3.1.2两直线平行与垂直的判定及性质
3.1.2 两条直线平行与垂直的判定题型全归纳
3.1.2 两条直线平行与垂直的判定题型全归纳【归纳总结】判定两条直线是平行还是垂直要“三看”:一看斜率是否存在,若两直线的斜率都不存在,则两直线平行,若一条直线的斜率为0,另一条直线的斜率不存在,则两直线垂直;斜率都存在时,二看斜率是否相等或斜率乘积是否为-1;两直线斜率相等时,三看两直线是否重合,若不重合,则两直线平行.题型一 两直线平行例1:已知A (m,3),B (2m ,m +4),C (m +1,2),D (1,0),且直线AB 与直线CD 平行,则m 的值为( )A .1B .0C .0或2D .0或1 变式1:7.已知直线l 1的倾斜角为45°,直线l 2∥l 1,且l 2过点A (-2,-1)和B (3,a ),则a 的值为________.题型二 两直线垂直例2:已知△ABC 的顶点坐标为A (5,-1),B (1,1),C (2,m ),若△ABC 为直角三角形,试求m 的值.变式1:已知△ABC 三个顶点坐标分别为A (-2,-4),B (6,6),C (0,6),求此三角形三边的高所在直线的斜率.变式2:已知△ABC 的顶点B (2,1),C (-6,3),其垂心为H (-3,2),则其顶点A 的坐标为________.变式3:直线l 过点A (0,1)和B (-2,3),直线l 绕点A 顺时针旋转90°得直线l 1,那么l 1的斜率是_______;直线l 绕点B 逆时针旋转15°得直线l 2,则l 2的斜率是_______.变式4:已知两点A (2,0)、B (3,4),直线l 过点B ,且交y 轴于点C (0,y ),O 是坐标原点,且O 、A 、B 、C 四点共圆,那么y 的值是( ) A .19 B .194C .5D .4题型三两直线平行、垂直综合应用例3:直线l1经过点A(m,1),B(-3,4),直线l2经过点C(1,m),D(-1,m+1),当l1∥l2或l1⊥l2时,分别求实数m的值.变式1:直线l1,l2的斜率k1,k2是关于k的方程2k2-3k-b=0的两根,若l1⊥l2,则b=_________;若l1∥l2,则b=_________.变式2:已知四边形ABCD的顶点A(m,n),B(5,-1),C(4,2),D(2,2),求m和n的值,使四边形ABCD为直角梯形.3.1.2 两条直线平行与垂直的判定题型全归纳参考答案题型一 两直线平行 例1:D 变式1:4 题型二 两直线垂直例2:解 k AB =-1-15-1=-12,k AC =-1-m 5-2=-m +13,k BC =m -12-1=m -1.若AB ⊥AC ,则有-12·⎝ ⎛⎭⎪⎫-m +13=-1, 所以m =-7.若AB ⊥BC ,则有-12·(m -1)=-1,所以m =3.若AC ⊥BC ,则有-m +13·(m -1)=-1,所以m =±2.综上可知,所求m 的值为-7,±2,3.变式1:k AB =6--6--=54, k BC =6-66-0=0,k AC =6--0--=5.由k BC =0知直线BC ∥x 轴,∴BC 边上的高线与x 轴垂直,其斜率不存在. 设AB 、AC 边上高线的斜率分别为k 1、k 2, 由k 1·k AB =-1,k 2·k AC =-1,即k 1·54=-1,k 2·5=-1,解得k 1=-45,k 2=-15.∴BC 边上的高所在直线斜率不存在;AB 边上的高所在直线斜率为-45;AC 边上的高所在直线斜率为-15.变式2:(-19,-62) 变式3:1,-33变式4: B题型三 两直线平行、垂直综合应用 例3:当l 1∥l 2时,由于直线l 2的斜率存在,则直线l 1的斜率也存在, 则k AB =k CD ,即4-1-3-m =m +1-m-1-1,解得m =3;当l 1⊥l 2时,由于直线l 2的斜率存在且不为0,则直线l 1的斜率也存在,则k AB k CD =-1, 即4-1-3-m ·m +1-m -1-1=-1,解得m =-92.综上,当l 1∥l 2时,m 的值为3;当l 1⊥l 2时,m 的值为-92.变式1: 2 -98变式2: (1)如下图,当∠A =∠D =90°时,∵四边形ABCD 为直角梯形, ∴AB ∥DC 且AD ⊥AB . ∵k DC =0,∴m =2,n =-1. (2)如下图,当∠A =∠B =90°时, ∵四边形ABCD 为直角梯形,∴AD ∥BC ,且AB ⊥BC ,∴k AD =k BC ,k AB k BC =-1.∴⎩⎪⎨⎪⎧n -2m -2=2--4-5,n +1m -5·2--4-5=-1,解得m =165,n =-85.综上所述,m =2,n =-1或m =165,n =-85.。
【精品专区】3.1.2两条直线平行与垂直的判定
B
Q P
O x y
A
k BA k PQ
BA ∥ PQ
例题讲解 例2、已知四边形ABCD的四个顶点分别为A(0, 0),B(2,-1),C(4,2),D(2,3),试 判断四边形ABCD的形状,并给出证明。
E、若直线l1 ⊥ l2,则它们的斜率之积为-1;
例题讲解
例3、已知A(-6,0),B(3,6),P(0,3) Q(6,-6),判断直线AB与PQ的位置关系。
解 : k AB k PQ 63 3 (6) 63 60 2 3 3 2
k AB k PQ -1 BA PQ
解 : k AB 1 0 20 1 2
k BC
2 ( 1) 42 1
2
y
3 2
3 2
D C A
O
k CD
k DA
k AB k CD , k BC k DA AB ∥CD , BC ∥ DA 因此四边形 ABCD 是平行四边形 .
B
设两条直线l1、l2的倾斜角分别为α1、α2 ( α1、α2≠90°).
例题讲解
例4、已知A(5,-1),B(1,1),C(2,3)三 点,试判断△ABC的形状。
解 : k AB k BC 1 ( 1) 1 5 3 1 2 1 2
B
O
0
1 2
y
C
k AB k BC 1 AB BC 即 ABC 90 .
x
y
l2 l1
条件:都有斜率
α1
3.1.2两条直线平行与垂直的判定
思考1、两条直线互相垂直,它们的斜率之 积等于-1吗?
有可能一条直线斜率为0,另一条直线斜率不存在
y
l2
若一条直线的倾斜角为90°,
l1
另一条直线的倾斜角为0°
则两直线互相垂直.
o
x
思考2、如果两条直线的斜率之积等于-1, 它们垂直吗? 一定垂直
练习
下列哪些说法是正确的( C )
A 、两直线l1和l2的斜率相等,则 l1 ∥ l2;
巩固提高
试确定m的值,使过点A(m,1),B(–1, 2m)的直线与经过点P(1,2),Q(-5,0)的直 线 解: (由直线的斜率公式可得 1)平行;(2)垂直。 ( 2) PQ AB
k AB k PQ y2 y1 2m 1 1 2m , x2 x1 1 m 1 m y2 y1 0 2 1 x2 x1 5 1 3
y
C B
O
x
A
练习. 判断下列各小题中的直线 L1 和 L 2 是否垂直? (1). L1 经过 A(4,5),B(1,2), L 2 经过 M(-2, -1),N(2,1)。 (2). L1 的斜率为-10, L 2 经过 M(10,2),N(20,3)
(3). L1 经过 A(3,4),B(3,100), L 2 经过 M(-10,40),N(10,40)。
问题探究二:两直线垂直与它们斜率有何关系? 设两条直线l1、l2的倾斜角分别为α1、α2 (α1,α2≠ 90°),且α1<α2,其斜率分别 为k 1,k 2。
类比: l1 /k /l 1时, 2 l tan 1 tan 2 k1 k2 l1⊥l2 思考 2 当 k 12 2=-1 1与l2的位置关系如何?
3.1.2两条直线平行与垂直的判定
画图
例2.已知四边形ABCD的四个顶点分别为 A(0, 0), B(2, -1), C(4, 2), D(2, 3),试判
断四边形ABCD的形状,并给出证明.
画图
变式练习1:已知A(2, 3), B(-4, 0), C(0, 2), 判断直线AB、BC的位置关系?
画图
湖南省长沙市一中卫星远程学校
讲授新课
( 一 )两条直线互相平行(不重合) 设两条直线l1,l2的斜率分别为k1 , k2 问题1 :同学们在直角坐标系画两条平行线, 观察l1,l2的倾斜角关系:α1 = α2. 斜率关系: k1 = k2. l1∥l2 k1 = k2
讲授新课
问题2 :如果两条直线的斜率相等,那么两条 直线l1∥l2吗?
复习引入
1、定义:当直线l与x轴相交时,我们取x轴为基 准,x轴 正向 与直线l 向上 方向之间所成的 角叫做直线l的倾斜角。 当直线l与x轴平行或重合时,规定它的倾斜角为 o O 0 ,当直线l与x轴垂直时,它的倾斜角为 90 。 2、倾斜角的范围是 . 3、一条直线的倾斜角的 叫做这条直线的斜 率。斜率常用小写字母k来表示,即k = , 倾斜角为90o的直线斜率 4、经过两点P1(x1,y1),P2(x2,y2)的直线 的斜率公式为k = .
复习引入
1、定义:当直线l与x轴相交时,我们取x轴为基 准,x轴 正向 与直线l 向上 方向之间所成的 角叫做直线l的倾斜角。 当直线l与x轴平行或重合时,规定它的倾斜角为 o O 0 ,当直线l与x轴垂直时,它的倾斜角为 90 。 O 2、倾斜角的范围是 0O≤ <180 . 3、一条直线的倾斜角的 叫做这条直线的斜 率。斜率常用小写字母k来表示,即k = , 倾斜角为90o的直线斜率 4、经过两点P1(x1,y1),P2(x2,y2)的直线 的斜率公式为k = .
3.1.2 两条直线平行与垂直的判定
,
������ -1 ������ -0
=
3-0 4-1
,
解得
������ = 3, ������ = 4.
所以顶点 D 的坐标为(3,4).
反思解决与平行有关的问题时,常借助于它们的斜率之间的关系 来解决,即不重合的两条直线l1与l2平行⇒k1=k2或k1与k2都不存在.
-14-
3.1.2 两条直线平行 与垂直的判定
关系 都不为零)⇔k1k2=-1
为 0⇒l1⊥l2
-6-
3.1.2 两条直线平行 与垂直的判定
12
目标导航
知识梳理
重难聚焦
典例透析
【做一做2】 已知直线l1,l2的斜率分别为k1,k2,且k1=5,l1⊥l2,则
k2=
.
解析:∵l1⊥l2,∴k1k2=-1.
∵k1=5,∴5k2=-1,∴k2=−
1.
-12-
3.1.2 两条直线平行 与垂直的判定
目标导航
知识梳理
重难聚焦
典例透析
题型一 题型二 题型三 题型四
【变式训练1】 顺次连接A(-4,3),B(2,5),C(6,3),D(-3,0)四点所组
成的图形是( )
A.平行四边形 B.直角梯形
C.等腰梯形
D.以上都不对
解析:因为
kAB=
5-3 2-(-4)
=
13,kCD=
0-3 -3-6
=
1,
3
所以 AB∥CD.
又
kAD=
0-3 -3-(-4)
=
−3,kBC=
3-5 6-2
=
−
1,
2
所以 kAD≠kBC,kAD·kCD=-1,
小学数学中的平行线和垂直线
小学数学中的平行线和垂直线在小学数学课程中,平行线和垂直线是非常基础的概念。
理解并能够准确识别平行线和垂直线,对于学生建立起几何形状的准确概念和进行几何运算都非常重要。
本文将详细介绍小学数学中的平行线和垂直线的概念、性质以及相关应用。
一、平行线的概念与性质1.1 平行线的定义在平面上,如果两条直线不相交,并且在同一个平面上不存在其他直线与这两条直线相交,那么这两条直线就是平行线。
1.2 平行线的判定在小学数学中,我们通常使用以下三种方法来判定两条直线是否平行:(1)同位角相等法:如果两条直线被一条横截线所截,那么同位角相等的话,这两条直线就是平行线;(2)转角法:如果两条直线被一条截线所截,而转角相等的话,则这两条直线是平行线;(3)平行线的性质:如果两条直线分别与第三条直线平行,那么这两条直线也是平行线。
二、垂直线的概念与性质2.1 垂直线的定义在平面上,如果两条直线相交,并且相交的角度为90度,那么这两条直线就是垂直线。
2.2 垂直线的判定在小学数学中,我们通常使用以下两种方法来判定两条直线是否垂直:(1)两条互相垂直的直线上的线段互成直角;(2)如果两条直线的斜率乘积等于-1,那么这两条直线是垂直的。
三、平行线与垂直线的应用平行线和垂直线在几何学中有广泛的应用,下面我们介绍几个常见的应用例子。
3.1 矩形的性质矩形是一种特殊的四边形,其中每条边都是两两平行且相等的。
所以在矩形中,每条边上的线段都互相平行,并且对角线互相垂直。
3.2 平行线分割线段如果一条直线与两条平行线相交,那么它将会把这两条平行线分割成多段线段,这些线段的长度比例是相等的。
这个性质在我们进行几何运算和问题求解时非常有用。
3.3 垂直平分线在数学中,如果一条直线与另一条直线相交,并且把另一条直线的中点划分成两个相等的部分,那么这条直线就是垂直平分线。
垂直平分线与被分割的线段互相垂直。
结语平行线和垂直线是小学数学中的基础概念,对于建立几何概念和进行几何运算非常重要。
直线的平行与垂直
直线的平行与垂直直线是几何学中最基本的概念之一,对于直线的性质和关系的研究是几何学的重要内容之一。
在几何学中,我们经常会遇到两个直线之间的关系,其中最常见的是平行和垂直。
本文将详细介绍直线的平行与垂直的概念、性质和判定方法。
一、平行线的定义和性质1. 定义:两条直线如果在平面上的任意一点都不相交,则它们被称为平行线。
2. 性质1:平行线永远不会相交,即它们在平面上没有公共点。
3. 性质2:平行线的斜率相等。
斜率是指直线上两点之间纵坐标的差与横坐标的差的比值。
如果两条直线的斜率相等,那么它们是平行线。
4. 性质3:平行线的充要条件是它们的任意一条射线与另一条直线都不相交。
二、垂直线的定义和性质1. 定义:两条直线如果相交成直角,则它们被称为垂直线。
2. 性质1:垂直线相交成直角,直角是指两条相交直线所形成的四个角中的一个角为90度。
3. 性质2:垂直线的斜率的乘积为-1。
如果两条直线的斜率的乘积为-1,那么它们是垂直线。
4. 性质3:垂直线的充要条件是它们的斜率互为相反数。
三、判定平行与垂直的方法1. 判定平行线的方法:(1) 如果两条直线的斜率相等,并且它们不重合,那么这两条直线是平行线。
(2) 如果两条直线的斜率不存在且它们不重合,那么这两条直线是平行线。
2. 判定垂直线的方法:(1) 如果两条直线的斜率的乘积为-1,并且它们不重合,那么这两条直线是垂直线。
(2) 如果两条直线一个的斜率不存在,另一条的斜率为0,且它们不重合,那么这两条直线是垂直线。
四、平行和垂直的应用平行和垂直的概念在几何学中有广泛的应用,其中一些常见的应用包括:1. 平行线用于构建平行四边形、平行四边形的性质证明等。
2. 垂直线用于构建矩形、正方形等直角四边形,以及证明直角三角形等。
五、总结直线的平行与垂直是几何学中的基本概念之一,对于理解和应用几何学理论具有重要意义。
通过了解平行线和垂直线的定义、性质和判定方法,我们可以更好地理解和应用几何学中的平行和垂直的概念。
平行线与垂直线的判定与性质
平行线与垂直线的判定与性质平行线和垂直线是几何学中重要的概念,它们在空间中的分布及其性质对于解决各种几何问题具有重要意义。
正确判定平行线和垂直线的方法不仅可以帮助我们分析空间结构,还可以为我们解决实际生活中的问题提供指导。
本文将介绍如何判断两条线是否平行或垂直,并探讨平行线和垂直线的性质。
一、平行线的判定与性质在几何学中,两条直线平行的判定方法有多种,常见的方法包括以下几种:1. 直线的斜率判定法:两条直线平行的条件是它们的斜率相等。
斜率是直线上两个不同点纵坐标之差与横坐标之差的比值。
如果两条直线的斜率相等,则它们平行;反之,如果两条直线的斜率不相等,则它们不平行。
2. 同一直线上两点法:如果两条直线上任意一对对应点连线都平行,则这两条直线平行。
此方法常用于已知某条直线上两点和另一直线上一点,判断两条直线是否平行的情况。
3. 平行线的性质:平行线具有一系列重要性质。
例如,平行线之间的距离是恒定的,两条平行线与一条横截线相交时,对应的内错角相等等。
利用这些性质,我们可以更加深入地研究平行线的特点和应用。
二、垂直线的判定与性质垂直线与平行线相比,判定方法相对简单,常见的判定方法有以下几种:1. 直线斜率之乘积为-1:两条直线垂直的充分必要条件是它们的斜率之乘积等于-1。
例如,如果一条直线斜率为1,那么与之垂直的直线斜率为-1。
这种方法适用于已知两条直线上的两点,或已知两条直线的斜率的情况。
2. 互为法线的判定法:两条直线互为法线的条件是它们的斜率互为相反数。
例如,如果一条直线斜率为k,那么与之垂直的直线斜率为-1/k。
这种方法在解决垂直线问题时常被使用。
3. 垂直线的性质:垂直线也具有一些重要性质。
例如,垂直线之间的夹角是90度,两条垂直线与一条横截线相交时,对应的内错角互补等。
这些性质可以帮助我们更好地理解垂直线的特点和应用。
三、平行线与垂直线的应用举例平行线和垂直线的判定与性质在几何学和实际生活中有广泛应用。
第3章 3.1.2两条直线平行与垂直的判定
填一填·知识要点、记下疑难点
3.1.2
2.两条直线垂直与斜率的关系
本 讲 栏 目
(1)如果直线 l1、l2 的斜率都存在,并且分别为 k1、k2, 那么 l1⊥l2⇔ k1k2=-1 .
开 关
(2)如果两条直线 l1、l2 中的一条斜率不存在,另一个斜 率是零,那么 l1 与 l2 的位置关系是 垂直 .
研一研·问题探究、课堂更高效
3.1.2
本 讲
小结 判定两条直线的位置关系时,一定要考虑特殊情况,
栏 目
如两直线重合,斜率不存在等.一般情况都成立,只有一
开 关
种特殊情况不成立.则该命题就是假命题.
研一研·问题探究、课堂更高效
3.1.2
跟踪训练 1 试确定 m 的值,使过点 A(m+1,0),B(-5,
本
讲
k2 不存在,更谈不于两条不重合的直线 l1、l2,其斜率分别为 k1、
关
k2,有 l1∥l2⇔k1=k2.若直线 l1 和 l2 可能重合时,我们得到
k1=k2⇔l1∥l2 或 l1 与 l2 重合.
研一研·问题探究、课堂更高效
3.1.2
例 1 已知 A(2,3),B(-4,0),P(-3,1),Q(-1,2),试判断
B(2,-1),C(4,2),D(2,3),试判断四边形 ABCD 的形状,
并给出证明.
本
解 AB 边所在直线的斜率 kAB=-12,
讲 栏 目
CD 边所在直线的斜率 kCD=-12,
开 关
BC 边所在直线的斜率 kBC=32,
DA 边所在直线的斜率 kDA=32.
因为 kAB=kCD,kBC=kDA,所以 AB∥CD,BC∥DA.因此, 四边形 ABCD 是平行四边形.
21-22版:3.1.2 两条直线平行与垂直的判定(步步高)
11. 已 知 点 A( - 3 , - 2) , B(6,1) , 点 P 在 y 轴 上 , 且 ∠BAP = 90° , 则 点 P 的 坐 标 是 _(0_,__-__1_1_)_.
l1的斜率不存在,l2的斜率为0 ⇒__l1_⊥__l2__
思考辨析 判断正误
SI KAO BIAN XI PAN DUAN ZHENG WU
1.若两条直线的斜率相等,则这两条直线平行.( × ) 2.若l1∥l2,则k1=k2.( × )
3.若两条直线中有一条直线的斜率不存在,另一条直线的斜率存在,则这两条直线
解 ∵l1与l2都与x轴垂直,且l1与l2不重合, ∴l1∥l2.
题型二 两条直线垂直的判定
例2 判断下列各题中l1与l2是否垂直. (1)l1经过点A(-3,-4),B(1,3),l2经过点M(-4,-3),N(3,1); 解 k1=13----34=74,k2=13- -- -34=47, k1k2=1,∴l1与l2不垂直.
PART ONE
知识点一 两条直线(不重合)平行的判定
类型 前提条件
对应关系
斜率存在 α1=α2≠90°
l1∥l2⇔_k_1_=__k_2_
斜率不存在 α1=α2=90°
l1∥l2⇐两直线的斜率都不存在
图示
知识点二 两条直线垂直的判定
图示
对应关系
l1⊥l2(两直线的斜率都存在) ⇔_k_1_k_2=__-__1__
m的值为
A.58
√B.-58
C.-14
D.14
解析 由题意知AB的斜率存在且不为0, 则 kAB·kPQ=-1,即0-5--22×--1m--21m=-1,解得 m=-58.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3.1.2 两条直线平行与垂直的判定
公式成立的条件:
y
l1
l2
①两直线不重合;
②两直线的斜率均存在.
O
x
特别地,两直线的倾斜角都为90°时,它们互相平行
或重合.
两条直线平行与斜率之间的关系
类型 前提条件 对应关系
斜率存在 α 1=α 2≠90° l1∥l2⇔ _____ k 1=k2
斜率不存在 α 1=α 2=90° l1∥l2⇐两直线斜率都不存在
判断:(正确的打“√”,错误的打“×”)
(1)若两条不重合的直线的倾斜角相等,则这两条直线必定平
行. ( ) ( ( ) )
(2)若两条直线平行,则两条直线的倾斜角一定相等. (3)若两条直线垂直,则它们的斜率的乘积一定等于-1.
提示:(1)正确.依据直线的倾斜角的定义可知. (2)正确.不论斜率存在还是不存在,只要平行,依据直线 的倾斜角的定义可知,则倾斜角必相等. (3)错误.只有斜率存在的情况下才成立.
答案:A
二、两条直线垂直的判定
设两条直线l1与l2的斜率分别为k1 ,k2,
y l2 l1
两直线的斜 率均存在.
O
x
l1 ⊥l2 k1k2 = -1.
特别地:一条直线的倾斜角为90°,另一条直线的 倾斜角为0°,两直线互相垂直.
例3 已知A(-6,0),B(3,6),P(0,3), Q(6,-6),试判断直线AB与PQ的位置关系.
④若两条直线的斜率都不存在且两直线不重合,则 这两条直线平行. A.1个 B.2个 C.3个 D.4个
解析:若k1=k2,则这两条直线平行或重合,所以①错; 当两条直线垂直于x轴时,两条直线平行,但斜率不存在,所 以②错;若两直线中有一条直线的斜率不存在,另一条直线的 斜率为0时,才有这两条直线垂直,所以③错;④正确.故选 A.
平行线与垂直线的判定与性质
平行线与垂直线的判定与性质平行线与垂直线是几何学中常见的概念,它们在直线与面的相互关系中具有重要的意义。
本文将探讨平行线与垂直线的判定方法以及它们的性质。
一、判定平行线的方法1. 直线平行判定方法一:同位角相等法当两条直线被一条横穿的直线所切割时,如果对应角或同位角相等,则这两条直线是平行的。
2. 直线平行判定方法二:同斜率法如果两条直线的斜率相等且不相交,那么它们就是平行线。
3. 直线平行判定方法三:向量平行法若两条直线的方向向量平行,则这两条直线是平行线。
二、判定垂直线的方法1. 直线垂直判定方法一:互为倒数的斜率法当两条直线的斜率互为倒数,即一个斜率为k,另一个斜率为-1/k,这两条直线为垂直线。
2. 直线垂直判定方法二:斜率乘积为-1法如果两条直线的斜率乘积等于-1,那么它们就是垂直线。
3. 直线垂直判定方法三:垂直向量法两条直线所对应的方向向量互为垂直向量,则这两条直线为垂直线。
三、平行线的性质1. 平行线之间的距离相等如果两条平行线被一条横穿的直线所切割,那么从这条横穿的直线到两条平行线的距离将相等。
2. 平行线上的同位角相等当两条平行线被一条横穿的直线所切割时,同位角是相等的。
3. 平行线的倾斜角相等两条平行线与横线所成的角相等。
4. 平行线的斜率相等如果两条平行线的斜率都存在,那么它们的斜率是相等的。
四、垂直线的性质1. 垂直线上的相邻角是互补角垂直线上的两个相邻角是互补角,它们的和为90度。
2. 垂直线的倾斜角相差90度与垂直线相交的直线与垂直线的倾斜角相差90度。
3. 垂直线的斜率互为倒数如果两条直线互为垂直线,那么它们的斜率互为倒数。
总结平行线与垂直线是几何学的基础概念。
判定平行线的方法包括同位角相等法、同斜率法和向量平行法;判定垂直线的方法包括互为倒数的斜率法、斜率乘积为-1法和垂直向量法。
同时,平行线与垂直线具有一系列的性质,如平行线之间的距离相等、平行线上的同位角相等、平行线的倾斜角相等,以及垂直线上的相邻角是互补角、垂直线的倾斜角相差90度等。
3.1.2两条直线平行与垂直的判定
当一条直线的倾斜角为900,另一条直线的倾斜角为0° 两直线互相垂直
l1 l2 k1 k2 1或l1,l2一斜率不存在另一斜率 为0
例题讲解
例5、已知A(-6,0),B(3,6),P(0,3) Q(6,-6),判断直线AB与PQ的位置关系。
A
因此ABC是直角三角形.
练习:
1.已知直线 m1 经过点 A(3,a),B(a-2,3),直线 m2 经过点 M(3, a),N(6,5),若 m1⊥m2,求 a 的值.
错解中忽略了利用斜率间关系判断两条直线的位置关 系的前提条件:两条直线的斜率存在.应对直线 AB 斜率是否 存在进行分类讨论,即分 a-2=3 与 a-2≠3 两种情况讨论.
kDA
3 2
kAB kCD , kBC kDA
AB∥ CD, BC∥ DA
y
D
C
A
O
x
B
因此四边形ABCD是平行四边形.
【变式 1】 已知直线 l1 经过点 A(3,a),B(a-1,2),另一条 直线 l2 经过点 C(1,2),D(-2,a+2).若 l1∥l2,求 a 的值.
a 1或a 6
b4 a3
40
,解得
a 1
b
6
,
a 1 35
∴D(-1,6).
A.(3,0)
B.(-3,0)
C.(0,-3)
D.(0,3)
解析 设P(0,y),∴k2=y-1, ∵l1∥l2,∴y-1=2,∴y=3,故选D. 答案 D
8.若点P(a,b)与Q(b-1,a+1)关于直线l对称, 则l的倾斜角为( ). A.135° B.45° C.30° D.60°
3.1.2两直线平行与垂直的判定(优秀经典公开课教案及练习答案详解)
3.1.2两直线平行与垂直的判定学科:数学年级:高一班级【学习目标】1.知道两条直线平行或垂直的判断条件.2.会利用斜率判断两条直线平行或垂直.3.利用斜率判断含字母参数的两直线平行或垂直时,对字母分类讨论.【学习重难点】重点:两条直线平行和垂直的条件难点:启发学生, 把研究两条直线的平行或垂直问题, 转化为研究两条直线的斜率的关系问题.【预习指导】1.判断(正确的打“√”,错误的打“×”)(1)若两条直线斜率相等,则两直线平行.( )(2)若l1∥l2,则k1=k2.( )(3)若两直线中有一条直线的斜率不存在,另一条直线的斜率存在,则两直线相交.( )(4)若两直线斜率都不存在,则两直线平行.( )2.直线l1,l2的斜率是方程x2-3x-1=0的两根,则l1与l2的位置关系是( )A.平行 B.重合 C.相交但不垂直 D.垂直3.下列各组点中,在同一直线上的是( )A.(-2,3),(-7,5),(3,-5)B.(3,0),(6,-4),(-1,-3)C.(0,5),(2,1),(-1,7)D.(0,1),(3,4),(-1,-1)4.经过点A(m,1),B(-1,m)的直线与过点P(1,2),Q(-5,0)的直线平行,则m=________.【合作探究】(一)先研究特殊情况下的两条直线平行与垂直上一节课, 我们已经学习了直线的倾斜角和斜率的概念, 而且知道,可以用倾斜角和斜率来表示直线相对于x轴的倾斜程度, 并推导出了斜率的坐标计算公式. 现在, 我们来研究能否通过两条直线的斜率来判断两条直线的平行或垂直.讨论: 两条直线中有一条直线没有斜率, (1)当另一条直线的斜率也不存在时,两直线的倾斜角都为90°,它们互相平行;(2)当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直.(二)两条直线的斜率都存在时, 两直线的平行与垂直设直线 L1和L2的斜率分别为k1和k2. 我们知道, 两条直线的平行或垂直是由两条直线的方向决定的, 而两条直线的方向又是由直线的倾斜角或斜率决定的. 所以我们下面要研究的问题是: 两条互相平行或垂直的直线, 它们的斜率有什么关系?首先研究两条直线互相平行(不重合)的情形.如果L1∥L2(图1-29),那么它们的倾斜角相等:α1=α2.(借助计算机, 让学生通过度量, 感知α1, α2的关系)∴tgα1=tgα2.即 k1=k2.反过来,如果两条直线的斜率相等: 即k1=k2,那么tgα1=tgα2.由于0°≤α1<180°, 0°≤α<180°,∴α1=α2.又∵两条直线不重合,∴L1∥L2.结论: 两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它的倾斜角α相等吗? 答案是肯定的.所以一个倾斜角α不能确定一条直线.确定平面直角坐标系内的一条直线位置的几何要素: 一个点.......P.和一个倾斜角α....们的斜率相等,那么它们平行,即注意: 上面的等价是在两条直线不重合且斜率存在........的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2, 那么一定有L1∥L2; 反之则不一定.下面我们研究两条直线垂直的情形.如果L1⊥L2,这时α1≠α2,否则两直线平行.设α2<α1(图1-30),甲图的特征是L1与L2的交点在x轴上方;乙图的特征是L1与L2的交点在x轴下方;丙图的特征是L1与L2的交点在x轴上,无论哪种情况下都有α1=90°+α2.因为L1、L2的斜率分别是k1、k2,即α1≠90°,所以α2≠0°,可以推出: α1=90°+α2. L1⊥L2.结论: 两条直线都有斜率........,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即注意: 结论成立的条件. 即如果k1·k2 = -1, 那么一定有L1⊥L2; 反之则不一定.例1、已知A(2,3), B(-4,0), P(-3,1), Q(-1,2), 试判断直线BA与PQ 的位置关系, 并证明你的结论.分析: 借助计算机作图, 通过观察猜想:BA∥PQ, 再通过计算加以验证.(图略)解: 直线BA的斜率k1=(3-0)/(2-(-4))=0.5,直线PQ的斜率k2=(2-1)/(-1-(-3))=0.5,因为 k1=k2=0.5, 所以直线BA∥PQ.例2 、已知四边形ABCD的四个顶点分别为A(0,0), B(2,-1), C(4,2), D(2,3), 试判断四边形ABCD的形状,并给出证明. (借助计算机作图, 通过观察猜想: 四边形ABCD是平行四边形,再通过计算加以验证)例3、已知A(-6,0), B(3,6), P(0,3), Q(-2,6), 试判断直线AB与PQ的位置关系.解: 直线AB的斜率k1= (6-0)/(3-(-6))=2/3,直线PQ的斜率k2= (6-3)(-2-0)=-3/2,因为 k1·k2 = -1 所以 AB⊥PQ.例4 、已知A(5,-1), B(1,1), C(2,3), 试判断三角形ABC的形状.分析: 借助计算机作图, 通过观察猜想: 三角形ABC是直角三角形, 其中AB⊥BC, 再通过计算加以验证.(图略)【巩固练习】教材P89练习1、2题【当堂检测】1.下列说法中正确的是( )A.平行的两条直线的斜率一定存在且相等B .平行的两条直线的倾斜角一定相等C .垂直的两直线的斜率之积为-1D .只有斜率相等的两条直线才一定平行2.已知直线l 1经过两点(-1,-2),(-1,4),直线l 2经过两点(2,1),(x ,6),且l 1∥l 2,则x 等于( )A .2B .-2C .4D .13.若直线l 经过点(a -2,-1)和(-a -2,1),且与斜率为-23的直线垂直,则实数a 的值是( )A .-23B .-32 C.23 D.324.已知点A(2,3),B(-2,6),C(6,6),D(10,3),则以A ,B ,C ,D 为顶点的四边形是( )A .梯形B .平行四边形C .菱形D .矩形5. l 1的倾斜角为60°,l 2经过点M(1,3),N(-2,-23),则两直线l 1与l 2的位置关系是________.6.已知直线l 1经过点A(0,-1)和点B(-4a,1),直线l 2经过点M(1,1)和点N(0,-2),若l 1与l 2没有公共点,则实数a 的值为________.【拓展延伸】已知A(-m -3,2),B(-2m -4,4),C(-m ,m),D(3,3m +2),若直线AB⊥CD,求m 的值.【课堂小结】(1)两条直线平行或垂直的真实等价条件;(2)应用条件, 判定两条直线平行或垂直.(3) 应用直线平行的条件, 判定三点共线.【课外作业】习题3.1第3、6题【教学反思】。
3.1.2 两条直线平行与垂直的判定
(2)依据直线的斜率的定义可知: ①若不重合的两条直线l1,l2的斜率都存在,分别为k1,k2,倾斜角分别为 α 1,α 2,则l1∥l2⇔α1=α 2⇔k1=k2; ②当不重合的两条直线的斜率都不存在时,由于它们的倾斜角都是 90°,故它们也互相平行.
2.对两条直线平行的判定条件的理解 l1∥l2⇔k1=k2成立的前提条件有两个: (1)两条直线的斜率都存在.(2)这两条直线不重合.
综上,m的值为1或-1.
【误区警示】解答本题易漏掉直线斜率不存在的情况.
【补偿训练】直线l1的斜率k1= l1⊥l2,求实数a的值.
3 ,直线l2经过点A(3a,2),B(0,a),且 4 3 a-2 -1, 4 0-3a
【解析】由l1⊥l2可知k1k2=-1,即 解得a= - 2 .
3
4.已知点A(2,-1),B(3,2),则线段AB的垂直平分线的斜率为 【解析】直线AB的斜率为kAB= 2-(-1) =3,由于线段AB的垂直平分线
3-2
.
与直线AB垂直,故两直线的斜率乘积等于-1,则线段AB的垂直平分线的 斜率为 - 1 . 答案: - 1
3 3
5.已知直线l1经过两点(-1,-2),(-1,4),直线l2经过两点(2,1),(x,6), 且l1∥l2,则x= .
3 ).
2.(2015·通辽高一检测)已知P(-2,m),Q(m,4),M(m+2,3),N(1,1),若 直线PQ∥直线MN,求m的值.
【解题探究】1.典例1中判断直线l1与直线l2是否平行要从哪两个方面 分析? 提示:一是判断两条直线的斜率是否相等,二是判断两条直线是否重合. 2.典例2中由直线PQ∥直线MN,需要讨论直线PQ,MN斜率的存在性吗? 如何讨论? 提示:分当m=-2或m=-1以及m≠-2且m≠-1时进行讨论.
平行线与垂直线的判断与性质
平行线与垂直线的判断与性质在几何学中,平行线与垂直线是非常重要的概念。
它们在我们日常生活中的应用广泛,例如在建筑设计、地理测量、工程规划等领域都起到了重要的作用。
本文将介绍平行线和垂直线的判断方法及其性质。
一、平行线的判断与性质平行线是指在同一个平面上永远不相交的两条直线。
判断两条线是否平行可以通过以下几种方法:1. 在平面上的两条直线,如果它们的斜率相等且不相交,则可以判定为平行线。
斜率的概念是直线上任意两点间纵坐标之差与横坐标之差的比值。
2. 如果两条直线上的任意一组对应角互相等于,则可以判定为平行线。
对应角是指两条直线上同位于相同位置的角度。
3. 如果两条直线之间的夹角为180度,则可以判定为平行线。
夹角是指两条直线相交时所形成的角度。
平行线具有以下性质:1. 平行线与一条截线形成的对应角互相等于。
2. 平行线上的任意一对内错角和外错角互相补角。
3. 平行线上的任意一对同位角相等。
二、垂直线的判断与性质垂直线是指与另一条线段或线相交时形成的直角的线。
判断两条线是否垂直可以通过以下几种方法:1. 如果两条直线的斜率互为倒数且乘积为-1,则可以判定为垂直线。
2. 如果两条直线上的任意一组对应角互为互补角,则可以判定为垂直线。
3. 如果两条直线的夹角为90度,则可以判定为垂直线。
垂直线具有以下性质:1. 垂直线与一条直线形成的内错角和外错角互为补角。
2. 垂直线上的任意一对同位角互相等于。
3. 垂直线与平面上的一条截线形成的对应角互为互补角。
三、平行线与垂直线的应用平行线和垂直线在日常生活中有广泛的应用。
以下是几个典型的例子:1. 建筑设计:在建筑设计中,平行线和垂直线起到了重要的作用。
例如,在绘制建筑图纸时,需要合理利用平行线和垂直线来确定各个建筑元素的位置和关系,以保证整体结构的稳定性和美观性。
2. 套房布局:在家居装修中,平行线和垂直线的应用也非常常见。
例如,在设计套房的布局时,通常会利用平行线和垂直线来划分房间的大小和位置,以确保每个房间的功能和空间利用率都达到最佳状态。
3.1.2 两条直线平行与垂直的判定高一数学教材配套教学课件(人教A版必修二)
【解题指南】(1)显然斜率存在,根据kPQ=kMN,求m 的值. (2)斜率存在的直线求出斜率,利用l1∥l2⇔k1=k2进行 判断(注意两直线重合的情况).两直线斜率都不存在的, 可通过观察并结合图形得出结论.
【解析】(1)当m=-2时,直线PQ的斜率不存在,而直线
MN的斜率存在,MN与PQ不平行,不合题意;
(2)根据下列给定的条件,判断直线l1与直线l2是否平 行: ①l1经过点A(2,1),B(-3,5),l2经过点C(3,-3), D(8,-7); ②l1的倾斜角为60°,l2经过点M(1, 3 ),N(-2, -2 3 );
③l1平行于y轴,l2经过点P(0,-2),Q(0,5); ④l1经过点E(0,1),F(-2,-1),l2经过点G(3,4), H(2,3).
综上,m的值为0或1.
答案:0或1
(2)①由题意知,k1
5 1 3 2
4 5
,k
2
7 3 83
4, 5
因为k1=k2,且A,B,C,D四点不共线,所以l1∥l2.
②由题意知,k1=tan 60°= 3,k2= 2 3 3 3,
2 1
因为k1=k2,所以l1∥l2或l1与l2重合.
③由题意知,l1的斜率不存在,且不是y轴,l2的斜率
3.设直线l1,l2的斜率分别为k1,k2,若k1=k2,则直线 l1,l2一定平行吗? 提示:若k1=k2,则l1∥l2.
结论:两直线平行的等价条件
如果两条直线的斜率存在,设这两条直线的斜率分别 为k1,k2.若两条直线平行,则它们的斜率_相__等__;反 之,若两条直线的斜率相等,则它们_平__行__,即l1∥l2 ⇔_k_1=_k_2_.
4 1 3 m
2019年高中数学第三章直线与方程3.1.2两条直线平行与垂直的判定(含解析)
3.1.2 两条直线平行与垂直的判定1.直线l1的斜率为a,l1⊥l2,则直线l2的斜率为( D )(A)(B)a(C)-(D)-或不存在解析:若a=0,则l2的斜率不存在;若a≠0,则l2的斜率为—.故选D.2.若l1与l2为两条直线,它们的倾斜角分别为α1,α2,斜率分别为k1,k2,有下列说法:(1)若l1∥l2,则斜率k1=k2;(2)若斜率k1=k2,则l1∥l2;(3)若l1∥l2,则倾斜角α1=α2;(4)若倾斜角α1=α2,则l1∥l2。
其中正确说法的个数是( B )(A)1 (B)2 (C)3 (D)4解析:需考虑两条直线重合的特殊情况,(2),(4)都可能是两条直线重合,(1),(3)正确。
3.已知A(m2+2,m),B(m+1,-1),若直线AB与斜率为2的直线平行,则m 的值为( B )(A)(B)或1(C)1 (D)—1解析:由题知k AB=2,即==2,整理得2m2-3m+1=0,解得m=或m=1.4.若A(0,1),B(,4)在直线l1上,且直线l1⊥l2,则l2的倾斜角为( C )(A)-30°(B)30°(C)150°(D)120°解析:因为==,所以l1的倾斜角为60°。
因为两直线垂直,所以l2的倾斜角为60°+90°=150°.故选C.5。
以A(—1,1),B(2,—1),C(1,4)为顶点的三角形是( C )(A)锐角三角形(B)钝角三角形(C)以A点为直角顶点的直角三角形(D)以B点为直角顶点的直角三角形解析:如图所示,易知k AB==—,k AC==,由k AB·k AC=-1知三角形是以A点为直角顶点的直角三角形,故选C。
6.已知A(—4,3),B(2,5),C(6,3),D(—3,0)四点,若顺次连接A,B,C,D四点,则四边形ABCD的形状是( D )(A)平行四边形(B)矩形(C)菱形(D)直角梯形解析:因为k AB==,k CD==,k AD==-3,k BC==—,所以AB∥CD,AD⊥AB,所以四边形ABCD为直角梯形.7。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1.2两直线的平行与判定及性质
1.平行: 对于 的直线l 1,l 2,其斜率 分别为k 1,k 2,
有l 1∥l 2⇔
2.垂直 :如果直线l 1,l 2的斜率分别为k 1,k 2,
那么l 1⊥l 2⇔
做一做:
1.已知直线l 1的斜率k 1=2,直线l 2的斜率k 2=-12
,则l 1与l 2( ) (A)平行 (B)异面 (C)垂直 (D)不确定
2.已知直线l 1的斜率k 1=3,直线l 2的斜率k 2=3,则不重合的l 1与l 2( )
(A)平行 (B)异面 (C)垂直 (D)不确定
3.直线l 1的倾斜角为60°,且l 1⊥l 2,则直线l 2的斜率为( )
(A)- 3 (B)3 (C)-33 (D)33
4.直线l 平行于经过两点A(-4,1),B(0,-3)的直线,则直线l 的倾斜角为___
典例解析
题型一:两条直线的平行关系
【例1】 根据下列给定的条件,判断直线l 1与直线l 2是否平行.
(1)l 1经过点A(2,1),B(-3,5),l 2经过点C(3,-3),D(8,-7);
(2)l 1的倾斜角为60°,l 2经过点M(1,3),N(-2,-23);
(3)l 1平行于y 轴,l 2经过点P(0,-2),Q(0,5);
(4)l 1经过点E(0,1),F(-2,-1),l 2经过点G(3,4),H(2,3).
变式训练:已知▱ABCD 的三个顶点分别是A(1,5),B(-1,1),C(3,2),求顶点D 的坐标
题型二:两条直线的垂直关系
【例2】已知△ABC三个顶点坐标分别为A(-2,-4),B(6,6),C(0,6),求此三角形三边的高所在直线的斜率.
变式训练:判断下列各小题中的直线l1与直线l2是否垂直.
(1)l1经过点A(-1,-2),B(1,2),l2经过点M(-2,-1),N(2,1);
(2)l1的斜率为-10,l2经过点A(10,2),B(20,3);
(3)l1经过点A(3,4),B(3,100),l2经过点M(-10,40),N(10,40).
题型三:平行与垂直的综合应用
【例3】已知A(-4,3),B(2,5),C(6,3),D(-3,0)四点,若顺次连接ABCD四点,试判定图形ABCD的形状.
变式训练:已知A(m,1),B(-3,4),C(1,m),D(-1,m+1).
(1)当m为何值时,AB∥CD?
(2)当m为何值时,AB⊥CD?
作业
1.下列说法正确的个数有( )
①若直线l 1,l 2都有斜率且斜率相等,则l 1∥l 2;②若直线l 1⊥l 2,则它们的斜率互为负倒数;③两条直线的倾斜角的正弦值相等,则这两条直线平行.
(A)0个 (B)1个 (C)2个 (D)3个
2.已知点A(0,1),B(2,3),C(-1,-2),点D 在x 轴上移动,若AB ∥CD ,则点D 的坐标为( )
(A)(0,0) (B)(1,0) (C)(2,0) (D)(3,0)
3.若直线l 经过点(a -2,-1)和(-a -2,1),且与斜率为-23
的直线垂直,则实数a 的值是( )
(A)-23 (B)-32 (C)23 (D)32
4.以A(-1,1),B(2,-1),C(1,4)为顶点的三角形是( )
(A)锐角三角形 (B)钝角三角形
(C)以A 为直角顶点的直角三角形 (D)以B 为直角顶点的直角三角形
5.已知定点A(2,-2),B(3,3),以A ,B 为直径端点作圆,所作圆与y 轴有交点C ,则交点C 的坐标为( )
(A)(0,0) (B)(0,1)或(0,2) (C)(0,2) (D)(0,0)或(0,1)
6.已知△ABC 中,A(0,3),B(2,-1),C(3,1),E 、F 分别是AC 、BC 的中点,则直线EF 的斜率为________.
7.若点P(a ,b)与Q(b -1,a +1)关于直线l 对称,则直线l 的斜率为________.
8.若A(-4,2),B(6,-4),C(12,6),D(2,12),则下面四个结论:①AB ∥CD ;②AB ⊥CD ;③AC ∥BD ;④AC ⊥BD.其中正确的序号为________.
9.已知直线l 1经过点A(3,a),B(a -1,2),直线l 2经过点C(1,2),D(-2,a +2).
(1)若l 1∥l 2,求a 的值;
(2)若l 1⊥l 2,求a 的值.
10.已知A(0,3),B(-1,0),C(3,0),求点D 的坐标,使四边形ABCD 为直角梯形.。