要考查了二元一次方程的解法,解本题关键是把方程21y t =-中含有x 的项移到等号的右边,得到t =12y +. 8.A【分析】根据二元一次方程的定义,得=1a b +,324=1+-a b ,即可得到关于a 、b 的方程组,从而解出a ,b .【详解】解:⊥324432a b a b x y ++--=是一个关于x ,y 的二元一次方程,⊥=1324=1a b a b +⎧⎨+-⎩, 解得:=3=2a b ⎧⎨-⎩,⊥23=660+-=a b , 故选:A .【点睛】本题考查了二元一次方程的定义,二元一次方程必须符合以下三个条件:方程中只含有2个未知数;含未知数项的最高次数为一次;方程是整式方程. 9.B【分析】将k 看作常数,解方程组得到x ,y 的值,根据P 在直线上方可得到b >a ,列出不等式求解即可.【详解】解:解方程组3212331x y k x y k +=-⎧⎨+=+⎩可得,315715x k y k ⎧=--⎪⎪⎨⎪=+⎪⎩, ⊥点P (a ,b )总在直线y =x 上方, ⊥b >a ,⊥731155k k +>--, 解得k >-1, 故选:B .【点睛】本题考查了解二元一次方程组,一次函数上点的坐标特征,解本题的关键是将k 看作常数,根据点在一次函数上方列出不等式求解. 10.A【分析】所谓方程组的解,指的是该数值满足方程组中的每一方程.解出方程组的解,再列出关于两解的等式,求出k . 【详解】解:由题意,解得x =51974k k +-,y =53274k k --,⊥x 的值比y 的值的相反数大1, ⊥x +y =1,即51974k k +-+53274k k --=1, 解得k =3, 故选:A .【点睛】本题主要考查解二元一次方程组和它的解,熟练掌握解二元一次方程组的方法是关键. 11.B【分析】把x 与y 的两对值代入代数式列出方程组,求出方程组的解即可得到a 与b 的值,再将1x =-代入即可求解.【详解】解:由题意,得10420a b a b ++=⎧⎨++=⎩①② , ⊥-⊥得:30a += , 3a =- ,把3a =-代入⊥得:()130b +-+= ,2b = ,解得:32a b =-⎧⎨=⎩ , 把32a b =-⎧⎨=⎩代入代数式2x ax b ++得:232x x -+, 当1x =-时,2326x x -+=. 故选B .【点睛】此题考查了解二元一次方程组,利用了消元的思想,求出a 与b 的值是解题关键. 12.D【分析】根据关键语句“到学校共用时15分钟”可得方程:x +y =15,根据“骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米”可得方程:250x +80y =2900,两个方程组合可得方程组.【详解】解:他骑车和步行的时间分别为x 分钟,y 分钟,由题意得:152********x y x y +=⎧⎨+=⎩ 故选D .【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是弄清题意,找出合适的等量关系,列出方程组. 13.1x y +=(答案不唯一)【分析】根据二元一次方程定义:ax by c +=,令,,a b c 为常数,把21x y =⎧⎨=-⎩代入,解出c 即可.【详解】⊥本题答案不唯一,只要写出的二元一次方程的解为21x y =⎧⎨=-⎩即可⊥令1a =,1b =,得x y c += ⊥把21x y =⎧⎨=-⎩代入方程x y c +=解出1c = ⊥1x y +=故答案是:1x y +=.【点睛】本题考查解二元一次方程的逆过程、不定方程的定义,灵活掌握二元一次方程定义是解题的关键.14. 35 14x y =⎧⎨=⎩,23x y =⎧⎨=⎩,32x y =⎧⎨=⎩,41x y =⎧⎨=⎩.【分析】(1)根据333m n m n +=⋅求解即可;(2)求根据5222⋅=x y 得到522x y +=即5x y +=,再由x 、y 是正整数求解即可. 【详解】解:(1)⊥35m =,37=n , ⊥3335735m n m n +=⋅=⨯=; (2)⊥5222⋅=x y ⊥522x y +=, ⊥5x y +=, ⊥x 、y 是正整数,⊥14xy=⎧⎨=⎩或23xy=⎧⎨=⎩或32xy=⎧⎨=⎩或41xy=⎧⎨=⎩.故答案为:35;14xy=⎧⎨=⎩,23xy=⎧⎨=⎩,32xy=⎧⎨=⎩,41xy=⎧⎨=⎩.【点睛】本题主要考查了同底数幂的乘法的逆用,二元一次方程,解题的关键在于能够熟练掌握相关知识进行求解.15.(1),(2)(1),(3)(1)【分析】根据二元一次方程解的定义:使二元一次方程左右两边相等的一组未知数的值,分别将三组数值代入两个方程中求出各自的解,即可得到方程组的解.【详解】解:当32xy=⎧⎨=-⎩时,方程39x y-=的左边为:()33329x y-=-⨯-=,方程左右两边相等,⊥32xy=⎧⎨=-⎩是方程39x y-=的解;当453xy=⎧⎪⎨=-⎪⎩时,方程39x y-=的左边为:534393x y⎛⎫-=-⨯-=⎪⎝⎭,方程左右两边相等,⊥453xy=⎧⎪⎨=-⎪⎩是方程39x y-=的解;当1472xy⎧=⎪⎪⎨⎪=⎪⎩时,方程39x y-=的左边为:174133424x y⎛⎫-=-⨯=-⎪⎝⎭,方程左右两边不相等,⊥1472xy⎧=⎪⎪⎨⎪=⎪⎩不是方程39x y-=的解;当32xy=⎧⎨=-⎩时,方程24x y+=的左边为:()22324x y+=⨯+-=,方程左右两边相等,⊥32xy=⎧⎨=-⎩是方程24x y+=的解;当453xy=⎧⎪⎨=-⎪⎩时,方程24x y+=的左边为:51322333x y⎛⎫+=⨯+-=⎪⎝⎭,方程左右两边不相等,⊥453xy=⎧⎪⎨=-⎪⎩不是方程24x y+=的解;当1472xy⎧=⎪⎪⎨⎪=⎪⎩时,方程24x y+=的左边为:1722442x y+=⨯+=,方程左右两边相等,⊥1472xy⎧=⎪⎪⎨⎪=⎪⎩不是方程24x y+=的解;⊥方程组3924x yx y-=⎧⎨+=⎩的解为32xy=⎧⎨=-⎩;故答案为:⊥(1),(2);⊥(1),(3);⊥(1).【点睛】本题主要考查了二元一次方程和二元一次方程组的解,数值二元一次方程解得定义是解题的关键.16.9 7【分析】根据方程组1523210aax yx y-⎧-=⎪⎨⎪-=⎩的解也是方程29x y+=的解得2+93210x yx y=⎧⎨-=⎩求出x,y得值,再代入方程152aax y--=,即可解答.【详解】1523210aax yx y-⎧-=⎪⎨⎪-=⎩的解也是方程29x y+=的解∴得2+9 3210x yx y=⎧⎨-=⎩解得:41 xy=⎧⎨=⎩把41xy=⎧⎨=⎩代入方程152aax y--=得:1452aa--=解得:a=9 7【点睛】此题考查了二元一次方程组的解,解决本题的关键是明确方程组的解即为能使方程组中两方程成立的未知数的值.17.23 xy=⎧⎨=⎩【分析】方程组利用加减消元法求出解即可.【详解】解:321221x yx y+=⎧⎨-=⎩①②.⊥+⊥×2得:7x=14,解得:x=2,把x=2代入⊥得:2×2-y=1解得:y=3,所以,方程组的解为23xy=⎧⎨=⎩,故答案为:23xy=⎧⎨=⎩.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.1【分析】由非负数的意义求出x,y的值,再代入计算即可.【详解】解:⊥|2x﹣4|≥0,|x+2y﹣8|≥0,|2x﹣4|++|x+2y﹣8|=0,⊥2x﹣4=0,x+2y﹣8=0.⊥x=2,y=3.⊥(x﹣y)2022=(2﹣3)2022=1.故答案为:1.【点睛】本题考查非负数的意义,掌握绝对值,偶次幂的运算性质是解决问题的前提.19.11【详解】本题考查的是二元一次方程的解的定义由题意把1,{2xy==代入方程ax-3y=5即可得到结果.由题意得,20.2753x yx y+=⎧⎨=⎩【分析】根据图示可得:大长方形的长可以表示为x +2y ,长又是75厘米,故x +2y =75,长方形的宽可以表示为2x ,或x +3y ,故2x =3y +x ,整理得x =3y ,联立两个方程即可.【详解】解:根据图示可得大长方形的长可以表示为x +2y ,长又是75厘米,故x +2y =75,长方形的宽可以表示为2x ,或x +3y ,故2x =3y +x ,整理得x =3y ,联立两个方程得到: 2753x y x y+=⎧⎨=⎩, 故答案为:2753x y x y +=⎧⎨=⎩【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方形的长和宽.21.x ﹣y 的平方根为(2x +3y +1)2()22310x y ++=,再结合二次根式非负性及平方的非负性得到4302310x y x y +-=⎧⎨++=⎩,求解代值即可得到结论.【详解】解:()2231x y ++互为相反数,()22310x y ++=, ()240,2310x y x y +++≥, ⊥4302310x y x y +-=⎧⎨++=⎩,解得11x y =⎧⎨=-⎩, ⊥x ﹣y =2,⊥x﹣y 的平方根为【点睛】本题考查求代数式的平方根,涉及到相反数的性质、二次根式非负性及平方的非负性、解二元一次方程组等知识点,熟练掌握相反数的性质和常见非负式的运用是解决问题的关键.22.(1)甲团队有9人,乙团队有23人;(2)500;(3)11张【分析】(1)设甲团队有x 人,由题意可知,乙团队人数大于20人小于30人,再根据门票的收费标准列出方程求解即可;(2)算出合在一起买的花销,然后用分开买的花销减去合买的花销即可;(3)分别算出单买和合买11张的花销,然后比较即可得到答案.【详解】解:(1)设甲团队有x 人,由题意可知,乙团队人数大于20人小于30人,列方程得8060(32)2100x x +-=解方程,得9x =这时,3223x -=答:甲团队有9人,乙团队有23人.(2)由题意得人数一共有32人,则合买的花销=3250=1600⨯ 元,⊥可省钱2100-1600=500元故答案为:500;(3)直接购买:809720⨯=(元);按团体票购买:6011660⨯=(元)⊥720>660,⊥购买11张票最省钱.答:购买11张票最省钱.【点睛】本题主要考查了一元一次方程的实际应用,解题的关键在于能够准确找到等量关系列出方程求解.23.105元【分析】先设甲、乙、丙各一件分别需要x ,y ,z 元,根据购甲3件,乙7件,丙1件,共需315元,购甲4件,乙10件,丙1件,共需420元,列出方程组求出x y z ++的值即可.【详解】解:设购甲、乙、丙各一件分别需要x ,y ,z 元,根据题意得:37315410420x y z x y z ++=⎧⎨++=⎩①② ⊥×3-⊥×2得105x y z ++=.则现在购甲、乙、丙各一件共需105元【点睛】此题考查了三元一次方程组的应用,关键是根据题意设出未知数,列出方程组,注意要把x ,y ,z 以整体形式出现.24.(1)5,3;x y =⎧⎨=⎩;(2)见解析 【分析】(1)利用加减消元法解方程组;(2)方法一:将两个方程分别化简再求解;方法二:根据(1)可得方程的解为53x y x y +=⎧⎨-=⎩,再利用加减法求解.【详解】解:(1)5316350x y x y -=⎧⎨-=⎩①②, 由35⨯-⨯①②得16y =48,⊥y =3,将y =3代入⊥得x =5,⊥这个方程组的解是53x y =⎧⎨=⎩; (2)方法一:去括号得到方程组2816,280,x y x y +=⎧⎨-+=⎩再解得结果41;x y =⎧⎨=⎩; 方法二:由(1)5316,350;x y x y -=⎧⎨-=⎩解为53x y =⎧⎨=⎩,可得()()()()5316,350x y x y x y x y ⎧+--=⎪⎨+--=⎪⎩的解为53x y x y +=⎧⎨-=⎩,解得41x y =⎧⎨=⎩. 【点睛】此题考查解二元一次方程组,掌握二元一次方程组的解法:代入法和加减法,(2)可灵活运用解题方法求解,渗透一定的整体换元思想和化归思想.25.(1)3,2A B =-=;(2)61x -,当x 取2,3,4,7时,这个式子的值为正整数. 【分析】(1)解法一:先等式两边同乘以(6)(43)x x +-去分母,去括号化简可得一个关于A 、B 的二元一次方程组,解方程组即可得;解法二:分别取0x =和1x =可得一个关于A 、B 的二元一次方程组,解方程组即可得;(2)先将括号内的每一项拆分成两项的差的形式,再计算分式的加减法与乘法运算即可得,然后根据整数性质求出符合条件的整数x 的值即可.【详解】(1)解法一:21131424643x A B x x x x =+--++-, 等式两边同乘以(6)(43)x x +-去分母,得11(43)(6)x A x B x =-++,即11(3)46x A B x A B =-+++,则311460A B A B -+=⎧⎨+=⎩,解得32A B =-⎧⎨=⎩; 解法二:21131424643x A B x x x x =+--++-, 取0x =,得064A B +=,即230A B +=, 取1x =,得1177B A =+,即117A B +=, 联立230711A B A B +=⎧⎨+=⎩,解得32A B =-⎧⎨=⎩; (2)()111111(1)(1)(1)(3)(3)(5)(9)(11)x x x x x x x x x ⎡⎤+++⋅⋅⋅+⎢⎥-+++++++⎣⎦, ()111111111112111335911x x x x x x x x x ⎛⎫-+-+-+⋅⋅⋅+-+ ⎪-++++⎝⎭=+++, ()111112111x x x ⎛⎫-+ ⎪⎝⎭=-+, ()11112(1)(11)(11()1)11x x x x x x x ⎡⎤--+⎢⎥-+-+⎣⎦+=, ()1112(1)(11)12x x x ⋅⋅++=-, 61x =-, 要使61x -为正整数,则整数1x -的所有可能取值为1,2,3,6, 即整数x 的所有可能取值为2,3,4,7,经检验,当x 取2,3,4,7时,分式的分母均不为零,故当x 取2,3,4,7时,这个式子的值为正整数.【点睛】本题考查了分式的加减法与乘法运算、二元一次方程组的应用,读懂阅读材料中的两种解法是解题关键.。
人教版数学七年级下册第八章二元一次方程组单元测试卷(含答案)
人教版数学七年级下册第八章二元一次方程组一、单选题1.下列方程中是二元一次方程的是( )A .x +y =aB .3x −y =0C .x +xy =10D .4x =3y2.用代入法解方程组{y =1−x ①x−2y =4②时,把①代入②正确的是( )A .x -2−x =4B .x−2−2x =4C .x -2+2x =4D .x−2+x =43.方程x−y =−1与下面方程中的一个组成的二元一次方程组的解为{x =3y =4,那么这个方程可以是( )A .3x−4y =16B .13x +14y =0C .4(x +y)=7yD .3x +2y =154.已知关于x ,y 的方程组{3x +2y =42x−7y =4m−9的解也满足方程x−y =3,则m 的值为( )A .3B .4C .5D .65.如果(x+y-5)2与│3y-2x+10│互为相反数,那么x 、y 的值为( )A .x=3,y=2B .x=2,y=3C .x=0,y=5D .x=5,y=06.若点P (x,y )满足方程组{2x−y =5x +y =1,则点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限7.甲乙两人练习跑步,若乙先跑10m ,则甲5s 就可以追上乙;若乙先跑2s ,则甲4s 就可以追上乙,若设甲的速度x m/s ,乙的速度y m/s ,则( )A .x =4,y =6B .x =6,y =4C .x =3,y =5D .x =5,y =38.我国古代数学名著《算法统宗》中记载:“今有里长值月议云每里科出银五钱依帐买物以辨酒席多银三两五钱每里科出四钱亦多五钱问合用银并里数若干”.意为:里长们(“里”是指古代的一种基层行政单位)在月度会上商议出银子购买物资办酒席之事.若每里出5钱,则多出35钱;若每里出4钱,则多出5钱.问办酒席需多少银子,里的数量有多少个?若设里的数量有x 个,办酒席需要用y 钱银子,则可列方程组为( )A .{5y =x +354y =x−5B .{5y =x +354y =x +5C .{5x =y +354x =y−5D .{5x =y +354x =y +59.一家宾馆有二人间、三人间、四人间3种客房,一个由20人组成的旅行团准备同时租住这3种客房共7间,如果每个房间都住满,可供选择的方案有( )A .1种B .2种C .3种D .4种10.图1是我国古代传说中的洛书,图2是洛书的数字表示.相传,大禹时,洛阳西洛宁县洛河中浮出神龟,背驮“洛书”,献给大禹.大禹依此治水成功,遂划天下为九州.又依此定九章大法,治理社会,流传下来收入《尚书》中,名《洪范》.《易·系辞上》说:“河出图,洛出书,圣人则之”.洛书是一个三阶幻方,就是将已知的9个数填入3×3的方格中,使每一横行、每一竖列以及两条斜对角线上的数字之和都相等.图3是一个不完整的幻方,根据幻方的规则,由已知数求出 x 的值应为( ).A .-4B .-3C .3D .4二、填空题11.将方程4x−3y =12变形为用关于x 的代数式表示y ,则y = 12.请你写出一个解为 {x =1y =−1的二元一次方程组:.13.若关于x ,y 的二元一次方程3x +ay =1有一个解是{x =2y =1,则a = .14.已知m 、n 满足{23m +24n =3124m +23n =16,则m 2−n 2的值是.15.已知方程组{2x +3y =13x +2y =2的解满足x−y =m ,则m 的值为 .16.已知{x−3y +2z =03x−3y−4z =0,则x:y:z =.17.已知方程组{5x +y =3mx +5y =4 与{x−2y =55x +ny =1有相同的解,则m−n = .18.实数m 取何值,方程x−2my +mx−6=0总有一个固定的解,请直接写出这个解 .三、解答题19.解方程组:(1){x +2y =9y−3x =1(2){x +4y =14x−33−y−33=11220.小明和小亮分别从相距20千米的甲、乙两地相向而行,经过2小时,两人相遇,相遇后小明立即返回甲地,小亮继续向甲地前进,小明返回到甲地时,小亮离甲地还有2千米,请求出两人的速度分别是多少?21.甲乙两人同时解方程组{ax+by=8cx−3y=−2,甲正确解得{x=1y=−1;乙因为抄错c的值,解得{x=2y=−6.求a,b,c的值.22.2024年五一假期期间,太原市某中学开展以“红色经典”为主题的研学活动,组织七年级师生参观红色文化传承实践教育基地.原计划租用45座甲型客车若干辆,但有15人没有座位;若租用同样数量的60座乙型客车,则多出三辆车,且其余客车恰好坐满.(1)参加此次研学活动的师生人数是多少?原计划租用多少辆甲型客车?(2)若同时租用甲、乙两种型号的客车,要使每位师生都有座位且无空位,有哪几种租车方案?23.某校组织“大手拉小手,义卖献爱心”活动,计划购买黑白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花4800元购买了黑白两种颜色的文化衫200件,每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫2545白色文化衫2035(1)学校购进黑.白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.24.阅读下述材料,再按要求解答.如果一个关于x、y的一次方程可化为形如:ax+by+1=0(a,b都是不为0的常数)的形式,并且满足a+b=1,那么我们就把这个一次方程叫做具有“1性质”的方程.(1)若关于x,y的方程ax+76y+1=0是具有“1性质”的方程,则a的值为______.(2)若关于x,y的方程m−n2x−(m+n)y=1是具有“1性质”的方程,且{x=1y=2是该方程的一个解,试求m,n的值.参考答案1.D2.C3.C4.C5.D6.D7.B8.D9.B10.A11.4x−12312.{x+y=0x−y=2(答案不唯一)13.-514.−1515.116.9:5:317.1218.{x=6y=319.(1){x=1y=4;(2){x=3y=11420.小明速度为5.5千米/时.小亮速度为4.5千米/时21.{a=10b=2c=−522.(1)参加此次研学活动的师生人数是600,原计划租用13辆甲型客车(2)有三种租车方案,分别是租用甲型客车4辆,乙型客车7辆;租用甲型客车8辆,乙型客车4辆;租用甲型客车12辆,乙型客车1辆23.(1)学校购进黑文化衫160件,白文化衫40件;(2)该校这次义卖活动共获得3800元利润.24.(1)−16 (2){m=−4n=2。
最新人教版初中数学七年级下册第8章《二元一次方程组》测试题(含答案)
人教版七年级数学下册第八章二元一次方程组单元检测试题(有答案)一、选择题1 .以下各方程组中,属于二元一次方程组的是()A .B .C .D .2 A C .将方程.y=. x =2 x2 x2y-3+-y3= 3 写成用含x 的式子表示B . y = 3 -D . x = 3-2yy 的形式,正确的选项是 2 x()3 .若方程组的解为,则被“☆ ”、“K”遮住的两个数分别是() A.10,3B.3,10C.4,10D.10,44 .已知x , y 知足方程组则x+y的值为()A .9B .7C .5D .35 .已知甲、乙两数的和是7 ,甲数是乙数的 2 倍,设甲数为x ,乙数为y ,依据题意,列方程组正确的选项是()A. B. C. D.6 .按以下图的运算程序,能使输出结果为 5 的 x , y 的值是()A .x = 5 ,y =-5B .x =- 1 ,y =1C .x = 2 ,y =1D .x =3,y=27.若x 2 y3z=10 ,4x3y2z=15 ,则x y z 的值为()A . 5B . 4C. 3 D . 28.若方程组4x 3 y1ax(a 的解 x 与 y 相等,则 a 的值等于()1)y 3A . 4B .10C.11D. 129. 两个水池共储水40 吨,假如甲池注进水 4 吨,乙池注进水8 吨,甲池水的吨数就与乙池水的吨数相等.甲、乙水池本来各储水的吨数是()A .甲池 21 吨,乙池19 吨B .甲池 22 吨,乙池18 吨C. 甲池 23吨,乙池17 吨 D .甲池 24 吨,乙池 16 吨10.某校七年级 (2) 班 40名同学为四川地震灾区捐钱,共捐了100 元,捐钱状况以下表:捐钱(元)1234人数67表格中捐钱 2 元和 3 元的人数不当心被墨水污染已经看不清楚,若设捐钱 2 元的有 x 名同学,捐钱 3 元的有 y 名同学,依据题意,可列方程组()A.x y27x y27x y27D.x y27 2x3y66B.3yC.2 y66 2 y1002x1003x3x二、填空题1.方程组的解是.2.已知对于x , y 的二元一次方程 2 x+■ y= 7中, y 的系数已经模糊不清,但已知是这个方程的一个解,那么原方程是.3.某旅行社组织甲、乙两个旅行团分别到庐山、婺源旅行,已知这两个旅行团共有55 人,甲旅行团的人数比乙旅行团的人数的 2 倍少5 人,问甲、乙两个旅行团各有多少人?设甲、乙两个旅行团分别有x 人、 y 人,依据题意可列方程组为.4.已知+ ( x + 2 y - 5) 2 = 0 ,则 x + y =.5. “六一”小孩节,某动物园的成人门票每张8 元,小孩门票半价 (即每张 4 元 ),全天共售出门票3000 张,共收入 15600 元,则这天售出了成人票 ________张,小孩票 ___ _ 张.三、计算题1.解方程组:(1)(2)2.已知与都是方程kx - b = y 的解,求k 和 b 的值.3.已知方程组小马因为看错了方程①中的m ,获得方程组的解为小虎因为看错了方程②中的n ,获得方程组的解为请你依据上述条件求原方程组的解.4.请你依据王老师所给的内容,达成以下各小题.(1)若 x =-5, 2◎4 =- 18,求y 的值;(2)若 1◎1=8,4◎2=20,求x , y 的值.5.“六一”小孩节有一投球入盆的游戏,深受同学们的喜欢,游戏规则以下:如图,在一大盆里放一小茶盅 ( 叫好运区 ) 和小茶盅外大盆内 ( 环形区 ) 分别得不一样的分数,投到大盆外不得分;每人各投 6 个球,总得分不低于30 分得奖券一张.现统计小刚、小明、小红三人的得分状况以以下图.(1)每投中“好运区”和“环形区”一次,分别得多少分?(2)依据这类得分规则,小红可否获得一张奖券?请说明原因.6.数学方法:解方程组若设x + y = A , x - y = B ,则原方程组可变形为解方程组得因此解方程组得我们把某个式子当作一个整体,用一个字母去取代它,这类解方程组的方法叫作换元法.(1)请用这类方法解方程组(2)已知对于x , y 的二元一次方程组的解为那么对于m , n 的二元一次方程组的解为;(3)已知对于x , y 的二元一次方程组的解为则对于x , y 的方程组的解为.答案与分析一、选择题。
最新人教版初中数学七年级下册第8章《二元一次方程组》测试卷(含答案)
人教版七年级数学下册第八章二元一次方程组单元测试题(有答案)一、选择题(共10小题,每小题3分,共30分)1.下列不是二元一次方程组的是()A.B.3x=4y=1 C.D.2.下列各组数值是二元一次方程x-3y=4的解的是()A.B.C.D.3.利用代入消元法解方程组下列做法正确的是()A.由①,得x=B.由①,得y=C.由②,得y=D.由②,得y=4.由方程组的解满足x+y=5,则m值为()A.12 B.-12 C. 2 D.-25.已知则用含x的式子表示y,应是()A.x=-y+4 B.y=4x C.y=-x+4 D.y=x-46.在等式y=kx+b中,当x=2时,y=-4;当x=-2时,y=8,则这个等式是() A.y=3x+2 B.y=-3x+2 C.y=3x-2 D.y=-3x-27.春节前夕,某旅游景区的成人票和学生票均对折,李凯同学一家(2个成人和1个学生)去了该景区,门票共花费200元,王玲同学一家(3个成人和2个学生)去了该景区,门票共花费320元,则赵芸同学和妈妈去该景区游玩时,门票需要花费()A.120元B.130元C.140元D.150元8.解方程组以下解法不正确的是()A.由①,②消去z,再由①,③消去z B.由①,③消去z,再由②,③消去zC.由①,③消去y,再由①,②消去y D.由①,②消去z,再由①,③消去y9.甲仓库乙仓库共存粮450吨,现从甲仓库运出存粮的60%,从乙仓库运出存粮的40%.结果乙仓库所余的粮食比甲仓库所余的粮食多30吨.若设甲仓库原来存粮x吨,乙仓库原来存粮y吨,则有()A.B.C.D.10.为处理甲、乙两种积压服装,商场决定打折销售,已知甲、乙两种服装的原单价共为880元,现将甲服装打八折,乙服装打七五折,结果两种服装的单价共为684元,则甲、乙两种服装的原单价分别是()A.400元,480元B.480元,400元C.560元,320元D.320元,560元二、填空题(共8小题,每小题3分,共24分)11.某工厂现在年产值是150万元,如果每增加1 000元的投资,一年可增加2 500元的产值,设新增加的投资额为x万元,总产值为y万元,那么x,y的满足的方程为__________.12.若方程组是关于x,y的二元一次方程组,则代数式a+b+c的值是________.13.二元一次方程3x+2y=10的非负整数解是______________.14.方程组的解为________________.15.方程3x-y=4中,有一组解x与y互为相反数,则3x+y=________.16.已知方程组则x-y=______,x+y=______.17.某人步行5小时,先沿平坦道路走,然后上山,再沿来的路线返回,若在平坦道路上每小时走4千米,上山每小时走3千米,下山每小时走6千米,那么这5小时共走了路程____________千米.18.一张方桌由一个桌面和四条桌腿组成,如果1立方米木料可制作桌面50个,或制作桌腿300条,现有5立方米木料,请你设计一下,用________立方米木料做桌面,恰好使桌面与桌腿配套,二者均没有剩余.三、解答题(共7小题,共66分)19.(8分)(1)解二元一次方程组:(2)若关于x、y的方程组与(1)中的方程组有相同的解,求a+b的值.20. (8分)若方程组的解x、y的和为-5,求k的值,并解此方程组.21. (8分)是否存在m值,使方程(|m|-2)x2+(m+2)x+(m+1)y=m+5是关于x,y的二元一次方程?若存在,求出m的值;若不存在,请说明理由.22. (8分)电子商务的快速发展逐步改变了人们的生活方式,网购已悄然进入千家万户.李阿姨在淘宝网上花220元买了1个茶壶和10个茶杯,已知茶壶的单价比茶杯的单价的4倍还多10元.请问茶壶和茶杯的单价分别是多少元?23. (10分)王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44 000元.其中种茄子每亩用了1 700元,种西红柿每亩用了1 800元.问种茄子和西红柿两种大棚蔬菜各多少亩?24. (12分)绵阳中学为了进一步改善办学条件,决定计划拆除一部分旧校舍,建造新校舍.拆除旧校舍每平方米需80元,建造新校舍每平方米需要800元,计划在年内拆除旧校舍与建造新校舍共9 000平方米,在实施中为扩大绿化面积,新建校舍只完成了计划的90%而拆除旧校舍则超过了计划的10%,结果恰好完成了原计划的拆、建总面积.(1)求原计划拆、建面积各是多少平方米?(2)若绿化1平方米需要200元,那么把在实际的拆、建工程中节余的资金全部用来绿化,可绿化多少平方米?25. (12分)为庆祝“六一”儿童节,某市中小学统一组织文艺汇演,甲、乙两所学校共92人(其中甲校人数多于乙校人数,且甲校人数不足90人),准备在同一家服装厂购买演出服装,下面是该服装厂给出的服装的价格:如果两所学校分别单独购买服装,一共应付5000元.(1)如果甲、乙两校联合购买服装共可以节约多少钱?(2)甲、乙两所学校各有多少学生准备参加演出?(3)如果甲校有10名同学因故不能演出,请你为两所学校设计一种最省钱的购买服装方案答案解析1.【答案】C【解析】A.符合二元一次方程组的定义,属于二元一次方程组,故本选项错误; B .符合二元一次方程组的定义,属于二元一次方程组,故本选项错误; C.x1是分式,不属于二元一次方程组,故本选项正确; D .符合二元一次方程组的定义,属于二元一次方程组,故本选项错误;故选C. 2.【答案】A【解析】A.将x =1,y =-1代入方程左边,得x -3y =1+3=4,右边为4,本选项正确; B .将x =2,y =1代入方程左边,得x -3y =2-3=-1,右边为4,本选项错误; C .将x =-1,y =-2代入方程左边,得x -3y =-1+6=5,右边为4,本选项错误; D .将x =4,y =-1代入方程左边,得x -3y =4+3=7,右边为4,本选项错误. 故选A. 3.【答案】B【解析】由①,得2x =6-3y ,x =;3y =6-2x, y =;由②,得5x =2+3y ,x =,3y =5x -2,y =.故选B.4.【答案】C 【解析】由①,得x =4-2m ,由②,得y =m +3,代入x +y =5,得4-2m +m +3=5, 解得m =2,故选C. 5.【答案】C 【解析】①+②,得x +y =4,则y =-x +4,故选C. 6.【答案】B【解析】分别把当x =2时,y =-4,当x =-2时,y =8代入等式y =kx +b ,得①-②,得4k =-12,解得k =-3,把k =-3代入①,得-4=-3×2+b ,解得b =2, 分别把k =-3,b =2的值代入等式y =kx +b ,得y =-3x +2,故选B.7.【答案】A【解析】设成人票是x元/张,学生票是y元/张,依题意,得解得则x+y=120.即赵芸同学和妈妈去该景区游玩时,门票需要花费120元.故选A.8.【答案】D【解析】解方程组以下解法不正确的是由①,②消去z,再由①,③消去y.故选D.9.【答案】C【解析】要求甲,乙仓库原来存粮分别为多少,就要先设出未知数,找出题中的等量关系列方程求解.题中的等量关系为:从甲仓库运出存粮的60%,从乙仓库运出存粮的40%.结果乙仓库所余的粮食比甲仓库所余的粮食多30吨,甲仓库、乙仓库共存粮450吨.设甲仓库原来存粮x吨,乙仓库原来存粮y吨.根据题意,得故选C.10.【答案】B【解析】设甲、乙两种服装的原单价分别是x元、y元,满足等量关系:①甲、乙两种服装的原单价共为880元;②打折后两种服装的单价共为684元,由此列出方程组求解.设甲、乙两种服装的原单价分别是x元、y元.根据题意,得解得答:甲、乙两种服装的原单价分别是480元、400元.故选B.11.【答案】y=×0.25+150【解析】本题的等量关系:总产值等于增加的产值+现在年产值.设新增加的投资额为x万元,总产值为y万元,由题意,得y=×0.25+150.12.【答案】-2或-3【解析】若方程组是关于x,y的二元一次方程组,则c+3=0,a-2=1,b+3=1,解得c=-3,a=3,b=-2.所以代数式a +b +c 的值是-2.或c +3=0,a -2=0,b +3=1, 解得c =-3,a =2,b =-2.所以代数式a +b +c 的值是-3. 故答案为-2或-3. 13.【答案】【解析】当x =0时,2y =10,解得y =5; 当x =1时,2y =7,解得y =3.5(不合题意舍去); 当x =2时,2y =4,解得y =2; 当x =3时,y =21(不合题意舍去); 当x ≥4时,y <0(不合题意). 故答案为或14.【答案】【解析】将①代入②,得2y +10-y =5,解得y =-5,将y =-5代入①,得x =0,则方程组的解为故选答案为15.【答案】2【解析】依题意,得x =-y .∴3x -y =3x +x =4x =4,∴x =1, 则y =-1.∴3x +y =2.故答案为2. 16.【答案】-1 5 【解析】①-②,得x -y =-1,①+②,得3x +3y =15, 所以x +y =5. 故答案为-1;5. 17.【答案】20【解析】设平路有x 千米,上坡路有y 千米,根据平路用时+上坡用时+下坡用时+平路用时=5,即可得解.注意求得x +y 的值即为总路程. 根据题意,得54634=+++x y y x ,即522=+yx ,则x +y =10(千米), 这5小时共走的路程=2×10=20(千米).故答案填20. 18.【答案】3【解析】根据题意可得等量关系:①x立方米木料做桌面+y立方米木料做桌腿=5立方米;②桌面的总数×4=桌腿的总数,根据等量关系列出方程组即可.设用x立方米木料做桌面,y立方米木料做桌腿,根据题意,得解得答:用3立方米木料做桌面,恰好使桌面与桌腿配套,二者均没有剩余.故答案为3.19.【答案】解(1)①-②,得5y=-5,即y=-1,把y=-1代入①,得x=6,则方程组的解为(2)把代入方程组,得解得则a+b=2.【解析】(1)方程组利用加减消元法求出解即可;(2)把x与y的值代入方程组求出a与b的值,即可求出a+b的值.20.【答案】解②×2-①,得7x+6y=6③,又由题意,得x+y=-5④,联立③④,得方程组解得代入①,得k=13.【解析】解关于x、y的方程组,x,y即可用k表示出来,再根据x、y的和为-5,即可得到关于k的方程,从而求得k的值.21.【答案】解∵方程(|m|-2)x2+(m+2)x+(m+1)y=m+5是关于x,y的二元一次方程,∴|m|-2=0,m+2≠0,m+1≠0,解得m=2,故当m=2时,方程(|m|-2)x2+(m+2)x+(m+1)y=m+5是关于x,y的二元一次方程.【解析】利用二元一次方程的定义得出其系数的关系进而求出即可.22.【答案】解设茶壶的单价为x元,茶杯的单价为y元,由题意,得解得答:茶壶的单价为70元,茶杯的单价为15元.【解析】设茶壶的单价为x元,茶杯的单价为y元,根据题意可得,1个茶壶和10个茶杯共花去220元,茶壶的单价比茶杯的单价的4倍还多10元,据此列方程组求解.23.【答案】解设种茄子的大棚有x亩,种西红柿的大棚蔬菜有y亩,由题意,得解得答:种茄子的大棚有10亩,种西红柿的大棚蔬菜有15亩.【解析】设种茄子的大棚有x亩,种西红柿的大棚蔬菜有y亩,根据25亩蔬菜用去了44 000元,列方程组求解.24.【答案】解(1)由题意可设拆旧舍x平方米,建新舍y平方米,则解得答:原计划拆建各4 500平方米.(2)计划资金y1=4 500×80+4 500×800=3 960 000元,实用资金y2=1.1×4 500×80+0.9×4 500×800=4 950×80+4 050×800=396 000+3 240 000=3 636 000,∴节余资金:3 960 000-3 636 000=324 000,∴可建绿化面积==1 620平方米,答:可绿化面积1 620平方米.【解析】(1)等量关系为:计划在年内拆除旧校舍面积+计划建造新校舍面积=9 000平方米,计划建造新校舍面积×90%+计划拆除旧校舍面积×(1+10%)=9 000平方米.依等量关系列方程,再求解.(2)先算出计划的资金总量和实际所用的资金总量,然后算出节余的钱,那么可求可绿化的面积.25.【答案】解(1)由题意,得5 000-40×92=5 000-3 680=1 320(元),答:甲、乙两校联合购买服装共可以节约1 320元;(2)设甲、乙两所学校各有x、y人准备参加演出,则根据题意,得解得答:甲校有52人,乙校有40人;(3)由题意,得两校联合购买82套需要的费用为50×82=4 100,两校联合购买91套需要的费用为40×91=3 640,∵3 640<4 100.∴购买91套比买82套更省钱.【解析】(1)根据服装厂的销售价格和求出联合购买需要的费用,由单独购买一共人教版七年级数学下册第八章二元一次方程组单元测试题(有答案)一.选择题1.下列方程中,是二元一次方程的是( )A .3x -2y =4zB .6xy +9=0C.1x +4y =6 D .4x =y -24 2.下列方程组中,是二元一次方程组的是( )A.⎩⎪⎨⎪⎧x +y =42x +3y =7B.⎩⎪⎨⎪⎧2a -3b =115b -4c =6C.⎩⎪⎨⎪⎧x 2=9y =2xD.⎩⎪⎨⎪⎧x +y =8x 2-y =4 3.方程组的解为( ) A .B .C .D .4.夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( ) A . B . C .D .5.小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( )A .19B .18C .16D .156.某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x 元,水笔每支为y 元,那么根据题意,下列方程组中,正确的是( )A.B.C.D.7.《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.8.某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得﹣2分,不答的题得0分,已知圆圆这次竞赛得了60分,设圆圆答对了x道题,答错了y道题,则()A.x﹣y=20 B.x+y=20 C.5x﹣2y=60 D.5x+2y=609.阅读理解:a,b,c,d是实数,我们把符号称为2×2阶行列式,并且规定: =a ×d﹣b×c,例如: =3×(﹣2)﹣2×(﹣1)=﹣6+2=﹣4.二元一次方程组的解可以利用2×2阶行列式表示为:;其中D=,D x=,D y=.问题:对于用上面的方法解二元一次方程组时,下面说法错误的是()A.D==﹣7 B.D x=﹣14C.D y=27 D.方程组的解为10.若二元一次联立方程式的解为x=a,y=b,则a+b之值为何?()A.24 B.0 C.﹣4 D.﹣811.为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有()A.4种B.3种C.2种D.1种12.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程正确的是()A. B. C.D.二.填空题1.若关于x、y的二元一次方程3x﹣ay=1有一个解是,则a= .2.六一儿童节,某幼儿园用100元钱给小朋友买了甲、乙两种不同的玩具共30个,单价分别为2元和4元,则该幼儿园购买了甲、乙两种玩具分别为、个.3.对于实数a,b,定义运算“◆”:a◆b=,例如4◆3,因为4>3.所以4◆3==5.若x,y满足方程组,则x◆y=.4.已知x,y满足方程组,则x2﹣4y2的值为.5.我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,译文为:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元.问这个物品的价格是多少元?”该物品的价格是元.6.我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为尺,竿子长为尺.7.若二元一次方程组的解为,则a﹣b= .8.已知是关于x,y的二元一次方程组的一组解,则a+b= .9.小强同学生日的月数减去日数为2,月数的两倍和日数相加为31,则小强同学生日的月数和日数的和为.三.解答题1.解方程组:.2.用消元法解方程组3.《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.4.某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元千克,乙种水果20元/千克.(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?5.在端午节来临之际,某商店订购了A型和B型两种粽子,A型粽子28元/千克,B型粽子24元/千克,若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.6.为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?7.为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲、乙两种大客车,它们的载客量和租金如表所示.学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.(1)参加此次研学旅行活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为8 辆;(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.参考答案:一、选择题。
(新人教版七年级下册)第8章第八章二元一次方程组测试题(附答案)
七年级下第八章二元一次方程组测试题一、选择题(每小题5分,共20分)1.下列不是二元一次方程组的是( ) A. ⎪⎩⎪⎨⎧=-=+141y x y x B.⎩⎨⎧=+=+42634y x y x C. ⎩⎨⎧=-=+14y x y x D. ⎩⎨⎧=+=+25102553y x y x 2.由123=-y x ,可以得到用x 表示y 的式子( ) A. 322-=x y B. 3132-=x y C. 232-=x y D. 322x y -= 3.方程组⎩⎨⎧=-=+134723y x y x 的解是( ) A. ⎩⎨⎧=-=31y x B. ⎩⎨⎧-==13y x C. ⎩⎨⎧-=-=13y x D. ⎩⎨⎧-=-=31y x 二、填空题(每小题6分,共24分):4.方程组⎩⎨⎧=+=-521y x y x 的解是( ) A. ⎩⎨⎧=-=21y x B. ⎩⎨⎧-==12y x C. ⎩⎨⎧==21y x D. ⎩⎨⎧==12y x 5.在3x +4y =9中,如果2y =6,那么x = .6.已知⎩⎨⎧-==81y x 是方程3m x -y =-1的解,则m = . 7.若方程m x +n y =6的两个解是⎩⎨⎧==,1,1y x ⎩⎨⎧-==12y x ,则m = ,n = . 8.如果512-+=+-y x y x =0,那么x = ,y = .三、解下列方程组(每小题8分,共16分): 9. ⎪⎪⎩⎪⎪⎨⎧=-=+3431332n m n m10. ⎪⎩⎪⎨⎧=-++=--+1624)(4)(3y x y x y x y x四、综合运用(每小题10分,共40分):11.用16元买了60分、80分两种邮票共22枚. 60分与80分的邮票各买了多少枚?12.已知梯形的面积是422cm ,高是6㎝,它的下底比上底的2倍少1㎝.求梯形的上下底.13.《一千零一夜》中有这样一段文字:有一群鸽子,其中有一部分在树上欢歌,另一部分在地上觅食,树上的一只鸽子对地上觅食的鸽子说:“若从你们中飞上来一只,则树下的鸽子就是整个鸽群的31;若从树上飞下去一只,则树上、树下的鸽子就一样多了.”你知道树上、树下各有多少只鸽子吗?14.如图,8块相同的长方形地砖拼成一个长方形,每块长方形地砖的长和宽分别是多少?60cm测试题答案:1.A ;2.C ;3,B ;4.D ;5.-1,6.-3;7.4,2;8.3,2;9. ⎩⎨⎧==1218n m ;10. ⎪⎪⎩⎪⎪⎨⎧==15111517y x 11.60分买了8枚,80分买了14枚.12.上底5㎝,下底是9㎝.13.树上有7只,树下有5只.14.长是45㎝,宽是15㎝.。
新人教版七年级下册第八章二元一次方程组练习题
一、用代入法解下列方程组二、用加减法解下列方程组 218,3 2.a b a b +=⎧⎨=+⎩18,3814.x y x y -=⎧⎨-=⎩25,34 2.x y x y -=⎧⎨+=⎩23,328.y x x y =-⎧⎨+=⎩3,759.y x x y =+⎧⎨+=⎩35,5215.x y x y -=⎧⎨+=⎩4(1)3(1)2,2.23x y y x y --=--⎧⎪⎨+=⎪⎩345,5633.x y x y +=⎧⎨-=⎩三、选择适当的方法解方程组 5225,3415.x y x y +=⎧⎨+=⎩29,32 1.x y x y +=⎧⎨-=-⎩3416,5633.m n m n +=⎧⎨-=⎩258,32 5.x y x y +=⎧⎨+=⎩236,32 2.x y x y +=⎧⎨-=-⎩31,222 3.x y x y ⎧-=-⎪⎨⎪+=⎩327,6211.x y x y +=⎧⎨-=⎩23,3 4.s b s b +=⎧⎨+=⎩253,4 3.x y x y -=-⎧⎨-+=-⎩231,342457.5615s t s t ⎧+=⎪⎪⎨⎪+=⎪⎩四、列二元一次方程组解下列应用题1、加工某种产品需经两道工序,第一道工序每人每天可完成900件,第二道工序每人每天可完成1200件.现有7位工人参加这两道工序,应怎样安排人力,才能使每天第一第二道工序所完成的件数相等。
2.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”3.有48支队520名运动员参加篮排球比赛,其中每支篮球队10人,每支排球队12人,没命运动员只参加一项比赛。
篮排球队各有多少支参赛?4.张翔从学校出发骑自行车去县城,中途因道路施工步行一段路,1.5小时后到达县城。
他骑车的平均速度是15千米/时,步行的平均速度是5千米/时,路程全场20千米。
他骑车与步行各用多少小时5.一条船顺流航行,每小时行20km ;逆流航行;每小时行16km ,求轮船在静水中的速度与水的速度。
人教版 七年级数学下册 第8章 二元一次方程组 综合练习(包含答案)
人教版 七年级数学下册 第8章 二元一次方程组综合练习(含答案)一、单选题(共有8道小题) 1.若方程6mx ny += 的两个解是12,11x x y y ==⎧⎧⎨⎨==-⎩⎩,则m,n 的值为( )A.4,2B.2,4C.-4,-2D.-2,-42.方程529x y +=-与下列方程构成的方程组的解为2,12x y =-⎧⎪⎨=⎪⎩的解是( )A.21x y +=B.328x y +=-C.543x y +=-D.348x y -=-3.某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x 人,到瑞金的人数为y 人.下面所列的方程组正确的是( )A.3412x y x y +=⎧⎨+=⎩B.3421x y x y +=⎧⎨=+⎩C.3421x y x y +=⎧⎨=+⎩D.23421x y x y +=⎧⎨=+⎩4.若方程mx +ny =6的两个解是11x y =⎧⎨=⎩,⎩⎨⎧-==12y x ,则m ,n 的值为( )A .4,2B .2,4C .-4,-2D .-2,-45.已知()230x y -+=,则x y +的值为()A .0B .-1C .1D .5 6.若0125=+-+++b a b a ,则()2015b a -= ( )A .1-B .1C .20155D .20155-7.如果将满足方程的一对x ,y 值叫做方程的一组解,那么34x y +=的解的组数是( ).A .1组B .2组C .无数组D .没有解8.为推进课改,王老师把班级里40名学生分成若干小组,没小组只能是5人或6人,则有( )种分组方案A.4B.3C.2D.19.已知x ,y 满足方程组2523x y x y -=⎧⎨+=-⎩,则224x y -的值为 .10.方程组02x y x y +=⎧⎨-=⎩的解为_____.11.二元一次方程组7413563x y x y -=⎧⎨-=⎩的解________x y =⎧⎨=⎩.12.今年“五一”节,A 、B 两人到商场购物,A 购3件甲商品和2件乙商品共支付16元,B 购5件甲商品和3件乙商品共支付25元,求一件甲商品和一件乙商品各售多少元.设甲商品售价x 元/件,乙商品售价y 元/件,则可列出方程组 . 13.已知21x y =⎧⎨=⎩是二元一次方程组71mx ny nx my +=⎧⎨-=⎩的解,则3m n +的立方根为 。
新人教版七年级下册数学第八章二元一次方程练习题
第八章 二元一次方程1.1.练习题1一 选择题1.下列方程中,是二元一次方程的是( ) A .3x -2y =4z B .6xy +9=0 C.1x +4y =6 D .4x =y -24 2.下列方程组中,是二元一次方程组的是( ) A.⎩⎨⎧x +y =42x +3y =7 B.⎩⎨⎧2a -3b =115b -4c =6C.⎩⎨⎧x 2=9y =2x D.⎩⎨⎧x +y =8x 2-y =43.在方程(k -2)x 2+(2-3k)x +(k +1)y +3k =0中,若此方程为关于x ,y 的二元一次方程,则k 值为( )A .-2B .2或-2C .2D .以上答案都不对4.二元一次方程x -2y =1有无数多个解,下列四组值中不是该方程的解的是( )A.⎩⎨⎧x =0y =-12 B.⎩⎨⎧x =1y =1C.⎩⎨⎧x =1y =0D.⎩⎨⎧x =-1y =-1 5.二元一次方程组⎩⎨⎧x +y =5,2x -y =4的解为( )A.⎩⎨⎧x =1y =4B.⎩⎨⎧x =2y =3C.⎩⎨⎧x =3y =2D.⎩⎨⎧x =4y =16.已知是二元一次方程组的解,则2m n -的算术平方根为( )A .2±B.C .2D .421x y =⎧⎨=⎩81mx ny nx my +=⎧⎨-=⎩7.若2425y x a b -与352x y a b +是同类项,则x 、y 的值为( ) A .21x y =⎧⎨=⎩ B .31x y =⎧⎨=⎩C .12x y =⎧⎨=⎩D .21x y =⎧⎨=-⎩8.已知关于x ,y 的方程组,给出下列结论:①是方程组的一个解;②当2a =时,x ,y 的值互为相反数;③当时,方程组的解也是方程的解;④x ,y 间的数量关系是.其中正确的是( )A .②③B .①②③C .①③D .①③④9.二元一次方程组的解是( )A .B .C .D .10.解方程组,由①②得正确的方程是( )A .B .C .D . 二 填空题11.写出一个未知数为a ,b 的二元一次方程组: . 12.已知方程x m -3+y 2-n =6是二元一次方程,则m -n = . 13.已知,则xy = .14.根据下图给出的信息,则每件T 恤价格和每瓶矿泉水的价格分别为 .15.小亮解方程组2212x y x y +=⎧⎨-=⎩•的解为5x y =⎧⎨=⎩,由于不小心,滴上了两滴墨水,刚好遮住了两个数•和▲,请你帮他找回▲这个数,▲=.343x y a x y a +=-⎧⎨-=⎩51x y =⎧⎨=-⎩1a =23x y -=4x y a +=-320x y x y -=-⎧⎨+=⎩12x y =-⎧⎨=⎩12x y =⎧⎨=-⎩12x y =-⎧⎨=-⎩21x y =-⎧⎨=⎩5210x y x y +=⎧⎨+=⎩①②-310x =5x -=-35x =-5x =-2(4)|2|0x y x y +-+--=三 解答题16.解下列二元一次方程组(1)33814x y x y -=⎧⎨-=⎩(2)254x y x y +=⎧⎨-=⎩(3) (4)73100202x y y x +=⎧⎨=-⎩17..已知关于,x y 的方程组122x m y y x -⎧+=⎨=⎩①② .(1)若用代入法求解,可由①得x = ③,把③代入②,解得y = ,将其代入③,解得x = ,∴原方程组的解为 ;(2)若此方程组的解,x y 互为相反数,求这个方程组的解及m 的值.18.方程()()()224268k x k x k y k -+++-=+是关于x ,y 的方程,试问当k 为何值时.(1)方程为一元一次方程;(2)方程为二元一次方程.4518549x y x y +=⎧⎨+=⎩19.若,求x+y+z的值.20.根据题意设未知数,列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,问明明两种邮票各买了多少枚?(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;若每个笼中放5只,则恰有一笼无鸡可放,问有多少只鸡,多少个笼?第八章 二元一次方程练习题1 参考答案与解析一、选择题1.D2.A3.C4.B5.C6.D7.D8.C9.A 10.B二、填空题11.3,2a b a b +=⎧⎨-=⎩(答案不唯一) 12.3 13.3 14.20元 2元 15.-2三、解答题16.解:(1)2,1.x y =⎧⎨=-⎩(2)3,1.x y =⎧⎨=-⎩(3)3,6.x y =-⎧⎨=⎩(4)40,60.x y =⎧⎨=-⎩17.解:(1)1-2y 144m - 122m + 1,22144m x m y ⎧=+⎪⎪⎨⎪=-⎪⎩(2)∵此方程组的解,x y 互为相反数,∴ 122m ++144m-=0,解得m=-3,则方程组的解为1,1.x y =-⎧⎨=⎩18.解:若方程为一次方程,则k ²-4=0,∴k=±2.当k=2时,原方程可化为4x-4y=10,是关于x ,y 的二元一次方程,不符合题意,舍去;当k=-2时,原方程可化为-8y=6,是关于y 的一元一次方程. (1)当k=-2时,原方程是一元一次方程. (2)当k=2时,原方程是二元一次方程.19.解∵,∴x+3y-2z-3=0,x-3y+7z-3=0,将z 当作已知,可解得x=-2.5z+3,y=1.5z ,∴x+y+z=3.20.解:(1)设0.8元与2元的邮票各x 枚,y 枚.由题意,列方程组13,0.8220.x y x y +=⎧⎨+=⎩(2)设有x 只鸡,y 个笼.由题意,列方程组41,5(1).x y x y =+⎧⎨=-⎩1.2.练习题2一选择题1.以为解的二元一次方程组是( )A.B. C. D.2.下列各组数值是二元一次方程x﹣3y=4的解的是( )A. B. C. D .3.已知,用含x的代数式表示y正确的是()A. B. C.D.4.方程5x+2y=﹣9与下列方程构成的方程组的解为的是()A.x+2y=1 B.3x+2y=﹣8 C.5x+4y=﹣3 D.3x﹣4y=﹣85.按如图的运算程序,能使输出结果为3的x,y的值是()A.x=5,y=﹣2 B.x=3,y=﹣3 C.x=﹣4,y=2 D.x=﹣3,y=﹣96.有一个两位数,十位上的数字与个位上的数字之和为7,且个位上的数不为0,这样的两位数有( )A.8个B.7个C.6个D.5个7.若43m a b 与223n m n a b ++-的和为0,则3n m +的值是( )A.9B.8C.6D.4 8.方程的正整数解有( )A.1组B.2组C.3组D.无 9.已知a ,b 满足方程组,则a+b 的值为( )A.﹣4B.4C.﹣2D.210.二元一次方程2x+5y=32的正整数解有( )A .3组B .4组C .5组D .6组11.某鞋店有甲、乙两款鞋各30双,甲鞋一双200元,乙鞋一双50元.该店促销的方式:买一双甲鞋,送一双乙鞋;只买乙鞋没有任何优惠.若打烊后得知,此两款鞋共卖得1800元,还剩甲鞋x 双,乙鞋y 双,则依题意可列出下列哪一个方程式?( )A.200(30﹣x)+50(30﹣y)=1800B.200(30﹣x)+50(30﹣x ﹣y)=1800C.200(30﹣x)+50(60﹣x ﹣y)=1800D.200(30﹣x)+50=1800 12.若|3a +b +5|+|2a -2b -2|=0,则2a 2-3ab 的值是( ) A.14 B.2 C.-2 D.-4二 填空题13.2元的人民币x 张,5元的人民币y 张,共120元,这个关系用方程可以表示为 .14.若x 3m-3-2y n-1=5是二元一次方程,则m= ,n= . 15.若是关于x ,y 的二元一次方程组,则.16.如果2x 2a-b-1-3y 3a+2b-16=10是一个二元一次方程,那么数a= ,b= .17.已知关于x ,y 的方程(k 2-1)x 2+(k+1)x+2ky=k+3,当k= 时,它为一元一次方程;当k= 时,它为二元一次方程. 18.已知,则用x 的代数式表示y 为 .19.已知是二元一次方程组的解,则m +3n 的值为 .20.若2,1x y =⎧⎨=⎩是方程()212,1x m y nx y +-=⎧⎪⎨+=⎪⎩的解,则(m +n )2018的值是__________.三 计算题21.某市2007年秋季开始,减免学生在义务教育阶段的学杂费,并按照每学期小学每生250元,初中每生450元的标准,由财政拨付学校作为办公经费,该市一学校小学生和初中生共有840人,2007年秋季收到当学期该项拨款290000元,该学校小学生和初中生各有多少人?22.某商场正在热销2008年北京奥运会吉祥物“福娃”玩具和徽章两种奥运商品,根据下图提供的信息,求一盒“福娃”玩具和一枚徽章的价格各是多少元?23.课本中介绍我国古代数学名著《孙子算经》上有这样一道题:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几只?如果假设鸡有x只,兔有y只,请你列出关于x,y的二元一次方程组,并写出你求解这个方程组的方法.24.手牵着手,心连着心.2008年5月12日发生在四川汶川的特大地震灾害,牵动着全中国人民的心.某校团支部发出为灾区捐款的倡议后,全校师生奉献爱心,踊跃捐款,已知全校师生共捐款 4万5千元,其中学生捐款数比老师捐款数的2倍少9千元,该校老师和学生各捐款多少元?第八章二元一次方程练习题2 参考答案与解析一、选择题1.D2.A3.C4.D5.D6.C7.B8.A9.B 10.A 11.D 12.D二、填空题13.2x+5y=120 14.432 15.5216.3 4 17.-1 118.x+3y=14 19.3 20.1三、解答题21.解:该学校小学生有x人,初中生有y人.由题意得840,250450290000,x yx y+=⎧⎨+=⎩解得440,400.xy=⎧⎨=⎩答:该学校小学生有440人,初中生有400人.22.解:设一盒“福娃”玩具的价格是x元,一枚徽章的价格是y元.由题意得2145,23280,x yx y+=⎧⎨+=⎩解得125,10.xy=⎧⎨=⎩答:一盒“福娃”玩具的价格是125元,一枚徽章的价格是10元.23.解:由题意得35,2494,x yx y+=⎧⎨+=⎩①②由①得y=35-x③,将③代入②,得2x+4(35-x)=94,解得x=23④,将④代入③,得y=12,则原方程组的解为23,12. xy=⎧⎨=⎩答:鸡有23只,兔有12只.24.解:设该校老师捐款x元,学生捐款y元.由题意得45000,29000,x yx y+=⎧⎨=-⎩解得27000,18000.xy=⎧⎨=⎩答:该校老师捐款27000元,学生捐款18000元.1.3.练习题3一选择题1.由加减法解方程时,最简捷的方法是()A.①×4﹣②×3,消去xB.①×4+②×3,消去xC.②×2+①,消去yD.②×2﹣①,消去y2.用加减消元法解方程组时,有下列四种变形,其中正确的是()A. B. C. D.3.已知与-9x7-m y1+n的和是单项式,则m,n的值分别是().A.m=-1,n=-7B.m=3,n=1C.m=,n=D.m=,n=-24.若|x﹣2y﹣1|+|2x﹣y﹣5|=0,则x+y的值为()A.4B.5C.6 D .75.关于x,y的方程组,其中y值被盖住了,不过仍能求出p,则p值是( )A.-B.C.-D.6.一个两位数,个位数字与十位数字的和是9,如果个位数字与十位数字对调后所得的两位数比原来的两位数大9,那么原来这个两位数是()A.54B.27C.72D.457.若关于x.y的方程组的解都是正整数,那么整数a的值有()A.1个B.2个C.3个 D.4个8.若方程组的解是,则方程组的解为()A. B. C. D.二填空题9.已知(2x+3y﹣4)2+|x+3y﹣7|=0,则x=______,y=______.10.在解方程组时,小明把c看错了得而他看后面的正确答案是则a=__ ,b= ,c= .11.若,则.12.已知关于x,y的二元一次方程组的解互为相反数,则k的值是.13.已知方程组与有相同的解,则m2﹣2mn+n2= .14.定义运算“⊙”:规定x⊙y=ax+by(其中a,b为常数),若1⊙1=3,1⊙(-1)=1,则1⊙2=.15.已知方程组的解是,老师让同学们解方程组,小聪先觉得这道题好象条件不够,后将方程组中的两个方程两边同除以5,整理得,运用换元思想,得,所以方程组的解为.现给出方程组的解是,请你写出方程组的解.三计算题16.解方程组:(1);(2);(3);(4);(5);(6).17.解方程组:,试求7y(x﹣3y)2﹣2(3y﹣x)3的值.18.已知关于x,y的方程组的解相同,求a,b 的值.19.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为.乙看错了方程组中的b,而得解为.(1)甲把a看成了什么?乙把b看成了什么?(2)求出原方程组的正确解.第八章 二元一次方程练习题3 参考答案与解析一、选择题1.D2.B3.B4.A5.A6.D7.B8.C 二、填空题9.-3103 10.45 -2 11.2013 12.-1 13.144 14.4 15.10,9x y =⎧⎨=⎩三、解答题16.解:(1)0.5,5x y =⎧⎨=⎩ (2)2,3x y =⎧⎨=⎩ (3)3,2x y =-⎧⎨=-⎩(4)4,0x y =⎧⎨=⎩ (5)2,1x y =⎧⎨=⎩ (6)28,30x y =⎧⎨=⎩17.解:解方程组得2,1,x y =-⎧⎨=-⎩ ∴原式=-7×(-2+3)²-2(-3+2)³=-5.18.解:由题意得1,3,x y x y +=⎧⎨-=⎩解得2,1.x y =⎧⎨=-⎩将2,1.x y =⎧⎨=-⎩分别代入24,(1)3,ax by bx a y +=⎧⎨+-=⎩得224,213,a b b a -=⎧⎨-+=⎩解得6,4.a b =⎧⎨=⎩∴a=6,b=4.19.解:(1)由题意得3'515,204'2,a b --=⎧⎨-=-⎩解得20',311',2a b ⎧=-⎪⎪⎨⎪=⎪⎩即甲把a 看成了203-,乙把b 看成了112. (2)由题意得122,52015,b a -+=-⎧⎨+=⎩解得1,10,a b =-⎧⎨=⎩∴原方程组为515,4102,x y x y -+=⎧⎨-=-⎩解得14,5.8.x y =⎧⎨=⎩1.4.练习题4一 选择题1.7年前,母亲的年龄是儿子的5倍;5年后,母亲的年龄是儿子的2倍.求母子现在的年龄.设母亲现年x 岁,儿子现年y 岁,列出的二元一次方程组是( )A. {x +5=2(y +5)x −7=5(y −7)B. {x +5=6(x +5)x −7=2(y −7)C. {y +5=2(x +5)y −7=5(x −7)D. {y −7=2(x −7)y +5=5(x +5)2.某服装店用6000元购进A 、B 两种新款服装,按标价售出后获得毛利润3800元(毛利润=售价﹣进价),这两种服装的进价,标价如表所示:则这两种服装共购进( )A. 60件B. 70件C. 80件D. 100件3.我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间客房.设该店有客房x 间、房客y 人,下列方程组中正确的是( ) A. ()77{91x y x y +=-= B. ()77{9+1x y x y +==C. ()77{ 91x y x y-=-= D. ()77{ 9+1x y x y-==4.已知甲、乙两数之和是42,甲数的3倍等于乙数的4倍,求甲、乙两数.若设甲数为x ,乙数为y ,由题意得方程组( ) A. 42{43x y x y +== B. 42{ 34x y x y+==C. 42{ 1134x yx y-== D. 42{43y xx y +== 5.某班学生参加运土劳动,一部分学生抬土(两人抬一箩筐),另一部分学生挑土(一人挑两箩筐).已知全班共用箩筐59个,扁担36根,求抬土、挑土的学生各多少人?如果设抬土的学生x 人,挑土的学生y 人,则可得方程组( )A.2592{362yxxy⎛⎫+=⎪⎝⎭+=B.2592{362xyxy+=+=C.259{2236xyx y+=+=D.259{236x yx y+=+=6.为清理积压的库存,商场决定打折销售.已知甲、乙两种服装的原单价共为440元,现将甲服装打八折,乙服装打七五折,结果两种服装的单价共为342元,则甲、乙两种服装的原单价分别是( )A. 200元,240元B. 240元,200元C. 280元,160元D. 160元,280元7.已知∠A和∠B互余,∠A比∠B大10°,设∠A、∠B的度数分别为x°、y°,下列方程组符合题意的是( )A.90{10x yx y+==+B.90{10x yx y+==-C.180{10x yx y+==-D.180{10x yx y+==+8.观察方程组323,2411,751x y zx y zx y z-+=+-=+-=⎧⎪⎨⎪⎩的系数特点,若要使求解简便,消元的方法应选取( )A.先消去xB.先消去yC.先消去zD.以上说法都不对9.三元一次方程组1,0,1x yx zy z+=-+=+=⎧⎪⎨⎪⎩的解是( )A.11xyz⎧=-==⎪⎨⎪⎩B.11xyz===-⎧⎪⎨⎪⎩C.11xyz===-⎧⎪⎨⎪⎩D.11xyz⎧=-==⎪⎨⎪⎩10.将三元一次方程组540,3411,2x y z x y z x y z ++=+-=++=-⎧⎪⎨⎪⎩①②③经过步骤①-③和③×4+②消去未知数z 后,得到的二元一次方程组是( )A.432753x y x y +=+=⎧⎨⎩B.432231711x y x y +=+=⎧⎨⎩C.342753x y x y +=+=⎧⎨⎩D.342231711x y x y +=+=⎧⎨⎩ 二 填空题11.有这样一个故事:一只驴子和一只骡子驮着不同袋数的货物一同走,每袋货物都是一样重,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那么我所负担的就是你的两倍;如果我给你一袋,那么我们才恰好驮的一样多!”驴子原来所驮货物为________袋.12.一个两位数,个位数字与十位数字之和为8,个位数字与十位数字互换后所成的新两位数比原两位数小18,则原两位数是_________13.如图,8个相同的长方形地砖拼成一个大长方形,则每块小长方形地砖的面积是 .14.已知A 、B 两个码头相距140千米,一艘轮船在其间航行,顺流用了7小时,逆流用了10小时,那么这艘船在静水中的速度和水流速度分别为_______千米/时、_______千米/时.15.一个三位数,个位、百位上的数字的和等于十位上的数字,百位上的数字的7倍比个位、十位上的数字的和大2,个位、十位、百位上的数字的和是14,则这个三位数是__________. 三 解答题 16.解方程组:(1)20,320,767100.x y z x y z x y z -+=+-=++=⎧⎪⎨⎪⎩①②③ (2)30,222,3.x z x y z x y z +-=-+=--=⎧⎪⎪⎩-⎨①②③17.若|x+2y-5|+(2y+3z-13)2+(3z+x-10)2=0,试求x ,y ,z 的值.18.已知方程组35223x y ax y a+=++=⎧⎨⎩,的解适合x+y=8,求a的值.19.水果市场将120吨水果运往各地商家,现有甲、乙、丙三种车型供选择,每(1)若全部水果都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?(2)为了节约运费,市场可以调用甲、乙、丙三种车型参与运送(每种车型至少1辆),已知它们的总辆数为16辆,你能通过列方程组的方法分别求出几种车型的辆数吗?20.某工厂接受了20天内生产1200台GH型电子产品的总任务.已知每台GH型产品由4个G型装置和3个H型装置配套组成.工厂现有80名工人,每个工人每天能加工6个G型装置或3个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好全部配套组成GH型产品.(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?请列出二元一次方程组解答此问题;(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G型装置的加工,且每人每天只能加工4个G型装置.①设原来每天安排x名工人生产G型装置,后来补充m名新工人,求x的值(用含m的代数式表示);②请问至少需要补充多少名新工人才能在规定期内完成总任务?-21.为了迎接河北省中小学生健康体质测试,某学校开展“健康校园,阳光跳绳”活动,为此学校准备购置A,B,C三种跳绳.已知某厂家的跳绳的规格与价格如下表:A绳子 B绳子 C绳子长度(米)86 4单价(元/条)128 6(1)已知购买A,B两种绳子共20条花了180元,问A,B两种绳子各购买了多少条?(2)若该厂家有一根长200米的绳子,现将其裁成A,C两种绳子销售总价为240元,则剩余的绳子长度最多可加工几条B种绳子?第八章二元一次方程练习题4 参考答案与解析一、选择题1.A2.C3.A4.B5.B6.B7.A8.B9.D 10.A二、填空题11.5 12.53 13.300cm² 14.17 3 15.275三、解答题16.解:(1)3,5,7.xyz=⎧⎪=⎨⎪=⎩(2)2,4,1.xyz=⎧⎪=⎨⎪=⎩17.解:∵|x+2y-5|+(2y+3z-13)2+(3z+x-10)2=0,,∴250,23130,3100,x yy zz x+-=⎧⎪+-=⎨⎪+-=⎩解得1,2,3.xyz=⎧⎪=⎨⎪=⎩∴x=1,y=2,z=3.18.解:由题意得35223x+y=8x y ax y a+=++=⎧⎪⎨⎪⎩①,②,③,①-②得x+2y=2④,④-③得y=-6⑤,将⑤代入③得x=14⑥,将⑤和⑥代入②得a=10.19.解:(1)设需甲种车型x辆,需乙种车型y辆.由题意得581204005008200x yx y+=+=⎧⎨⎩,,解得8,10.xy=⎧⎨=⎩答:需甲种车型8辆,需乙种车型10辆.(2)设需甲种车型m辆,需乙种车型n辆,需丙种车型(16-m-n)辆.由题意得5m+8n+10(16-m-n)=120,则m=4025n-.∵m,n都是正整数,∴当n=5时,m=6;当n=10时,m=4;当n=15时,m=2.∵(16-m-n)是正整数,∴有2种情况:需甲种车型6辆,需乙种车型5辆,需丙种车型5辆,总运费7900元,节约300元;需甲种车型4辆,需乙种车型10辆,需丙种车型2辆,总运费7800元,节约400元.20.解:(1)设每天安排a名工人生产G型装置,b名工人生产H型装置.由题意得806:34:3a ba b+==⎧⎨⎩,,解得3248ab==⎧⎨⎩,,则33b=b=48(套).答:工厂每天能配套组成48套GH型电子产品.(2)①设原来每天安排x名工人生产G型装置,(80-x)名工人生产H型装置,后来补充m名新工人生产G型装置.由题意(6x+4m):3(80-x)=4:3,解得x=32-25m.②由题意得()3803x-=80-x=80-(32-25m)=120020,解得m=30.即至少需要补充30名新工人才能在规定期内完成总任务.21.解:(1)设购买A种绳子x条,购买B种绳子y条.由题意得20128180x yx y+=+=⎧⎨⎩,,解得515.xy=⎩=⎧⎨,答:购买A种绳子5条,购买B种绳子15条.(2)由题意,设加工A种绳子m条,加工C种绳子n条.由题意12m+6n=240,则n=40-2m.则(200-8m-4n)÷6=263,即剩余的绳子长度最多可加工6条B种绳子.1.5.练习题5一 选择题 1.有一些苹果箱,若每只装苹果25 kg ,则剩余40 kg 无处装;若每只装30 kg ,则还有20个空箱,这些苹果箱有( )A .12只B .6只C .112只D .128只2.幸福中学七年级学生到礼堂开会,若每条长椅坐5人,则少10条长椅,若每条长椅坐6人,则又多余2条长椅.设学生有x 人,长椅有y 条,依题意得方程组 ( )A .5105662x y x y =+⨯⎧⎨=-⨯⎩B .51062x y x y =-⎧⎨=+⎩C .5105662x y x y =-⨯⎧⎨=+⨯⎩D .51062x y x y =+⎧⎨=-⎩3.十一旅游黄金周期间,某景点举办优惠活动,成人票和儿童票均有较大折扣,王明家去了3个大人和4个小孩,共花了400元,李娜家去了4个大人和2个小孩,共花了400元,王斌家计划去3个大人和2个小孩,请你帮助他算一下,需要准备多少门票钱?( )A .300元B .310元C .320元D .330元4.王力在一天内以每件80元的价格卖了两件上衣,其中一件赢利20%,一件赔了20%,则在这次买卖中他( )A .赔了10元B .赚了10元C .赔了约7元D .赚了约7元 5. 两个水池共储水40吨,如果甲池注进水4吨,乙池注进水8吨,甲池水的吨数就与乙池水的吨数相等.甲、乙水池原来各储水的吨数是 ( ) A .甲池21吨,乙池19吨 B .甲池22吨,乙池18吨 C. 甲池23吨,乙池17吨 D .甲池24吨,乙池16吨6.某校七年级(2)班40名同学为四川地震灾区捐款,共捐了100元,捐款情况如下表:表格中捐款2元和2元的有x 名同学,捐款3元的有y 名同学,根据题意,可列方程组( )A.272366x y x y +=⎧⎨+=⎩ B .2723100x y x y +=⎧⎨+=⎩ C.273266x y x y +=⎧⎨+=⎩ D.2732100x y x y +=⎧⎨+=⎩二 填空题7.端午节时,王老师用72元钱买了荷包和五彩绳共20个(条),其中荷包每个4元,五彩绳每条3元,设王老师购买荷包x 个,五彩绳y 条,根据题意,列出的方程组是________.8.根据图中所给的信息,每件T恤和每瓶矿泉水的价格分别是元和元.9.一张试卷有25道题,做对一道得4分,做错一道扣1分,小明做了全部试题共得70分,则他做对了______道题.10.已知甲数的2倍比乙数大30,乙数的3倍比甲数的4倍少20,求甲、乙两数,若设甲、乙两数分别为x、y,可得方程组________,这两数分别为________.11.如图,3个纸杯整齐地叠放在一起,总高度约为9cm,8个纸杯整齐地叠放在一起,总高度约为14cm,则15个这样的纸杯整齐叠放在一起时,它的高度约是________ cm.12.“六一”儿童节,某动物园的成人门票每张8元,儿童门票半价(即每张4元),全天共售出门票3000张,共收入15600元,则这一天售出了成人票________张,儿童票___ _ 张.三解答题13.某厂第二车间人数比第一车间人数的45少30人,如果从第一车间调10人到第二车间,那么第二车间的人数就是第一车间人数的34,这两个车间各有多少人?14.已知A,B两件服装的成本共500元,鑫洋服装店老板分别以30%和20%的利润率定价后进行销售,该服装店共获利130元,问A,B两件服装的成本各是多少元?15. 2010年春季我国西南大旱,导致大量农田减产,如图所示是一对农民父子的对话内容,请根据对话内容分别求出该农户今年两块农田的花生产量分别是多少千克?16.古运河是扬州的母亲河,为打造古运河风光带,现有一段长为180米的河道整治任务由A 、B 两个工程队先后接力完成.A 工程队每天整治12米,B 工程队每天整治8米,共用时20天.(1)根据题意,甲、乙两个同学分别列出了尚不完整的方程组如下:甲:128x y x y ⎧+=⎪⎨+=⎪⎩乙:128x y x y⎧+=⎪⎨+=⎪⎩根据甲、乙两名同学所列的方程组,请你分别指出未知数x 、y 表示的意义,然后在方框中补全甲、乙两名同学所列的方程组:甲:x 表示_____ ___,y 表示_____ ___; 乙:x 表示_____ ___,y 表示_____ ___; (2)求A 、B 两工程队分别整治河道多少米.(写出完整的解答过程)第八章 二元一次方程练习题5 参考答案与解析一、选择题1. D2.A3.C4.C5.B6.A二、填空题7.204372x y x y +=+=⎧⎨⎩, 8.20 2 9.19 10.2304320x y x y -=-=⎧⎨⎩, 35和4011.21 12.900 2100三、解答题13.解:设第一车间有x 人,第二车间有y 人.由题意得()4305310104y x y x ⎧=-+=⎪⎪-⎪⎨⎪⎩,,解得250170.x y ==⎧⎨⎩,答:第一车间有250人,第二车间有170人.14.解:设A 服装的成本是x 元,B 服装的成本是y 元.由题意得50030%20%130x y x y +=+=⎧⎨⎩,,解得300200.x y ==⎧⎨⎩,答:A 服装的成本是300元,B 服装的成本是200元.15.解:设该农户去年两块农田的花生产量分别是x 千克,y 千克.由题意得47020%10%57x y x y +=+=⎧⎨⎩,,解得100370.x y ==⎧⎨⎩,则100×20%=20(千克),370×10%=37(千克).答:该农户今年两块农田的花生产量分别是20千克,37千克.16.解:(1)A 工程队整治河道的时间 B 工程队整治河道的时间 A 工程队整治河道的长度 B 工程队整治河道的长度 方框中分别填入:20 180 180 20(2)设A 、B 两工程队分别整治河道x 米、y 米.由题意得18020128x y x y +=+=⎧⎪⎨⎪⎩,,解得60120.x y ⎩==⎧⎨,答:A 、B 两工程队分别整治河道60米、120米.1.6.练习题6一 选择题1.在方程523x y z -+=中,若12x y =-=-,,则z 的值为( ) A .4B .3C .2D .12.解方程组 323,2411,751,x y z x y z x y z -+=⎧⎪+-=⎨⎪+-=⎩若要使计算简便,消元的方法应选取( )A .先消去xB .先消去yC .先消去zD .以上说法都不对3.下列四组数值中,为方程组202132x y z x y z x y z ++=⎧⎪--=⎨⎪--=⎩的解是( )A .012x y z =⎧⎪=⎨⎪=-⎩B .101x y z =⎧⎪=⎨⎪=⎩C .010x y z =⎧⎪=-⎨⎪=⎩D .123x y z =⎧⎪=-⎨⎪=⎩4.若方程组4312(1)3x y kx k y +=⎧⎨+-=⎩的解x 和y 的值互为相反数,则k 的值等于( )A .0B .1C .2D .35.由方程组,可以得到x +y +z 的值等于( )A .8B .9C .10D .116.学校的篮球数比排球数的2倍少3个,足球数与排球数的比是2:3,三种球共41个,则篮球的个数为( ) A .21个B .12个C .8个D .35个7.解方程组1151x y z y z x z x y +-=⎧⎪+-=⎨⎪+-=⎩,若要使运算简便,消元的方法应选取( )A .先消去xB .先消去yC .先消去zD .以上说法都对8.以311x y z =⎧⎪=⎨⎪=-⎩为解建立三元一次方程组,不正确的是( )A .3423x y z -+=B .113x y z -+=- C .2x y z +-=-D .251236x y z --=9.方程组64210x y x z x y z -=⎧⎪+=⎨⎪-+=⎩的解的个数为( )A .无数多个B .1C .2D .010.已知方程组25589x y z x y z -+=⎧⎨+-=⎩,则x y +的值为( )A .14B .2C .-14D .-211.三元一次方程组354x y y z z x +=⎧⎪+=⎨⎪+=⎩的解为( )A .023x y z =⎧⎪=⎨⎪=⎩B .123x y z =⎧⎪=⎨⎪=⎩C .103x y z =⎧⎪=⎨⎪=⎩D .311x y z =⎧⎪=⎨⎪=⎩12.已知方程组2334823x y z x y z x y z ⎧-+=⎪+-=⎨⎪+-=-⎩①②③,若消去z ,得二元一次方程组不正确的为( )A .531153x y x y +=⎧⎨-=⎩B .53115719x y x y +=⎧⎨+=⎩C .535719x y x y -=⎧⎨+=⎩D .535719x y x y +=⎧⎨+=⎩13.方程组 101x y x z y z +=-⎧⎪+=⎨⎪+=⎩的解是( )A .110x y z =-⎧⎪=⎨⎪=⎩B .101x y z =⎧⎪=⎨⎪=-⎩C .011x y z =⎧⎪=⎨⎪=-⎩D .101x y z =-⎧⎪=⎨⎪=⎩14.若2310x y z ++=,43215x y z ++=,则x y z ++的值为( ) A .5 B .4 C .3 D .215.若方程组431(1)3x y ax a y +=⎧⎨+-=⎩ 的解x 与y 相等,则a 的值等于( )A .4B .10C .11D .12 二 填空题16.如果三角形ABC 的三边长a 、b 、c 满足关系式()226018300a b b c +-+-+-=,则三角形ABC 的周长是 . 17.已知和互为相反数,则x+4y 的平方根是 .18.已知式子2ax bx c ++,当1x =-时,其值为4;当1x =时,其值为8;当2x =时,其值为25,则当3x =时,其值为__________.19.确保信息安全,信息需加密传输,发送方由明文⇒密文(加密),接收方由密文⇒明文(解密),已知加密规则为:明文a ,b ,c ,d 对应密文a +2b ,2b +c ,2c +3d ,4d .例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为___________. 三 解答题20.解下列方程组:(1)6,33,2312;x y z x y x y z ++=⎧⎪-=⎨⎪+-=⎩(2)25,24,2310.x y z x y z x y z +-=⎧⎪-+=⎨⎪+-=⎩21.已知2x y y z x-+-+-=,求x+y+z的值.82(41)383022.为迎接“第一届全国青年运动会”,学校组织了飞镖比赛游戏:每位选手朝特制的靶子上各投三次飞镖,在同一圆环内得分相同.如图所示,小明、小君、小红的成绩分别是29分、43分和33分,则小华的成绩是多少分?23.现有一种饮料,它有大、中、小3种包装,其中1个中瓶比2个小瓶便宜2角,1个大瓶比1个中瓶加1个小瓶贵4角,大、中、小各买1瓶,需9元6角,三种包装的饮料每瓶各多少元?第八章二元一次方程练习题6 参考答案与解析一、选择题1.A2.B3.D4.C5.A6.A7.D8.C9.A 10.B 11.B 12.D 13.D 14.A 15.C二、填空题16.72 17.±3 18.52 19.6,4,1,7三、解答题20.解:(1)2,3,1.xyz=⎧⎪=⎨⎪=⎩(2)2,3,3.xyz=⎧⎪=-⎨⎪=-⎩21.解:∵282(41)3830x y y z x-+-+-=,∴80,410,830,x yyz x-=⎧⎪-=⎨⎪-=⎩解得2,0.25,0.75.xyz=⎧⎪=⎨⎪=⎩则x+y+z=2+0.25+0.75=3.22.解:设小、中、大圆环的得分分别为x分、y分、z分.由题意得229,243,333,y zx zy+=⎧⎪+=⎨⎪=⎩解得18,11,7.xyz=⎧⎪=⎨⎪=⎩则x+y+z=18+11+7=36(分).答:小华的成绩是36分.23.解:设大、中、小3种包装的饮料每瓶各x元、y元、z元.由题意得20.2,0.4,9.6,y zx y zx y z-=-⎧⎪--=⎨⎪++=⎩解得5,3,1.6.xyz=⎧⎪=⎨⎪=⎩答:大、中、小3种包装的饮料每瓶各5元、3元、1.6元.。
七年级数学下册《第八章 二元一次方程组》单元测试卷附答案解析-人教版
七年级数学下册《第八章 二元一次方程组》单元测试卷附答案解析-人教版一、单选题1.已知x 2y 1=⎧⎨=-⎩是二元一次方程2x 3ky 1-=的一组解,则k 的值为( )A .1B .-1C .53D .53-2.方程组: 5210x y x y +=⎧⎨+=⎩①② ,由②-①得到的方程是( )A .3x =10B .x =-5C .3 x =-5D .x =53.七年级学生在会议室开会,每排座位坐12人,则有11人没有座位;每排座位坐14人,则余1人独坐一排,则这间会议室的座位排数是( ) A .14B .13C .12D .154.将方程3x+y=9写成用含y 的式子表示x 的形式,正确的是( )A .y=3x-9B .y=9-3xC .x=3y-3 D .x=3-3y 5.已知{x =2ky =−3k 是二元一次方程x-y=10的解,则k 的值是( )A .-10B .-2C .2D .106.若4326x y x y +=⎧⎨-=⎩,则x y +的值为( )A .3B .4C .5D .67.已知方程组272a b a b +=⎧⎨-=⎩①②下列消元过程错误的是( )A .代人法消去a ,由②得2a b =+代入①B .代入法消去b ,由①得72b a =-代入②C .加减法消去b ,①-②D .加减法消去a ,①-②×28.三元一次方程组32522x y x y z z -=⎧⎪++=⎨⎪=⎩,,的解是( )A .112x y z =⎧⎪=⎨⎪=⎩B .112x y z =⎧⎪=-⎨⎪=⎩C .112x y z =-⎧⎪=⎨⎪=⎩D .112x y z =-⎧⎪=-⎨⎪=⎩9.把一根长17m 的钢管截成2m 和3m 长两种不同规格的钢管,且不造成浪费,你有几种不同的截法( ) A .1种B .2 种C .3种D .4种10.在学习完“垃圾分类”的相关知识后,小明和小丽一起收集了一些废电池,小明说:“我比你多收集了7节废电池啊!”小丽说:“如果你给我8节废电池,我的废电池数量就是你的2倍”.如果他们说的都是真的,设小明收集了x 节废电池,小丽收集了y 节废电池,则可列方程组为( ).A .()7828x y x y -=⎧⎨-=+⎩B .()7828y x x y -=⎧⎨+=-⎩C .()728x y x y -=⎧⎨-=⎩D .()7288x y x y -=⎧⎨-=+⎩二、填空题11.已知方程2x ﹣y =8,用含x 的代数式表示y ,则y = . 12.若二元一次方程组ax by 3bx ay 2+=⎧⎨+=⎩的解为x 3y 2=⎧⎨=⎩,则a b +的值 .13.已知关于x ,y 的二元一次方程()()a 1x a 2y 52a 0-+++-=,当a 每取一个值时就有一方程,而这些方程有一个公共解,则这个公共解是 .14.某中学为积极开展校园足球运动,计划购买A 和B 两种品牌的足球,已知一个A 品牌足球价格为120元,一个B 品牌足球价格为150元.学校准备用3000元购买这两种足球(两种足球都买),并且3000元全部用完,请写出一种购买方案:买 个A 品牌足球,买 个B 品牌足球.三、计算题15.解方程 212311x y x y -=-⎧⎨+=⎩16.解方程组: 3472395978x z x y z x y z +=⎧⎪++=⎨⎪-+=⎩①②③四、解答题17.已知关于x ,y 的二元一次方程组2632x y x y k -=⎧⎨-=⎩的解满足x ﹣y =2,求k 的值.18.下面是王斌同学解方程组1022x y x y +=⎧⎨-=-⎩的过程,请认真阅读并完成相应任务.解:1022x y x y +=⎧⎨-=-⎩①②由①得10y x =-③,……第一步把③代入②,得2(10)2x x --=-,……第二步 整理得2022x x --=-,……第三步 解得18x -=,即18x =-.……第四步 把18x =-代入③,得28y =则方程组的解为1828x y =-⎧⎨=⎩.……第五步(1)任务一:填空:①以上求解过程中,王斌用了 消元法;(填“代入”或“加减”)②第 步开始出现错误,这一步错误的原因是 ;(2)任务二:直接写出该方程组求解后的正确结果.19.为了鼓励市民节约用电,某市对居民用电实行阶梯收费(总电费=第一阶梯电费+第二阶梯电费),规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费.以下是张磊家2014年3月和4月所交电费的收据,问该市规定的第一阶梯电价和第二阶梯电价分别为每度多少元? 代收电费收据 电表号 1205 电表号 1205 户名 张磊 户名 张磊 月份 3月 月份 4月 用电量 220度 用电量 265度 金额112元金额139元20.已知31x y =⎧⎨=⎩是方程2x-ay=9的一个解,解决下列问题:(1)求a 的值;(2)化简并求值:()()()()211213a a a a a -+--+-21.阅读下列方程组的解法,然后解答相关问题:解方程组272625252423x y x y +=⎧⎨+=⎩①②时若直接利用消元法解,那么运算比较繁杂,采用下列解法则轻而易举解:①-②,得222x y +=,即1x y +=.③ ②-③×24,得1x =-.把1x =-代入③,解得2y =.故原方程组的解是12x y =-⎧⎨=⎩.(1)请利用上述方法解方程组192123111315x y x y +=⎧⎨+=⎩.(2)猜想并写出关于x ,y 的方程组()2()2ax a m y a mbx b m y b m +-=-⎧⎨+-=-⎩的解,并加以检验.22.一批机器零件共558个,甲先做3天后,乙再加入,两人共同再做6天刚好完成.设甲每天做x个,乙每天做y 个.(1)列出关于x ,y 的二元一次方程.(2)用含x 的代数式表示y ,并求当32x =时y 的值是多少? (3)若乙每天做48个,则甲每天做多少个?参考答案与解析1.【答案】B【解析】【解答】解:∵x 2y 1=⎧⎨=-⎩是二元一次方程2x-3ky=1的一组解∴4+3k=1 解得k=-1. 故答案为:B.【分析】根据二元一次方程根的概念,将x=2、y=-1代入原方程,可得关于字母k 的一元一次方程,解该方程可求出k 的值.2.【答案】D【解析】【解答】解:由②-①得:x=5.故答案为:D.【分析】由方程②-方程①,即左边减左边,右边减右边,可得x=5,即可得出正确答案.3.【答案】C【解析】【解答】解:设这间会议室的座位排数是x 排,人数是y 人.根据题意,得()12111411x y x y+=⎧⎨-+=⎩解得12155x y =⎧⎨=⎩. 故答案为:C .【分析】本题中有两个等量关系:1、每排坐12人,则有11人没有座位;2、每排坐14 人,则余1人独坐一排. 这样设每排的座位数为x ,总人数为y ,列出二元一次方程组即可.4.【答案】D【解析】【解答】解:3x+y=93x=9-y 解之:33yx =-. 故答案为:D【分析】先移项,将含y 的项移到方程的右边,再在方程的两边同时除以3,可求出x.5.【答案】C【解析】【解答】解:∵{x=2ky=−3k是二元一次方程x-y=10的解∴2k+3k=10解之:k=2.故答案为:C【分析】将x,y的值代入方程,可得到关于k的方程,解方程求出k的值. 6.【答案】A【解析】【解答】解:43 26 x yx y+=⎧⎨-=⎩①②①+②得3x+3y=9两边同时除以3得x+y=3.故答案为:A.【分析】直接将方程组中的两个方程相加后再在两边同时除以3即可得出答案. 7.【答案】C【解析】【解答】解:方程组272a ba b+=⎧⎨-=⎩①②A、代入法消去a,由②得a=b+2代入①可消去a,不符合题意;B、代入法消去b.由①得b=7−2a代入②可消去b,不符合题意;C、加减法消去b,①+②,符合题意;D、加减法消去a,①−②×2,不符合题意.故答案为:C.【分析】利用加减消元法和代入消元的方法求解二元一次方程组即可。
新人教版七年级数学下册第八章《二元一次方程组》同步练习及单元测试题(含答案)
《二元一次方程组》同步练习及单元测试题8.1二元一次方程组一、填空题1、二元一次方程4x-3y=12,当x=0,1,2,3时,y=____2、在x+3y=3中,若用x 表示y ,则y= ,用y 表示x ,则x=3、已知方程(k 2-1)x 2+(k+1)x+(k-7)y=k+2,当k=______时,方程为一元一次方程;当k=______时,方程为二元一次方程。
4、对二元一次方程2(5-x)-3(y-2)=10,当x=0时,则y=____;当y=0时,则x=____。
5、方程2x+y=5的正整数解是______。
6、若(4x-3)2+|2y+1|=0,则x+2= 。
7、方程组⎩⎨⎧==+b xy a y x 的一个解为⎩⎨⎧==32y x ,那么这个方程组的另一个解是 。
8、若21=x 时,关于y x 、的二元一次方程组⎩⎨⎧=-=-212by x y ax 的解互为倒数,则=-b a 2 。
二、选择题1、方程2x-3y=5,xy=3,33=+yx ,3x-y+2z=0,62=+y x 中是二元一次方程的有( )个。
A、1 B、2 C、3 D、4 2、方程2x+y=9在正整数范围内的解有( )A 、1个B 、2个C 、3个D 、4个3、与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是( )A 、10x+2y=4B 、4x-y=7C 、20x-4y=3D 、15x-3y=6 4、若是m y x 25与2214-++n m n y x 同类项,则n m -2的值为 ( )A 、1B 、-1C 、-3D 、以上答案都不对 5、在方程(k 2-4)x 2+(2-3k)x+(k+1)y+3k=0中,若此方程为二元一次方程,则k 值为( ) A 、2 B 、-2 C 、2或-2 D 、以上答案都不对.6、若⎩⎨⎧-==12y x 是二元一次方程组的解,则这个方程组是( )A 、⎩⎨⎧=+=-5253y x y x B 、⎩⎨⎧=--=523x y x y C 、⎩⎨⎧=+=-152y x y x D 、⎩⎨⎧+==132y x yx7、在方程3)(3)(2=--+x y y x 中,用含x 的代数式表示y ,则 ( )A 、35-=x yB 、3--=x yC 、35+=x yD 、35--=x y 8、已知x=3-k,y=k+2,则y与x的关系是( )A、x+y=5 B、x+y=1 C、x-y=1 D、y=x-1 9、下列说法正确的是( )A、二元一次方程只有一个解 B、二元一次方程组有无数个解C、二元一次方程组的解必是它所含的二元一次方程的解 D、三元一次方程组一定由三个三元一次方程组成10、若方程组⎩⎨⎧=+=+16156653y x y x 的解也是方程3x+ky=10的解,则k的值是( =)A、k=6 = B、k=10 C、k=9 D、k=101三、解答题1、解关于x 的方程)1(2)4)(1(+-=--x a x a a2、已知方程组⎩⎨⎧=+=+c y ax y x 27,试确定c a 、的值,使方程组:(1)有一个解;(2)有无数解;(3)没有解3、关于y x 、的方程3623-=+k y kx ,对于任何k 的值都有相同的解,试求它的解。
人教新版七年级数学下学期 第8章 二元一次方程组 单元练习题 含解析
第8章二元一次方程组一.选择题(共8小题)1.下列各式,属于二元一次方程的个数有()①xy+2x﹣y=7;②4x+1=x﹣y;③+y=5;④x=y;⑤x2﹣y2=2⑥6x﹣2y⑦x+y+z=1 ⑧y(y﹣1)=2y2﹣y2+x.A.1 B.2 C.3 D.42.若x4﹣3|m|+y3|n|=2009是关于x,y的二元一次方程,且mn<0,0<m+n≤3,则m﹣n的值是()A.B.2 C.4 D.﹣23.关于x,y的二元一次方程(a﹣1)x+(a+2)y+5﹣2a=0,当a取一个确定的值时就得到一个方程,所有这些方程有一个公共解,则这个公共解是()A.B.C.D.4.二元一次方程5a﹣11b=21()A.有且只有一解B.有无数解C.无解D.有且只有两解5.已知是二元一次方程组的解,则2m﹣n的算术平方根为()A.±2 B.C.2 D.46.已知x,y满足方程组,则无论m取何值,x,y恒有关系式是()A.x+y=1 B.x+y=﹣1 C.x+y=9 D.x+y=﹣97.已知方程组和有相同的解,则a,b的值为()A.B.C.D.8.王芳同学到文具店购买中性笔和笔记本,中性笔每支0.8元,笔记本每本1.2元,王芳同学花了10元钱,则可供她选择的购买方案的个数为(两样都买,余下的钱少于0.8元)()A.6 B.7 C.8 D.9二.填空题(共9小题)9.若方程组是关于x,y的二元一次方程组,则代数式a+b+c的值是.10.小亮解方程组的解为,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,请你帮他找回★这个数,★=.11.已知方程x﹣8=2y,用含y的代数式表示x,那么x=.12.如图,长方形ABCD中有6个形状、大小相同的小长方形,根据图中所标尺寸,则图中阴影部分的面积之和为.13.我国古代有一种回文诗,倒念顺念都有意思,例如“上海自来水”,倒读起来便是“水来自海上”.“回文数“是一种数字.如:98789,这个数字正读是98789,倒读也是98789,正读倒读一样.下面的乘法算式中每个汉字代表一个数字,不同的汉字代表不同的数字,则绿水青山代表的四位数是.14.某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,一个螺栓配两个螺母,应分配人生产螺栓,人生产螺母,才能使生产的螺栓和螺母正好配套.15.轮船顺流航行时m千米/小时,逆流航行时(m﹣6)千米/小时,则水流速度是.16.为确保信息安全,信息需加密传输,发送者将明文加密为密文传输给接收方,接收方收到密文后解密为明文,已知某种加密规则为:明文a,b对应密文为a﹣2b,2a+b,例如,明文1,2对应的密文是﹣3,4.当接收方收到的密文是2,9时,解密得到的明文是.17.小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图所示,请你根据图中的信息,若小明把100个纸杯整齐叠放在一起时,它的高度约是cm.三.解答题(共4小题)18.已知等式(2A﹣7B)x+(3A﹣8B)=8x+10对一切实数x都成立,求A、B的值.19.小华从家里到学校的路是一段平路和一段下坡路,假设他始终保持平路每分钟走60m,下坡路每分钟走80m,上坡路每分钟走40m,则他从家里到学校需10min,从学校到家里需15min.问:从小华家到学校的平路和下坡路各有多远?20.(应用题)某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售利润最多,你选择哪一种进货方案?21.一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲单独完成需12天,乙单独完成需24天,单独请哪个组,商店所需费用最少?(3)若装修完后,商店每天可赢利200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)参考答案与试题解析一.选择题(共8小题)1.下列各式,属于二元一次方程的个数有()①xy+2x﹣y=7;②4x+1=x﹣y;③+y=5;④x=y;⑤x2﹣y2=2⑥6x﹣2y⑦x+y+z=1 ⑧y(y﹣1)=2y2﹣y2+x.A.1 B.2 C.3 D.4【分析】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面辨别.【解答】解:①xy+2x﹣y=7,不是二元一次方程,因为其未知数的最高次数为2;②4x+1=x﹣y,是二元一次方程;③+y=5,不是二元一次方程,因为不是整式方程;④x=y是二元一次方程;⑤x2﹣y2=2不是二元一次方程,因为其未知数的最高次数为2;⑥6x﹣2y,不是二元一次方程,因为不是等式;⑦x+y+z=1,不是二元一次方程,因为含有3个未知数;⑧y(y﹣1)=2y2﹣y2+x,是二元一次方程,因为变形后为﹣y=x.故选:C.2.若x4﹣3|m|+y3|n|=2009是关于x,y的二元一次方程,且mn<0,0<m+n≤3,则m﹣n的值是()A.B.2 C.4 D.﹣2【分析】根据二元一次方程的定义,从二元一次方程的未知数次数为1这一方面考虑,先求出常数m、n的值,再进一步计算.【解答】解:根据二元一次方程的定义,x和y的次数必须都为1,所以4﹣3|m|=1,且3|n|=1,解得m=±1,n=±.又∵mn<0,0<m+n≤3,∴m=1,n=﹣.∴m﹣n=.故选:A.3.关于x,y的二元一次方程(a﹣1)x+(a+2)y+5﹣2a=0,当a取一个确定的值时就得到一个方程,所有这些方程有一个公共解,则这个公共解是()A.B.C.D.【分析】如果当a取一个确定的值时就得到一个方程,这些方程有一个公共解,说明无论a取何值,都不影响方程,即含a的项的系数相加为0.【解答】解:方程整理为ax﹣x+ay+2y+5﹣2a=0,a(x+y﹣2)﹣x+2y+5=0.根据题意,即可得,用加减法解得.故选:A.4.二元一次方程5a﹣11b=21()A.有且只有一解B.有无数解C.无解D.有且只有两解【分析】对于二元一次方程,可以用其中一个未知数表示另一个未知数,给定其中一个未知数的值,即可求得其对应值.【解答】解:二元一次方程5a﹣11b=21,变形为a=,给定b一个值,则对应得到a的值,即该方程有无数个解.故选:B.5.已知是二元一次方程组的解,则2m﹣n的算术平方根为()A.±2 B.C.2 D.4【分析】由是二元一次方程组的解,根据二元一次方程根的定义,可得,即可求得m与n的值,继而求得2m﹣n的算术平方根.【解答】解:∵是二元一次方程组的解,∴,解得:,∴2m﹣n=4,∴2m﹣n的算术平方根为2.故选:C.6.已知x,y满足方程组,则无论m取何值,x,y恒有关系式是()A.x+y=1 B.x+y=﹣1 C.x+y=9 D.x+y=﹣9【分析】由方程组消去m,得到一个关于x,y的方程,化简这个方程即可.【解答】解:由方程组,有y﹣5=m∴将上式代入x+m=4,得到x+(y﹣5)=4,∴x+y=9.故选:C.7.已知方程组和有相同的解,则a,b的值为()A.B.C.D.【分析】因为方程组和有相同的解,所以把5x+y=3和x﹣2y=5联立解之求出x、y,再代入其他两个方程即可得到关于a、b的方程组,解方程组即可求解.【解答】解:∵方程组和有相同的解,∴方程组的解也它们的解,解得:,代入其他两个方程得,解得:,故选:D.8.王芳同学到文具店购买中性笔和笔记本,中性笔每支0.8元,笔记本每本1.2元,王芳同学花了10元钱,则可供她选择的购买方案的个数为(两样都买,余下的钱少于0.8元)()A.6 B.7 C.8 D.9【分析】设购买x支中性笔,y本笔记本,根据题意得出:9.2<0.8x+1.2y≤10,进而求出即可.【解答】解;设购买x支中性笔,y本笔记本,根据题意得出:9.2<0.8x+1.2y≤10,当x=2时,y=7,当x=3时,y=6,当x=5时,y=5,当x=6时,y=4,当x=8时,y=3,当x=9时,y=2,当x=11时,y=1,故一共有7种方案.故选:B.二.填空题(共9小题)9.若方程组是关于x,y的二元一次方程组,则代数式a+b+c的值是﹣2或﹣3 .【分析】根据二元一次方程组的定义:(1)含有两个未知数;(2)含有未知数的项的次数都是1.【解答】解:若方程组是关于x,y的二元一次方程组,则c+3=0,a﹣2=1,b+3=1,解得c=﹣3,a=3,b=﹣2.所以代数式a+b+c的值是﹣2.或c+3=0,a﹣2=0,b+3=1,解得c=﹣3,a=2,b=﹣2.所以代数式a+b+c的值是﹣3.故答案为:﹣2或﹣3.10.小亮解方程组的解为,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,请你帮他找回★这个数,★=﹣2 .【分析】根据二元一次方程组的解的定义得到x=5满足方程2x﹣y=12,于是把x=5代入2x﹣y=12得到2×5﹣y=12,可解出y的值.【解答】解:把x=5代入2x﹣y=12得2×5﹣y=12,解得y=﹣2.∴★为﹣2.故答案为:﹣2.11.已知方程x﹣8=2y,用含y的代数式表示x,那么x=10y+40 .【分析】要用含y的代数式表示x,就要把方程中含有x的项移到方程的左边,其它的项移到方程的右边,再进一步合并同类型、系数化为1即可.【解答】解:移项,得x=2y+8,系数化1,得x=10y+40.故答案为:10y+40.12.如图,长方形ABCD中有6个形状、大小相同的小长方形,根据图中所标尺寸,则图中阴影部分的面积之和为72cm2.【分析】(方法一)设小长方形的长为xcm,宽为ycm,根据图形中给定的长度,可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再利用阴影部分的面积和=大长方形的面积﹣6个小长方形的面积,即可求出结论;(方法二)设小长方形的宽为xcm,则长为(16﹣3x)cm,根据AB的长度,可得出关于x的一元一次方程,解之即可求出小长方形的长和宽,再利用阴影部分的面积和=大长方形的面积﹣6个小长方形的面积,即可求出结论.【解答】解:(解法一)设小长方形的长为xcm,宽为ycm,依题意,得:,解得:,∴图中阴影部分的面积之和为16×(8+2×2)﹣6×10×2=72(cm2).(解法二)设小长方形的宽为xcm,则长为(16﹣3x)cm,依题意,得:x+(16﹣3x)﹣2x=8,解得:x=2,∴16﹣3x=10,∴图中阴影部分的面积之和为16×(8+2×2)﹣6×10×2=72(cm2).故答案为:72cm2.13.我国古代有一种回文诗,倒念顺念都有意思,例如“上海自来水”,倒读起来便是“水来自海上”.“回文数“是一种数字.如:98789,这个数字正读是98789,倒读也是98789,正读倒读一样.下面的乘法算式中每个汉字代表一个数字,不同的汉字代表不同的数字,则绿水青山代表的四位数是1089 .【分析】根据“回文数”的定义进而分析得出“绿”=1,“山”=9或“绿”=0,“山”=0,即可得出符合题意的答案.【解答】解:四位数×9还是四位数,说明有两种情况:“绿”=1,“山”=9或“绿”=0,“山”=0①“绿”=0,且“山”=0;不符合题意,②“绿”=1,且“山”=9三位数×9还是三位数,则说明“水”=0或1,代入可得1089为四位数.故答案为:1089.14.某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,一个螺栓配两个螺母,应分配12 人生产螺栓,16 人生产螺母,才能使生产的螺栓和螺母正好配套.【分析】先设分配x人生产螺栓,则有(28﹣x)人生产螺母,根据x人生产的螺栓数×2=(28﹣x)人生产螺母数,由等量关系列出方程,求出方程的解即可.【解答】解:设分配x人生产螺栓,则有(28﹣x)人生产螺母,根据题意得:12x×2=(28﹣x)×18,解得:x=12,生产螺母的人数是:28﹣12=16(人);答:应分配12人生产螺栓,16人生产螺母,才能使每天生产量刚好配套.故答案为:12,16.15.轮船顺流航行时m千米/小时,逆流航行时(m﹣6)千米/小时,则水流速度是3千米/时.【分析】设轮船在静水中航行的速度为x千米/小时,水流速度为y千米/小时,根据“顺流航行速度=轮船速度+水流速度”与“逆流航行速度=轮船速度﹣水流速度”列出关于x、y的二元一次方程组,解方程组求出y值即可.【解答】解:设轮船在静水中航行的速度为x千米/小时,水流速度为y千米/小时,依题意得,解得:y=3.故答案为:3千米/时.16.为确保信息安全,信息需加密传输,发送者将明文加密为密文传输给接收方,接收方收到密文后解密为明文,已知某种加密规则为:明文a,b对应密文为a﹣2b,2a+b,例如,明文1,2对应的密文是﹣3,4.当接收方收到的密文是2,9时,解密得到的明文是4,1 .【分析】根据题意可知,本题中的相等关系是“a﹣2b=2”和“2a+b=9”,列方程组求解即可.【解答】解:根据题意列方程组,得,解得.答:解密得到的明文是4,1.故答案为:4,1.17.小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图所示,请你根据图中的信息,若小明把100个纸杯整齐叠放在一起时,它的高度约是106 cm.【分析】通过理解题意可知本题存在两个等量关系,即单独一个纸杯的高度+3个纸杯叠放在一起比单独的一个纸杯增高的高度=9,单独一个纸杯的高度+8个纸杯叠放在一起比单独的一个纸杯增高的高度=14.根据这两个等量关系可列出方程组.【解答】解:设每两个纸杯叠放在一起比单独的一个纸杯增高xcm,单独一个纸杯的高度为ycm,则,解得,则99x+y=99×1+7=106.答:把100个纸杯整齐地叠放在一起时的高度约是106cm.三.解答题(共4小题)18.已知等式(2A﹣7B)x+(3A﹣8B)=8x+10对一切实数x都成立,求A、B的值.【分析】本题根据关键语“等式(2A﹣7B)x+(3A﹣8B)=8x+10对一切实数x都成立”,只要让等式两边x的系数和常数分别相等即可列出方程组求解.【解答】解:由题意有,解得,答:A、B的值分别为、.19.小华从家里到学校的路是一段平路和一段下坡路,假设他始终保持平路每分钟走60m,下坡路每分钟走80m,上坡路每分钟走40m,则他从家里到学校需10min,从学校到家里需15min.问:从小华家到学校的平路和下坡路各有多远?【分析】设出平路和坡路的路程,从家里到学校走平路和下坡路一共用10分钟,从学校到家里走上坡路和平路一共用15分钟,利用这两个关系式列出方程组解答即可.【解答】解:设平路有xm,下坡路有ym,根据题意得,解得:,答:小华家到学校的平路和下坡路各为300m,400m.20.(应用题)某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售利润最多,你选择哪一种进货方案?【分析】(1)因为要购进两种不同型号电视机,可供选择的有3种,那么将有三种情况:甲乙组合,甲丙组合,乙丙组合.等量关系为:台数相加=50,钱数相加=90000;(2)算出各方案的利润加以比较.【解答】解:(1)解分三种情况计算:①设购甲种电视机x台,乙种电视机y台.解得.②设购甲种电视机x台,丙种电视机z台.则,解得:.③设购乙种电视机y台,丙种电视机z台.则解得:(不合题意,舍去);(2)方案一:25×150+25×200=8750.方案二:35×150+15×250=9000元.答:购甲种电视机25台,乙种电视机25台;或购甲种电视机35台,丙种电视机15台.购买甲种电视机35台,丙种电视机15台获利最多.21.一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲单独完成需12天,乙单独完成需24天,单独请哪个组,商店所需费用最少?(3)若装修完后,商店每天可赢利200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)【分析】(1)本题的等量关系是:甲做8天需要的费用+乙作8天需要的费用=3520元.甲组6天需付的费用+乙做12天需付的费用=3480元,由此可得出方程组求出解.(2)根据(1)得出的甲乙每工作一天,商店需付的费用,然后分别计算出甲单独做12天需要的费用,乙单独做24天需要的费用,让两者进行比较即可.(3)本题可将每种施工方法的施工费加上施工期间商店损失的费用,然后将不同方案计算出的结果进行比较,损失最少的方案就是最有利商店的方案.【解答】解:(1)设:甲组工作一天商店应付x元,乙组工作一天商店付y元.由题意得解得答:甲、乙两组工作一天,商店各应付300元和140元.(2)单独请甲组需要的费用:300×12=3600元.单独请乙组需要的费用:24×140=3360元.答:单独请乙组需要的费用少.(3)请两组同时装修,理由:甲单独做,需费用3600元,少赢利200×12=2400元,相当于损失6000元;乙单独做,需费用3360元,少赢利200×24=4800元,相当于损失8160元;甲乙合作,需费用3520元,少赢利200×8=1600元,相当于损失5120元;因为5120<6000<8160,所以甲乙合作损失费用最少.答:甲乙合作施工更有利于商店.。
新人教版七年级下册第八章二元一次方程组测试题及答案
第八章二元一次方程组测试题一、填空题:1. 在方程25x y +=中,用x 的代数式表示y ,得_______y =.2. 若一个二元一次方程的一个解为21x y =⎧⎨=-⎩,则这个方程可以是:(只要求写出一个) 3. 下列方程: ①213y x -=; ②332x y+=; ③224x y -=; ④5()7()x y x y +=+;⑤223x =;⑥14x y+=.其中是二元一次方程的是 .4. 若方程456m n m n x y -+-=是二元一次方程,则____m =,____n =.5. 方程4320x y +=的所有非负整数解为:6. 若23x y -=-,则52____x y -+=.7. 若2(5212)3260x y x y +-++-=,则24____x y +=.8. 有人问某男孩,有几个兄弟,几个姐妹,他回答说:“有几个兄弟就有几个姐妹.”再问他妹妹有几个兄弟,几个姐妹,她回答说:“我的兄弟是姐妹的2倍.”若设兄弟x 人,姐妹y 人,则可列出方程组: .9. 某次足球比赛的记分规则如下:胜一场得3分,平一场得1分,负一场是0分.某队踢了14场,其中负5场,共得19分。
若设胜了x 场,平了y 场,则可列出方程组: . 10. 分析下列方程组解的情况.①方程组12x y x y +=⎧⎨+=⎩的解 ;②方程组1222x y x y +=⎧⎨+=⎩的解 . 二、选择题:11. 用代入法解方程组124y xx y =-⎧⎨-=⎩时,代入正确的是( )A.24x x --= B .224x x --= C.224x x -+=D.24x x -+=12. 已知10x y =-⎧⎨=⎩和23x y =⎧⎨=⎩都是方程y ax b =+的解,则a 和b 的值是 ( )A.11a b =-⎧⎨=-⎩B.11a b =⎧⎨=⎩C.11a b =-⎧⎨=⎩ D. 11a b =⎧⎨=-⎩13. 若方程组4314(1)6x y kx k y +=⎧⎨+-=⎩的解中x 与y 的值相等,则k 为( )A.4B.3C.2D.114. 已知方程组5354x y ax y +=⎧⎨+=⎩和2551x y x by -=⎧⎨+=⎩有相同的解,则a ,b 的值为 ( )A.12a b =⎧⎨=⎩B.46a b =-⎧⎨=-⎩ C.62a b =-⎧⎨=⎩ D.142a b =⎧⎨=⎩15. 已知二元一次方程30x y +=的一个解是x ay b=⎧⎨=⎩,其中0a ≠,那么( )A.0b a > B.0b a = C.0ba< D.以上都不对16. 如图1,宽为50 cm 的矩形图案由10个全等的小长方形拼成,其中 一个小长方形的面积为( ) A. 400 cm 2 B. 500 cm 2图1C. 600 cm2D. 4000 cm2三、解答题:17.(6分)解方程组356415x zx z-=⎧⎨+=-⎩①②18. (6分)解方程组22314m nm n-=⎧⎨+=⎩①②参考答案一、填空题:1. 52x -2. 1x y +=(只要符合题意即可,答案不唯一)3. ①,④4. 1,05. 24x y =⎧⎨=⎩ 50x y =⎧⎨=⎩ 6. 8 7. 0 8. 12(1)x y x y =+⎧⎨=-⎩. 9. 145319x y x y +=-⎧⎨+=⎩10. ①不存在;②无穷多个.二、选择题:11. C.12. B .13. C.14. D.15. C.16. A. 三、解答题:17. 解:由②得154x z =-- ③,把③代入①,得3(154)56z z ---= 3=-∴z把z=-3代入③得:x=-3∴原方程组的解为:33x z =-⎧⎨=-⎩ 18. 解:由①得:2m n =+ ③把③代入②得:2(2)3n n ++= 2n =∴把2n =代入③得:4m =∴原方程组的解为:42m n =⎧⎨=⎩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、用代入法解下列方程组
二、用加减法解下列方程组 218,
3 2.
a b a b +=⎧⎨=+⎩18,3814.x y x y -=⎧⎨-=⎩25,34 2.
x y x y -=⎧
⎨+=⎩23,328.y x x y =-⎧⎨+=⎩3,759.y x x y =+⎧⎨+=⎩35,5215.x y x y -=⎧⎨+=⎩4(1)3(1)2,2.
23x y y x y --=--⎧⎪⎨+=⎪⎩345,
5633.
x y x y +=⎧
⎨-=⎩
三、选择适当的方法解方程组 5225,3415.x y x y +=⎧⎨+=⎩29,32 1.x y x y +=⎧⎨-=-⎩3416,5633.m n m n +=⎧⎨-=⎩258,32 5.x y x y +=⎧⎨+=⎩236,32 2.x y x y +=⎧⎨-=-⎩31,222 3.
x y x y ⎧-=-⎪⎨⎪+=⎩327,6211.x y x y +=⎧⎨-=⎩23,3 4.s b s b +=⎧⎨+=⎩253,4 3.x y x y -=-⎧⎨-+=-⎩231,342457.5
615s t s t ⎧+=⎪⎪⎨⎪+=⎪⎩
四、列二元一次方程组解下列应用题
1、加工某种产品需经两道工序,第一道工序每人每天可完成900件,第二道工序每人每天可完成1200件.现有7位工人参加这两道工序,应怎样安排人力,才能使每天第一第二道工序所完成的件数相等。
2.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”
3.有48支队520名运动员参加篮排球比赛,其中每支篮球队10人,每支排球队12人,没命运动员只参加一项比赛。
篮排球队各有多少支参赛?
4.张翔从学校出发骑自行车去县城,中途因道路施工步行一段路,1.5小时后到达县城。
他骑车的平均速度是15千米/时,步行的平均速度是5千米/时,路程全场20千米。
他骑车与步行各用多少小时
5.一条船顺流航行,每小时行20km ;逆流航行;每小时行16km ,求轮船在静水中的速度与水的速度。
6.运输360吨化肥,撞在了6节火车皮与15辆汽车;运输440吨化肥,撞在了8节火车皮与10辆汽3(1)5,5(1)3(5).
x y y x -=+⎧⎨-=+⎩
车,每节火车皮与每辆汽车平均各装多少吨化肥?
7.某班去看演出,甲种票每张24元,乙种票每张18元,如果35名同学购票恰好用去750元,甲乙两种票各买了多少张?。