不同类型地图使用的投影与坐标系
地理坐标系与投影坐标系的转换方法与应用实例
![地理坐标系与投影坐标系的转换方法与应用实例](https://img.taocdn.com/s3/m/27dab12acd7931b765ce0508763231126edb778f.png)
地理坐标系与投影坐标系的转换方法与应用实例地理坐标系和投影坐标系是地图制图中常见的两种坐标系统。
地理坐标系使用经纬度来表示地球上的位置,而投影坐标系将三维地球表面投影到二维平面上。
在本文中,我们将探讨地理坐标系与投影坐标系之间的转换方法以及它们的应用实例。
一、地理坐标系的转换方法地理坐标系使用经度(longitude)和纬度(latitude)来表示地球上的位置。
经度表示东西方向上的位置,纬度表示南北方向上的位置。
经度的取值范围为-180度到180度,纬度的取值范围为-90度到90度。
地理坐标系与投影坐标系之间的转换需要采用数学模型。
目前常用的转换方法有:1. 艾尔伯斯等角投影法(Albers Equal-Area Conic Projection)该方法适用于大片区域的地图,可以保持地图上不同区域的面积比例。
转换时,需要指定标准纬线和两个标准经线。
通过投影公式,将地理坐标系中的经纬度转换为投影坐标系中的x和y坐标。
2. 等距投影法(Equidistant Projection)该方法适用于需要保持地图上不同位置之间的距离比例的情况。
转换时,需要指定中央子午线和标准纬线。
通过投影公式,将地理坐标系中的经纬度转换为投影坐标系中的x和y坐标。
3. 麦卡托投影法(Mercator Projection)这是一种常见的投影方法,用于将地球表面投影到平面上。
然而,麦卡托投影会在高纬度地区产生面积扭曲的问题。
转换时,需要指定标准经线。
通过投影公式,将地理坐标系中的经纬度转换为投影坐标系中的x和y坐标。
二、投影坐标系的应用实例投影坐标系在地图制图中有广泛的应用。
以下是几个应用实例:1. 地图测量和导航投影坐标系可以将地球表面上的位置转换为平面上的坐标,从而实现地图测量和导航功能。
航空和航海领域广泛使用投影坐标系来确定位置和航向。
此外,GPS导航系统也使用投影坐标系来实现导航功能。
2. 地图叠加和分析投影坐标系可以实现不同地图的叠加和分析。
地形图及坐标表示方式
![地形图及坐标表示方式](https://img.taocdn.com/s3/m/6c0261cc10a6f524cdbf85b9.png)
1、地形图坐标系:我国的地形图采用高斯-克吕格平面直角坐标系。
在该坐标系中,横轴:赤道,用Y表示;赤道以南为负,以北为正;纵轴:中央经线,用X表示;中央经线以东为正,以西为负。
坐标原点:中央经线与赤道的交点,用O表示。
我国位于北半球,故纵坐标均为正值,但为避免中央经度线以西为负值的情况,将坐标纵轴西移500公里。
2、北京54坐标系:1954年我国在北京设立了大地坐标原点,采用克拉索夫斯基椭球体,依此计算出来的各大地控制点的坐标,称为北京54坐标系。
3、GS84坐标系:即世界通用的经纬度坐标系。
4、6度带、3度带、中央经线。
我国采用6度分带和3度分带:1∶2.5万及1∶5万的地形图采用6度分带投影,即经差为6度,从零度子午线开始,自西向东每个经差6度为一投影带,全球共分60个带,用1,2,3,4,5,……表示.即东经0~6度为第一带,其中央经线的经度为东经3度,东经6~12度为第二带,其中央经线的经度为9度。
1∶1万的地形图采用3度分带,从东经1.5度的经线开始,每隔3度为一带,用1,2,3,……表示,全球共划分120个投影带,即东经1.5~4.5度为第1带,其中央经线的经度为东经3度,东经4.5~7.5度为第2带,其中央经线的经度为东经6度.地形图上公里网横坐标前2位就是带号,例如:河北省1:5万地形图上的横坐标为20345486,其中20即为带号,345486为横坐标值。
在分层设色地形图中,绿色表示的地形是A高原B平原C山地D盆地一.什么是地图地图是按一定的数学法则和综合法则,以形象-符号表达制图物体(现象)的地理分布、组合和相互联系及其在时间中的变化的空间模型,它是地理信息的载体,又是信息传递的通道。
二.地图制图学及其理论基础地图制图学属地球科学中的一门学科。
主要是研究地图的实质(性质、内容及其表示方法)发展、制图理论和技术方法的的一门科学。
它的任务是获取各种类型的、高速优质的地图。
是制作地图的科学。
地理坐标系统与地图投影的基本知识
![地理坐标系统与地图投影的基本知识](https://img.taocdn.com/s3/m/a5e9757def06eff9aef8941ea76e58fafab04528.png)
地理坐标系统与地图投影的基本知识地理坐标系统(Geographic Coordinate System,简称GCS)是一个基于球体(地球)或椭球体模型的坐标系统,用于描述地球上任意点的位置。
地理坐标系统采用经度和纬度的坐标来确定位置,以度(°)为单位。
经度是从东经0°到西经180°,纬度是从南纬0°到北纬90°。
它们组成了地球的经线和纬线网格,帮助我们定位和导航。
地理坐标系统里最常用的是WGS84坐标系统,也就是全球定位系统(GPS)所采用的坐标系统。
WGS84使用的是地球的平均水准面,被广泛应用于地球科学、地理信息系统和导航系统等领域。
但是需要注意的是,地理坐标系统描述的是在球体或椭球体上的位置,并没有考虑地球表面上的变形。
在制作地图时,我们通常会面临一个问题,即如何把三维的地球表面展开成平面的地图。
这就涉及到地图投影。
地图投影是将球体或椭球体的表面投影到平面上,以便在平面上显示地球的图像。
地图投影有很多种类型,每一种都有其特定的用途和应用。
最常见的地图投影类型之一是等距投影。
等距投影保持了地球上各个点之间的距离比例,即在地图上等距离的两点在地球上也是等距离的。
其中一种常见的等距投影是墨卡托投影,也称为Web墨卡托投影。
墨卡托投影是一种圆柱投影,将地球的经线和纬线投影成直角网格,非常适合用于制作世界地图等大范围的地图。
墨卡托投影最大的特点是保持了地球上各个点之间的角度,但在高纬度地区会出现形变。
除了等距投影外,还有等面积投影、等角投影等不同类型的地图投影。
等面积投影保持了地球上各个区域的面积比例,而等角投影保持了地球上各个点之间的角度比例。
每种投影都有其优点和缺点,根据地图的具体用途和区域选择适合的投影方式很重要。
在实际应用中,我们经常会遇到从一个坐标系统转换到另一个坐标系统的问题。
这需要用到坐标转换方法。
常见的坐标转换方法包括地理转投影,即从地理坐标系统到地图投影的转换,以及地图转地理,即从地图投影到地理坐标系统的转换。
如何选择适合的地图投影方法和坐标系
![如何选择适合的地图投影方法和坐标系](https://img.taocdn.com/s3/m/28206246df80d4d8d15abe23482fb4daa58d1de4.png)
如何选择适合的地图投影方法和坐标系地图作为一种重要的信息传媒工具,在现代社会中的应用广泛。
然而,要将真实世界的地理信息映射到平面地图上,就需要选择适合的地图投影方法和坐标系。
本文将探讨如何选择合适的地图投影方法和坐标系,以提高地图的精准度和可读性。
首先,地图投影方法是指将三维地球表面映射为二维平面地图的数学方法。
目前常用的地图投影方法包括等角圆柱投影、等距圆柱投影、等面积圆柱投影、圆锥投影和面投影等。
每种投影方法都有其独特的特点和应用场景。
在选择地图投影方法时,需要考虑地图的使用目的、地图覆盖范围以及地图的可读性要求。
如果地图的使用目的是进行导航和路径规划,那么等角圆柱投影和等距圆柱投影是比较常见的选择。
等角圆柱投影保持了地图上各个地方的方向关系,适合用于航空和海洋导航等场景。
而等距圆柱投影则将地图上的每一点与其对应的地球上的点之间的距离保持一致,适合用于公路和铁路交通规划。
在选择等角圆柱投影或等距圆柱投影时,需要考虑地图的可读性和精准性,以及用户对方向关系或距离的重视程度。
另一方面,如果地图的使用目的是进行地理分析和统计,那么等面积圆柱投影可能更为适合。
等面积圆柱投影将地球上的等面积区域映射到地图上的等面积区域,保持了地理信息的相对比例关系,适合用于人口分布、资源分布等统计分析。
然而,等面积圆柱投影在保证面积相等的同时,会造成形状的扭曲。
因此,在选择等面积圆柱投影时,需要对面积和形状的平衡进行权衡。
此外,地图投影方法还需要考虑地图的覆盖范围。
通常情况下,等角圆柱投影和等距圆柱投影适用于全球范围的地图,而圆锥投影适用于纬度范围较小的区域地图,而面投影则适用于局部地区和城市地图。
在选择地图投影方法时,需要根据地图的覆盖范围来确定最适合的投影方法,以保证地图的可读性和准确性。
除了地图投影方法,选择合适的坐标系也是确保地图准确性的关键。
常见的地图坐标系包括经纬度坐标系、平面直角坐标系和高斯投影坐标系等。
测绘中的大地坐标与投影坐标转换方法
![测绘中的大地坐标与投影坐标转换方法](https://img.taocdn.com/s3/m/5debfc21ae1ffc4ffe4733687e21af45b207fe4f.png)
测绘中的大地坐标与投影坐标转换方法测绘是一个重要的领域,它涉及到地理空间的测量、记录和表达。
在测绘过程中,我们需要使用不同的坐标系统来表示地球表面上的点的位置。
其中,大地坐标和投影坐标是两种常用的坐标系统。
本文将介绍大地坐标和投影坐标系统,并探讨它们之间的转换方法。
一、大地坐标系统大地坐标系统是以地球的形状为基础的坐标系统。
地球并不是一个完美的球体,它的形状更接近于一个椭球体。
在大地坐标系统中,地球被视为一个椭球体,并将地球表面上的点的位置表示为经度、纬度和高程。
经度表示一个点在东西方向的位置,纬度表示一个点在南北方向的位置,高程表示一个点相对于参考水平面的高度。
大地坐标系统有多个标准,其中最常用的是WGS84坐标系统。
WGS84坐标系统是全球通用的坐标系统,它被广泛应用于地理空间数据的表示和交换。
在WGS84坐标系统中,经度的单位为度,范围为-180至+180度;纬度的单位为度,范围为-90至+90度;高程的单位可以是米或者英尺。
二、投影坐标系统投影坐标系统是为了简化地球表面在二维平面上的表示而引入的坐标系统。
由于地球的形状复杂且曲面,直接在平面上表示地球的形状会导致形状失真或距离失真。
为了解决这个问题,我们使用各种投影方法将地球的表面投影到平面上,以获得更为精确和方便的地图。
常用的投影方法包括等面积投影、等距离投影和等角投影等。
这些投影方法根据其特定的数学公式和原理,将地球的表面转换为平面上的坐标。
在投影坐标系统中,地球表面上的点的位置被表示为x和y坐标,就像在平面上一样。
各种投影方法有各自的优劣和适用范围。
选择合适的投影方法取决于需要绘制的地图的具体要求和使用目的。
三、大地坐标与投影坐标的转换在实际测绘工作中,我们经常需要在大地坐标系统和投影坐标系统之间进行转换。
这是因为大地坐标系统适用于大范围的测量和定位,而投影坐标系统更适用于局部地区的测图和地图制作。
大地坐标到投影坐标的转换需要考虑到椭球体的形状参数,投影方法的选择以及投影坐标的基准系统等因素。
测绘技术中常见的地理坐标系与投影坐标系
![测绘技术中常见的地理坐标系与投影坐标系](https://img.taocdn.com/s3/m/3653245e26d3240c844769eae009581b6bd9bd33.png)
测绘技术中常见的地理坐标系与投影坐标系地理坐标系和投影坐标系在测绘技术中起着重要的作用,它们是为了描述地球表面上的点位置而建立的两种坐标系统。
地理坐标系通常用经度和纬度表示,而投影坐标系则将地球表面投影到一个平面上,使用X和Y坐标表示。
本文将详细介绍这两种坐标系的特点和应用。
1. 地理坐标系地理坐标系是一种以地球自转轴和广义纬线为基准,用经纬度来描述地球表面上点的位置的坐标系统。
经度是东西方向上的角度,以经过伦敦的本初子午线为基准,向东为正,向西为负。
纬度是南北方向上的角度,以赤道为基准,向北为正,向南为负。
地理坐标系的优点是直观、简单,适合描述全球范围内的位置信息。
在实际应用中,地理坐标系常用于全球定位系统(GPS)等卫星导航系统、地质勘探、大地测量和地理信息系统(GIS)等领域。
地理坐标系的能力超出了商业领域,也影响到了许多其他行业,例如航空航天、军事和交通规划等。
2. 投影坐标系投影坐标系是为了将地球表面上的点投影到平面上而建立的坐标系统。
由于地球是一个三维的球体,无法完全展开成一个平面。
因此,为了在地图上呈现出地球表面上的点的位置,需要进行一定的变形。
投影坐标系通过一系列数学方法将地球表面投影到平面上,使得点的位置可以用X和Y坐标表示。
不同的投影方法会导致不同形状和大小的变形。
常见的投影类型包括等面积投影、等角投影和等距投影等。
选择适当的投影方法取决于使用地图的目的和地理位置。
例如,在海洋测绘中常使用的墨卡托投影可以保持小范围内的面积比例不变,而麦卡托投影可以保持大范围内的方向和形状比例不变。
投影坐标系的应用广泛,包括地图制图、导航、城市规划、土地利用和资源管理等。
它使得我们能够更准确地测量和描述地球表面上的各种地理现象和人类活动,并在实践中起着重要的作用。
3. 地理坐标系与投影坐标系的联系和转换地理坐标系和投影坐标系是相互关联的,它们之间可以通过不同的转换方法进行互相转换。
当我们在地球上的某一点给定经纬度时,可以通过投影转换方法将其转换为投影坐标系中的X和Y坐标。
地图投影与坐标系选择方法
![地图投影与坐标系选择方法](https://img.taocdn.com/s3/m/ee10920da22d7375a417866fb84ae45c3b35c23d.png)
地图投影与坐标系选择方法导论地图是我们了解地球、导航、规划城市等各种活动中不可或缺的工具。
但是,地球是一个球体,而地图是平面,由此产生了地图投影和坐标系选择的问题。
本文将探讨地图投影的基本概念以及选择坐标系的方法。
地图投影的基本概念地图投影是指将球面地球上的各种地理信息以某种方法投影到平面上的过程。
由于地球的表面是曲面,因此无法直接在平面上呈现真实的地理空间。
地图投影可以分为正投影和反投影两种类型。
正投影是将曲面地图投影到平面上的过程,是最常用的地图制作方法。
根据不同的数学模型和算法,可以得到各种不同的地图投影方式,如等距柱面投影、兰勃特投影、麦卡托投影等。
这些投影方式有各自的优点和局限性,适用于不同的地理区域和应用领域。
反投影是将平面地图投影到曲面上的过程,通常用于地图的显示和分析。
地图投影的选择需要考虑到地图的目的、区域范围、地理特征等因素。
选择坐标系的方法在选择地图投影的同时,我们还需要选择地图的坐标系。
地图坐标系是为了确定地图上点的位置而建立的坐标系统。
常见的地图坐标系有经纬度坐标系、UTM坐标系等。
经纬度坐标系是最常见的地图坐标系之一,也是最容易理解和使用的坐标系统。
它以地球的赤道为基准,将地球分割为经度和纬度,利用度、分、秒来表示位置。
经纬度坐标系适用于大范围区域和全球地图,但在小范围内的地图制作中存在误差。
UTM坐标系是一种平面坐标系,适用于小范围地区的地图制作。
它以地球上某一点为基准,将地图分割为各个UTM带,每个带内使用一个笛卡尔坐标系来表示位置。
UTM坐标系的优点是定位准确,但在大范围地图上的使用有限。
在选择地图坐标系时,需要考虑地图的使用目的、精度要求、地理特征等因素。
对于大范围全球地图,建议使用经纬度坐标系;对于小范围区域地图,可以选择UTM坐标系或其他适用的局部坐标系。
案例研究为了更好地理解地图投影和坐标系选择的方法,我们以中国地图为例进行一些研究。
中国地跨纬度较大,北方到南方的距离相差较大,因此在制作全国地图时需要考虑投影失真的问题。
常用坐标系汇总
![常用坐标系汇总](https://img.taocdn.com/s3/m/0da0b9ac970590c69ec3d5bbfd0a79563c1ed4cf.png)
常⽤坐标系汇总前⾔随着接触的地图种类越来越多,每种产品对地图服务的坐标系的要求不同,今天遇到了整理的好⽂,整理记录分享。
投影坐标系:墨卡托坐标系地理坐标系:经纬度坐标系常⽤坐标系(⼀)WGS84坐标系WGS-84坐标系(World Geodetic System⼀1984 Coordinate System)⼀种国际上采⽤的地⼼坐标系。
坐标原点为地球质⼼,其地⼼空间直⾓坐标系的Z轴指向BIH (国际时间服务机构)1984.O定义的协议地球极(CTP)⽅向,X轴指向BIH 1984.0的零⼦午⾯和CTP⾚道的交点,Y轴与Z轴、X轴垂直构成右⼿坐标系,称为1984年世界⼤地坐标系统。
(⼆)WGS84 Web墨卡托Web墨卡托是2005年⾕歌在⾕歌地图中⾸次使⽤的,当时或更早的Web墨卡托使⽤者还是称其为世界墨卡托 World Mercator - Spherical Mercator (unofficial deprecated ESRI),代号 WKID 54004 (在 EPSG:54004 或 ESRI:54004 中,⾮官⽅)。
在2006年,OSGeo在提出的 Tile Map Service (TMS) 标准中使⽤代号 OSGEO:41001,WGS84 / Simple Mercator - Spherical Mercator (unofficial deprecated OSGEO / Tile Map Service)。
2007年8⽉6⽇ Christopher Schmidt (OpenLayers的重要贡献者之⼀)在通过⼀次GIS讨论中为了在OpenLayers中使⽤⾕歌投影,提出给⾕歌投影(Web墨卡托)使⽤⼀个统⼀的代号(已有如54004、41001之类的代号)900913(也形似 Google),并与同年9⽉11⽇在OpenLayers的OpenLayers/Layer/SphericalMercator.js中正式使⽤代号 900913。
2000地理坐标系对应的投影坐标系
![2000地理坐标系对应的投影坐标系](https://img.taocdn.com/s3/m/a85e5f28dcccda38376baf1ffc4ffe473368fd97.png)
地理坐标系和投影坐标系是地图制图中常用的两种坐标系。
地理坐标系是用经度和纬度来表示地球上任意一点的位置,而投影坐标系则是将地球上的三维空间投影到平面上去,以便在地图上展示。
在地图制图过程中,常常需要将地理坐标系转换为投影坐标系,以便更好地展示地图信息。
本文将对2000国家大地坐标系对应的投影坐标系进行介绍和分析。
1. 2000国家大地坐标系2000国家大地坐标系是我国国家测绘局于2000年发布的新一代大地坐标系,取代了1980年国际椭球大地坐标系。
该坐标系以WGS-84坐标系为基准,通过对我国国土进行大范围的GPS观测数据进行了调查和研究,是我国国土测绘工作的重要成果之一。
2. 投影坐标系在地图制图中,为了更好地表达三维地理空间信息,常常需要将地球表面上的点投影到平面上,这就要用到投影坐标系。
在国际上常用的投影方法有墨卡托投影、兰伯特投影、正投影等多种,每种投影方法都有其适用的范围和特点。
3. 2000国家大地坐标系的投影坐标系2000国家大地坐标系对应的投影坐标系是高斯—克吕格投影。
高斯—克吕格投影是一种圆柱投影,它将地球椭球面投影到圆柱面上,再展开成平面图,以实现地图的绘制和测绘。
4. 高斯—克吕格投影的特点高斯—克吕格投影是一种等积投影,它保持了地图上面积的准确性,适用于世界各地的大范围测绘。
它还具有等角性,能够保持地图上角度的准确性,使得地图具有更好的可视效果。
另外,高斯—克吕格投影还能够减小纬度的变形,使得地图在不同纬度上的变形更加均匀。
5. 应用范围2000国家大地坐标系对应的高斯—克吕格投影在我国国土测绘中得到了广泛的应用。
它适用于各种比例尺的地图制图,包括区域地图、城市地图、乡镇地图等。
高斯—克吕格投影也适用于地图投影的大规模生产,比如数字地图的生产和更新、卫星影像的变形配准等。
6. 结语2000国家大地坐标系对应的高斯—克吕格投影是我国国土测绘领域的重要成果,它为我国地图制图和地理信息系统的发展提供了重要的支持。
地理坐标系、大地坐标系与地图投影与重投影详解
![地理坐标系、大地坐标系与地图投影与重投影详解](https://img.taocdn.com/s3/m/257ef699e53a580216fcfe79.png)
地理坐标系、大地坐标系与地图投影与重投影详解一、基本概念首先简单介绍一下地理坐标系、大地坐标系以及地图投影的概念:•地理坐标系:为球面坐标。
参考平面地是椭球面,坐标单位:经纬度;•投影坐标系:为平面坐标。
参考平面地是水平面,坐标单位:米、千米等;•地理坐标转换到投影坐标的过程可理解为投影。
(投影:将不规则的地球曲面转换为平面)从以上三个概念相应到可以涉及到三个问题:•地理坐标系的定义,即参考椭球面的标准,地球是一个不规则的球形,因此若用经纬度去定义地球上的位置,一定会对地球做了相应的抽象。
•投影坐标系的定义,在小范围内可以认为大地是平面的,而整体上来说地球是球形的,因此大地坐标对于不同的地区肯定是不一样的。
一个坐标系肯定会涉及到坐标原点、坐标轴的位置,这也是大地坐标系需要考虑的问题。
•从地理坐标到投影坐标是将不规则的球面展开为平面的过程,因此也是一个将曲面拉平的过程。
从生活经验中可以看出这是一个无法精确处理的问题(例如,在剥桔子的时候,如果不破坏橘子皮是无法从原来的“曲面”展开为平面的),这边涉及到了投影方法的问题针对上面三个问题,本文将一一介绍。
二、对不规则的抽象——地球空间模型地球的自然表面是崎岖不平的,在地理课本上我们会看到对地球形状的描述:地球是一个两极稍扁,赤道略鼓的不规则球体。
不难看出在地球的自然状态下其表面并不是连续不断的,高山、悬崖的存在,使得地球表面存在无数的凸起和凹陷,因此,对地球表面的第一层抽象,大地水准面即得到了一个连续、闭合的地球表面。
大地水准面的定义是:假设当海水处于完全静止的平衡状态时,从海平面延伸到所有大陆下部,而与地球重力方向处处正交的一个连续、闭合的曲面,这就是大地水准面。
它是重力等位面。
在大地水准面的基础上可以建立地球椭球模型。
大地水准面虽然十分复杂,但从整体来看,起伏是微小的,且形状接近一个扁率极小的椭圆绕短轴旋转所形成的规则椭球体,这个椭球体称为地球椭球体。
测绘技术中的地理坐标系和投影坐标系的区别和使用
![测绘技术中的地理坐标系和投影坐标系的区别和使用](https://img.taocdn.com/s3/m/777d612acd7931b765ce0508763231126edb776e.png)
测绘技术中的地理坐标系和投影坐标系的区别和使用地理坐标系和投影坐标系是测绘技术中经常遇到的概念,它们在地图制作和地理空间数据处理中具有重要作用。
本文将探讨地理坐标系和投影坐标系的区别以及它们的使用。
一、地理坐标系地理坐标系是一种基于地球表面的经纬度坐标系统。
在地理坐标系中,地球被划分为无数的经线和纬线,其中经线是连接地球两极的线,纬线是连接赤道和极点的线。
经度是指观测点与本初子午线之间的夹角,用度数来表示;纬度是指观测点与赤道之间的夹角,也用度数来表示。
地理坐标系具有直观性和全球通用性的优点。
它可以用于描述地球表面上任意点的位置和方位。
由于地理坐标系考虑到地球的曲率,因此它适用于大范围的地域,并且不会引入形变。
同时,地理坐标系与地球物理现象之间的关系更为紧密。
二、投影坐标系投影坐标系是为了将三维的地球表面映射到二维的平面地图上而设计的一种坐标系统。
由于地球为三维球体,将其投影到平面地图上必然引入形变。
因此,需要选择适当的投影方法和坐标系来尽量减小形变。
在投影坐标系中,地球表面上的点通过一系列的投影变换映射到平面地图上的坐标。
常用的投影方法包括等经纬度投影、等距圆柱投影、等积投影等等。
不同的投影方法适用于不同的地理区域和需要。
投影坐标系的优点是可以直观地展示地理空间数据,并且便于计算。
很多地图软件和GIS系统都使用投影坐标系来处理和分析地理数据。
投影坐标系可以满足地图制作和地理空间分析的需求,但需要注意的是,在使用投影坐标系时,需要选择合适的投影方法和坐标系,以确保数据的准确性和一致性。
三、地理坐标系和投影坐标系的使用在实际应用中,地理坐标系和投影坐标系经常同时使用。
地理坐标系主要用于存储和共享地理空间数据,而投影坐标系则用于地图的制作和可视化。
在地理空间数据处理中,通常首先将原始数据转换为地理坐标系的形式,然后根据需求选择合适的投影坐标系进行转换。
例如,在制作地图时,可以使用等经纬度投影将地理坐标系的数据投影到平面地图上。
地理信息系统常用的地图投影
![地理信息系统常用的地图投影](https://img.taocdn.com/s3/m/3a1ef26acc22bcd127ff0cdc.png)
地理信息系统常用的地图投影1、高斯-克吕格投影--------实质上是横轴切圆柱正形投影该投影是等角横切椭圆柱投影。
想象有一椭圆柱面横套在地球椭球体外面,并与某一条子午线(称中央子午线或轴子午线)相切,椭圆柱的中心轴通过椭球体中心,然后用一定的投影方法将中央子午线两侧各一定经差范围内的地区投影到椭圆柱面上,再将此柱面展开即成为投影面。
高斯平面直角坐标系以中央经线和赤道投影后为坐标轴,中央经线和赤道交点为坐标原点,纵坐标由坐标原点向北为正,向南为负,规定为 X轴,横坐标从中央经线起算,向东为正,向西为负,规定为Y轴。
所以,高斯-克吕格坐标系的X、Y轴正好对应一般GIS 软件坐标系中的Y和X。
高斯投影的条件和特点★中央经线和赤道投影后为互相垂直的直线,且为投影的对称轴高斯投影的条件★投影具有等角性质★中央经线投影后保持长度不变★中央子午线长度变形比为1,其他任何点长度比均大于1★在同一条经线上,长度变形随纬度的降低而增大,在赤道处为最大高斯投影的特点★在同一条纬线上,离中央经线越远,变形越大,最大值位于投影带边缘★投影属于等角性质,没有角度变形,面积比为长度比的平方★长度比的变形线平行于中央子午线高斯投影6°和3为了控制变形,我国地图采用分带方法。
我国1:1.25万—1:50万地形图均采用6度分带, 1:1万及更大比例尺地形图采用3度分带,以保证必要的精度。
6度分带从格林威治零度经线起,每6度分为一个投影带,该投影将地区划分为60个投影带,已被许多国家作为地形图的数字基础。
一般从南纬度80到北纬度84度的范围内使用该投影。
3度分带法从东经1度30分算起,每3度为一带。
这样分带的方法在于使6度带的中央经线均为3度带的中央经线;在高斯克吕格6度分带中中国处于第13 带到23带共12个带之间;在3度分带中,中国处于24带到45带共22带之间。
高斯--克吕格投影的优点:★等角性别适合系列比例尺地图的使用与编制;★径纬网和直角坐标的偏差小,便于阅读使用;★计算工作量小,直角坐标和子午收敛角值只需计算一个带。
不同坐标系下的地图投影方法与选择
![不同坐标系下的地图投影方法与选择](https://img.taocdn.com/s3/m/33a64c4d8f9951e79b89680203d8ce2f01666541.png)
不同坐标系下的地图投影方法与选择地图是人类认识和理解地球的重要工具,它在各个领域都起着重要的作用。
然而,地球是一个三维的球体,而地图是一个二维的平面,因此需要使用地图投影方法来将地球的曲面展示在平面上。
不同的地图投影方法可以分为等积投影和等角投影两大类。
等积投影是指保持地图上的各个区域的面积比例与地球上的实际面积比例相等,而等角投影则是保持地图上的各个区域的角度与地球上的实际角度相等。
其中,最常见的等积投影方法是墨卡托投影。
墨卡托投影在经纬度上等分地图,使得经线和纬线呈直线,形成一个正交网格状的结构。
这种投影方法适用于需要精确测量距离和计算面积的情况,比如航海和航空导航。
墨卡托投影在大部分地图软件和导航系统中被广泛使用。
相对于墨卡托投影来说,等角投影更适合用来表示地球的真实形状和地理特征。
其中,最著名的等角投影方法是麦卡托投影和极射卡托投影。
麦卡托投影将地球展示为一个圆柱体,该圆柱体受到圆柱面展开和方位投射的影响,使得地图上的任意一个区域都能保持角度的准确性。
这种投影方法在航海和地图制作领域得到广泛应用。
极射卡托投影是麦卡托投影的变种,它将地球展示为一个正方形,使得地球的北极和南极呈放射状展开。
这种投影方法适用于极地和高纬度之间的区域,可以更好地显示出地球的极性特征。
除了墨卡托投影和麦卡托投影,还有许多其他的地图投影方法。
例如,正轴等积圆柱投影保持了等积特性,并可以将地球展示为一个圆柱体;正轴等积锥投影则将地球展示为一个锥体。
这些投影方法在特定领域和地区有其独特的应用。
在选择地图投影方法时,需要考虑到地图使用的目的、地图的范围和要素的重要性。
如果需要精确测量距离和计算面积,则墨卡托投影是一个不错的选择。
如果需要展示地球的真实形状和地理特征,则等角投影方法更适合。
而在特定的地区,还可以根据当地的地理特点选择适合的地图投影方法。
总之,不同坐标系下的地图投影方法与选择是一个复杂而重要的问题。
在选择地图投影方法时,我们需要根据地图的使用目的、地图的范围和要素的重要性来进行综合考虑。
不同类型地图使用的投影与坐标系
![不同类型地图使用的投影与坐标系](https://img.taocdn.com/s3/m/e65257b29e31433239689362.png)
一、地球模型地球是一个近似椭球体,测绘时用椭球模型逼近,这个模型叫做参考椭球,如下图:赤道是一个半径为a的近似圆,任一圈经线是一个半径为b的近似圆。
a称为椭球的长轴半径,b称为椭球的短轴半径。
a≈6378.137千米,b≈6356.752千米。
(实际上,a也不是恒定的,最长处和最短处相差72米,b的最长处和最短处相差42米,算很小了)地球参考椭球基本参数:长轴:a短轴:b扁率:α=(a-b) / a第一偏心率:e=√(a2-b2) / a第二偏心率:e'=√(a2-b2) / b这几个参数定了,参考椭球的数学模型就定了。
什么是大地坐标系?大地坐标系是大地测量中以参考椭球面为基准面建立起来的坐标系。
地面点的位置用大地经度、大地纬度和大地高度表示:(L, B, H)。
空间直角坐标系是以参考椭球中心为原点,以原点到0度经线与赤道交点的射线为x 轴,原点到90度经线与赤道交点的射线为y轴,以地球旋转轴向北为z轴:(x, y, z)共同点:显然,这两种坐标系都必须基于一个参考椭球。
不同点:大地坐标系以面为基准,所以还需要确定一个标准海平面。
而空间直角坐标系则以一个点为基准,所以还需要确定一个中心点。
只要确定了椭球基本参数,则大地坐标系和空间直角坐标系就相对确定了,只是两种不同的表达而矣,这两个坐标系的点是一一对应的。
二、北京54,西安80,WGS84网上的解释大都互相复制,语焉不详,隔靴搔痒,说不清楚本质区别。
为什么在同一点三者算出来的经纬度不同?难道只是不认同对方的测量精度吗?为什么WGS84选地球质心作原点,而西安80选地表上的一个点作原点?中国选的大地原点有什么作用?为什么选在泾阳县永乐镇?既然作为原点,为什么经纬度不是0?下面是我个人的理解。
首先,三者采用了不同的参考椭球建立模型,即长短轴扁率这组参数是不同的。
北京54:长轴6378245m,短轴6356863,扁率1/298.2997381西安80:长轴6378140m,短轴6356755,扁率1/298.25722101WGS84:长轴6378137.000m,短轴6356752.314,扁率1/298.257223563,第一偏心率0.0818********,第二偏心率0.082095040121这些参数不同,决定了椭球模型的几何中心是不同的。
地图投影和坐标系统
![地图投影和坐标系统](https://img.taocdn.com/s3/m/664502ff0722192e4436f62e.png)
地图投影和坐标系统在ArcGIS中,每一个dataset都有一个坐标系统。
它的目的是在一个通用的坐标框架例如map中集成其它地理数据图层。
坐标系统允许你将datasets集成到地图中,同时也做各种各样集成分析的操作,例如叠加不同数据源和坐标系统的图层。
什么是坐标系?坐标系允许地理数据集使用通用的位置来集成。
坐标系是一个参考系统用于代表地理要素的位置,影像以及观测点,例如通用框架下的GPS点。
每一个坐标系统都由以下几部分来定义:(1)它的测量框架要嘛是地理的(球面坐标,从地球中心开始测量)或者是平面的(地理坐标被投影到二维的平面)(2)测量单位(投影坐标一般是feet或者是meters,而球面坐标系一般是经纬度坐标)(3)地图投影的定义是为投影坐标系的(4)其它的测量系统属性,例如大地椭球体,大地水准面以及投影坐标等其它的一个或者多个水平面,中央经线以及可能的X,Y偏移量等。
坐标系统的类型:GIS中一般使用两种通用的坐标系统:(1)球体坐标系,例如经纬度。
这通常称为地理坐标系统。
(2)根据某种地图投影,例如横轴Mercator,Alber等面投影,或者是Robinson投影,投影坐标系统。
所有的这些都提供了各种机制将地球表面投影成二维的平面系。
投影坐标系统一般称为地图投影。
更详细的内容,请参照:地理参考和投影坐标系统投影系统(不论是地理还是投影)提供了定义真实世界坐标的框架。
在ArcGIS中,坐标系统用于自动将其它来显示目录的数据集集成到一个通用的数据集中做投影分析用。
ArcGIS自动集成坐标系统是Known的数据集ArcGIS中所有地理数据集都有一个定义好的坐标生活经验统允许他们在地球表面上定位。
如果你的数据集有一个定义好的坐标系统,那么ArcGIS就会自动将你的数据集跟其它的进行动态投影用于显示,3D可视以及分析等。
如果数据集本身不含有空间参考,那么它们就不能很好地集成。
你需要事先定义它。
什么是ArcGIS中的空间参考?ArcGIS中的空间参考是一系列的参数用于定义投影系统以及其它的空间属性。
如何选择合适的坐标系统与地图投影
![如何选择合适的坐标系统与地图投影](https://img.taocdn.com/s3/m/ad42c97a5627a5e9856a561252d380eb62942305.png)
如何选择合适的坐标系统与地图投影在如今的信息时代,地图已经成为我们生活中不可或缺的一部分。
无论是导航、旅游规划,还是地理信息系统(GIS)的应用,地图都扮演着重要的角色。
然而,要制作出准确、可靠的地图,选择合适的坐标系统与地图投影至关重要。
首先,让我们来了解坐标系统。
在地图制作中,坐标系统是一个标准化的框架,用于确定地理位置。
坐标系统通常由经纬度、投影坐标等组成。
经纬度是一种使用经度和纬度度量地球表面位置的系统,而投影坐标则是将三维地球表面转换为二维地图的方法。
选择合适的坐标系统与地图投影要依据地图的使用目的和所在地区的特点。
以下是一些常见的坐标系统和地图投影,以及它们的特点和适用范围。
1. 地心坐标系统与墨卡托投影:地心坐标系统使用地球的中心作为原点,以经纬度表示地点。
墨卡托投影则是将地球表面分为等大的矩形,并将经纬度坐标转换为平面坐标。
墨卡托投影适用于大范围的地理数据分析和导航系统。
它具有角度保持不变、比例尺匀称的特点,但在高纬度地区会出现形变。
2. 地方坐标系统与UTM投影:地方坐标系统是根据当地地球椭球体建立的坐标系统。
通常使用UTM(Universal Transverse Mercator)投影。
UTM投影将地球表面划分为若干个带状区域,每个带状区域使用不同的投影方式。
UTM投影适用于小范围地图制作和地理勘测,能够提供较高的精度和准确性。
3. 地方坐标系统与Lambert投影:与UTM投影类似,Lambert投影也是一种将地球表面划分为若干个带状区域的投影方式。
不同的是,Lambert投影采用等积性原理,保持了地物面积在投影后的保真度。
因此,Lambert投影适用于地理统计、区域规划和环境研究等领域,能够准确反映地物面积。
4. 多媒体坐标系统与等经纬度投影:多媒体坐标系统是一个针对多媒体应用设计的坐标系统,如航拍影像、卫星图像等。
等经纬度投影可以将球面坐标转换为平面坐标,并保持图像的主要形状和相对位置不变,适用于图像处理和遥感数据分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不同类型地图使用的投影与坐标系
(2016-08-12 15:29:29)
不同类型地图使用的投影与坐标系
1.概念辨析
地图投影跟大地坐标系是完全两个东西,尽管具有相关性。
地球椭球体则是另一
个东西。
实际上地图编绘涉及三个基本的东西:椭球体、地图投影、大地坐标系。
三者密切关联。
(百科知识)
要绘制地图,首先考虑用什么椭球体,这是投影和坐标系的基础——我国三代坐标系使用三种椭球体。
三者之间的关系:先有个椭球体,然后是投影到承影面,然后是添加经纬网。
椭
球体是基础,投影是转换函数,是数学关系,大地坐标系是参照系。
因此,同一椭球体可以用不同的投影;而同一投影,也可以用不同的大地坐标系。
但是一般三者是协调一致的,如我国的三代坐标系,有对应的椭球体、投影类型、基准面(坐标系)。
从地图反映地球表面来看,整个过程涉及五个环节:地球~椭球体~投影~坐标系~地图。
而地球是球面的,是一个曲面,而地图是平面的,二者的结构性矛盾,导致我们不得不采用一系列转换,这个转换中不可避免地产生扭曲、变形和误差。
具体关系:总结:地球(地球表面,存在高低起伏)→椭球体(光滑球面,相关参数)→投影(投影方式:几何投影与解析投影)→坐标系(地理坐标系与平面直角坐标系)→地图。
2. 我国三代坐标系
我们经常给影像投影时用到的北京54、西安80和2000坐标系是投影直角坐标系,如下表所示为国内坐标系采用的主要参数。
从中可以看到我们通常称谓的北京54坐标系、西安80坐标系实际上指的是我国的大地基准面。
表:北京54、西安80和2000坐标系参数列表
坐标名称投影类型椭球体基准面
北京54Gauss Kruger
(Transverse
Mercator)
Krasovsky D_Beijing_1954
西安80Gauss Kruger
(Transverse
Mercator)
IAG75D_Xian_1980
CGCS2000Gauss Kruger
(Transverse
Mercator)
CGCS2000D_China_2000
3.坐标系类型
地理(大地)坐标系(经纬网)和直角坐标系(图面,二维)。
4. 地图表达全过程(图示)
制作人:陈浩,复旦史地所博士生(转摘请注明)
5. 我国地形图常用投影
各国地形图所采用的投影很不统一。
在我国8种国家基本比例尺地形图中,除1:100万地形图采用等角圆锥投影外,其余都采用高斯-克吕格投影——分带投影一般研究比较小区域范围(大比例尺)的图,精度更高的地方区域。
即地图反映区域越小、比例尺越大、精度越高,则选择分带,分带即高斯-克吕格投影。