B1--1.1 集合(6课时)--必修①第一章集体备课

合集下载

高一数学必修1第一章集合全章教案

高一数学必修1第一章集合全章教案

第一章集合与函数概念§1.1集合教学目标:(1)了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性.互异性.无序性;(4)会用集合语言表示有关数学对象;教学重点.难点重点:集合的含义与表示方法.难点:表示法的恰当选择.1.1.1集合的含义与表示(一)集合的有关概念:⒈定义:一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集),构成集合的每个对象叫做这个集合的元素(或成员)。

2.表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。

3.集合相等:构成两个集合的元素完全一样。

4.元素与集合的关系:(元素与集合的关系有“属于∈”及“不属于∉两种)⑴若a是集合A中的元素,则称a属于集合A,记作a∈A;⑵若a不是集合A的元素,则称a不属于集合A,记作a∉A。

5.常用的数集及记法:非负整数集(或自然数集),记作N;正整数集,记作N*或N+;N内排除0的集.整数集,记作Z;有理数集,记作Q;实数集,记作R;6.关于集合的元素的特征⑴确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了。

如:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋)。

“中国古代四大发明”(造纸,印刷,火药,指南针)可以构成集合,其元素具有确定性;而“比较大的数”,“平面点P周围的点”一般不构成集合,因为组成它的元素是不确定的.⑵互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的。

.如:方程(x-2)(x-1)2=0的解集表示为{1,-2},而不是{1,1,-2}⑶无序性:即集合中的元素无顺序,可以任意排列、调换。

练1:判断以下元素的全体是否组成集合,并说明理由:⑶大于3小于11的偶数;⑵我国的小河流;⑶非负奇数;⑷某校2011级新生;⑸血压很高的人;7.元素与集合的关系:(元素与集合的关系有“属于∈”及“不属于∉”两种)⑴若a是集合A中的元素,则称a属于集合A,记作a∈A;⑵若a不是集合A的元素,则称a不属于集合A,记作a∉A。

(教师用书)高中数学 第一章 集合教案 北师大版必修1

(教师用书)高中数学 第一章 集合教案 北师大版必修1

第一章集合§1集合的含义与表示(教师用书独具)●三维目标1.知识与技能(1)通过实例,了解集合的含义,体会元素与集合的“属于”关系.(2)知道常用数集及其专用记号.(3)了解集合中元素的确定性、互异性、无序性.(4)会用集合语言表示有关数学对象.(5)培养学生抽象概括的能力.2.过程与方法(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.(2)让学生归纳整理本节所学知识.3.情感、态度与价值观使学生感受到学习集合的必要性,增强学习的积极性.●重点难点重点:集合的含义与表示方法.难点:表示法的恰当选择.针对教材的内容,编排一系列问题,让学生亲历知识发生、发展的过程,积极投入到思维活动中来;通过与学生的互动交流,关注学生的思维发展,在逐渐展开中,引导学生用已学的知识、方法予以解决,并获得知识体系的更新与拓展,收到一定的预期效果;尤其是练习的处理,让学生通过个人、小组、集体等多种解难释疑的尝试活动,感受“观察——归纳——概括——应用”等环节.在知识的形成、发展过程中展开思维,逐步培养学生发现问题、探索问题、解决问题的能力和创造性思维的能力,充分发挥了学生的主体作用,也提高了学生主体的合作意识,达到设计中所预想的目标.(教师用书独具)●教学建议集合是学生进入高中学习的第一节课,是学生学好数学所必须掌握好的一个知识点,同时集合是一个不加定义的原始概念,对于学生而言既熟悉又模糊,熟悉是因为学生在初中的数学学习和生活体验中掌握了大量集合的实例,模糊是由于对于集合含义的描述以及集合的数学表示、元素与集合的关系等理解的并不十分到位、准确.同时虽然本节课对于学生而言难度不大,但是其概念多、符号多,容易混淆,需要学生理解记忆.对于一些较简单的内容,应放手让学生多一些探究与合作.随着教育改革的深化,教学理念、教学模式、教学内容等教学因素都在不断更新,作为数学教师要更新教学观念,从学生的全面发展来设计课堂教学,关注学生个性和潜能的发展,使教学过程更加切合《课程标准》的要求.用全新的理论来武装自己,让自己的课堂更有效率.●教学流程创设情景,揭示课题,通过接触过的集合,举出部分例子⇒研探新知,给出集合的概念及集合的表示⇒质疑答辨,排难解惑,发展思维.思考:集合中元素有什么特点?⇒完成例1及其变式训练,巩固元素与集合的关系⇒通过例2及其变式训练,使学生掌握集合中元素的特性⇒集合的表示方法各有什么特点?完成例3及变式训练⇒归纳整理,进行课堂小结,整体认识本节课所学知识⇒巩固深化反馈矫正,完成当堂双基达标,巩固所学知识并进行反馈矫正观察下列实例:(1)2013年1月1日之前,在腾讯微博注册的会员; (2)平面内到两定点的距离相等的点;(3)不等式组⎩⎪⎨⎪⎧x +1≥3,x 2<9的整数解;(4)方程x 2-4x +4=0的实数根; (5)我们班经常参加体育锻炼的同学.上述实例中的研究对象哪些是确定的? 【提示】 (1)(2)(3)(4)的研究对象是确定的. 集合⎩⎪⎨⎪⎧含义:一般地,指定的某些对象的全体称为集合,集合中的每个对象叫作这个集合的元素.表示⎩⎪⎨⎪⎧集合:通常用大写字母A ,B ,C ,…标记;元素:通常用小写字母a ,b ,c ,…标记.对于本班内所有女同学组成的集合,张三(男)、李四(女)分别与集合存在什么关系? 【提示】 张三不在该集合内,李四在该集合内.给出下列集合:(1)小于10的所有正偶数组成的集合A ;(2)方程x 2+2x +1=0的根组成的集合为B ; (3)所有奇数组成的集合为C .1.你能将集合A 中的元素一一列举出来吗? 【提示】 能.2,4,6,82.集合B中的元素满足的条件是什么?【提示】x2+x+1=0.3.如何表示集合C?【提示】C={奇数}或{x|x=2n+1,n∈Z}.1.列举法把集合中的元素一一列举出来写在大括号内的方法.2.描述法用确定的条件表示某些对象属于一个集合并写在大括号内的方法叫描述法.1.有限集含有限个元素的集合.2.无限集含无限个元素的集合.3.空集不含有任何元素的集合.下列所给关系正确的个数是( )①π∈R;②3∉Q;③0∈N*;④|-4|∉N.A.1 B.2 C.3 D.4【思路探究】解答本题要先弄清“∈”和“∉”的区别与联系及特定的数集符号的含义,再进行判断.【自主解答】∵π是实数,3是无理数,0不是正整数,|-4|=4是正整数,∴①②正确,③④不正确,正确的个数为2.【答案】 B1.判断一个元素是否属于某个集合,关键看其是否具有该集合的特征.2.N+(N*)与N不同,前者表示正整数集,而后者表示非负整数集.给出下列关系,其中正确的有____. ①3∈Z ②0∈N ③12∈N + ④3.14∈Q【解析】 ∵3不是整数,∴3∉Z ,故①错;∵0是自然数,∴0∈N ,故②正确;∵12不是正整数,∴12∉N +,故③错,∵3.14是有理数,∴3.14∈Q ,故④正确.【答案】 ②④已知集合A ={1,3,a 2+a ,a +1},若a ∈A ,求实数a 的值.【思路探究】 根据题中的条件a ∈A ,可分别列出关于a 的方程,然后求出a 的值即可,但要注意集合中元素的互异性.【自主解答】 ∵a ∈A ,A ={1,3,a 2+a ,a +1}, ∴a =1或a =3或a =a 2+a .当a =1时,a 2+a =2,a +1=2,这与集合中元素互异性矛盾,故舍去, 当a =3时,a 2+a =12,a +1=4,适合题意;当a =a 2+a 即a =0时,a +1=1,与集合中元素互异性矛盾,故舍去, 综上所述,所求实数a 的值是3.1.本题中,a 是集合A 的元素,但不能确定是哪一个元素,故有三种情况. 2.根据集合中元素的确定性可以解出字母的所有可能的值,再根据集合中元素的互异性对集合中的元素进行检验.另外,在利用集合中元素的特性解题时要注意分类讨论思想的运用.(2013·济南高一检测)已知集合A 是由三个元素m ,m 2+1,1组成的,且2是A 中的一个元素,求m 的值.【解】 ∵2是A 中的一个元素,∴m =2或m 2+1=2, 即m =2或m =±1.当m =2时,集合A 中的元素为:2,5,1,符合题意.当m =1时,集合A 中的元素为:1,2,1不满足互异性,舍去.当m =-1时,集合A 中的元素为:-1,2,1符合题意. 综上知m =2或m =-1.用适当的方法表示下列集合.(1)化简式子x |x |+y|y |(x ,y 为非零实数)所得结果构成的集合;(2)所有偶数组成的集合;(3)直角坐标系内第二象限的点组成的集合; (4)方程(x -1)(x 2-5)=0的根组成的集合.【思路探究】 根据题目的特点,结合列举法、描述法的适用范围解答本题. 【自主解答】 (1)根据x ,y 值的符号,两项分别可得1或-1,化简的结果有3种情形,用列举法表示为{0,2,-2};(2)偶数的表达式为2k (k ∈Z).由于有无数个元素,用描述法表示为{x |x =2k ,k ∈Z}; (3)代表元素是有序数对(x ,y ),用描述法表示为{(x ,y )|x <0且y >0}; (4)方程有3个根,用列举法表示为{-5,1,5}.1.当集合中的元素个数较少时往往采用列举法表示.用列举法表示集合时,必须注意以下几点:(1)元素之间必须用“,”隔开; (2)集合的元素必须是明确的; (3)不必考虑元素出现的先后顺序; (4)集合中的元素不能重复; (5)集合中的元素可以是任何事物.2.用描述法表示集合,首先应弄清楚集合的属性,是数集、点集还是其他的类型.一般地,数集用一个字母代表其元素,而点集则用一个有序数对来表示.给出下列说法:①在直角坐标平面内,第一、三象限的点的集合为{(x ,y )|xy >0}; ②方程x -2+|y +2|=0的解集为{-2,2}; ③集合{(x ,y )|y =1-x }与{x |y =1-x }是同一集合. 其中正确的有( )A .1个B .2个C .3个D .0个【解析】 在直角坐标平面内,第一、三象限的点的横、纵坐标是同号的,且集合中的代表元素为点(x ,y ),故①正确;方程x -2+|y +2|=0等价于 ⎩⎪⎨⎪⎧ x -2=0,y +2=0,即⎩⎪⎨⎪⎧x =2,y =-2, 解为有序实数对(2,-2),即解集为{(2,-2)}或{(x ,y )|⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x =2y =-2,故②不正确; 集合{(x ,y )|y =1-x }的代表元素是(x ,y ),集合{x |y =1-x }的代表元素是x ,一个是实数对,一个是实数,故这两个集合不相同.③不正确.【答案】 A忽视元素的特性致误已知-1∈{m -1,3m ,m 2-1},求实数m 的值.【错解】 ∵-1∈{m -1,3m ,m 2-1}, ∴m -1=-1或3m =-1或m 2-1=-1, 即m =0或m =-13.【错因分析】 代入后,未对元素进行检验,忽视了元素的互异性.【防范措施】 1.解答含有字母的元素与集合之间的关系时,要有分类讨论的意识. 2.求解与集合有关的字母参数时,需利用集合元素的互异性来检验所求参数是否符合要求.【正解】 ∵-1是集合{m -1,3m ,m 2-1}中的元素, ∴当m -1=-1时,m =0,3m =0,m 2-1=-1.此时集合为{-1,0,-1},不满足集合中元素的互异性. 当3m =-1时,m =-13,m -1=-43,m 2-1=-89.此时集合为{-43,-1,-89},符合题意.当m 2-1=-1时,m =0,m -1=-1,3m =0.此时集合为{-1,0,-1},不满足集合中元素的互异性. 综上可知实数m 的值为-13.1.集合在数学中是不加定义的,我们只对它进行描述性说明.集合中的“元素”所指的范围非常广泛,现实生活中我们看到的、听到的、闻到的、触摸到的、想到的各种事物或一些抽象的符号等,都可以看作“对象”,即集合中的元素.2.在理解集合概念的同时,必须掌握集合元素的确定性、互异性、无序性.3.集合元素的互异性,是集合的重要属性,实践证明,集合中元素的互异性常常被同学们在解题中忽略,从而导致解题的失误,因此在集合中的元素含有未知数时,求解完后一定要检验.4.表示集合可以用列举法或描述法,它们各有优点,一般有限集用列举法,无限集用描述法.1.下面说法错误的是( )A.所有著名的作家可以组成一个集合B.方程x2+2x+1=0的解集中只有一个元素C.已知a≠b,“a、b构成的集合”与“b、a构成的集合”是同一集合D.如果x与-x是集合中的两个元素,那么x≠0【解析】“著名的作家”没有统一的标准,不确定,因而不能构成集合.【答案】 A2.下列说法正确的是( )A.由1,2,2,4构成集合时,该集合共有4个元素B.由1,2,3和3,2,1分别构成的两个集合不是相等集合C.若x∈Q,则x∈RD.对于任给一个元素a,则无法判断a是否是集合A中的元素【解析】结合集合中元素的互异性可知A不正确;结合集合中元素的确定性知D不正确;结合集合相等的概念可知B不正确;又∵x∈Q,则x是有理数,∴x是实数,即x∈R,故C正确.【答案】 C3.用符号∈或∉填空:(1)-2________N;(2)3.141 59________Q;(3)7________Z.【解析】-2不是自然数;3.141 59是有理数;7是无理数,它不是整数.【答案】(1)∉(2)∈(3)∉4.已知集合A中只有1,x,x2+3x三个元素,且-2∈A,求实数x的值.【解】∵-2∈A,(1)当x=-2时,x2+3x=-2,不满足集合中元素的互异性.(2)当x2+3x=-2时,可解得x=-1或x=-2(舍).综上可知,实数x的值为-1.一、选择题1.下列各组对象能构成集合的有( )①美丽的小鸟;②不超过10的非负整数;③立方接近零的正数;④高一年级视力比较好的同学A.1个B.2个C.3个D.4个【解析】①③中“美丽”“接近零”的范畴太广,标准不明确,因此不能构成集合;②中不超过10的非负整数有:0,1,2,3,4,5,6,7,8,9,10共十一个数,是确定的,故能够构成集合;④中“比较好”,没有明确的界限,不满足元素的确定性,故不能构成集合.【答案】 A2.小于2的自然数集用列举法可以表示为( )A.{0,1,2} B.{1} C.{0,1} D.{1,2}【解析】小于2的自然数为0,1,应选C.【答案】 C3.下列各组集合,表示相等集合的是( )①M={(3,2)},N={(2,3)};②M={3,2},N={2,3};③M={(1,2)},N={1,2}.A .①B .②C .③D .以上都不对【解析】 ①中M 中表示点(3,2),N 中表示点(2,3),②中由元素的无序性知是相等集合,③中M 表示一个元素:点(1,2),N 中表示两个元素分别为1,2.【答案】 B4.集合A 中含有三个元素2,4,6,若a ∈A ,则6-a ∈A ,那么a 为( ) A .2 B .2或4 C .4 D .0【解析】 若a =2,则6-a =6-2=4∈A ,符合要求; 若a =4,则6-a =6-4=2∈A ,符合要求; 若a =6,则6-a =6-6=0∉A ,不符合要求. ∴a =2或a =4. 【答案】 B5.(2013·曲靖高一检测)已知集合M 中含有3个元素;0,x 2,-x ,则x 满足的条件是( )A .x ≠0 B.x ≠-1C .x ≠0且x ≠-1D .x ≠0且x ≠1【解析】 由⎩⎪⎨⎪⎧x 2≠0,x 2≠-x ,-x ≠0,解得x ≠0且x ≠-1.【答案】 C 二、填空题6.用符号“∈”或“∉”填空(1)22________R,22________{x |x <7}; (2)3________{x |x =n 2+1,n ∈N +}; (3)(1,1)________{y |y =x 2}; (1,1)________{(x ,y )|y =x 2}.【解析】 (1)22∈R ,而22=8>7, ∴22∉{x |x <7}. (2)∵n 2+1=3, ∴n =±2∉N +,∴3∉{x |x =n 2+1,n ∈N +}.(3)(1,1)是一个有序实数对,在坐标平面上表示一个点,而{y |y =x 2}表示二次函数函数值构成的集合,故(1,1)∉{y |y =x 2}.集合{(x ,y )|y =x 2}表示抛物线y =x 2上的点构成的集合(点集),且满足y =x 2,∴(1,1)∈{(x ,y )|y =x 2}.【答案】 (1)∈ ∉ (2)∉ (3)∉ ∈7.已知集合C ={x |63-x ∈Z ,x ∈N *},用列举法表示C =________.【解析】 由题意知3-x =±1,±2,±3,±6, ∴x =0,-3,1,2,4,5,6,9. 又∵x ∈N *,∴C ={1,2,4,5,6,9}. 【答案】 {1,2,4,5,6,9}8.已知集合A ={-2,4,x 2-x },若6∈A ,则x =________.【解析】 由于6∈A ,所以x 2-x =6,即x 2-x -6=0,解得x =-2或x =3. 【答案】 -2或3 三、解答题9.选择适当的方法表示下列集合: (1)绝对值不大于3的整数组成的集合;(2)方程(3x -5)(x +2)=0的实数解组成的集合; (3)一次函数y =x +6图像上所有点组成的集合.【解】 (1)绝对值不大于3的整数是-3,-2,-1,0,1,2,3,共有7个元素,用列举法表示为{-3,-2,-1,0,1,2,3};(2)方程(3x -5)(x +2)=0的实数解仅有两个,分别是53,-2,用列举法表示为{53,-2};(3)一次函数y =x +6图像上有无数个点,用描述法表示为{(x ,y )|y =x +6}. 10.已知集合A 中含有a -2,2a 2+5a,3三个元素,且-3∈A ,求a 的值. 【解】 由-3∈A ,得a -2=-3或2a 2+5a =-3. (1)若a -2=-3,则a =-1, 当a =-1时,2a 2+5a =-3, ∴a =-1不符合题意.(2)若2a 2+5a =-3,则a =-1或-32.当a =-32时,a -2=-72,符合题意;当a =-1时,由(1)知,不符合题意. 综上可知,实数a 的值为-32.11.已知数集A 满足条件:若a ∈A ,则11-a ∈A (a ≠1),如果a =2,试求出A 中的所有元素.【解】 ∵2∈A ,由题意可知,11-2=-1∈A ;由-1∈A 可知,11- -1 =12∈A ;由12∈A 可知,11-12=2∈A . 故集合A 中共有3个元素,它们分别是-1,12,2.(教师用书独具)集合A ={x |kx 2-8x +16=0},若集合A 只有一个元素,试求实数k 的值,并用列举法表示集合A .【思路探究】 明确集合A 的含义→对k 加以讨论→求出k 值→写出集合A 【自主解答】 (1)当k =0时, 原方程变为-8x +16=0,x =2,此时集合A ={2}.(2)当k ≠0时,要使一元二次方程kx 2-8x +16=0有两个相等实根. 只需Δ=64-64k =0, 即k =1.此时方程的解为x 1=x 2=4, 集合A ={4},满足题意.综上所述,实数k 的值为0或1.当k =0时,A ={2};当k =1时,A ={4}.1.本题在求解过程中,常因忽略讨论k 是否为0而漏解.2.本题因kx 2-8x +16=0是否为一元二次方程而分k =0和k ≠0而展开讨论,从而做到不重不漏.3.解答与描述法有关的问题时,明确集合中代表元素及其共同特征是解题的切入点.把本例中条件“有一个元素”改为“有两个元素”,求k 的范围. 【解】 由题意可知方程kx 2-8x +16=0有两个实根.∴⎩⎪⎨⎪⎧k ≠0Δ=64-64k >0解得k <1且k ≠0.所以k 的范围为{k |k <1且k ≠0}.人物介绍为科学而疯的人——康托尔康托尔(Contor ,Georg)(1845~1918),德国数学家,集合论的创立人,康托尔自幼对数学有浓厚兴趣,23岁获博士学位,以后一直从事数学教学与研究.他所创立的集合论已被公认为全部数学的基础.1874年,康托尔的有关无穷的概念震撼了数学界.康托尔凭借古代与中世纪哲学著作中关于无限的思想而导出了关于数的本质的新思想模式,建立了处理数学中无限的基本技巧,从而极大地推动了分析与逻辑的发展.他发现了惊人的结果:有理数是可列的,而全体实数是不可列的.由于在研究无穷时往往推出一些合乎逻辑的但又很荒谬的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度.在1874~1876年期间,30岁的康托尔向神秘的无穷宣战.他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应.这样看起来,1厘米长线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”.后几年,康托尔对这类“无穷集合”问题发表了一系列文章,通过严格证明得出了许多惊人的结论.康托尔的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂.有人说,康托尔的集合论是一种“疾病”,康托尔的概念是“雾中之雾”,甚至说康托尔是“疯子”.来自数学权威们的巨大精神压力终于摧垮了康托尔,使他心力交瘁,患了精神分裂症,被送进精神病医病.他在集合论方面许多非常出色的成果,都是在精神病发作的间歇时期获得的.真金不怕火炼,康托尔的思想终于大放光彩.1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家,数学家罗素称赞康托尔的工作“可能是这个时代所能夸耀的最巨大的工作”,可是这时康托尔仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦.§2集合的基本关系(教师用书独具)●三维目标1.知识与技能(1)了解集合之间包含与相等的含义,能识别给定集合的子集.(2)理解子集、真子集的概念.(3)能使用Venn图表达集合间的关系,体会直观图示对理解抽象概念的作用.2.过程与方法让学生通过观察身边的实例,发现集合间的基本关系,体验其现实意义.3.情感、态度与价值观(1)树立数形结合的思想.(2)体会类比对发现新结论的作用.●重点难点重点:集合间的包含与相等关系,子集与真子集的概念.难点:属于关系与包含关系的区别.本节的重点是理解集合间包含与相等的含义,其突破方法是让学生多结合实例,类比实数间的大小关系来学习集合间的包含关系.(教师用书独具)●教学建议教材从学生熟悉的实例出发,通过类比引入集合间的关系,同时,结合相关内容介绍子集、Venn图、真子集、空集等概念.在安排这部分内容时,教材注重体现逻辑思考的方法,如类比等.值得注意的问题:在讲解集合间的关系时,建议重视使用Venn图,这有助于学生体会直观图示对理解抽象概念的作用.随着学习的深入,集合符号越来越多,建议教学时引导学生区分一些容易混淆的关系和符号,例如∈与⊆的区别.●教学流程创设情境提出问题,思考:实数有相等关系,大小关系,类比实数之间的关系,联想集合之间是否具备类似的关系⇒概念形成.分析示例:给出集合的包含关系的相关定义,完成例1及变式训练⇒师生合作得出集合相等的概念. 通过实例的共性探究、理解相等概念,完成例2及互动探究⇒巩固深化,发展思维,加深对集合间关系的理解,完成例3及变式训练⇒归纳整理,进行课堂小结,整体认识本节课所学知识⇒完成当堂双基达标,巩固所学知识并进行反馈矫正给出下列集合:(1)A={1,2,3},B={1,2,3,4,5}.(2)设集合A为衡水中学高一·三班全体男生组成的集合,集合B为高一·三班全体学生组成的集合.集合A中的元素与集合B有什么关系?【提示】集合A中的每一个元素都属于集合B.为了直观地表示集合间的关系,常用封闭曲线的内部表示集合,称为Venn图.给定两个集合A={0,1},B={x|x2=x}.1.集合B能否用列举法表示出来?【提示】能.B={0,1}.2.集合A中的元素与集合B中的元素,有什么关系?【提示】元素完全一样.对于两个集合A与B,如果集合A中的任何一个元素都是集合B中的元素,同时集合B 中的任何一个元素都是集合A中的元素,这时,我们就说集合A与集合B相等,记作A=B.【问题导思】对于集合A={1,2},B={1,2,3,4}.1.集合A是集合B的子集吗?【提示】是.2.集合B是集合A的子集吗?【提示】不是.3.集合A与集合B相等吗?【提示】不相等.(1)含义:对于两个集合A与B,如果A⊆B,并且A≠B,我们就说集合A是集合B的真子集,记作A B或B A.(2)当集合A不包含于集合B或集合B不包含集合A时,记作A B或B⊉A.2.性质(1)空集是任何集合的子集,对于任何一个集合A,都有∅⊆A.(2)对于集合A、B、C,若A⊆B,B⊆C,则A⊆C.已知集合M={x|x<2且x∈N},N={x|-2<x<2且x∈Z}.(1)试判断集合M、N间的关系.(2)写出集合M的子集、集合N的真子集.【思路探究】把用描述法表示的集合用列举法表示出来,以便于观察集合的关系写出子集与真子集.【自主解答】M={x|x<2且x∈N}={0,1},N={x|-2<x<2且x∈Z}={-1,0,1}.(1)M N.(2)M的子集为:∅,{0},{1},{0,1},N的真子集为:∅,{-1},{0},{1},{-1,0},{-1,1},{0,1}.1.写有限集合的所有子集,首先要注意两个特殊的子集:∅和自身;其次按含一个元素的子集,含两个元素的子集…依次写出,以免重复或遗漏.2.若集合A含n个元素,那么它的子集个数为2n;真子集个数为2n-1,非空真子集个数为2n-2.若{1,2,3} A⊆{1,2,3,4,5},则集合A的个数为( )A.2 B.3 C.4 D.5【解析】集合{1,2,3}是集合A的真子集,同时集合A又是集合{1,2,3,4,5}的子集,所以集合A只能取集合{1,2,3,4},{1,2,3,5}和{1,2,3,4,5}.若{0,a 2,a +b }={1,a ,b a},求a2 013+b2 013的值.【思路探究】 由0∈{1,a ,b a}先求出b ,再根据集合相等求a . 【自主解答】 因为{0,a 2,a +b }={1,a ,b a}, 所以0∈{1,a ,b a}.所以b =0,此时有{1,a,0}={0,a 2,a }.所以a 2=1,a =±1.当a =1时,不满足互异性,所以a =-1. ∴a 2 013+b 2 013=-1.1.计算出a =±1后,易忽视集合中元素的互异性致误. 2.解决此类问题的步骤:(1)利用集合相等的条件,建立方程或方程组,求得参数;(2)把所得数值依次代入集合验证,若满足元素的三个特性,则所求是可行的,否则应舍去.若本例改为“{0,a ,b a}={1,-a 2,a +b }”,则a 2 013+b2 013的值为多少?【解】 ∵0∈{1,-a 2,a +b } ∴-a 2=0或a +b =0当-a 2=0,即a =0时,{0,a ,b a}中矛盾.当a +b =0,即a =-b 时,{0,a ,b a}={0,a ,-1}, {1,-a 2,a +b }={1,-a 2,0},即{0,a ,-1}={1,-a 2,0}, ∴a =1,b =-1. ∴a2 013+b2 013=0.设集合A ={x |-1≤x ≤6},B ={x |m -1≤x ≤2m +1},已知B ⊆A .求实数m 的取值范围【思路探究】 由B ⊆A 可得集合B =∅或B 中的任何一个元素都在集合A 中,可借助数轴解决.【自主解答】 当m -1>2m +1,即m <-2时,B =∅,符合题意. 当m -1≤2m +1,即m ≥-2时,B ≠∅. 由B ⊆A ,借助数轴表示如图所示.则⎩⎪⎨⎪⎧m -1≥-1,2m +1≤6,解得0≤m ≤52.综上所述,实数m 的取值范围是{m |m <-2或0≤m ≤52}.1.当已知一个集合是另一个集合的子集时,首先要考虑这个集合是否为空集. 2.已知集合间的关系,求参数范围的步骤: (1)化简所给集合; (2)用数轴表示所给集合;(3)根据集合间的关系,列出关于参数的不等式(组); (4)求解.设集合A ={x |1<x ≤2},B ={x |x <a },若A B ,则a 的取值范围是( ) A .{a |a ≥ 2} B .{a |a <1} C .{a |a >2}D .{a |a ≤1}【解析】 在数 轴 上表示 两个集合A 、B ,要使A B ,则a >2.【答案】 C忽略空集的情况而致误(2013·济南高一检测)已知集合A ={x |x 2-4x +3=0},B ={x |mx -3=0},且B ⊆A ,求实数m 的值.【错解】 据题意知A ={1,3},B ={3m},∵B ⊆A , ∴3m =1或3m=3.即m =3或m =1.【错因分析】 忽略B =∅时的情况,直接认为m ≠0.【防范措施】 解答集合中有包含关系的题目时,一定要警惕“∅”这一陷阱,往往造成不必要的失分.【正解】 据题意知集合A ={1,3}, 当B =∅,即m =0时,满足B ⊆A .当B ≠∅,即m ≠0时,B ={x |mx -3=0}={3m}.∵B ⊆A , ∴3m =1或3m=3,即m =3或m =1.综上所述,所求m 的集合为{0,1,3}.1.集合与集合之间的关系有包含关系,相等关系,其中包含关系有:包含于(⊆)、包含(⊇),真包含于( )、真包含( )等,用这些符号时要注意方向,如A⊆B与B⊇A是相同的,但A⊆B,B⊆A是不同的.2.不能把“A⊆B”、“A B”理解成“A是B中部分元素组成的集合”,因为当A=∅时,A⊆B,但A中不含任何元素;又当A=B时,也有A⊆B,但A中含有B中的所有元素,这两种情况都有A⊆B.3.由于空集是任何集合的子集,是任何非空集合的真子集,所以在遇到“A⊆B”或“A B且B≠∅”时,一定要讨论A=∅和A≠∅两种情况,A=∅的情形易被忽视,应引起足够的重视.1.下列表述正确的有( )①空集没有子集;②任何集合都有至少两个子集;③空集是任何集合的真子集;④若∅ A,则A≠∅.A.0个B.1个C.2个D.3个【解析】∅⊆∅,故①错;∅只有一个子集,即它本身.所以②错;空集是任何集合的子集,是任何非空集合的真子集,所以③错;而④正确,故选B.【答案】 B2.(2013·聊城高一检测)若M={x|x>-1},N={x|x>0},则( )A.M⊆N B.N⊆M C.M=N D.M∈N【解析】 结合数轴可知N ⊆M . 【答案】 B3.已知集合A ={-1,3,m },B ={3,4},若B ⊆A ,则实数m =________. 【解析】 ∵B ⊆A , ∴元素3,4必为A 中元素, ∴m =4. 【答案】 44.已知集合A ={x |a <x <a +1},B ={x |2<x <9}.若A ⊆B ,求实数a 的取值集合. 【解】 ∵B ={x |2<x <9},A ={x |a <x <a +1},A ⊆B ,如图所示,∴⎩⎪⎨⎪⎧a ≥2a +1≤9,解得2≤a ≤8,∴实数a 的取值集合为{a |2≤a ≤8}.(见学生用书第81页)一、选择题1.下列五个关系式:①0⊆{0};②0∈{0};③∅={0};④∅∈{0};⑤∅ {0},其中正确的是( ) A .①③ B .①⑤ C .②④ D .②⑤【解析】 本题考查元素与集合、空集与非空集合的关系,其中0∈{0},∅ {0}. 【答案】 D2.已知M ={-1,0,1}和N ={x |x 2+x =0},其中能表示集合M 、N 关系的Venn 图是( )【解析】 由于N ={0,-1},显然,N M .【答案】 B3.(2013·深圳检测)满足M {1,2,3}的集合M 的个数是( ) A .8 B .7 C .6 D .5【解析】 ∵M {1,2,3},∴M 可能为∅,{1},{2},{3},{1,2},{1,3},{2,3}共7个.【答案】 B4.(2013·桂林检测)设A ={x |x >1},B ={x |x >a },且A ⊆B ,则实数a 的取值范围为( ) A .a <1 B .a ≤1 C.a >1 D .a ≥1【解析】 如图,结合数轴可知a ≤1时,有A ⊆B .【答案】 B5.若集合A ={1,3,x },B ={x 2,1},且B A ,则满足条件的实数x 的个数为( ) A .1 B .2 C .3 D .4【解析】 因为B A ,则x 2=3或x 2=x .当x 2=3时,x =±3,此时,A ={1,3,±3},B ={3,1},符合题意.当x 2=x 时,x =0或x =1(舍去),此时,A ={0,1,3},B ={0,1},符合题意,故x =0,± 3.【答案】 C 二、填空题6.已知 ∅ {x |x 2+x +a =0},则实数a 的取值范围是________. 【解析】 ∵∅ {x |x 2+x +a =0}, ∴方程x 2+x +a =0有实根, ∴Δ=12-4a ≥0,∴a ≤14.故实数a 的取值范围是{a |a ≤14}.【答案】 {a |a ≤14}7.设集合A ={1,3,a },B ={1,a 2-a +1},且A ⊇B ,则a 的值为________. 【解析】 因为A ⊇B ,则a 2-a +1=3或a 2-a +1=a ,解得a =2或a =-1或a =1,结合集合元素的互异性,可确定a =-1或a =2.【答案】 -1或28.设a ,b ∈R ,集合{0,b a,b }={1,a +b ,a },则b -a =________.【解析】 由于{0,ba ,b }={1,a +b ,a },所以a +b =0,即a =-b ,所以b a=-1,则a =-1,b =1.因此,b -a =2.【答案】 2 三、解答题9.设集合A ={1,a ,b },集合B ={a ,a 2,ab },且A =B ,求实数a ,b 的值.【解】 由集合相等的定义得⎩⎪⎨⎪⎧1=a 2,b =ab ,①或⎩⎪⎨⎪⎧1=ab ,b =a 2,②解①得⎩⎪⎨⎪⎧a =1,b ∈R ,或⎩⎪⎨⎪⎧a =-1,b =0.解②得⎩⎪⎨⎪⎧a =1,b =1.由集合中元素的互异性,得a =-1,b =0.10.已知集合A ={x |1≤x ≤2},B ={x |1≤x ≤a ,a ≥1}. (1)若A B ,求a 的取值范围; (2)若B ⊆A ,求a 的取值范围. 【解】 (1)若A B ,由图可知,a >2.故实数a 的取值范围为{a |a >2}. (2)若B ⊆A ,由图可知,1≤a ≤2.故实数a 的取值范围为{a |1≤a ≤2}.11.已知非空集合A ={x |x 2-ax +b =0},B ={x |x 2-8x +15=0},且A ⊆B . (1)写出集合B 所有的子集; (2)求a +b 的值. 【解】 (1)∵B ={3,5},∴集合B 的所有子集为∅,{3},{5},{3,5}. (2)∵A ≠∅且A ⊆B ,∴A ={3}或A ={5}或A ={3,5}. ①当A ={3}时,有⎩⎪⎨⎪⎧Δ=a 2-4b =0,a2=3,∴⎩⎪⎨⎪⎧a =6,b =9.∴a +b =15.②当A ={5}时,有⎩⎪⎨⎪⎧Δ=a 2-4b =0,a2=5,∴⎩⎪⎨⎪⎧a =10,b =25.∴a +b =35.③当A ={3,5}时,有⎩⎪⎨⎪⎧Δ=a 2-4b >0,a =8,b =15.∴a +b =23. 综上知a +b =15或a +b =23或a +b =35.(教师用书独具)已知集合A ={x |-3≤x ≤4},B ={x |2m -1<x <m +1},且B ⊆A .求实数m 的取值范围. 【思路探究】 借助数轴分析,注意B 是否为空集. 【自主解答】 ∵B ⊆A , (1)当B =∅时,m +1≤2m -1, 解得m ≥2.(2)当B ≠∅时,有⎩⎪⎨⎪⎧-3≤2m -1,m +1≤4,2m -1<m +1,解得-1≤m <2,综上得实数m 的取值范围为{m |m ≥-1}.1.解决此类问题通常先化简所给集合,再用数轴表示所给集合,根据端点间的大小关系,列出不等式求解,得到参数的取值范围.2.对集合B 分类讨论是解决此类题目的关键,注意不要忽视对B =∅的讨论.若本例把“B ⊆A ”改为“B A ”,其余条件不变,试求实数m 的取值范围. 【解】 (1)当B =∅时,2m -1>m +1,解得m >2. (2)当B ≠∅时,有⎩⎪⎨⎪⎧-3<2m -1,m +1<4,2m -1≤m +1,解得-1<m ≤2.综上得实数m 的取值范围为{m |m >-1}.§3集合的基本运算3.1 交集与并集(教师用书独具)●三维目标 1.知识与技能(1) 理解两个集合的交集与并集的运算的含义,会利用定义求简单集合的交集与并集. (2)能够用集合语言和图形语言(Venn 图和数轴)表示交集和并集. (3)让学生体会到图形(数形结合思想)对理解抽象概念的作用.(4)会利用数轴求无限集的交集、并集的运算,体会数形结合在解决问题中的作用. 2.过程与方法(1) 经历通过实例导入分析,然后再进行抽象概括得出结论的过程,让学生学会分析问题、解决问题的方法 .(2) 给学生渗透数形结合的数学思想. 3.情感、态度与价值观。

人教版高中必修1(B版)第一章集合教学设计

人教版高中必修1(B版)第一章集合教学设计

人教版高中必修1(B版)第一章集合教学设计
一、教学目标
本章旨在让学生了解集合及其基本概念,掌握集合的表示方法、运算等基本内容,建立基本的数学思维和数学语言意识。

二、教学重点
1.集合及其基本概念的理解。

2.集合的比较、运算等基本内容的掌握。

3.基本数学语言和数学思维的建立。

三、教学难点
1.集合的基本概念及其理解。

2.集合的定义和各种运算的具体表达及其理解。

四、教学方法
本章教学主要采用教师讲授的方式,注重以图形表示为主,试图使抽象的数学概念形象化、具体化。

同时,也会引导学生通过讨论、实例等方式参与到教学过程中,提高学生的探究和思考能力。

五、教学内容及进度安排
1. 集合与元素
•集合的概念
•集合的元素
1。

人教B版高中数学必修一《第一章 集合 1.1 集合与集合的表示方法 1.1.1 集合的概念》_63

人教B版高中数学必修一《第一章 集合 1.1 集合与集合的表示方法 1.1.1 集合的概念》_63

(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.定义:一般地,某些指定的对象集在一起就成为一个集合.1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合(简称集)(2)元素:集合中每个对象叫做这个集合的元素2、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合记作N,(2)正整数集:非负整数集内排除0的集记作N*或N+(3)整数集:全体整数的集合记作Z ,(4)有理数集:全体有理数的集合记作Q ,(5)实数集:全体实数的集合记作R注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0(2)非负整数集内排除0的集记作N*或N+ Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z*3、元素对于集合的隶属关系(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A(2)不属于:如果a不是集合A的元素,就说a不属于A,记作4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……元素通常用小写的拉丁字母表示,如a、b、c、p、q……⑵“∈”的开口方向,不能把a∈A颠倒过来写三、练习题:1、练习判断下列语句是否构成一个集合:(1)中国古代的四大发明;(2)自然数的全体;(3)班上高个子同学全体;(4)与0接近的全体实数;2、【例2】用符号“∈”或“ ” 填空:(1)3.14__________Q(2)π__________Q;(3)0__________N*(4)0_________N(5)(-2)0________N*。

高中数学 第一章 集合 1.1 集合的含义与表示教案1 北师大版必修1(2021年最新整理)

高中数学 第一章 集合 1.1 集合的含义与表示教案1 北师大版必修1(2021年最新整理)

高中数学第一章集合1.1 集合的含义与表示教案1 北师大版必修1 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章集合1.1 集合的含义与表示教案1 北师大版必修1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章集合1.1 集合的含义与表示教案1 北师大版必修1的全部内容。

1。

1集合的含义与表示本节教材分析集合论是现代数学的一个重要的基础。

在高中数学中,集合的初步知识与其他内容有着密切的联系,是学习、掌握和使用数学语言的基础。

课本从学生熟悉的集合(自然数的集合、有理数的集合等)出发,结合实例给出元素、集合的含义,课本注重体现逻辑思考的方法,如抽象、概括等.值得注意的问题:由于本小节的新概念、新符号较多,建议教学时先引导学生阅读课本,然后进行交流,让学生在阅读与交流中理解概念并熟悉新符号的使用。

(1)三维目标1.知识与技能:通过实例了解集合的含义,体会元素与集合的“属于”关系,了解集合元素的确定性、互异性、无序性,掌握常用数集及其专用符号。

2。

过程与方法:能选择集合不同的语言形式描述具体的问题;能够用其解决有关问题.3。

情感态度与价值观: 提高学生分析问题和解决问题的能力,培养学生的应用意识; 提高语言转换和抽象概括能力,树立用集合语言表述数学内容的意识.(2)教学重点:集合的基本概念与表示方法(3)教学难点:选择恰当的方法表示一些简单的集合(4)教学建议:本节的重点是集合的概念与表示方法.本节的难点是运用集合的两种常用表示方法-—列举法与描述法,正确表示一些简单的集合.集合是数学的一个重要概念,教科书中给出的集合的概念只是一个描述性的说明,在教学中,注意通过实例使学生对集合概念有一个初步认识.对厂用数集的记法,应注意:(1)自然数集包括数0;(2)非负整数集内排出0的集合。

B1--1.1 集合(6课时)--必修①第一章集体备课

B1--1.1 集合(6课时)--必修①第一章集体备课

预备课:高中入学第(学法指导)课教学目的:了解高中阶段数学学习目标和基本能力要求,了解新课程标准的基本思路,了解高考意向,掌握高中数学学习基本方法,激发学生学习数学兴趣,强调布置有关数学学习要求和安排。

教学过程:一、欢迎词:1、祝贺同学们通过自己的努力,进入高一级学校深造。

希望同学们能够以新的行动,圆满完成高中三年的学习任务,并祝愿同学们取得优异成绩,实现宏伟目标。

2、同学们军训辛苦了,收获应是:吃苦耐劳、严肃认真、严格要求3、我将和同学们共同学习高中数学,暂定一年,…4、本节课和同学们谈谈几个问题:为什么要学数学?如何学数学?高中数学知识结构?新课程标准的基本思路?本期数学教学、活动安排?作业要求?二、几个问题:1.为什么要学数学:数学是各科之研究工具,渗透到各个领域;活脑,训练思维;计算机等高科技应用的需要;生活实践应用的需要。

2.如何学数学:请几个同学发表自己的看法→共同完善归纳为四点:抓好自学和预习;带着问题认真听课;独立完成作业;及时复习。

注重自学能力的培养,在学习中有的放矢,形成学习能力。

高中数学由于高考要求,学习时与初中有所不同,精通书本知识外,还要适当加大难度,即能够思考完成一些课后练习册,教材上每章复习参考题一定要题题会做。

适当阅读一些课外资料,如订阅一份数学报刊,购买一本同步辅导资料.3.高中数学知识结构:书本:高一上期(必修①、②),高一下期(必修③、④),高二上期(必修⑤、选修系列),高二下期(选修系列),高三年级:复习资料。

知识:密切联系,必修(五个模块)+选修系列(4个系列,分别有2、3、6、10个模块)能力:运算能力、逻辑思维能力、空间想像能力、分析和解决实际问题的能力、应用能力。

4.新课程标准的基本理念:①构建共同基础,提供发展平台;②提供多样课程,适应个性选择;③倡导积极主动、勇于探索的学习方式;④注重提高学生的数学思维能力;⑤发展学生的数学应用意识;⑥与时俱进地认识“双基”;⑦强调本质,注意适度形式化;⑧体现数学的文化价值;⑨注重信息技术与数学课程的整合;⑩建立合理、科学的评价体系。

人教版高中必修1(B版)第一章集合课程设计

人教版高中必修1(B版)第一章集合课程设计

人教版高中必修1(B版)第一章集合课程设计一、教学目标在本章中,学生应该能够掌握以下知识:1.集合的定义及其表示法;2.集合的基本运算,包括并、交、差;3.集合的关系及其性质;4.应用集合的基本知识解决实际问题。

二、教学重点1.集合的基本概念及其应用;2.集合的基本运算。

三、教学难点1.集合的性质及其证明;2.集合关系的理解及其应用。

四、教学内容1. 集合的概念及表示法学习目标:1.掌握集合的定义及其表示方式;2.学会用文字和符号表示集合。

学习过程:1.引入:教师提出以下问题,并引导同学思考:“你会用什么方法来表示一群人、一组数、一箱书?”2.概念解释:教师介绍集合的概念,并用简单例子引导同学理解。

3.符号表示:教师介绍用花括号和列举元素的方式表示集合,并用示例进行讲解。

4.练习:教师出示一张图片,要求同学用集合的符号表示方法表示图片中的物品。

2. 集合的基本运算学习目标:1.掌握集合的基本运算,并能进行口算;2.能够应用基本运算解决实际问题。

学习过程:1.引入:教师提出以下问题,并引导同学思考:“如果A同学喜欢的水果有苹果和香蕉,B同学喜欢的水果有香蕉和梨子,那么他们俩都喜欢的水果有哪些?”2.基本概念:教师介绍集合的基本运算,并用示例讲解。

3.综合练习:教师出题目,让同学从中学习并应用集合的基本运算。

3. 集合的关系及其性质学习目标:1.理解集合之间的关系及其定义;2.掌握集合关系的性质。

学习过程:1.引入:教师提出以下问题,并引导同学思考:“有两个集合A和B,A中的元素都属于B,我们该怎么表示?”2.概念解释:教师介绍集合之间的关系及其定义,并用示例讲解。

3.性质讲解:教师介绍集合关系的性质及其证明。

4.练习:教师出题目,让同学从中学习并应用集合的关系及其性质。

4. 应用集合的基本知识解决实际问题学习目标:1.能够应用集合的基本知识解决实际问题;2.掌握实际问题的解题思路。

学习过程:1.引入:教师提出以下问题,并引导同学思考:“有40名学生,其中20名学生同时参加了足球和篮球比赛,10名学生仅参加了足球比赛,那么有多少人参加了篮球比赛?”2.讲解思路:教师导引同学学习如何应用集合的基本知识解决实际问题。

高一数学必修1第一章集合全章教案

高一数学必修1第一章集合全章教案

第一章集合与函数概念§1.1集合教学目标:(1)了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性•互异性.无序性;(4)会用集合语言表示有关数学对象;教学重点•难点重点:集合的含义与表示方法•难点:表示法的恰当选择•1.1.1集合的含义与表示(一)集合的有关概念:1. 定义:一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集),构成集合的每个对象叫做这个集合的元素(或成员)。

2•表示方法:集合通常用大括号{}或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。

3. 集合相等:构成两个集合的元素完全一样。

4. 元素与集合的关系:(元素与集合的关系有“属于•”及“不属于两种)⑴若a是集合A中的元素,则称a属于集合A,记作a_A ;⑵若a不是集合A的元素,则称a不属于集合A,记作a ' A o5. 常用的数集及记法:非负整数集(或自然数集),记作N ;正整数集,记作N*或N + ; N内排除0的集.整数集,记作Z; 有理数集,记作Q; 实数集,记作R ;6. 关于集合的元素的特征⑴确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了。

女口:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋)。

“中国古代四大发明”(造纸,印刷,火药,指南针)可以构成集合,其元素具有确定性;而“比较大的数”,“平面点P周围的点”一般不构成集合,因为组成它的元素是不确定的•⑵互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的。

如:方程(x-2)(x-1) 2=0的解集表示为:1,-2 ?,而不是「1,1,-2 ?⑶无序性:即集合中的元素无顺序,可以任意排列、调换。

练1:判断以下元素的全体是否组成集合,并说明理由:⑶ 大于3小于11的偶数;⑵我国的小河流;⑶非负奇数;⑷某校2011级新生;⑸ 血压很高的人;7. 元素与集合的关系:(元素与集合的关系有“属于•”及“不属于”两种⑴若a是集合A中的元素,则称a属于集合A,记作a A ;⑵若a不是集合A的元素,则称a不属于集合A,记作a: A°例如,我们A表示1~20以内的所有质数”组成的集合,则有3(A , 4老A,等等。

人教B版数学高一版必修1教案1.1.1集合的概念

人教B版数学高一版必修1教案1.1.1集合的概念

教师锦囊教学建议1.关于集合的概念及空集集合是现代数学思想中的原始概念,是不定义概念,但可以描述.对于描述的集合初学者不易领会到位,可以分门别类地举一些实例说明.教材中对集合的描述是“所研究对象的全体”,它不但可以是数,也可以是方程、不等式,一定范围内的人或物也可作为元素.教材中对集合作了很粗略的分类:有限集与无限集.显然这是按集合内元素的个数分的类.用不同的标准显然有不同的分类.数学上常见的还有其他一些类别,如实数集R,自然数集N,不等式构成的集合,函数构成的集合,多边形(图形)构成的集合等等.其中空集是很重要的集合.在不同的集合中,空集就像自然数中的0,它既是有限集(无任何元素),又是任何集合的子集,要举例说明空集与一般集合的这种关系.2.关于集合中元素的特性集合中元素具有以下三个特性:确定性、互异性、无序性.其元素具备这样特征的一类对象的全体才叫集合.生活中模棱两可的表达不能作为集合的元素.如好人构成一个集合,难题构成一个集合,很大的数构成一个集合都是错误的,为此可结合例3及变式强调元素特征的应用. 相同元素在集合内只能出现一次(元素的互异性),但是算式作为元素的集合可以有{x+y,y+x},有序实数对(点)为元素的集合可以有{(1,2),(2,1)}等.因为这是不同的两个元素.备用习题1.下列所给对象不能构成集合的是( )A.平面内的所有点B.直角坐标系中Ⅰ、Ⅲ象限的角平分线上的所有点C.清华大学附中高一年级全体女生D.所有高大的树解析:由于选项D 中的对象含糊不清,所谓“高大”没有明确的客观标准,也就难以判断某些对象是否属于这个范畴,因而不符合集合的确定性.故选D.答案:D2.含有三个实数的集合可以表示为{a,ab ,1},也可以表示为{a 2,a+b,0},则a 2006+b 2006的值为( )A.0B.1C.-1D.±1解析:由已知a≠0,得ab =0. ∴b=0.由集合相等,可知a 2=1,即a=±1.又由集合中元素的互异性,得a≠1.∴a=-1.∴a 2006+b 2006=1.∴选B.答案:B3.集合P={1,a},a 2是集合P 中的元素,则a 可取的值有________个.解析:因为a 2是集合P 中的元素,所以a 2=1或a 2=a,解得a=1或-1或0.又由元素互异性,知a≠1,∴a=-1或0,即a 可取的值有2个.答案:24.求集合{a,12 a }中a 的取值范围.解析:由⎪⎩⎪⎨⎧-≠≠,12,1a a a 得a≠1且a≠-1且a≠2.。

。必修1第一章集合教案

。必修1第一章集合教案

( contains ) A
个人主页
3
当集合 A 不包含于集合 B 时,记作 A ? B
③ 用 Venn 图表示两个集合间的“包含”关系:
A B(或B A)
A B
④集合相等定义: A B且 B A ,则 A B 中的元素 是一样的,因此 A B .
⑤真子 集定义: 若集合 A B ,存在元素 x B且 x A ,则称集合 A 是集合 B 的真子集 ( proper subset )。记作: A B (或 B A )。 读作: A 真包 含于 B(或 B 真包含 A)。 ⑥练 习:举 例子集 、真子集、集合相等;探讨 { x | x2 3 0} 。 ⑦空集定义: 不含有任何元素的集合称为空集 ( empty set ),记作: 。并规定:空集是任何集合的子集, 是任何非空集合的真子集。 2. 教学例题: 3. 练习:已知集合 A= {x|x 2 - 3x+ 2= 0} ,B= {1,2} , C= {x|x<8,x ∈ N}, 用适当符号填空:
{ x R | x2 1 0}
② 列举法: 把集合的元素一一列举出来, 并用花括号
“ { } ”括起来。→ P4 例 1 ③ 练习:分别表示方程 x(x 2 - 1)=0 的解的集合、 15 以内质数的集合。
2. 描述法的教学:
① 描述法:用集合所含元素的共同特征表示集合的方 法,一般形式为 { x A | P} ,其中 x 代表元素, p 是确




审核人签字:
年月日
富县高级中学集体备课教案
2
年级:高一( 2)组
科目:数学
授课人:
课题
§2 集合间的基本关系
第 课时
1. 了解集合之间包含与相等的含义,能识别给定集合的子集。

高一数学第一章《集合》教案

高一数学第一章《集合》教案

高一数学第一章《集合》教案是教师上课的课程依据之一,下面是店铺给大家提供的第一章《集合》教案,大家可以参考阅读,更多内容请关注应届毕业生考生网。

教学目标:(1) 知识与技能:了解集合的含义,理解并掌握元素与集合的“属于”关系、集合中元素的三个特性,识记数学中一些常用的的数集及其记法,能选择自然语言、列举法和描述法表示集合。

(2) 过程与方法:从圆、线段的垂直平分线的定义引出“集合”一词,通过探讨一系列的例子形成集合的概念,举例剖析集合中元素的三个特性,探讨元素与集合的关系,比较用自然语言、列举法和描述法表示集合。

(3) 情感态度与价值观:感受集合语言的意义和作用,培养合作交流、勤于思考、积极探讨的精神,发展用严密谨慎的集合语言描述问题的习惯。

教学重难点:(1) 重点:了解集合的含义与表示、集合中元素的特性。

(2) 难点:区别集合与元素的概念及其相应的符号,理解集合与元素的关系,表示具体的集合时,如何从列举法与描述法中做出选择。

教学过程:【问题1】在初中我们已经学习了圆、线段的垂直平分线,大家回忆一下教材中是如何对它们进行定义的?[设计意图]引出“集合”一词。

【问题2】同学们知道什么是集合吗?请大家思考讨论课本第2页的思考题。

[设计意图]探讨并形成集合的含义。

【问题3】请同学们举出认为是集合的例子。

[设计意图]点评学生举出的例子,剖析并强调集合中元素的三大特性:确定性、互异性、无序性。

【问题4】同学们知道用什么来表示一个集合,一个元素吗?集合与元素之间有怎样的关系?[设计意图] 区别表示集合与元素的的符号,介绍集合中一些常用的的数集及其记法。

理解集合与元素的关系。

【问题5】“地球上的四大洋”组成的集合可以表示为{太平洋、大西洋、印度洋、北冰洋},“方程(x- 1)(x+2)=0的所有实数根”组成的集[设计意图]引出并介绍列举法。

【问题6】例1的讲解。

同学们能用列举法表示不等式x-7<3的解集吗?【问题7】例2的讲解。

人教版高中必修1(B版)1.1.1集合的概念教学设计

人教版高中必修1(B版)1.1.1集合的概念教学设计

人教版高中必修1(B版)1.1.1集合的概念教学设计一、教学目标1.理解集合的概念、元素和符号表示方法。

2.能够根据集合的定义和运算规则解决简单的集合问题。

3.培养学生的逻辑思维和抽象思维能力。

二、教学重点和难点1.集合的概念、元素和符号表示方法。

2.集合的包含关系和运算规则。

三、教学内容1. 集合的引入教师用故事引入集合的概念,如小明家有3个苹果,4个橘子和2个葡萄,这些水果可以构成一个集合,集合的元素就是这些水果。

然后教师引领学生发现集合可以用花括号{}表示,如集合{苹果,橘子,葡萄}。

2. 集合的定义教师引导学生从实际中发现集合的概念,如一所学校所有学生构成一个集合,或者全国所有男生和女生分别构成两个集合。

然后教师引导学生发现集合的定义:将一些确定的对象组成的整体叫做集合,其中的每一个对象都叫做集合的元素。

例如,{1,2,3,4}是一个集合,1,2,3,4是集合的元素。

3. 集合的符号表示法教师在黑板上写出集合的符号表示法,如集合A={1,2,3},集合B={x|x是小于5的偶数}。

然后教师引导学生理解符号表示法的意义和用途。

4. 集合的包含关系教师引导学生发现集合的包含关系,如一个集合A包含另一个集合B,当且仅当A中所有的元素都属于B。

例如,{1,2,3}包含{1,2}和{},但不包含{1,2,3,4}。

然后教师引导学生理解子集和真子集的概念。

5. 集合的运算规则教师引导学生发现集合的运算规则,包括集合的并、交、差和补等。

然后教师提供简单的例题,让学生应用集合的定义和运算规则解决问题。

四、教学方法1.演示法:用故事、图示等形式演示集合的概念和运算规则。

2.体验法:让学生通过实际操作,感受集合的定义和运算规则。

3.对话法:通过对话,引导学生理解集合的概念和运算规则。

4.问题导向法:提出问题,让学生应用集合的知识解决问题。

五、教学评价1.在教学过程中,教师要注意观察学生的学习情况,及时调整教学策略。

高一必修一第一章集合教案

高一必修一第一章集合教案

B =_____________A B =_________x x ++,82)CB=初等函数运用a≠0,1)例题:1. 已知a>0,a 0,函数y=a x 与y=log a (-x)的图象只能是 ( )2.计算: ①=64log 2log 273 ;②3log 422+= ;2log 227log 553125+= ; 3.函数y=log 21(2x 2-3x+1)的递减区间为4.若函数)10(log)(<<=a x x f a在区间]2,[a a 上的最大值是最小值的3倍,则a=[基础训练A 组] 一、选择题1.下列函数与x y =有相同图象的一个函数是( )A .2x y = B .xx y 2=C .)10(log ≠>=a a a y x a且 D .x a a y log =2.函数y x =3与y x =--3的图象关于下列那种图形对称( ) A .x 轴 B .y 轴 C .直线y x = D .原点中心对称 3.已知13x x -+=,则3322x x -+值为( ) A.33 B.25 C.45 D. 45- 4.函数12log (32)y x =-的定义域是( )A .[1,)+∞B .2(,)3+∞C .2[,1]3D .2(,1]3第三章、函数的应用一、函数的零点及性质:1、定义:对于函数()y f x =,若0x ∃使得()00f x =,则称0x 为()y f x =的零点。

2、性质:01若()()f a f b ⋅<0,则函数()y f x =在[],a b 上至少存在一个零点。

02函数()y f x =在[],a b 上存在零点,不一定有()()f a f b ⋅<0 03在相邻两个零点之间所有的函数值保持同号。

二、二分法求方程()0f x =的近似解1、原理与步骤:①确定一闭区间[],a b ,使()()f a f b ⋅<0,给定精确度ε;②令12a bx +=,并计算()1f x ; ③若()1f x =0则1x 为函数的零点,若()()1f a f x ⋅<0,则[]01,x a x ∈,令b=1x ; 若()()1f x f b ⋅<0 则[]01,x x b ∈,令a=1x④直到a b -<ε时,我们把a 或b 称为()0f x =的近似解。

高中数学 第一章《集合》教案 新人教A版必修1

高中数学 第一章《集合》教案 新人教A版必修1

课题:§1.1 集合教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。

另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。

课型:新授课教学目标:(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;教学重点:集合的基本概念与表示方法;教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;教学过程:一、引入课题军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。

阅读课本P2-P3内容二、新课教学(一)集合的有关概念1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。

2.一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。

3.思考1:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。

4.关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。

(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

(3)集合相等:构成两个集合的元素完全一样5.元素与集合的关系;(1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作a∉A(或a A)(举例)∈6.常用数集及其记法非负整数集(或自然数集),记作N正整数集,记作N*或N+;整数集,记作Z有理数集,记作Q实数集,记作R(二)集合的表示方法我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。

高中数学 第一章 集合复习课教案 新人教B版必修1

高中数学 第一章 集合复习课教案 新人教B版必修1
(1)元素与集合间的关系用符号表示;
(2)集合与集合间的关系用符号表示。
(3)如何正确使用 等符号?
(4)集合的特征性质:如果在集合I中,属于集合A的任意一个元素x都具有性质p(x),而不属于集合A的元素都不具有性质p(x),则性质p(x)叫做集合A的一个特征性质。认清集合中元素所具有的性质,并能将集合语言等价转换成为熟悉的数学语言,这才是避免错误的根本办法。
教学难点:是用集合的特征性质描述法描述集合和补集的逻辑含义。
教学过程
教学环节
问题与任务
时间
教师活动
学生活动





知识结构
思考与交流
巩固提高
巩固与提高
通过复习回顾,为引入集合表示方法作铺垫.
加深学生对列举法、特征性质描述法的理解
巩固所学知识,家生学生对列举法及特征性质描述法的理解和掌握.
熟练进行补集的理解及运算
A.9 B .14 C.15 D .21
2、典型例题
例1已知全集为R,A={y|y=x2+2x+2},B={x|y=x2+2x-8},
求: (1)A∩B;(2)A∪CRB;(3)(CRA)∩(CRB)
例2已知集合A={x|x2-x-6<0},B={x|0<x-m<9}
(1)若A∪B=B,求实数m的取值范围;
(4)集合S,M,N,P如图所示,则图中阴影部分所表示的集合是( )
A.M∩(N∪P)
B.M∩CS(N∩P)
C.M∪CS(N∩P)D.M∩CS(N∪P)
(5)集合P={x,1},Q={y,1,2},其中x,y∈{1,2,…9}且P是Q的真子集。把满足上述条件的一对有序整数(x , y)作为一个点,这样的点的个数是( )

人教新课标高中数学B版必修1《1.1.1 集合的概念》教学设计(表格式)

人教新课标高中数学B版必修1《1.1.1 集合的概念》教学设计(表格式)

1.1.1 集合的概念一、教材分析1.知识来源:集合的概念选自人民教育出版社B版必修一第一章第一节集合与集合的表示方法的第一小节.2.知识背景:作为现代数学基础的集合论,集合语言是现代数学的基本语言,使用集合语言,可以简洁、准确地表达数学中一些冗长的文字语言,高中数学课程只将集合作为一种语言来学习,作为一种数学简单符号来探究.通过本节课的学习,是阶段性的要求,学生将领悟集合的抽象性及其具体性,学会使用最基本的集合语言表示有关的数学对象,逐渐发展运用数学语言进行交流的能力.3.知识外延:集合相关知识的学习对于接下来函数的学习至关重要,高中函数的概念将建立在集合间关系的基础上的.二、学情分析1.学生心理特征分析:集合为高一上学期开学后的第一次授课知识,是学生从初中到高中的过度知识,存在部分同学还沉浸在暑假的懒散中,从而增加了授课的难度.再者,与初中直观、具体、易懂的数学知识相比,集合尤其是无限集合就显得抽象、不易理解,这会给学生产生一定的心理负担,对高中数学知识的学习产生排斥心理.因此本节授课方法就显得十分重要.2.学生知识结构分析:对于高一的新生来说,能够顺利进入高中知识的学习,基本功还是较扎实的,有良好的学习态度,也有一定的自主学习能力和探究能力.对集合概念的知识接纳和理解打下了良好的基础,在教学过程中,充分调动学生已掌握的知识,增强学生的学习兴趣.三、教学目标:1、知识与技能(1)初步理解集合的含义,知道常用数集及其记法.(2)初步了解“属于”、“不属于”关系的意义.(3)初步了解有限集、无限集、空集的意义.2、过程与方法(1)通过实例,初步体会元素与集合之间的“属于”关系,从观察分析集合的元素入手,正确的理解集合.(2)观察关于集合的几组实例,并通过自己思考举出各种集合的例子,初步感受集合语言在描述客观现实和数学对象中的意义.(3)学会借助实例分析、探究数学问题(如集合中元素的确定性、互异性).3、情感、态度与价值观(1)了解集合的含义,体会元素与集合的“属于”关系.(2)在学习运用集合语言的过程中,增强学生认识事物的能力.初步培养学生实事求是、扎实严谨的科学态度.四、教学重难点重点:使学生了解集合的含义以及具体的表示方法.难点:区别较多的新概念和相应的新符号.五、课时分配:集合的学习约为6课时1、集合与集合的表示方法1.1.1集合的概念 1课时1.1.2集合的表示方法 1课时1、2集合之间的关系和运算1.2.1集合之间的关系 1课时1.2.2集合的运算 2课时小结与复习 1课时六、教学建议集合是一个不加定义的概念,教学中应结合学生的生活经验和已有的数学知识,通过列举丰富的实例,是学生理解集合的含义.学习集合语言最好的方法是运用,在教学中要创设学生运用集合语言进行表达和交流的情景和机会,以使学生在实际运用中逐渐熟悉自然语言、集合语言、图形语言各自的特点,进行相互转换并掌握集合语言.在关于集合之间的关系和运算的教学中,使用Venn图是重要的,Venn图有助于学生学习、掌握、运用集合语言和其他数学语言.七、教学过程。

高中数学必修一集合部分教案1-6课时

高中数学必修一集合部分教案1-6课时

§1.1.1 集合的含义与表示(总第1课时)【教学目标】1.知识与技能(1)通过实例,了解集合的含义,体会元素与集合的“属于”关系.(2)理解元素的确定性、互异性、无序性。

(3)会用集合语言表示有关数学对象.能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合的语言和作用。

(4)知道常用数集及其专用数集.(5)培养学生抽象概括能力.2.过程与方法(1)让学生经历从集合实例中抽象概括出集合共同特点的过程, 进而了解集合的含义.(2)让学生归纳整理本节所学内容.3.情感态度价值观使学生感受到学习集合的必要性,增强学习的积极性.【教学重点】集合概念、性质及表示法【教学难点】选择适当的方法表示集合【教学过程】(一)教学目标的呈现:见教学目标(二)学生问题的反馈与评价1.方程组的解集如何表示?2.描述法中,代表元素能否省略?(三)预习任务1.怎样理解集合的概念?元素的概念如何?怎样用符号表示它们?2.集合与元素的关系有哪两种关系?怎样用相应的记号表示?3.集合中元素有那些特性?4.理解常用数集:正整数集、整数集、有理数集、实数集,默写以上常用数集的记号. 5.表示具体集合时,常用的表示方法有哪两种?6.哪种集合常用描述法?那种集合常用列举法表示?(四)预习检测1. 下列说法正确的的是(D )(A)在集合N中,1是最小的数. (B)方程2-4x+4=0的解集是{2,2}.(C) 若-a∈N,则a∈N (D) A={x|x2=x},则-1 A2.①对于集合A={1,3,5},3、7是否是A中的元素?②{我国的小河流}是否表示一个集合?③A={太平洋,大西洋},B={大西洋,太平洋}是否表示同一个集合?3. 已知A={a -3,2a -1,a 2+1},其中a ∈R,若-3∈A,则a=_______.;(五)典型例题(师生展示,教师指导)1.集合M={a|65-a∈N,且a ∈Z},这种表示方法是了_____,用另一种方法表示为______答案:【描述法,{-1,2,4}】2.已知集合A={2,3,a 2+2a-3},B={a+3,2},若5∈A,5∉B,求实数a 的值.答案:a 2+2a-3=5,a+3≠5,得a=23.用列举法和描述法表示下列集合:(1)所有的15的正约数的集合;(2)方程x 2-5x +6=0的所有根的集合;(3)方程组⎩⎨⎧x+y=1x-y=-1的解集.(六)问题探究,师生合作集合{x|y=x 2},{y|y=x 2},{(x,y)|y=x 2},{y=x 2|x ∈R}的元素各为什么?(七)课堂练习1.用符号“∈”、“∉”填空(1)0____N; 0_____N +;π_____Q; 9 _____Z; ( 5 )2_____N ; 5 ____R. ( 2 )B={x|x 2+x -6=0},则3________B ,-3_________B .2.用适当的方法表示下列两个集合:(1)不等式4x -5<3的解集;(2)直线上x +y =5点的集合;(3)A ={(x ,y)|x +y =5,x ∈N,y ∈N};(4)一次函数y=x+3与y =-2x +6的图象的交点组成的集合.(七)回到目标(九)课堂总结1.集合概念;2.集合性质;3.集合的表示法;4.特殊数集.【教学后记】§1.1.2 集合间的基本关系(总第2课时)【教学目标】1.知识与技能(1)类比数的关系,理解两个集合之间包含与相等的含义.(2)理解子集真子集的概念.能识别给定集合的子集.(3) 在具体情境中,了解全集与空集的含义.(4)能使用venn图表示集合间的关系,体会直观图对理解抽象概念的作用.2.过程与方法让学生通过观察身边的实例,发现集合间的关系,体验其现实意义.3. 情感、态度、价值观(1)树立数形结合的思想(2)体会类比对发现新结论的作用.【教学重点】理解集合间包含与相等的关系【教学难点】空集的含义【教学过程】(一)教学目标的呈现:见教学目标(二)学生问题的反馈与评价1.空集与非空集合之间是何关系?2.{1,2,3}与{2,3,4}之间是什么关系?3.A={A|A⊆Φ}表示什么?(三)预习任务1.两个集合之间可能有那些关系?2.集合A是集合B的子集的定义如何?记号怎样?试用Venn图表示集合A是集合B 的子集.3.集合A是集合B的真子集的定义如何?记号怎样?4.集合A与集合B相等的定义如何?记号怎样?5.空集的义如何?记号怎样?6.{a}⊆A与a∈A有什么区别?7.由集合之间的关系,可以得到两个重要的结论即设A是一个集合,则有(1)_______⊆A;(2)______⊆A.【A,Φ】(四)预习检测1.①设A={x|x2-1=0}, B={-1,1},则A与B 的关系是_______.答案:A⊆B或B⊆A或A=B②设A={1,2,3}, B={2,3,4}则A B;B A.答案:A⊄B,B⊄A,A≠B③A={正方形},B={四边形},则两集合A、B中元素的关系是____________.答案:A⊂≠B.2. 已知M={2,a,b}N={2a,2,b2},且M=N,则a=______,b=___或a=______,b=_____.3.下列关系式:①{a,b}⊆{a,b}; ②{a,b}={b,a}; ③Φ⊂≠{0}; ④0∈{0}⑤Φ∈{0};⑥Φ={0}.其中正确命题的序号是_________.①②③④(五)典型例题(师生展示,教师指导)例1.写出集合{a,b}、{a,b,c}的子集,并猜想出含有n个元素的子集及真子集的个数.例2.(1)已知集合M={(x,y)|x+y<0,xy>0},P={(x,y)|x<0,y<0},那么M和P得关系是____.(2)写出满足{1,2}⊆M⊂≠{1,2,3,4,5}的集合M.例3.已知A={x|x<3},B={x|x<a},若B⊆A,则a的取值范围为_________;若A⊂≠B,则a的取值范围为_________.(五)问题探究,师生合作1.∈,∉;⊆,⊂≠,=,≠,⊄各自适用的范围是什么?2.Φ_____{Φ}.(六)课堂练习1.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若B⊆A,求实数m的取值范围.2.设A={x|x=4k+1,k∈Z},B={x|x=2k+1,k∈Z},用符号表示A、B的关系为__________.3.写出满足{1,2}⊂≠M ⊆{1,2,3,4,5}的集合M.(七)回到目标(八)课堂总结1.子集,真子集,相等,空集的关系,2.空集是任何集合的子集,空集是任何非空集合的真子集;3.研究子集时,要注意空集与自身.【教学后记】§1.1.3 集合的基本运算(一)(总第3课时)【教学目标】1.知识与技能(1) 理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2) 能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.(3) 理解在给定集合中一个子集的补集的概念,会求给定子集的补集.2.过程与方法学生通过观察和类比, 借助Venn 图理解集合的基本运算.3. 情感、态度、价值观(1)进一步树立数形结合的思想,培养学生的分类意识和数形结合的意识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

预备课:高中入学第一课(学法指导)教学目的:了解高中阶段数学学习目标和基本能力要求,了解新课程标准的基本思路,了解高考意向,掌握高中数学学习基本方法,激发学生学习数学兴趣,强调布置有关数学学习要求和安排。

教学过程:一、欢迎词:1、祝贺同学们通过自己的努力,进入高一级学校深造。

希望同学们能够以新的行动,圆满完成高中三年的学习任务,并祝愿同学们取得优异成绩,实现宏伟目标。

2、同学们军训辛苦了,收获应是:吃苦耐劳、严肃认真、严格要求3、我将和同学们共同学习高中数学,暂定一年,…4、本节课和同学们谈谈几个问题:为什么要学数学?如何学数学?高中数学知识结构?新课程标准的基本思路?本期数学教学、活动安排?作业要求?二、几个问题:1.为什么要学数学:数学是各科之研究工具,渗透到各个领域;活脑,训练思维;计算机等高科技应用的需要;生活实践应用的需要。

2.如何学数学:请几个同学发表自己的看法→共同完善归纳为四点:抓好自学和预习;带着问题认真听课;独立完成作业;及时复习。

注重自学能力的培养,在学习中有的放矢,形成学习能力。

高中数学由于高考要求,学习时与初中有所不同,精通书本知识外,还要适当加大难度,即能够思考完成一些课后练习册,教材上每章复习参考题一定要题题会做。

适当阅读一些课外资料,如订阅一份数学报刊,购买一本同步辅导资料.3.高中数学知识结构:书本:高一上期(必修①、②),高一下期(必修③、④),高二上期(必修⑤、选修系列),高二下期(选修系列),高三年级:复习资料。

知识:密切联系,必修(五个模块)+选修系列(4个系列,分别有2、3、6、10个模块)能力:运算能力、逻辑思维能力、空间想像能力、分析和解决实际问题的能力、应用能力。

4.新课程标准的基本理念:①构建共同基础,提供发展平台;②提供多样课程,适应个性选择;③倡导积极主动、勇于探索的学习方式;④注重提高学生的数学思维能力;⑤发展学生的数学应用意识;⑥与时俱进地认识“双基”;⑦强调本质,注意适度形式化;⑧体现数学的文化价值;⑨注重信息技术与数学课程的整合;⑩建立合理、科学的评价体系。

5.本期数学教学、活动安排:本期学习内容:高一必修①、②,共72课时,必修①第一章13课时(4+4+3+1+1)+第二章14课时(6+6+1+1)+第三章9课时(3+4+1+1);必修②第一章8课时(2+2+2+1+1)+第二章10课时(3+3+3+1)+第三章9课时(2+3+3+1)+第四章9课时(2+4+2+1).上课方式:每周新授6节,问题集中1节(双节连排时),两周学生讲课一次。

学习方式:预习后做节后练习;补充知识写在书的边缘;主要活动:学校、全国每年的数学竞赛;数学课外活动(每期两次)。

6.作业要求:(期末进行作业评比)①课堂作业设置两本;②提倡用钢笔书写,一律用铅笔、尺规作图,书写规范;③墨迹、错误用橡皮擦擦干净,作业本整洁;④批阅用“?”号代表错误,一般点在错误开始处;⑤更正自觉完成;⑥练习册同步完成,按进度交阅,自觉订正;⑦当天布置,当天第二节晚自习之前交(若无晚自习,则第二天早读之前交)。

⑧每次作业按90、80、70、60四个等级评定,分别得分5、4、3、2,每本作业本完成后自行统计得分并上交科代表审核、教师评定等级,得分90%~98%为优良等级,98%及以上为优秀等级;三、了解情况:初中数学开课情况;暑假自学情况;作图工具准备情况。

教学要求:使学生明确本章学习的重要性,初步理解集合、元素等概念,掌握集合的表示方法、常用数集及其记法、集合元素的三个特征。

教学重点:理解集合概念,掌握集合元素的三个特征。

教学难点:体会元素与集合的属于关系。

教学过程:一、新课引入:集合是近代数学最基本的内容之一,许多重要的数学分支都建立在集合理论的基础上,它还渗透到自然科学的许多领域,其术语的科技文章和科普读物中比比皆是,学习它可为参阅一般科技读物和以后学习数学知识准备必要的条件。

二、讲授新课:1.集合有关概念的教学:考察几组对象:① 1~20以内所有的质数;② 到定点的距离等于定长的所有点;③所有的锐角三角形;④x 2, 3x+2, 5y 3-x, x 2+y 2;⑤东升高中高一级全体学生; ⑥方程230x x +=的所有实数根;⑦ 隆成日用品厂2005年8月生产的所有童车;⑧2005年1月,广东所有出生婴儿。

A.提问:各组对象分别是一些什么?有多少个对象?(数、点、形、式、体、解、物、人)B.定义:一般地,我们把研究对象统称为元素(element ),把一些元素组成的总体叫作集合(set )(简称集)。

C.讨论集合中的元素的特征:分析“好心的人”与“1,2,1”是否构成集合?→结论:对于一个给定的集合,集合中的元素是确定的,是互异的,是无序的。

即集合元素三特征。

确定性:某一个具体对象,它或者是一个给定的集合的元素,或者不是该集合的元素,两种情况必有一种且只有一种成立。

互异性:同一集合中不应重复出现同一元素。

无序性:集合中的元素没有顺序。

D.分析下列对象,能否构成集合,并指出元素: 不等式x-3>0的解;3的倍数;方程x 2-2x +1=0的解;a,b,e,x,y,z ;最小的整数;周长为10cm 的三角形;中国古代四大发明;全班每个学生的年龄;地球上的四大洋;地球的小河流E. 集合相等:构成两个集合的元素是一样的.2.集合的字母表示:① 集合通常用大写的拉丁字母表示,集合的元素用小写的拉丁字母表示。

② 如果a 是集合A 的元素,就说a 属于(belong to)集合A ,记作:a ∈A ;如果a 不是集合A 的元素,就说a 不属于(not belong to)集合A ,记作:a ∉A 。

③ 练习:设B ={1,2,3,4,5},则5 B ,0.5 B , 3 B , -1 B 。

3.最常见的数集:① 分别写出全体自然数、全体整数、全体有理数、全体实数的集合。

② 这些数集是最重要的,也是最常见的,我们用符号表示:N 、Z 、Q 、R 。

③ 正整数集的表示,在N 右上角加上“*”号或右下角加上“+”号。

④ 练习: 填∈或∉:0 N ,0 R ,3.7 N ,3.7 Z , 3- Q ,32- R4.小节:①概念:集合与元素;属于与不属于;②集合中元素三特征;③常见数集。

三、巩固练习: 1.口答:P3 思考;P6 1题。

2.思考:x ∈R ,则{3,x,x 2-2x}中元素x 所应满足的条件?(变:-2是该集合元素)3.探究:A={1,2},B={{1},{2},{1,2}},则A 与B 有何关系?试试举同样的例子4.作业: P13 1、2题教学要求:更进一步理解集合、元素等概念,掌握集合的表示方法,会用适当的方法表示集合。

教学重点:会用适当的方法表示集合。

教学难点:选择恰当的表示方法。

教学过程:一、复习准备:1.提问:集合概念?什么叫元素?集合中元素有什么特征?集合与元素有何关系?2.集合A={x 2+2x +1}的元素是 ,若1∈A ,则x= 。

3.集合{1,2}、{(1,2)}、{(2,1)}、{2,1}的元素分别是什么?有何关系?二、讲授新课:1. 列举法的教学:① 比较:{方程210x -=的根}、{1,1}-、2{|10}x R x ∈-=② 列举法:把集合的元素一一列举出来,并用花括号“{ }”括起来。

→P4 例1③ 练习:分别表示方程x(x 2-1)=0的解的集合、15以内质数的集合。

注意:不必考虑顺序,“,”隔开;a 与{a}不同。

2. 描述法的教学:① 描述法:用集合所含元素的共同特征表示集合的方法,一般形式为{|}x A P ∈,其中x 代表元素,p 是确定条件。

→P5 例2② 练习: A.“不等式x-3>0的解”与“抛物线y =x 2-1上的点的坐标”用描述法表示B. 用描述法表示方程x(x 2-1)=0的解的集合、方程组⎩⎨⎧=+=+2732223y x y x 解集。

C.用描述法表示:所有等边三角形的集合、方程x 2+1=0的解集。

③ 简写原则:从上下文关系来看,x R ∈、x Z ∈明确时可省略,如{|32,}x x k k Z =+∈,{|0}x x >强调:描述法表示集合应注意集合的代表元素,如{(x,y)|y= x 2+3x+2}与 {y|y= x 2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z 。

辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。

下列写法{实数集},{R}也是错误的。

说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。

④练习:试用适当的方法表示方程x 3-8x=0的解集。

3.小结: 集合的两种表示方法,关键是会用适当的方法表示集合。

三、巩固练习:1. P4、P6 思考;P6 2题。

2.用适当的方法表示集合:大于0的所有奇数3.集合A ={x|43x -∈Z ,x ∈N},则它的元素是 。

4.已知集合A ={x|-3<x<3,x ∈Z},B ={(x,y)|y =x 2+1,x ∈A},则集合B 用列举法表示是 。

5.已知集合A ={x|x =2n ,且n ∈N},B ={x|x 2-6x +5=0},用∈或∉填空: 4 A ,4 B ,5 A ,5 B6.设A ={x|x =2n ,n ∈N ,且n<10},B ={3的倍数},求属A 且属B 的元素集合。

7.若集合{1,3}A =-,集合2{|0}B x x ax b =++=,且A B =,则a= , b= 。

8.课堂作业:书P6 :2题; P7:1、3题。

第三课时: 1.1.2 集合间的基本关系教学要求:了解集合之间的包含、相等关系的含义;理解子集、真子集的概念;能利用Venn 图表达集合间的关系;了解空集的含义。

教学重点:子集与空集的概念;能利用Venn 图表达集合间的关系。

教学要求:弄清楚属于与包含的关系。

教学过程:一、复习准备:1.提问:集合的两种表示方法? 如何用适当的方法表示下列集合?(1)10以内3的倍数; (2)1000以内3的倍数2.用适当的符号填空: 0 N ; Q ; -1.5 R 。

3.导入:类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?二、讲授新课:1. 子集、空集等概念的教学:①比较下面几个例子,试发现两个集合之间的关系:{3,6,9}A =与*{|3,333}B x x k k N k ==∈≤且;{}C =东升高中学生与{}D =东升高中高一学生;{|(1)(2)0}E x x x x =--=与{0,1,2}F =②定义:如果集合A 的任何一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集(subset )。

相关文档
最新文档