空间角的计算(1)
空间几何角度计算公式
空间几何角度计算公式在空间几何中,角度是一个重要的概念,用于描述两条线、平面或多个向量之间的夹角。
计算空间几何角度的公式可以根据具体情况而变化,下面将介绍几种常见的计算公式。
1. 点和直线的夹角设直线L上有一点A,过点A引一直线与直线L相交于点B,计算点A和直线L之间的夹角,可使用以下公式:cosθ = |AB| / |OB|其中θ表示点A和直线L的夹角,|AB|表示线段AB的长度,|OB|表示向量OB的长度。
2. 直线与直线的夹角设两条直线L1和L2,如果它们的方向向量分别为a和b,计算直线L1和直线L2之间的夹角,可使用以下公式:cosθ = |a·b| / (|a| |b|)其中θ表示直线L1和直线L2的夹角,|a·b|表示向量a与向量b的点乘的绝对值,|a|和|b|表示向量a和向量b的长度。
3. 平面和平面的夹角设两个平面α和β,它们的法线向量分别为n1和n2,计算平面α和平面β之间的夹角,可使用以下公式:cosθ = |n1·n2| / (|n1| |n2|)其中θ表示平面α和平面β的夹角,|n1·n2|表示向量n1与向量n2的点乘的绝对值,|n1|和|n2|表示向量n1和向量n2的长度。
4. 空间向量的夹角设两个非零向量a和b,计算向量a和向量b之间的夹角,可使用以下公式:cosθ = (a·b) / (|a| |b|)其中θ表示向量a和向量b的夹角,a·b表示向量a与向量b的点乘,|a|和|b|表示向量a和向量b的长度。
以上就是在空间几何中常用的几种角度计算公式。
根据具体情况,选择适合的公式进行计算,可以帮助我们解决空间几何问题。
空间角的计算
空间角的求法(一)异面直线所成的角:]2,0(平移法:平移其中一条或两条使之成为相交直线所成的角。
题型一 求异面直线所成的角例1:正方体ABCD —A 1B 1C 1D 1中, (1) 求AC 与D A 1所成角的大小;(2)若E 、F 分别为AB 、AD 的中点,求A 1C 1与EF 所成角的大小. 练习1.如图, 正方体ABCD -A 1B 1C 1D 1中, 异面直线A 1B 与AD 1所成角的余弦值为 ;异面直线A 1B 与DC 1所成角为 ;异面直线A 1B 与CC 1所成角为 。
2.在长方体ABCD -A 1B 1C 1D 1中,已知DA=DC=4,DD 1=3求异面直线A 1B 与B 1C 所成角的余弦值。
3.如图,在四棱锥P —ABCD 中,PO ⊥底面ABCD , O 为AD 中点,侧棱P A =PD =2,底面ABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD , AD =2AB =2BC=2,. (1)求异面直线PB 与CD 所成角的余弦值;b ′Oba(二)直线和平面所成的角[0,2π] 定义法:(1)经过斜线上一点作面的垂线;(2)找出斜线在平面内的射影,从而找出线面角;(3)解直角三角形 题型二 求线面角例2:如图,正方体ABCD -A 1B 1C 1D 1中,求直线BC 1与平面ABCD 所成角的大小。
练习1:在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 是BC 1的中点.求直线DE 与平面ABCD 所成角的θ大小(用三角函数值表示).D1C1A1B1ABCDE(三)二面角[0,180]oo定义1(1)过二面角的棱上的一点O 分别在两个半平面内作棱的两条垂线,OA OB ,则AOB ∠叫做二面角l αβ--的平面角 定义2(2)一个平面垂直于二面角l αβ--的棱l ,且与两半平面交线分别为,,OA OB O 为垂足,则AOB ∠也是l αβ--的平面角二面角的平面角的特点:1) 角的顶点在棱上 ;2)角的两边分别在两个面内 ;3)角的边都要垂直于二面角的棱。
空间角及其计算
建筑学中的应用
建筑设计
空间角在建筑设计中具有重要应用,如确定建筑物的朝向、布局和采光等。通 过合理利用空间角,可以优化建筑物的空间布局和采光效果,提高居住和使用 质量。
室内设计
在室内设计中,空间角的应用同样重要。通过合理调整室内家具和装饰品的摆 放角度,可以营造出更加舒适和美观的室内环境。
物理学中的应用
物理学
在物理学的力学、电磁学和光学等 领域,空间角也具有重要应用,如 描述带电粒子的运动轨迹、光的折 射和反射等。
02
空间角的计算方法
几何法
定义
几何法是利用空间几何知识,通 过作垂线、平行线、中线等手段, 将空间角转化为平面角或线线角,
然后进行计算的方法。
步骤
1. 作出相关垂线、平行线或中线; 2. 将空间角转化为平面角或线线 角;3. 利用平面几何知识计算角
空间角在其他领域的应用拓展
航天工程
利用空间角计算,优化航天器的轨道设计和姿态控制,提高航天 任务的可靠性和成功率。
机器人技术
通过空间角的计算,实现机器人的精准定位和自主导航,拓展机器 人在工业、医疗等领域的应用。
虚拟现实与游戏设计
利用空间角技术,提升虚拟环境的真实感和沉浸感,为游戏玩家和 设计师提供更加丰富的体验。
空间角及其计算
• 空间角的基本概念 • 空间角的计算方法 • 空间角的应用实例 • 空间角与空间几何的关系 • 空间角的未来发展与展望
01
空间角的基本概念
定义与性质
定义
空间角是指两个非平行直线或平 面在三维空间中形成的角度。
性质
空间角具有方向性,其大小和方 向可以通过几何学和三角函数来 描述。
光学研究
在光学研究中,空间角是描述光线传播方向和角度的重要参数。通过测量和计算 空间角,可以研究光线的反射、折射和散射等现象,进一步探索光与物质之间的 相互作用。
空间角的计算(1)
空间角的计算(1)【基础平台】1.正方体111A B C D A B C D -中,1A B 与平面11BB D D 所成角的大小为 ( )A .90B .60C .45D .30 2.两异面直线所成角的范围是( )A .0,2π⎛⎫⎪⎝⎭B .0,2π⎡⎫⎪⎢⎣⎭C .0,2π⎛⎤⎥⎝⎦D .0,2π⎛⎫⎪⎝⎭3.已知异面直线a 与b 所成的角为40 ,过空间一点O 且与,a b 都成70 角的直线有 条;4.在A B C 中,M ,N 分别是A B A C ,的中点,PM ABC ⊥平面,18BC M P ==,,P N 和平面ABC 所成的角为_______;【自主检测】1.一直线l 与平面α斜交成θ角,则直线l 与平面α内所有直线所成的角中,关于最大角和最小角的叙述中,正确的是 ( )A .最小角θ,最大角2πB .最小角θ,最大角πθ-C .最小角θ,无最大角D .最小角0,最大角θ2.在正方体中1111ABC D A B C D -,表面对角线与1AD 成60 的角有 ( )A .4条 B .6条 C .8条 D .10条3.正方体1111ABC D A B C D -中,,E F 分别是11,BB C C 的中点,则A E 与B F 所成角的余弦为( ) A .15B .15-C .25D .25-4.在直三棱柱111ABC A B C -中,1AA AB AC ==,AB AC ⊥,M 是1C C 的中点,Q 是B C 中点,点P 在11A B 上,则直线PQ 与直线A M 所成的角等于_______;5.在正方体1111ABC D A B C D -中,,M N 分别是11,AB A B 的中点,1BC 与平面1M N D D 所成角的正切值为_______;6.在棱长为1的正方体1111ABC D A B C D -中,E F G ,,分别是11D D BD BB ,,的中点 (1)求证:EF C F ⊥;(2)求EF CG 与所成角的余弦值.7.如图,正方体1111ABC D A B C D -中,,,,,,E F G H K L 分别是棱 111111,,,,,AB BB B C C D D D D A的中点,(1)求证:,,,,,E F G H K L 共面; (2)求证:1A C EFG H K L ⊥平面;(3)求1D B 与平面E F G H K L 所成角的正弦值.【拓展延伸】已知平行六面体1111ABC D A B C D -中,底面是边长为3的正方形,棱15AA =,1160BAA D AA ∠=∠=.(1)求A C 与1BC 所成角的余弦;(2)P 为B C 的中点,在棱1A A 上是否存在一点Q ,使得1PQ BC ⊥.空间角的计算(1)【基础平台】1.D .2.C .3.3.4.30.【自主检测】1.A .2.A .3.A.4. 90 .5.13. 6.(1)略(2)13.7.(1)提示:证,,H G EF K L共面,(2)略(3)13.【拓展延伸】(1)7,(2)提示:令1AQ AA λ= ,63130λ=,存在。
周帅数学 空间角度计算
周帅数学空间角度计算周帅数学空间角度计算在数学中,空间角度是指两个向量之间的夹角。
空间角度的计算在几何学和物理学中有着广泛的应用,特别是在三维空间中的向量运算和几何图形的研究中。
本文将介绍周帅数学空间角度计算的方法和应用。
一、空间角度的定义空间角度是指三维空间中两个向量之间的夹角。
在直角坐标系中,可以使用向量的内积来计算空间角度。
设有两个向量A和B,它们的夹角θ满足以下关系式:cosθ = (A·B) / (|A|·|B|)其中,A·B表示向量A和向量B的内积,|A|和|B|分别表示向量A 和向量B的模(即长度)。
二、计算空间角度的方法1. 基于内积的计算方法根据上述定义,可以直接使用向量的内积公式来计算空间角度。
首先计算向量A和向量B的内积,然后计算向量A和向量B的模,最后将内积除以模的乘积,得到cosθ的值。
通过反余弦函数可以求得角度θ。
2. 基于坐标的计算方法除了使用内积公式,还可以通过向量的坐标来计算空间角度。
设向量A的坐标为(x1, y1, z1),向量B的坐标为(x2, y2, z2),则可以使用以下公式计算空间角度:cosθ = (x1*x2 + y1*y2 + z1*z2) / (sqrt(x1^2 + y1^2 + z1^2) * sqrt(x2^2 + y2^2 + z2^2))其中,sqrt表示平方根。
三、空间角度的应用空间角度的计算在几何学和物理学中有着广泛的应用。
以下是一些典型的应用场景:1. 向量运算:空间角度可以用于判断两个向量的方向是否相似,以及它们之间的夹角大小。
在向量的加法、减法和标量乘法中,空间角度的计算是很常见的。
2. 几何图形的研究:在三维几何图形的研究中,空间角度的计算可以帮助确定图形的形状、方向和位置。
例如,在计算三角形的面积和判断是否共面时,空间角度的计算是必不可少的。
3. 物理学中的力学问题:在物理学中,空间角度的计算可以用于解决力学问题。
向量法证明: 空间中角与距离的计算
→ (3)解 ∵平面 A1CC1 的一个法向量是BO=(1,1,0). 设平面 A1B1C 的一个法向量是 → n=(x,y,z),A C=(-2,2,-2),A B =(-2,0,0),
1 1 1
→ 则 n· A1C=(x,y,z)· (-2,2,-2) =-2x+2y-2z=0,① n· A1B1=(x,y,z)· (-2,0,0) =-2x=0,∴x=0.② 代入①并令 z=1 得 y=1,∴n=(0,1,1), → n · BO 1 1 → 〉= ∴cos〈n,BO = = , →| 2× 2 2 |n|· |BO → ∴〈n,BO〉=60° ,即二面角 B1—A1C—C1 的大二面角的大小,可以不作 出平面角,如图所示, 〈m,n〉即为所 求二面角的平面角. ②对于易于建立空间直角坐标系的几何体,求二面角的大 小时,可以利用这两个平面的法向量的夹角来求. 如图所示,二面角 α-l-β,平面 α 的法向量为 n1,平面 β 的法向量为 n2, 〈n1,n2〉=θ,则二面角 α-l-β 的大 小为 θ 或 π-θ.
(2011· 北京)如图,在四棱
锥 P-ABCD 中,PA⊥平面 ABCD,底 面 ABCD 是菱形,AB=2,∠BAD=60° . (1)求证:BD⊥平面 PAC; (2)若 PA=AB,求 PB 与 AC 所成角的余弦值; (3)当平面 PBC 与平面 PDC 垂直时,求 PA 的长.
(1)证明 因为四边形 ABCD 是菱形,所以 AC⊥BD. 又因为 PA⊥平面 ABCD,所以 PA⊥BD. 所以 BD⊥平面 PAC. (2)解 设 AC∩BD=O, 因为∠BAD=60° ,PA=AB=2, 所以 BO=1,AO=CO= 3.
向量法:空间中角的计算
思考:
空间几何中的角度与距离计算
空间几何中的角度与距离计算在空间几何中,角度与距离的计算是非常重要的。
通过正确计算角度和距离,我们能够准确描述和分析物体的位置、运动以及相互关系。
本文将介绍空间几何中常用的角度计算方法和距离计算方法。
一、角度计算在空间几何中,角度是表示物体之间相对方向关系的重要指标。
常见的角度计算方法有以下几种:1. 余弦定理余弦定理是计算三角形内角的常用方法之一。
在空间几何中,如果已知三点的坐标,可以通过余弦定理计算出这三个点所形成的夹角。
余弦定理的公式如下:cos A = (b² + c² - a²) / (2bc)其中,A为夹角的大小,a、b、c为夹角对应的边长。
2. 矢量法矢量法是一种基于向量运算的角度计算方法。
通过将空间中的两个向量进行运算,可以得到它们之间的夹角。
常见的向量法角度计算包括点乘法和叉乘法。
(1)点乘法:两个向量的点乘结果等于它们的模长相乘再乘以它们之间的夹角的余弦值。
可以通过点乘法计算向量之间的夹角。
(2)叉乘法:两个向量的叉乘结果等于它们的模长相乘再乘以它们之间的夹角的正弦值。
可以通过叉乘法计算向量之间的夹角。
3. 三角函数在空间几何中,三角函数也是用于角度计算的常用方法之一。
通过正弦、余弦和正切等三角函数的运算,可以计算出角度的大小。
三角函数的计算方法需要先将坐标系进行转换,然后根据坐标的数值,利用相应的三角函数公式进行计算。
二、距离计算在空间几何中,距离是表示物体之间远近程度的重要指标。
常见的距离计算方法有以下几种:1. 欧几里得距离欧几里得距离是空间几何中最常用的距离计算方法。
对于二维或三维空间中的两个点,欧几里得距离可以通过计算它们在各坐标轴上的差值的平方和再开方的方式得到。
欧几里得距离的公式如下:d = √[(x₂-x₁)² + (y₂-y₁)² + (z₂-z₁)²]其中,d为距离,(x₁, y₁, z₁)和(x₂, y₂, z₂)分别为两个点的坐标。
空间的角
EC5551tan .===∠∴∠∴⊥∴⊥FB EB EBF EBF ABCD EB ABCD EF ABCD PD 的角的平面角是和底面底面底面 空间的角一 空间的角主要有:(1)异面直线的角(2)直线和平面的角(3)平面和平面的二面角(1)空间角的计算的主要方法是将空间角转化为平面角,而求平面角主要应用解三角形的知识和余弦定理。
(2)求空间角一般分三步走:第一步:通过平移,做垂线等做出空间角的平面角。
第二步:证明做出的角必须验证符合题意。
第三步:计算注意:(1)要有丰富的空间想象能力,能够做出空间角的平面角。
(2) 要有良好的计算能力,特别是解三角形的计算和余弦定理的计算。
二 两条异面直线所成的角:(1)作图要点:通过平移一条或者同时平移两条直线,使得平行线相交构成平面角。
(2)计算:主要是应用余弦定理计算,那么就要计算出三角形三边的长(计算量一般有点大)。
例题1)在正方体ABCD-A ′B ′C ′D ′中,E 是CC ′中点,F 是AD 中点,O 是底面中点,求异面直线D ′F 和OE 所成的角的余弦值。
解:如图2所示:作BC 中点M,连接MC ’, 则FD ’//MC ’。
作MC 中点N ,连接NE 则NE//MC ’//FD ’因此异面直线D ′F 和OE 所成的角的 平面角是∠EONCos ∠EON=NO EO ENNO EO ∙-+2222 =515三 直线和平面所成的角:平面的一条斜线和他在平面上的射影所成的锐角,叫做这条斜线和平面所成的角。
(1)作图要点:在直线上取适当一点,再过点做平面的垂线,连接斜线在平面的交点和垂足所成的直线为射影,则斜线上的店交点和垂足构成一个直角三角形,再用解三角形的知识解出。
例题2)如图:在四棱锥P-ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD=DC=2,E是PC 的中点。
求EB 与底面ABCD 所成的角的正切值。
解:作CD 的中点F ,连接EF 。
高中空间几何求各种角的公式
在高中的空间几何学习中,常见的几何形状包括点、线、面、体等,涉及到各种角的计算。
以下是一些常见的角的公式:
1. 平面内的角:
-顶点在圆心的圆心角和半圆角:圆心角等于对应的圆周角,半圆角为180度。
-对顶角:对顶角相等。
-同位角:同位角相等。
-内错角和内错角互补:内错角之和等于180度,内错角互补。
2. 空间内的角:
-平行线与截线:平行线与截线的对应角相等。
-直线与平面:直线与平面的夹角等于其倾斜角。
-平面与平面:两平面的夹角等于它们法向量的夹角。
3. 立体几何中的角:
-直线与立体的交角:直线与平面或立体的夹角等于90度减去它们的夹角余补角。
-两平面之间的夹角:两平面的夹角是它们的法线之间的夹角。
这些公式是空间几何中常见的角度计算原则,通过理解和掌握这些规律,可以更好地解决空间几何题目中涉及到的各种角度问题。
立体几何中空间角的求法
立体几何中空间角的求法立体几何是高中数学的核心内容之一,在高考中占有很大的比重。
考查的知识点、题型等相对稳定,但对学生的空间概念、逻辑思维能力、空间想象能力及运算能力要求较高,而且在2010年高考立体几何试题对转化与化归思想、数形结合思想、割补思想等数学思想的考查也体现的淋漓尽致,而高考对立体几何中空间角的考查一直是热点内容,更成为必考内容,空间角是立体几何中一个重要概念,它是空间图形的一个突出的量化指标,是空间图形位置关系的具体体现,故在历届高考试题中频繁出现,求解方法也多种多样,本文就是空间角常用的方法--传统法与空间向量法。
一、异面直线所成的角θ∈[ 0°,90°](1)传统方法:平移转化法或补形法,使之成为两相交直线所成的角,放入三角形中利用余弦定理计算,若求得的角为钝角,则这个角的补角才为所求。
(2)空间向量法:设异面直线ab与cd所成的角为θ,则cos θ = cos〈,〉参考例题:例1,如图在四棱锥o-abcd中,底面abcd是边长为1的菱形,∠abc= ,oa⊥面abcd,oa=2,m为oa的中点,则异面直线ab与md所成角的大小为()a. b. c. d. π解析:(法1)∵cd∥ab ∴∠mdc为异面直线ab与md所成的角(或其补角)在△abc中,ab=1,∠abc= ,bc=1 ,∴ac2=2-又oa⊥面abcd ∴rt△amc中,am2=1,∴mc2=3-又cd=1 md=∴在△mdc中,cos∠mdc= = ∴∠mdc=(法2)作ap⊥cd于p,分别以ab、ap、ao所在直线为x、y、z 轴建立空间直角坐标系。
则a(0,0,0), b(1,0,0), d(- ,,0),o(0,0,2), m(0,0,1)设ab与md所成的角为θ,又 =(1,0,0) =( - ,,-1)∴cosθ= = ∴θ=二、直线与平面所成的角θ∈[ 0°,90°](1)传统方法:先找到(或作出)过斜线上一点垂直于平面的直线,斜足与垂足的连线就是斜线在平面内的射影,该斜线与射影的夹角就是所求的角,然后放入直角三角形中求解。
空间角的计算
空间角的计算
哎呀,“空间角的计算”,这可真是个让我这个小学生有点头疼的题目呢!
你想想,我们平时在教室里、在操场上玩耍,那都是平平常常的空间,可这“空间角的计算”就好像把我们带到了一个充满神秘魔法的世界。
就像我们搭积木一样,每个积木块都有自己的位置和角度。
空间角的计算不也这样嘛?只不过它更复杂,更让人摸不着头脑。
有一次,老师在黑板上画了一个奇奇怪怪的图形,然后就开始讲什么是空间角。
我瞪大眼睛,心里直犯嘀咕:“这到底是啥呀?”同桌小明也一脸迷茫,悄悄跟我说:“我感觉这比解谜题还难!”
老师说:“同学们,想象一下,一个角在三维空间里,可不是那么简单就能弄明白的哟!”我就在想,这三维空间难道是个超级大的魔方,每个角都藏着秘密?
后来老师又举了个例子,说:“假如你在一个大房间里,从不同的位置看一个角落,角度是不是都不一样?这就是空间角啦!”我还是有点似懂非懂,这和我们平常的生活有啥关系呢?
回家后,我问爸爸:“爸爸,空间角的计算到底有啥用啊?”爸爸笑着说:“孩子,这就像建筑师盖房子,他们得算好角度,房子才能稳稳当当的呀!”我恍然大悟,原来这么重要!
其实,学习空间角的计算就像是一场冒险,有时候会遇到难题,感觉自己像迷路了一样。
可只要我们不放弃,一点点去探索,说不定就能找到宝藏呢!
我觉得呀,虽然空间角的计算很难,但只要我们努力,就一定能搞明白!它就像是一座高山,等着我们去攀登,等我们站在山顶,就能看到更美的风景!。
空间角的求法
空间角求法空间的角是空间图形的一个要素,在异面直线所成的角、线面角、二面角等知识点上,较好地考查了学生的逻辑推理能力以及化归的数学思想.●锦囊妙计空间角的计算步骤:一作、二证、三算1.异面直线所成的角范围:0°<θ≤90°方法:①平移法;②补形法.2.直线与平面所成的角范围:0°≤θ≤90°方法:关键是作垂线,找射影.3.二面角方法:①定义法;②三垂线定理及其逆定理;③垂面法.注:二面角的计算也可利用射影面积公式S′=S cosθ来计算[例1]在棱长为a的正方体ABCD—A′B′C′D′中,E、F分别是BC、A′D′的中点.(1)求证:四边形B′EDF是菱形;(2)求直线A′C与DE所成的角;(3)求直线AD与平面B′EDF所成的角;(4)求面B′EDF与面ABCD所成的角.命题意图:本题主要考查异面直线所成的角、线面角及二面角的一般求法,综合性较强,属★★★★★级题目.知识依托:平移法求异面直线所成的角,利用三垂线定理求作二面角的平面角.错解分析:对于第(1)问,若仅由B′E=ED=DF=FB′就断定B′EDF是菱形是错误的,因为存在着四边相等的空间四边形,必须证明B′、E、D、F四点共面.技巧与方法:求线面角关键是作垂线,找射影,求异面直线所成的角采用平移法.求二面角的大小也可应用面积射影法.1二面角α-l-β内有一点P,若P到面αβ的距离分别为5,8且P在面αβ内的射影的距离为7,则二面角α-l-β的度数是解:设P在平面α,β的内的射影分别为A和B,过A作α与β交线的垂线,垂足为C,连接BC,∵PA=5,PB=8,AB=7,∴cos∠APB= 1/2即∠APB=60°而∠ACB即为二面角α-l-β的平面角,∵∠ACB与∠APB互补,∴∠ACB=120°,故选C.三垂线定理及其逆定理定理:在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。
高中数学中的立体几何空间角与空间距离计算方法
高中数学中的立体几何空间角与空间距离计算方法立体几何是数学中的一个分支,其重点研究的是三维空间中点、线、面和体之间的关系。
在立体几何中,空间角和空间距离是非常关键的概念。
本文将详细探讨高中数学中的立体几何空间角与空间距离计算方法。
一、空间角的概念与计算方法1. 空间角的概念空间角指的是由两个非共面向量所张成的角度,在立体几何中具有重要的意义。
空间角的大小是依据两个向量的夹角计算得来的。
2. 空间角的计算方法在计算空间角时,我们首先需要求出两个向量的点积。
设向量a=(a1,a2,a3)和向量b=(b1,b2,b3),则它们的点积为a*b=a1b1+a2b2+a3b3。
接下来,我们可以利用余弦定理来计算角度,即cosθ=(a*b)/(|a||b|),其中|a|和|b|分别表示向量a和向量b的模长,θ表示向量a和向量b之间的夹角。
二、空间距离的概念与计算方法1. 空间距离的概念空间距离指的是三维空间中两个点之间的距离,也是立体几何中经常涉及到的一个概念。
2. 空间距离的计算方法我们可以借助勾股定理来计算空间距离。
设点A(x1,y1,z1)和点B(x2,y2,z2)是三维空间中的两个点,它们之间的距离为d,则d=sqrt((x2-x1)^2+(y2-y1)^2+(z2-z1)^2)。
三、空间角和空间距离的应用空间角和空间距离在立体几何中的应用非常广泛,例如在计算棱台的侧面积、计算四面体内切圆半径、求解圆锥截面面积等问题中,我们都需要用到空间角和空间距离的知识。
比如,在计算棱台的侧面积时,我们需要首先求出两条棱所在的平面之间的空间角,然后根据棱长和计算出的角度,就可以快速计算出棱台的侧面积。
在计算四面体内切圆半径时,我们需要先计算出四面体各面的法线向量,然后根据法线向量计算面上的角度,最后用勾股定理求出四面体内切圆的半径。
在求解圆锥截面面积时,我们需要用到空间角和空间距离的知识,以找出圆锥截面的边界和计算截面的面积。
空间角的概念与计算
空间角的概念与计算在几何学中,角是一个基本的概念,用于描述物体之间的相对方向。
而空间角则是在三维空间中描述物体之间方向关系的重要指标。
本文将介绍空间角的概念及其计算方法。
一、空间角的概念空间角是用来描述三维空间中两个矢量之间的夹角关系。
在二维空间中,我们可以通过一条射线和一条直线之间的夹角来描述角度,而在三维空间中,空间角则需要考虑更多的因素。
具体而言,对于任意两个非零矢量a和b,它们之间的空间角被定义为它们的夹角θ,满足0 ≤ θ ≤ π。
其中,θ=0时表示a和b共线,θ=π/2时表示a和b正交,θ=π时表示a和b反向。
二、空间角的计算1. 余弦定理计算空间角余弦定理是空间角计算中常用的方法之一。
对于两个非零矢量a和b,它们之间的空间角θ满足以下关系:cosθ = (a·b) / (|a|·|b|)其中,·表示矢量的点积,|a|和|b|分别表示矢量a和b的模长。
通过求解上式,我们可以得到空间角θ的值。
2. 向量叉积计算空间角另一种常用的空间角计算方法是利用向量的叉积。
对于两个非零矢量a和b,它们之间的空间角θ满足以下关系:sinθ = |a×b| / (|a|·|b|)其中,×表示矢量的叉积。
通过求解上式,我们可以得到空间角θ的正弦值,进而计算出空间角的值。
三、实例演示下面通过一个实例来演示如何计算空间角。
假设有两个矢量a = (1, 2, 3)和b = (4, 5, 6)。
我们希望计算出它们之间的空间角θ。
首先,我们可以通过求解余弦定理来计算空间角的余弦值:cosθ = (1×4 + 2×5 + 3×6) / √(1² + 2² + 3²) × √(4² + 5² + 6²)= (4 + 10 + 18) / √14 × √77= 32 / √1078 ≈ 0.979然后,通过反余弦函数可以求得空间角的弧度值:θ = arccos(0.979) ≈ 0.199 rad最后,将弧度值转换为度数,即可得到空间角的度数表示:θ ≈ 0.199 × (180/π) ≈ 11.4°因此,矢量a和b之间的空间角约为11.4°。
3.2.3 空间的角的计算(1)
3.2.3空间的角的计算(1)姜堰市蒋垛中学孟进教学目标:能用向量方法解决线线、线面的夹角的计算问题.教学重点:能用向量方法解决线线、线面的夹角的计算问题.教学难点:异线角与线面角的计算.教学方法:新授课、启发式――引导发现、合作探究.教学过程:一、问题情境我们知道,空间两条异面直线所成的角可转化为两条相交直线所成的锐角或直角;斜线与平面所成的角是指斜线与它在平面内的射影所成的锐角.这就是说,空间的角最终都可以通过转化,用两条相交直线所成的角来度量.如何用向量的方法求空间角的大小呢?二、学生活动(1)画个正方体,观察正方体内异面直线所成的角;(2)画一个线面角,并做出它的平面角,思考如何用向量来表示它.三、建构数学1.两条异面直线所成的角与它们的方向向量所成的角.2.直线的方向向量与平面的法向量的夹角为锐角时,直线与平面所成的角与这个夹角互余.四、数学运用1.例题.例1在正方体ABCD—A1B1C1D1中,E1,F1分别在A1B1,C1D1上,且E1B1=41A 1B 1,D 1F 1=41D 1C 1,求BE 1与DF 1所成的角的大小.解1 (几何法)作平行线构造两条异面直线.所成的角AHG ∠,15cos 17AHG ∠=. 解2 (向量法)设14DD a =,11D F b =,则||||a b=且a b ⊥ ,2222211||||(4)17DF BE a b a ==+= . 211(4)(4)15DF BE a b a b a ⋅=+-= .11111115cos 17||||BE DF BE DF BE DF ⋅< >,==. 解3 (坐标法)设正方体棱长为4,以DA ,DC ,1DD为正交基底,建立如图所示空间坐标系D —xyz ,1(014)BE =,-,,1(014)DF =,, ,1BE ·1DF =15,11111115cos 17||||BE DF BE DF BE DF ⋅< >,==. 例2 在正方体ABCD —A 1B 1C 1D 1中,F 分别是BC 的中点,点E 在D 1C 1上,且11D E =41D 1C 1,试求直线E 1F 与平面D 1AC 所成角的大小.解 设正方体棱长为1,以DA ,DC ,1DD为单位正交基底,建立如图所示坐标系D -xyz ,1DB 为D 1AC 平面的法向量,1DB=(1,1,1),113(1)24E F =,,- ,11cos 87DB E F < >,= , 所以直线E 1F 与平面D 1AC所成角的正弦值为87. 2.练习.(1)作业:课后练习1,2,3.(2) 直线l 与平面α斜交成n °角,则l 与α内的任意直线所成角中最大的角是 .(3)将正方形ABCD 沿对角线AC 折成直二面角后,异面直线AB 与CD 所成角的大小为 .(4)已知三角形顶点是A (1,-1,1),B (2, 1,-1),C (-1,-1,-2),则这个三角形的面积等于 .五、要点归纳与方法小结 本节课学习了以下内容:1.能用向量方法解决线线、线面的夹角的计算问题.2.空间向量要注重数形结合,注重培养我们的空间想象能力.。
空间中的角度计算与应用
空间中的角度计算与应用角度是空间中一种重要的几何概念,可以用来描述物体之间的相对位置和方向关系。
在工程、物理、建筑、航天等领域中,角度计算和应用都扮演着重要的角色。
本文将介绍空间中角度的计算方法和几个相关应用。
一、空间中的角度计算方法在二维平面中,我们可以使用直尺和量角器等工具来测量角度。
但在空间中,由于有长度、高度和深度三个方向的变化,所以需要使用更高级的工具和方法来计算角度。
1. 三维空间中的角度计算方法在三维空间中,我们通常使用向量来表示方向和位置。
一个向量可以用起点和终点来表示,这两个点在三维坐标系中分别有三个坐标值。
设两个向量A和B,它们的坐标分别为(Ax, Ay, Az)和(Bx, By, Bz)。
我们可以使用向量的点积和模长计算它们之间的夹角θ。
点积的计算公式为:A·B = Ax·Bx + Ay·By + Az·Bz向量的模长计算公式为:|A| = √(Ax^2 + Ay^2 + Az^2)两个向量的夹角θ的余弦值可表示为:cosθ = (A·B) / (|A|·|B|)通过反余弦函数可求得夹角θ的值,即θ = arccos(cosθ)2. 四元数计算法四元数是一种用于表示旋转的数学工具,它可以用一个实部和三个虚部来表示。
四元数既可以描述物体的姿态和旋转角度,也可以用来计算两个物体之间的旋转或夹角。
具体计算步骤如下:1)定义两个四元数q1和q2,分别表示两个物体的姿态;2)求解它们的乘积p = q1 * q2的实部,得到一个新的四元数;3)通过arccos函数计算p的实部的绝对值,得到两个物体之间的夹角。
二、空间中角度的应用在物理和工程领域,空间中的角度计算和应用非常广泛,下面介绍几个常见的应用场景。
1. 机械设计与运动控制在机械设计和运动控制领域,角度的计算和控制是非常重要的。
例如,在机器人运动控制中,需要根据机器人末端执行器的位置和姿态,计算出各个关节的角度,以实现期望的运动轨迹。
空间角的计算方法
空间角的计算方法当建立空间直角坐标系后,空间图形顶点的坐标容易得出且比较简单时,三类空间角的计算可利用空间向量来处理.但是,当用空间向量处理起来比较困难时,我们还要学会用其它方式来处理.三类空间角的计算有别于平面几何中计算,它要充分地“说理”.因为空间图形不可能像平面图形那样明确、直接,有时看起来是“锐角”或“钝角”的图形,实际上是直角.因此,在立体几何中实施角的计算时,要认真做好三步工作“作——证——算”.“作”——即作出符合要求的平面角;“证”——即证明所作平面角是所求的角;“算”——通过解三角形求出该平面角的大小.本单元我们重点讨论用常规方法,来处理三类空间角的计算问题.【异面直线所成的角】求两异面直线所成角的问题是立体几何中常见且重要的计算之一,其方法通常是在其中一条直线上取一个特殊点通过三角形中位线或平行四边形引另一条直线的平行线来实现平行移动,然后通过余弦定理或解直角三角形来求解;对不易平移的问题可通过补形的方式来求解,也可考虑利用三余弦公式求解.两异面直线所成角θ的取值范围为θ∈(0,π2]. 例1.在正四面体ABCD 中,E 、F 分别是BC 、AD 的中点,求DE 和BF 所成角的余弦值. 解法1(平移).如图2.5—1.联结AE ,取AE 的中点M ,联结MF 、MB , ∵ M 、F 分别为AE 、AD 的中点,∴ M F ∥DE ,故∠MFB 为DE 和BF 所成的角或补角. 设正四面体ABCD 的棱长为a ,则由平面几何知识易知BF=√3a 2,MF=√3a4. 在Rt ∆BEM 中,MB=.47)43()2(22a a a =+由余弦定理可得,.324323216716343cos 222=⋅⋅-+=∠aa aa a MFB 解法2(补形). 如图2.5—2.将原正四面体补形为三棱柱.取AC 1的中点M ,联结D 1M 、BM ,BD 1,易知F 是空间角的求法异面直线所成的角 ①利用中位线或平行四边形平移. ③三余弦公式. 直线与平面所成的角二面角①直接法. ②等积转换法. ③三余弦公式法.①直接法——利用三垂线定理或棱的垂面. ②利用等腰三角形底边上的中线. ③利用面积的射影定理.②补形.A BCDF E图2.5—1 M ABCDF E 图2.5—2C 1D 1MBD 1的中点,MD 1∥DE ,∴∠MD 1B 为DE 和BF 所成的角或补角. 设正四面体ABCD的棱长为a.易求得,MD 1=√3a 2,BD 1=√3a ,BM=√7a2(可由余弦定理求得).再由余弦定理可得 cos ∠MD 1B= 23.例2.如图2.5—3.在正方体ABCD—A 1B 1C 1D 1中,M 、N 分别是BB 1与C 1C 的中点,设DM与A 1N 所成的角为θ,求cosθ的值. 解:在原正方体ABCD—A 1B 1C 1D 1的前面补一个相同的正方体,如图2.5—3.联结A 2M 、A 2D ,易知A 2M ∥A 1N , ∴ ∠A 2MD 为DM 与A 1N 所成的角θ或补角. 设正方体棱长为a. ∵ DM=A 2M=√(√2a)2+(a2)2=3a 2,A 2D=a a a 5)2(22=+.由余弦定理可得cos ∠A 2MD = - 19. ∴ cosθ= 19.说明:①由于两异面直线所成角的取值范围为θ∈(0,π2],所以cosθ不可能为负值,当计算得出角的余弦值为“—”时,应将最后结果改为“+”.这是因为在平移时,所得的平面角可能是两异面直线所成角的补角,而互为补角的两角的余弦值互为相反数.②当我们试图在原图形的表面或其中作“平移”较困难时,可考虑“补形”.一般补形方式为:①三棱锥补形为三棱柱;②三棱柱补形为四棱柱;③四棱柱可在某一个侧面或底面“拼”一个相同的四棱柱.三余弦公式:平面α的斜线a 与α内一直线b 相交成θ角,a 与α相交成ϕc 与b 相交成ϕ2角,则有θϕϕcos cos cos 21=证明:设点P 在平面α上的射影为O ,过点O 作O B ⊥b 于B ,连接PB , 由三垂线定理知AB ⊥PB.如图2.5—4. ∴ θϕϕcos cos cos 21==⋅=APAB AOAB APAO .在此公式中,直线a 和b 可以是相交直线,也可以是异面直线. 我们不妨把ϕ1叫做线 面角,θ叫做线线角,ϕ2叫做线影角.很明显,线线角是这三个角中最大的一个角.例3.(1)如图2.5—5(1),MA ⊥平面ABCD ,四边形ABCD 是正方形,且MA=AB=a ,试求异面直线MB 与AC 所成的角.(2)如图2.5—5(2).在立体图形P -ABCD 中,底面ABCD 是一个直角梯形.∠BAD=900,AD//BC ,AB=BC=a ,AD=2a ,且PA ⊥底面ABCD ,PD 与底面成300角,AE ⊥PD 于D.求异面直线AE 与CD 所成角的余弦值.解:(1)由图2.5—5(1)可知,直线MB 在平面ABCD 内的射影为AB ,直线MB 与平面ABCD所成的角为450,直线AC 与直线MB 的射影AB 所成的角为450,所以直线AC 与直MB 所成的角为θ,满足cosθ=cos45°· cos45°= 12,∴ 直线AC 与MB 所成的角为600.ACDA 1B 1C 1D 1 NM BA 2 图2.5—3图2.5—4ϕ2ϕ1cba θP αO AB(2)如图2.5—5(2),过E 作PA 的平行线EF 交AD 于F ,由PA ⊥底面ABCD 可知,直线AE 在平面ABCD 内的射影为AD ,直线AE 与平面ABCD 所成的角为∠DAE ,其大小为600,射影AD 与直线CD 所成的角为∠CDA ,其大小为450,∴ 直线AE 与直线CD 所成的角θ满足:cosθ=cos60°· cos45°= √24. 即AE 与CD 所成角的余弦值 √24.想一想①:1.正四面体SABC 的棱长为a ,E ,F 分别是SC 和AB 的中点. 求异面直线SA 和EF 所成角.2.如图2.5—6.A 1B 1C 1—ABC 是直三棱柱,∠BCA=900,点D 1、F 1 分别是A 1B 1、A 1C 1的中点,若BC=CA=CC 1,求BD 1与AF 1所成 角的余弦值.【直线与平面所成的角】直线与平面所成的角也是立体几何中常见且重要的计算问题之一.它一般可通过解Rt △ 来求解.其解法通常有①直接法;②三棱锥体积等积变形法;③三余弦公式法——此法主要用于解选填题,若用于解答题,则要给出三余弦公式的简略证明.例4.如图2.5—7.在正方体AC 1中.(1)求BC 1与平面ACC 1A 1所成的角.(2)求A 1B 1与平面A 1BC 1所成的角的余弦值.解:(1)联结BD 交AC 于O ,∵ BO ⊥AC ,BO ⊥A 1A ,由线面垂直的判定定理可得BO ⊥平面ACC 1A 1, ∴ ∠OC 1B 为BC 1与平面ACC 1A 1所成的角. 在Rt ∆BOC 1中,∵ sin ∠OC 1B=OB BC 1=12,且∠OC 1B 为锐角,∴ BC 1与平面ACC 1A 1所成的角为300. (2)法1.如图1.6—7. 联结BC 1、B 1C 交于点E. 易知BC 1⊥平面A 1B 1C.又∵ BC 1⊂平面A 1BC 1,∴ 平面A 1BC 1⊥平面A 1B 1C. 过B 1作B 1H ⊥A 1E 于H ,联结A 1H ,∵ 平面A 1BC 1∩平面A 1B 1C=AE, ∴ B 1H ⊥平面A 1BC 1,因此,∠B 1A 1E 是A 1B 1与平面A 1C 1B 所成的角. ∵ tan ∠B 1A 1E= B 1EA 1B 1=√22,∴ cos ∠B 1A 1E=√63.法2.过B 1作B 1H ⊥平面A 1BC 1于H ,联结A 1H ,∴∠B 1A 1H 是A 1B 1与平面A 1C 1B 所成的角.∵ △A 1BC 1是正三角形,且A 1B 1=B 1C 1=BB 1. ∴ 棱锥B 1—A 1BC 1是正三棱锥. 可得点H 是△A 1B 1C 1的外心.设A 1B 1=a,则A 1B=√2a ,得A 1H= √63a. ∴ cos ∠B 1A 1H=A 1H A 1B 1=√63,即所求角的余弦值为√63.说明:F 1 A B D 1C 1A 1B 1图2.5—6C 图2.5—7 PE DFA B C图2.5—5(2)图2.5—5(1) A B C D M1.当题设条件中或由已知可推出两个平面互相垂直时,要作出线面角, 可利用两平面垂直的性质,在一个平面内作交线的垂线即可.2.在求线面角时,很多时候垂线位置的确定,是很费“周折”的.而利用三棱锥体积等积变形可简化此不必要的麻烦. 其思路和原理如下:如图2.5—8.设PA 是平面α的斜线,PB 为平面α的垂线段,其长为h ,则θ为PA 与平面α所成的角.由于sin θ= hPA .一般地PA 之长往往是已知的,因此要求出sin θ就只需要求出点P 到平面α的距离h 即可.这里的h 值可通过三棱锥体积等积变形得到.例5.如图2.5—9所示,在四棱锥P —ABCD 中,底面ABCD 是一直角梯形,∠BAD=900.AD ∥BC ,PA=AB=BC=a ,AD=2a ,PA ⊥底面ABCD. (1)求证:CD ⊥平面PAC.(2)求直线AD 与平面PCD 所成角的正弦值. 解:(1)在直角梯形ABCD 中,∵ ∠BAD=900,AD ∥BC ,AB=BC , 取AD 的中点E ,联结CE ,知四边形ABCE 是正方形,又∵ AD=2a ,∴ CE=ED ,即∠ECD=450,∴ AC ⊥CD. ∵ PA ⊥底面ABCD ,CD ⊂底面ABCD ,∴ CD ⊥PA ,又∵ PA∩AC=C , PA 、AC ⊂平面PAC ,∴ CD ⊥平面PAC. (2)法1.设点A 到平面PCD 的距离为h ,直线AD 与平面PCD 所成角为θ,则有ADh =θsin .∵ .36,21312131a h CD AC PA CD PC h V V ACD P PCD A =⇒⨯⋅⋅⋅=⨯⋅⋅⋅⇒=,——又∵ AD=2a ,∴66sin ==AD h θ.即直线AD 与平面PCD 所成角的正弦值为66.法2.由(1)知,平面PAC ⊥平面PDC ,平面PA C ∩平面PDC=PC ,过点A 作AH ⊥PC 于H ,则AH ⊥平面PDC ,联结DH ,知∠ADH 为直线AD 与平面PCD 所成角. 在Rt △PAC 中,AC=,2a PA=a ,PC=,3a 由Rt △PAC 的面积等积变形得, AH=36a . 又∵ AD=2a ,∴ 66sin ==AD h θ.即AD 与面PCD 所成角的正弦值为66.【一个结论的应用】结论:若平面α的一条斜线PA 与平面α内∠BAC 的两边BA 、BC 所成的角相等,则PA 在平面α上的射影为∠BAC 的角平分线 .例6.(1)有一东西方向的河流,离河岸若干米处有一探照灯,照着岸边的某点B ,探照灯在点B 的东北方向.灯光与地面成600角,求灯光与岸边所成角的余弦值.(2)在正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是AB ,C 1D 1的中点,求直线A 1B 1与平面A 1ECF 所成角的余弦值.解:(1)如图2.5—10(1).由已知,∠DBA=ϕ1=600, ∠ABC=ϕ2=450,∠DBC=θ,由三余弦公式得,cosθ=cos450·cos600= √24, ∴ 灯光与岸边所成角的余弦值为 √24.图2.5—9B P ACD EHPA θB 图2.5—8αD BCA东图2.5—10(1)ABC DB 1C 1D 1A 1FE图2.5—10(2)(2) 如图2.5—10(2).∵ A 1B 1与A 1E 、A 1F 所成角∠B 1A 1E=∠B 1A 1F ,∴ 直线A 1B 1在平面A 1ECF 上的射影为∠FA 1E 的平分线. 又由已知可推得四边形A 1ECF 为菱形,∴∠FA 1E 的平分线为A 1C. ∵ cos ∠B 1A 1E=sin ∠AA 1E= AEA1E=√55,由余弦定理可得cos ∠CA 1E=√155. 设直线A 1B 1与平面A 1ECF 所成的角为ϕ1,由三余弦公式得cos ϕ1= √33. ∴ 直线A 1B 1与平面A 1ECF 所成的角的余弦值为 √33.注:(2)也可以联结B 1C ,由上述分析知,直线A 1B 1与平面A 1ECF 所成角为∠B 1A 1C ,在Rt △A 1B 1C 中,易求得cos ∠B 1A 1C = √33.想一想②:1.在正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为AA 1、AB 的中点,则EF 与平面AA 1C 1C 所成的角为( ). 2.如图2.5—11.空间四边形PABC 中,PA 、PB 、PC 两两相互垂直, ∠PBA=450,∠PBC=600.则cos ∠ABC=( ).3.正方体ABCD ﹣A 1B 1C 1D 1中,若E 为棱AB 的中点,则直线C 1E 与平面ACC 1A 1所成角的正弦值为( ).4.求例5中PB 与平面PCD 所成角的正弦值.【二面角】二面角的计算是三类空间角计算中的难点,解决它的关键在于合理、有效地找出二面角的平面角,常用的方法有如下几种:1.直接法——⎪⎩⎪⎨⎧.)(中线作出平面角利用等腰三角形底边的面角;利用作棱的垂面作出平定理作出平面角;或逆利用三垂线 2.间接法——利用面积的射影定理. 对于无棱的二面角(只给出了两个半平面的一个公共点),则要先确定棱的位置. 二面角的取值范围为θ∈[0,π].例7.(1)如图2.5—12(1). PC ⊥平面ABC ,AB =BC=CA =PC=a ,求二面角B -PA -C 的平面角的正切值.(2)如图2.5—12(2).已知二面角α-AB -β为1200,AC ⊂α,BD ⊂β,且AC ⊥AB ,BD ⊥AB ,AB =AC =BD =a ,求CD 的长为.解:(1)法1(三垂线定理法).∵ PC ⊥平面ABC, ∴ 平面PAC ⊥平面ABC ,交线为AC.作BD ⊥AC 于点D ,据面面垂直性质定理知BD ⊥平面PAC ,作DE ⊥PA 于E ,连BE ,由三垂线定理,得BE ⊥PA ,从而∠BED 是二面角B -PA -C 的平面角.设PC =a ,依题意知三角形ABC 是边长为aPA BC图2.5—11 图2.5—12(1)P ABCDE图2.5—12(2)的正三角形,∴ D 是AC 的中点且BD=√32a ,∵ PC =CA=a ,∠PCA=900, ∴ ∠PAC =450. 在Rt △DEA 中,ED=ADsin450= √24a , ∴ tan ∠BED= BD ED =√6, 即二面角B -PA -C 的平面角的正切值为√6. 法2.(面积的射影定理法).同法1,作BD ⊥AC 于点D ,可知BD ⊥平面PAC ,∴ 三角形ABP 在平面PAC 上的射影为三角形PDA.设所求二面角为θ,则cos θ=S∆PAD S ∆PBA . 由已知易求得PB=PA=√2a , AB=a ,PC=PA=a ,∴ S ∆PDC =12S ∆PAC =14a 2,S ∆PAB =√74a 2,因此cos θ=S ∆PAD S ∆PBA= √77,从而可得二面角B -PA -C 的平面角的正切值为√6.(2)在平面β内,作AD′∥BD ,连DD′,则DD′∥AB. ∵ AC ⊥AB ,D′A ⊥AB ,∴ ∠D′AC 为二面角α-AB -β的平面角, 即∠D′AC =120°.∵ AB =AC =BD =a ,∴ CD′=3a ,又AB ⊥平面ACD′,DD′∥AB , ∴ DD′⊥平面ACD′,∴ DD′⊥D′C ,又 DD′=a ,∴ CD =DD′2+D′C 2=2a.例8.(1)如图2.5—13(1).在600二面角M -a -N 内有一点P ,P 到平面M 、N 的距离分别为1和2,求点P 到直线a 的距离.(2)如图2.5—13(2).正方体AC 1的棱长为a ,求二面角D —A1B —C 的余弦值.解:(1)设PA 、PB 分别为点P 到平面M 、N 的距离,过PA 、PB 作平面α,分别交M 、N于AQ 、BQ.(相当于作棱的垂面). ∵ PA ⊥M ,a ⊂M ,∴ PA ⊥a. 同理,有PB ⊥a , ∵ PA∩PB=P ,PA 、PB ⊂平面PAQB , ∴ a ⊥平面PAQB 于Q.又 AQ 、BQ ⊂平面PAQB ,∴ a ⊥AQ ,a ⊥BQ. 即 ∠AQB 是二面角M -a -N 的平面角. ∴ ∠AQB =60°.联结PQ ,则PQ 是P 到a 的距离,在平面图形PAQB 中,有∠PAQ =∠PBQ=90°,∴ P 、A 、Q 、B 四点共圆,且PQ 是四边形PAQB 的外接圆的直径2R. 在△PAB 中,∵ PA=1,PB=2,∠BPA =120°,由余弦定理得,AB=√7. 由正弦定理:PQ=2R=.3212237sin ==∠APBAB(2)取A 1B 的中点E ,过点E 作EF ∥BC 交A 1C 与F ,联结DF 、DE.在正方体AC 1中易知 BC ⊥A 1B ,∵ EF ∥BC ∴ EF ⊥A 1B ,又∵A 1D=DB ,E 为A 1B 的中点,∴ EF ⊥A 1B ,因此∠DEF 为二面角D —A 1B —C 的平面角. ∵ DE= √32A 1B = √6a2,EF= BC 2=a2,DF=A 1C 2=√32a.由余弦定理可得,cos ∠DEF=√63.即二面角D —A1B —C 的余弦值为√63.想一想③:1.在正四面体ABCD 中,求相邻两个平面所成二面角的平面角的余弦值PN ABQMa 图2.5—13(1)A BC DA 1B 1C 1D 1图2.5—13(2) EF2.自二面角内的一点到两个平面的距离都是6cm ,两个垂足间的距离也是6cm ,求此二面角的度数.3.在四面体ABCD 中,AC=AB=BC=1,CD=BD=√132,AD=3.求二面角A—BC—D 的余弦值.例9.长方体ADCD—A 1B 1C 1D 1中,底面ABCD 是正方形,过对角线AC 1的一个截面是锐角为α的菱形,若底面与截面AEC 1F 成θ角,求证:cos θ=tan α2.证法1:如图2.5—14.联结AC 、BD. ∵ 过对角线AC 1的一个截面是菱形,由长方体的特性知, BD ∥EF ,且EF=BD. 由线面平行的判定定理知BD ∥截面AEC 1F ,再由线面 平行的性质定理知BD ∥过点A 的直线l . 其中l 为平面ABCD 与截面AEC 1F 的交线,即下底面与截面所成二面角的棱为直线l .∵ AC 1⊥EF ,AC ⊥BD ,∴ AC ⊥l ,AC 1⊥l ,即∠C 1AC 为底面与截面AEC 1F 所成角,即 ∠C 1AC=θ,∵ cos θ= ACA 1C ,tan α2=EF AC 1=BD AC 1=ACAC 1,∴ cos θ=tan α2.证法2.设底面与截面AEC 1F 成θ角,由面积射影定理知,cosθ=S ∆BCDS ∆EC 1E=BD×AC EF×AC 1=AC AC 1. 下同法1.略.例10.如图2.5—15.在△ABC 中,AB ⊥BC ,S 为平面ABC 外的一点,SA ⊥平面ABC ,∠ACB =600,SA =AC =a.求二面角A -SC -B 的余弦值. 解: ∵ SA ⊥平面ABC ,SA 平面SAC ,∴ 平面SAC ⊥平面ABC. 过点B 作BD ⊥AC 于D ,平面SAC 平面∩ABC=AC , ∴ BD ⊥平面SAC ,联结SD. 设二面角A -SC -B=θ, ∵ SA =AC =a ,∠ACB =600,BC ⊥SB ,∴ BC=a2,CD =BC 2=a4,SB=√7a2,∴ cos θ=S ∆SDC S ∆SBC=SA×CD SB×BC=√77. 即二面角A -SC -B的余弦值为√77.想一想④:如图2.5—16所示.在四棱锥P—ABCD 中,底面ABCD 是一直角梯形,∠BAD=900,AD ∥BC ,PA=AB=BC=a ,AD=2a ,PA ⊥底面ABCD. 求:(1)二面角P—CD—A 的余弦值.(2)平面PCD 与平面PAB 所成二面角的余弦值.【线面角、二面角的一个统一求法】如图2.5—17,设平面α的斜线PA 与平面α所成的角为θ,点P 到平面α的距离为h ,则 有, sin θ=hPA . 其中h 可利用三棱锥体积等积变形求得.图2.5—16BPA C DABCS图2.5—15D 图2.5—14 A BC A 1B 1C 1D 1DFE l如图2.5—18.在平面β内取一点P ,过点P 作PA ⊥平面α于A ,过点A 作AB ⊥l 于B ,联结PB ,由三垂线定理易知∠PBA =θ为二面角α—l —β的平面角(或补角),设点P 到平面α的距离为h ,则有,sin θ=hPB . 其中h 可利用三棱锥体积等积变形求得,PB 为点P 到棱l 的距离,可通过三角形面积等积变形求得.这样一来,求线面角和二面角的问题可统一为,先利用三棱锥的体积等积变形求出点面距h ,再由已知或利用三角形面积等积变形求出点线距,从而易得所成角的正弦值.例11.如图2.5—19.在四棱锥P —ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,PA=4,AC=2√3,BD=2.又点E 在侧棱PC 上,且PC ⊥平面BDE. (1)求线段CE 的长.(2)且二面角A —PD —C 的余弦值.解:(1)设AC ∩BD =O ,联结OE ,由已知条件易得PC=2√7.∵ PC ⊥平面BDE ,∴ OE ⊥PC.在Rt ∆PAC 和Rt∆OEC 中, cos ∠OCE=ECOC =ACPC ,⇒EC =3√77.(2)由已知可求得菱形的边长为2,PD=2√5. 设点A 到平面PDC 的距离为h ,点A 到二面角A —PD —C 的棱PD 距离为d ,二面角A —PD —C 的平面角(或补角)为θ,则sin θ=hd . 在∆PDC 中,S ∆PDC =12DP ×DC ×sin∠PDC =12DP ×DC ×√1−cos 2∠PDC =√19,∵ V A—PDC = V P—ADC ,可求得h=4√5719,又在∆PAD 中利用面积等积变形可得d=4√55, ∴ sin θ=hd =√15√19,∵ 二面角A —PD —C 是钝二面角,故二面角A —PD —C 的余弦值为-2√1919.例12.如图2.5—20.四棱锥P —ABCD 的底面是一个边长为4的菱形,其中∠ADC=600,顶点在底面上的射影恰好为AD 的中点E ,若PA=√7. (1)求直线PB 与平面PAD 所成角的正弦值.(2)求平面PBC 与平面PAD 所成二面角的余弦值.解:(1)设点B 到平面PAD 的距离为h ,直线PB 与平面PAD 所成角为θ,则sin θ=hPB ..∵ PE ⊥平面ABCD ,且E 为AD 的中点,由PA=√7,AD=4,∴ PE=√3. 又∵ V B—PAD = V P—BAD ,得 h =PE×S ∆ABDS ∆APD=2√3,在∆AEB 中,由余弦定理得EB=2√7,再由勾股定理得PB=√31, ∴ sin θ=hPB =2√3√31=2√9331. 即直线PB 与平面PAD 所成角的正弦值为2√9331. (2)设平面PBC 与平面PAD 所成二面角为α,点C 到平面PAD 的距离为h ,点C 到二面角的棱l 的距离为h 1,则 ,sin α=hh 1. ∵ BC ∥AD ,由线面平行的判定和性质知,平面PBC 与平面PAD 的交线l ∥BC ,∴ h 1为∆P CB 的底边BC 边上的高.由AD ⊥平面PEC ,知AD ⊥PC ,又∵ AD ∥BC ,∴ BC ⊥PC ,即h 1=PC.联结CE 、AC 由已知易得∆ACD 为αP A Bθh图2.5—17αP A h 图2.5—18Bθ βlP AEBCD l图2.5—20.PDECBA 图2.5—19.O正三角形,∴ PC=√PE 2+EC 2=√15,由BC ∥平面PAD 和(1)知h=2√3, ∴ sin α=h h 1=2√55,故平面PBC 与平面PAD 所成二面角的余弦值为2√55.例13.如图2.5—21,在四棱锥P —ABCD 中,底面ABCD 是边长为2的正方形,侧面PAD ⊥ 底面ABCD ,且PA=PD=√22AD ,在线段AB 上是否存在一点G ,使二面角C —PD —G 的正弦值为2√23,说明理由. 解:取AD 的中点E ,联结PE 、CE ,∵ 侧面PAD ⊥底面ABCD ,底面ABCD 是边长为2的正方形,且PA=PD= √22AD , ∴ PD ⊥AB ,DP ⊥平面PAB ,从而可得,DP ⊥P G ,EC=√5, PC=√6, PA =PD =√2,PE =1.设AG=a ,点G 到平面PDC 的距离为h ,二面角C —PD —G 的平面角(或补角)为θ,则sin θ=h PG.由V G—PDC = V P—DGC ,得 h =S ∆DGCS ∆PDC=√2,又∵ PG=√2+a 2,∴ sin θ=hPG =√2√2+a 2=2√23,⇒a =12. 故存在点G 满足题设条件,且AG= 12.想一想⑤:在正方体ABCD —A 1B 1C 1D 1中,点M 、N 、O 分别在棱CD 、BC 、CC 1上,且CM=CN=OC 1, 当OM 与平面ABCD 所成角的余弦值为√22时,求二面角N —MO —C 的余弦值.(请用多种方法)习题2.51.四面体ABCD 中,AC ⊥BD ,且AC =4,BD =3,M 、N 分别是AB 、CD 的中点,则MN 和BD 所成角的正切值为( ).2.在四面体ABCD 中,AB ⊥BC ,AB ⊥BD ,BC ⊥CD ,且AB =BC =6,BD =8,E 是AD 中点,则BE 与CD 所成角的余弦值是( ).3.正三棱柱的九条棱都相等,M 、N 分别是BC 和A 1C 1的中点. 则MN 与CC 1所成角的余弦值是( ).4.不共面的三条射线OA 、O1B 、OC 两两成600的角,则OC 与平面AOB 所成角的余弦值为( ).5.正四棱柱ABCD ﹣A 1B 1C 1D 1中,对角线BD 1=8,BD 1与侧面BC 1所成的角为30°,则BD 1和底面ABCD 所成的角为( ). A.30°. B.60°. C.45°. D.90°.6.设P 是边长为1的正△ABC 所在平面外一点,且PA=PB=PC= 23,那么PC 与平面ABC 所成的角为( ). A.30°. B.45°. C.60° D.90°.7.长方体ABCD -A 1B 1C 1D 1中,AB=AA 1=2cm ,AD=1cm ,求异面直线A 1C 1与BD 1所成角的余弦值.(要求用三种不同的方法).8.已知ABCD 是正方形,PB 平面ABCD ,PB=AB=1,求二面角A —PD —C 的大小.9.如图2.5—22.空间三条射线CA 、CP 、CB ,∠PCA=∠PCB=60o , ∠ACB=90o,求二面角B -PC -A 的余弦值.10.在四棱锥P -ABCD 中,ABCD 为正方形,PA ⊥平面ABCD ,PA =AB =a ,求平面PBA 与PBα CAE F D图2.5—22 图2.5—21PDAB ECG平面PDC 所成二面角的大小.11.设M 为正方体ABCD -A 1B 1C 1D 1的棱CC 1的中点,求平面BMD 1与底面ABCD 所成的二面角的余弦值. 12.AC ⊂α,BD ⊂β,α与β所成的角为600,AC ⊥l 于C ,BD ⊥l 于B ,AC =3,BD =4,CD =2,求A 、B 两点间的距离.【参考答案】想一想①:1. 45°.2.1015.提示,法1.联结D 1F 1,过F 1作F 1M ∥BD 1角BC 与M.法2.在左侧面“拼”一个相同的三棱柱. 3..2222222cb a b a b a ++⋅+-利用三余弦公式,联结AC 、BD 交于O ,其中AC C 11∠=ϕ,COB ∠=2ϕ. 想一想②:1.300.提示,相当于求A 1B 平面AA 1C 1C 所成的角.2.√24.换个角度画图.由已知知CP ⊥平面PBA.∠ABC=θ,∠PBA=450=φ1,∠PBC=600=φ2.由三余弦公式可得.3.√26.直接法或等积变形. V E—ACC 1= V C 1—ACE . 4. √26.等积变形. V B—PCD = V P—BCD .想一想③:1.13.法1.过一个顶点作对面的垂线,由三垂线定理得到二面角的平面角,再求之. 法2.利用等腰三角形的特性作出二面角的平面角. 法3.利用面积的射影定理亦可求解. 2.1200.仿例8(1)作棱的垂面求解. 3.−√74. 利用等腰三角形的特性作出二面角的平面角.想一想④:(1) √63.法1.联结AC ,先证CD ⊥平面PAC.可知∠PCA 为平面角,再计算. 法2.利用面积的射影定理求.(cos θ=S∆ACD S ∆PCD).(2) √66.法1.延长DC 交AB 于点E ,则PE 为二面角的棱.再用直接法求之.法2. 利用面积的射影定理求. (cos θ=S∆PAB S ∆PCD).想一想⑤: √33. 习题2.51. 43.. 2. √75. 3.2√55. 4. √33.利用三余弦公式. 5.C. 6.A. 7. √558.1200.注意到∆PCD ≌∆PAD ,过点C 作CE ⊥PD,联结AE,则AE ⊥PD ,∴ ∠AEC 为二面角 A —PD —C 的平面角,利用直角三角形PCD 面积等积变形可求得CE=AE=√63下略.9.13.提示:在射线CP上取点D,作平面DEF ⊥CP.即棱的垂面.10.450.法1.∵ CD∥AB,由线面平行的判断和性质可推得二面角的棱为过点P且平行于AB的直线,又∵ AB⊥平面PAD,可知∠APD为二面角的平面角.法2.利用面积的射影定理. cosθ=S∆PABS∆PCD11.√63.利用面面平行的性质可知过三点B、M、D1的截面如图D2.5—1所示.此二面角的棱l为过点B且MN∥l∥AC的直线.也可用面积的射影定理求.12.√17.仿例7(2)的方法求解.A BCDA1B1C1D1图D2.5—1NM11。
空间角公式
空间角公式空间角公式是三维空间中两个向量之间的夹角,也称为向量夹角。
在三维空间中,向量的方向和大小都很重要,因此空间角公式是非常重要的数学工具。
空间角公式可以用余弦定理来表示。
假设有两个向量a和b,它们的夹角为θ,那么它们的余弦值可以表示为:cosθ = (a·b) / (|a|·|b|)其中,a·b表示向量a和向量b的点积,|a|和|b|分别表示向量a和向量b的模长。
这个公式可以用来计算任意两个向量之间的夹角。
空间角公式还可以用向量的坐标表示。
假设有两个向量a和b,它们的坐标分别为(a1, a2, a3)和(b1, b2, b3),那么它们的夹角可以表示为:cosθ = (a1b1 + a2b2 + a3b3) / (sqrt(a1^2 + a2^2 + a3^2)·sqrt(b1^2 + b2^2 + b3^2))其中,sqrt表示平方根。
这个公式可以用来计算任意两个向量之间的夹角,只需要知道它们的坐标。
空间角公式在三维计算机图形学中有广泛的应用。
例如,在计算机游戏中,需要计算物体之间的碰撞,就需要用到空间角公式来计算它们之间的夹角。
在计算机辅助设计中,也需要用到空间角公式来计算物体之间的相对位置和方向。
除了空间角公式,还有一些其他的向量公式也非常重要。
例如,向量的叉积公式可以用来计算两个向量的垂直向量,向量的投影公式可以用来计算一个向量在另一个向量上的投影长度。
这些公式都是三维空间中向量计算的基础,对于理解和应用三维计算机图形学非常重要。
空间角公式是三维空间中向量计算的重要工具,它可以用来计算任意两个向量之间的夹角。
在三维计算机图形学中,空间角公式是非常重要的数学工具,它可以用来计算物体之间的相对位置和方向,对于计算机游戏和计算机辅助设计等领域都有广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n
A B
n, BA 2
1 CF CB, 点E1 2.在正方体ABCD-A1B1C1D1中, 4 1 在C1D1上,且 D1 E1 D1C1 , 求直线E1F和平 4 z 面D1AC所成角的大小. E1 C1
D1
A1 D
O
B1
C F B
y
x
A
探究新知二:线面角
例1.在正方体ABCD-A1B1C1D1中,E1,F1分别是A1B1,
1 1 C1D1上的点,且 E1 B1 4 A1 B1 , D1 F1 4 D1C1 , z 求BE 和DF 所成角的余弦值.
1 1
D1 F1
C1
A1 D
O
E1
B1 C
y
x
A
B
练一练
1. 在正方体ABCD-A1B1C1D1中,F是BC的中点,D1E1=
(3)求PB和面BDE所成角的余弦值. z
P
E
D
C
x A
y
当堂检测
1.在正方体ABCD-A1B1C1D1中,M是AB的中点,则对 角线DB1与CM所成角的余弦值为_______.
b
a
a, b
a, b
a
b
2.在正方体ABCD-A1B1C1D1中,E1,F1分别是A1B1,
1 1 C1D1上的点,且 E1B1 4 A1B1 , D1F1 4 D1C1 ,
求BE1和DF1所成角的余弦值.
探究新知一:求线线角
1 87 D1C1则对角线DB1与E1F所成角的余弦值为 ___. 4 87
师
生
共
研,
突
破
重
难
探究二:线面角
[0, ] 直线与平面所成角的范围: A
2
B
思考:
A
n
B
O
设平面的法向量为n,则 n, BA 与的关系?
2
n, BA
空间角的计算(1)
n
A
n
A
B
B
新沂市第一中学
张禄喜
问题情境
前面我们学习了用向量刻画空间
线线、线面、面面的特殊位置关系: 平行与垂直。那么,对于一般的线线、 线面、面面的位置关系,如何用向量 来刻画?
师
生
共
研,
突
破Байду номын сангаас
重
难
探究一:线线角
异面直线所成角的范围: 0, 2 C D 设直线CD的方向向量为a, D1 A AB 的方向向量为 b B
例2.在正方体ABCD-A1B1C1D1中,F是BC的中点,点
1 E1在C1D1上,且 D1 E1 4 D1C1 , 求直线E1F和平
面D1AC所成角的大小.
A1
z
D1 E1
C1 B1
D
O
C F B
y
x
A
小结:
1.异面直线所成角: = a, b = a , b 2.直线与平面所成角:
=
2 n, AB
B
a
C
A
a b
A
D
D1
B
n
= n, AB 2
O
n
实践.成果展示
1.在四棱锥P-ABCD中,底面ABCD是正方形, PD⊥面ABCD, PD=DC=a,E是棱PC的中点. (1)求证:PA∥平面BED; (2)求BE和底面ABCD所成角的余弦值;