全国2017届中考数学总复习第3章函数第五节二次函数的实际应用讲解课件
合集下载
中考数学 精讲篇 考点系统复习 第三章 函数 第五节 二次函数的实际应用
(2)W=(x-10)·(-x+40)=-x2+50x-400=-(x-25)2+225. ∵当 10≤x≤16 时,W 随 x 的增大而增大, ∴当 x=16 时,W 最大,
最大利润为-(16-25)2+225=144(元). 答:W=-x2+50x-400(10≤x≤16),当销售价为 16 元时,利润最大, 最大利润为 144 元.
1.求利润问题的函数解析式: (1)若题目给出销售量与单价之间的函数解析式,以及销售单价与进价之 间的关系时,则可直接根据:销售利润=销售总额-成本=销售量×销 售价-销售量×进价=销售量×(销售价-进价)来解决; (2)若题目中未给出销售量与单价之间的函数解析式,则要先求出的销售 量与单价之间的函数解析式,一般是一次函数关系,再根据:销售利润 =销售量×(销售价-进价)来解决;
∴w 值与 t 值无关, ∴10-6-b=0,解得 b=4, ∴w=(10-6-4)t+3 000=3 000, 答:捐款后所得的利润始终不变,此时 b 为 4 元,利润为 3 000 元.
重难点:二次函数的实际应用 (2021·达州)渠县是全国优质黄花主产地,某加工厂加工黄花的成
本为 30 元/千克,根据市场调查发现,批发价定为 48 元/千克时,每天 ,批发价每千克降低 1 元,每天销量可增加 50 千克.
解:(1)由题意,得 W=(48-30-x)(500+50x)=-50x2+400x+9 000, x=2 时,W=(48-30-2)(500+50×2)=9 600(元). 答:工厂每天的利润 W 元与降价 x 元之间的函数关系为: W=-50x2+400x+9 000,当降价 2 元时,工厂每天的利润为 9 600 元. (2)由(1)得:W=-50x2+400x+9 000=-50(x-4)2+9 800, ∵-50<0,∴当 x=4 时,W 最大为 9 800, 答:当降价 4 元时,工厂每天的利润最大,最大为 9 800 元.
最大利润为-(16-25)2+225=144(元). 答:W=-x2+50x-400(10≤x≤16),当销售价为 16 元时,利润最大, 最大利润为 144 元.
1.求利润问题的函数解析式: (1)若题目给出销售量与单价之间的函数解析式,以及销售单价与进价之 间的关系时,则可直接根据:销售利润=销售总额-成本=销售量×销 售价-销售量×进价=销售量×(销售价-进价)来解决; (2)若题目中未给出销售量与单价之间的函数解析式,则要先求出的销售 量与单价之间的函数解析式,一般是一次函数关系,再根据:销售利润 =销售量×(销售价-进价)来解决;
∴w 值与 t 值无关, ∴10-6-b=0,解得 b=4, ∴w=(10-6-4)t+3 000=3 000, 答:捐款后所得的利润始终不变,此时 b 为 4 元,利润为 3 000 元.
重难点:二次函数的实际应用 (2021·达州)渠县是全国优质黄花主产地,某加工厂加工黄花的成
本为 30 元/千克,根据市场调查发现,批发价定为 48 元/千克时,每天 ,批发价每千克降低 1 元,每天销量可增加 50 千克.
解:(1)由题意,得 W=(48-30-x)(500+50x)=-50x2+400x+9 000, x=2 时,W=(48-30-2)(500+50×2)=9 600(元). 答:工厂每天的利润 W 元与降价 x 元之间的函数关系为: W=-50x2+400x+9 000,当降价 2 元时,工厂每天的利润为 9 600 元. (2)由(1)得:W=-50x2+400x+9 000=-50(x-4)2+9 800, ∵-50<0,∴当 x=4 时,W 最大为 9 800, 答:当降价 4 元时,工厂每天的利润最大,最大为 9 800 元.
二次函数的应用课件ppt课件ppt课件ppt
要点一
导数在二次函数中的应用
利用导数研究二次函数的单调性、极值和拐点,解决实际 问题。
要点二
定积分在二次函数中的应用
利用定积分计算二次函数的面积,解决与面积相关的实际 问题。
THANKS
感谢观看
详细描述
二次函数是数学中一类重要的函数,其形式由参数$a$、$b$ 和$c$决定。当$a > 0$时,函数图像开口向上;当$a < 0$ 时,函数图像开口向下。
二次函数的图像
总结词
二次函数的图像是一个抛物线, 其形状由参数$a$、$b$和$c$决 定。
详细描述
二次函数的图像是一个抛物线, 其顶点的位置由参数$b$和$c$决 定,而开口的大小和方向则由参 数$a$决定。
在生产和生活中,经常需要解决诸如利润最大化、成本最小化等最优化问题。利 用二次函数开口方向和顶点坐标的性质,可以快速找到最优解,为决策提供依据 。
利用二次函数解决周期性问题
总结词
利用二次函数的对称性和周期性,解 决具有周期性规律的问题。
详细描述
在物理学、工程学和生物学等领域, 许多现象具有周期性规律。通过将实 际问题转化为二次函数模型,可以更 好地理解和预测这些周期性现象。
利用二次函数解决面积问题
总结词
利用二次函数与坐标轴的交点,解决 与面积相关的实际问题。
详细描述
在几何学和实际生活中,经常需要计 算图形的面积。通过将问题转化为求 二次函数与坐标轴围成的面积,可以 简化计算过程,提高解决问题的效率 。
04
如何提高二次函数的应用能力
掌握基本概念和性质
理解二次函数的一般 形式: $y=ax^2+bx+c$, 其中$a neq 0$。
导数在二次函数中的应用
利用导数研究二次函数的单调性、极值和拐点,解决实际 问题。
要点二
定积分在二次函数中的应用
利用定积分计算二次函数的面积,解决与面积相关的实际 问题。
THANKS
感谢观看
详细描述
二次函数是数学中一类重要的函数,其形式由参数$a$、$b$ 和$c$决定。当$a > 0$时,函数图像开口向上;当$a < 0$ 时,函数图像开口向下。
二次函数的图像
总结词
二次函数的图像是一个抛物线, 其形状由参数$a$、$b$和$c$决 定。
详细描述
二次函数的图像是一个抛物线, 其顶点的位置由参数$b$和$c$决 定,而开口的大小和方向则由参 数$a$决定。
在生产和生活中,经常需要解决诸如利润最大化、成本最小化等最优化问题。利 用二次函数开口方向和顶点坐标的性质,可以快速找到最优解,为决策提供依据 。
利用二次函数解决周期性问题
总结词
利用二次函数的对称性和周期性,解 决具有周期性规律的问题。
详细描述
在物理学、工程学和生物学等领域, 许多现象具有周期性规律。通过将实 际问题转化为二次函数模型,可以更 好地理解和预测这些周期性现象。
利用二次函数解决面积问题
总结词
利用二次函数与坐标轴的交点,解决 与面积相关的实际问题。
详细描述
在几何学和实际生活中,经常需要计 算图形的面积。通过将问题转化为求 二次函数与坐标轴围成的面积,可以 简化计算过程,提高解决问题的效率 。
04
如何提高二次函数的应用能力
掌握基本概念和性质
理解二次函数的一般 形式: $y=ax^2+bx+c$, 其中$a neq 0$。
精选-中考数学第三章函数第五节二次函数的实际应用课件
Βιβλιοθήκη 最新精选中小学课件
5
1.(2018·达州中考)“绿水青山就是金山银山”的理念已融入人们的日常生活 中,因此,越来越多的人喜欢骑自行车出行.某自行车店在销售某型号自行车时, 以高出进价的50%标价.已知按标价九折销售该型号自行车8辆与将标价直降100 元销售7辆获利相同.
最新
精选中小学课件
6
(1)求该型号自行车的进价和标价分别是多少元? (2)若该型号自行车的进价不变,按(1)中的标价出售,该店平均每月可售出51辆; 若每辆自行车每降价20元,每月可多售出3辆,求该型号自行车降价多少元时, 每月获利最大?最大利润是多少?
∴p=
x+1.
当0≤x≤6时,w=(4-2)×34x=68x,w随x的增大而增大, ∴当x=6时,w最大值为408元;
最新
精选中小学课件
13
当6<x≤10时,w=(4-2)×(20x+80)=40x+160,
w随x的增大而增大,
∴当x=10时,w最大值为560元;
当10<x≤20时,
w=(4-
x-1)(20x+80)=-2x2+52x+240,
最新
精选中小学课件
3
即当x>65时,y随x的增大而减小, 而60≤x≤90, ∴当x=65时,y的值最大, 即销售单价定为65元时,每周的销售利润最大.
最新
精选中小学课件
4
利用二次函数求最大利润的方法 利用二次函数解决实际生活中的利润问题,应认清变量所表示的实际意义,注意隐 含条件的使用,同时考虑问题要全面.此类问题一般是先运用“总利润=总售价- 总成本”或“总利润=每件商品所获利润×销售数量”,建立利润与价格之间的函 数关系式,求出这个函数关系式的最大值,即求得的最大利 润.
5
1.(2018·达州中考)“绿水青山就是金山银山”的理念已融入人们的日常生活 中,因此,越来越多的人喜欢骑自行车出行.某自行车店在销售某型号自行车时, 以高出进价的50%标价.已知按标价九折销售该型号自行车8辆与将标价直降100 元销售7辆获利相同.
最新
精选中小学课件
6
(1)求该型号自行车的进价和标价分别是多少元? (2)若该型号自行车的进价不变,按(1)中的标价出售,该店平均每月可售出51辆; 若每辆自行车每降价20元,每月可多售出3辆,求该型号自行车降价多少元时, 每月获利最大?最大利润是多少?
∴p=
x+1.
当0≤x≤6时,w=(4-2)×34x=68x,w随x的增大而增大, ∴当x=6时,w最大值为408元;
最新
精选中小学课件
13
当6<x≤10时,w=(4-2)×(20x+80)=40x+160,
w随x的增大而增大,
∴当x=10时,w最大值为560元;
当10<x≤20时,
w=(4-
x-1)(20x+80)=-2x2+52x+240,
最新
精选中小学课件
3
即当x>65时,y随x的增大而减小, 而60≤x≤90, ∴当x=65时,y的值最大, 即销售单价定为65元时,每周的销售利润最大.
最新
精选中小学课件
4
利用二次函数求最大利润的方法 利用二次函数解决实际生活中的利润问题,应认清变量所表示的实际意义,注意隐 含条件的使用,同时考虑问题要全面.此类问题一般是先运用“总利润=总售价- 总成本”或“总利润=每件商品所获利润×销售数量”,建立利润与价格之间的函 数关系式,求出这个函数关系式的最大值,即求得的最大利 润.
《二次函数的应用》优秀PPT课件下载
直线x=-4
坐标是
是 -1
.当x= -4 时,函数有最 大 值,
5.二次函数y=2x2-8x+9的对称轴是 直线x=2 ,顶点坐标 是 (2 ,1).当x= 2 时,函数有最 小 值,是 1 .
某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调 查,销售量与单价满足如下关系:在一段时间内,单价是13.5元时, 销售量是500件,而单价每降低1元,就可以多售出200件.请你帮助 分析,销售单价是多少时,可以获利最多?
22.5 二次函数的应用
1.让学生进一步熟悉,点坐标和线段之间的转化. 2.让学生学会用二次函数的知识解决有关的实际问题.
3.掌握数学建模的思想,体会到数学来源于生活,又服务
于生活.
1. 二次函数y=a(x-h)2+k的图象是一条 抛物线 的对称轴是 直线x=h
b 直线x 2a
4ac b 2 4a
25 之和的最小值是 2 (或12.5)
cm2.
3.(兰州·中考) 如图,小明的父亲在
相距2米的两棵树间拴了一根绳子,给小 明做了一个简易的秋千.拴绳子的地方距
地面高都是2.5米,绳子自然下垂呈抛物
线状,身高1米的小明距较近的那棵树0.5 米时,头部刚好接触到绳子,则绳子的最 低点距地面的距离为 0.5 米.
,它
,顶点坐标是_________. (h,k) 抛物线 ,它 ,顶点坐标是___________. 低 点,函数
b 4ac b 2 2a , 4a
2.二次函数y=ax2+bx+c的图象是一条 的对称轴是
当a>0时,抛物线开口向 上 ,有最
有最 小 值,是
向 下 ,有最
中考数学总复习17二次函数的应用 (共42张PPT)
最大年利润是800万元.
(3)若企业销售该产品的年利润不少于750万元,试确定该产品的售价
x(元/件)的取值范围.
解 当40≤x<60时,由W≥750得:
-2(x-50)2+800≥750,解得:45≤x≤55,
当60≤x≤70时,W的最大值为600<750,
∴要使企业销售该产品的年利润不少于750万元,该产品的售价x(元/件)
规律方法
规律方法
利用二次函数解决抛物线型问题,一般先根据实际问题的具体情况建立平 面直角坐标系,选择合适的二次函数的解析式,把实际问题中的已知条件 转化为点的坐标,代入解析式求解,最后把求出的结果转化为实际问题的 答案.此题主要考查了二次函数的应用题,求范围的问题,可以利用临界 点法求出自变量的值,再根据题意确定范围.
(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数 关系x=10t,已知球门的高度为 2.44m,如果该运动员正对球门射门时, 离球门的水平距离为28m,他能否将球直接射入球门?
解
把 x=28 代入 x=10t,得 t=2.8,
25 1 2 ∴当 t=2.8 时,y=-16×2.8 +5×2.8+2=2.25<2.44, ∴他能将球直接射入球门.
件售价-每件进价;再根据所列二次函数求最大值.本题主要考查待定
系数法求一次函数解析式与二次函数的应用,根据相等关系列出函数解
析式,并由二次函数的性质确定其最值是解题的关键.
练习2
(2016· 襄阳)襄阳市某企业积极响应政府“创新发展”的号召,研发了一 种新产品.已知研发、生产这种产品的成本为30元/件,且年销售量 -2x+14040≤x<60, y= y(万件)关于售价x(元/件)的函数解析式为: -x+8060≤x≤70. (1) 若企业销售该产品获得的年利润为 W( 万元 ) ,请直接写出年利润 W(万元)关于售价x(元/件)的函数解析式;
(3)若企业销售该产品的年利润不少于750万元,试确定该产品的售价
x(元/件)的取值范围.
解 当40≤x<60时,由W≥750得:
-2(x-50)2+800≥750,解得:45≤x≤55,
当60≤x≤70时,W的最大值为600<750,
∴要使企业销售该产品的年利润不少于750万元,该产品的售价x(元/件)
规律方法
规律方法
利用二次函数解决抛物线型问题,一般先根据实际问题的具体情况建立平 面直角坐标系,选择合适的二次函数的解析式,把实际问题中的已知条件 转化为点的坐标,代入解析式求解,最后把求出的结果转化为实际问题的 答案.此题主要考查了二次函数的应用题,求范围的问题,可以利用临界 点法求出自变量的值,再根据题意确定范围.
(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数 关系x=10t,已知球门的高度为 2.44m,如果该运动员正对球门射门时, 离球门的水平距离为28m,他能否将球直接射入球门?
解
把 x=28 代入 x=10t,得 t=2.8,
25 1 2 ∴当 t=2.8 时,y=-16×2.8 +5×2.8+2=2.25<2.44, ∴他能将球直接射入球门.
件售价-每件进价;再根据所列二次函数求最大值.本题主要考查待定
系数法求一次函数解析式与二次函数的应用,根据相等关系列出函数解
析式,并由二次函数的性质确定其最值是解题的关键.
练习2
(2016· 襄阳)襄阳市某企业积极响应政府“创新发展”的号召,研发了一 种新产品.已知研发、生产这种产品的成本为30元/件,且年销售量 -2x+14040≤x<60, y= y(万件)关于售价x(元/件)的函数解析式为: -x+8060≤x≤70. (1) 若企业销售该产品获得的年利润为 W( 万元 ) ,请直接写出年利润 W(万元)关于售价x(元/件)的函数解析式;
二次函数的简单应用PPT
经济学中收益与成本分析
总收益与总成本模型
01
在经济学中,总收益和总成本往往可以表示为产量的二次函数,
通过分析这些函数可以找出最大利润点。
边际收益与边际成本
02
利用二次函数的导数表示边际收益和边际成本,进而分析企业
的盈利状况。
价格与需求关系
03
在某些情况下,价格与需求之间的关系可以近似为二次函数,
通过分析这种关系可以制定合适的定价策略。
运动学问题中速度与时间关系
1 2
匀加速直线运动
根据匀加速直线运动的速度与时间关系,构建二 次函数模型求解位移、速度等参数。
竖直上抛运动
利用竖直上抛运动的速度、时间和高度之间的关 系,建立二次函数模型分析运动过程。
3
曲线运动中的速度与时间关系
在某些曲线运动中,速度与时间的关系可以近似 为二次函数,从而进行求解和分析。
在给定速度、距离等条件下,通过二次函数模型求解使得时间最短 的运动方案。
06 总结与展望
二次函数简单应用知识点总结
二次函数的对称轴
$x = -frac{b}{2a}$。
二次函数的判别式
$Delta = b^2 - 4ac$,用于 判断二次方程的根的情况。
二次函数的一般形式
$f(x) = ax^2 + bx + c$,其 中 $a neq 0$。
周长问题
对于某些特定形状的几何图形(如抛物线型、椭圆型等),可以通过二次函数表示其周长 ,并讨论周长的性质和最值问题。
综合应用
结合多种几何图形和二次函数的性质,可以解决更复杂的面积、周长等问题,如最优布局 、路径规划等实际问题。
05 二次函数在优化问题中的 应用
二次函数的应用课件
02
二次函数在实际生活中的应用
最大利润问题
总结词
通过求解二次函数的最大值,可以解决实际生活中的最大利润问题。
详细描述
在生产和经营过程中,常常需要通过合理安排生产数量或优化资源配置等方式来获得最大利润。这可以通过建立 二次函数模型,求解最大值来实现,从而为决策者提供最优方案。
抛物线型拱桥的跨度问题
通过对历史股票数据进行分析和处理,可以建立二次函数模型来描述股票价格的走势。通过求解这个 二次函数,可以预测未来一段时间内的股票价格,为投资者提供决策依据。
03
二次函数与其他数学知识的结合
二次函数与一次函数的交点问题
01
02
03
交点坐标
通过解二次函数与一次函 数的联立方程,可以找到 它们的交点坐标。
二次函数具有对称性,其对称轴为直线$x = -frac{b}{2a}$。
详细描述
二次函数具有对称性,其对称轴为直线$x = -frac{b}{2a}$。对于任意一个二次 函数$f(x) = ax^2 + bx + c$,如果有一个点$(x_1, y_1)$满足该函数,那么对 称轴上的对称点$(x_2, y_2)$也满足该函数。
绘制对称轴
绘制与坐标轴的交点
二次函数的对称轴为$x = -frac{b}{2a}$。
令$x = 0$,解得与$y$轴的交点为$(0, c)$ ;令$y = 0$,解得与$x$轴的交点为$(frac{b}{a}, 0)$和$(+frac{b}{a}, 0)$。
二次函数的单调性
单调增区间
当$a > 0$时,函数在区间$(infty, -frac{b}{2a}]$上单调递增 ;当$a < 0$时,函数在区间$[frac{b}{2a}, +infty)$上单调递增 。
二次函数初三ppt课件ppt课件ppt课件
二次函数初三ppt课件ppt 课件ppt课件
contents
目录
• 二次函数的基本概念 • 二次函数的性质 • 二次函数的应用 • 二次函数的解析式 • 二次函数与一元一次方程的关系 • 综合练习与提高
01 二次函数的基本 概念
二次函数的定义
总结词
二次函数是形如$y=ax^2+bx+c$的 函数,其中$a$、$b$、$c$为常数 ,且$a neq 0$。
详细描述
二次函数的一般形式是 $y=ax^2+bx+c$,其中$a$、$b$、 $c$是常数,且$a neq 0$。这个定义 表明二次函数具有一个自变量$x$,一 个因变量$y$,并且$x$的最高次数为 2。
二次函数的表达式
总结词
二次函数的表达式可以因形式多样而变化,但一般包括三个部分:常数项、一 次项和二次项。
02 二次函数的性质
二次函数的开口方向
总结词
二次函数的开口方向取决于二次 项系数a的正负。
详细描述
如果二次项系数a大于0,则抛物 线开口向上;如果二次项系数a小 于0,则抛物线开口向下。
二次函数的顶点
总结词
二次函数的顶点坐标为(-b/2a, c-b^2/4a)。
详细描述
二次函数的顶点是抛物线的最低点或最高点,其坐标为(-b/2a, c-b^2/4a),其中 a、b、c分别为二次项、一次项和常数项的系数。
解一元二次方程的方法包括公式法和 因式分解法等。
利用二次函数解决一元一次方程问题
当一元一次方程有重根时,可以通过构建二次函数来求解。
构建二次函数的方法是将一元一次方程转化为二次函数的形 式,然后利用二次函数的性质找到根。
06 综合练习与提高
contents
目录
• 二次函数的基本概念 • 二次函数的性质 • 二次函数的应用 • 二次函数的解析式 • 二次函数与一元一次方程的关系 • 综合练习与提高
01 二次函数的基本 概念
二次函数的定义
总结词
二次函数是形如$y=ax^2+bx+c$的 函数,其中$a$、$b$、$c$为常数 ,且$a neq 0$。
详细描述
二次函数的一般形式是 $y=ax^2+bx+c$,其中$a$、$b$、 $c$是常数,且$a neq 0$。这个定义 表明二次函数具有一个自变量$x$,一 个因变量$y$,并且$x$的最高次数为 2。
二次函数的表达式
总结词
二次函数的表达式可以因形式多样而变化,但一般包括三个部分:常数项、一 次项和二次项。
02 二次函数的性质
二次函数的开口方向
总结词
二次函数的开口方向取决于二次 项系数a的正负。
详细描述
如果二次项系数a大于0,则抛物 线开口向上;如果二次项系数a小 于0,则抛物线开口向下。
二次函数的顶点
总结词
二次函数的顶点坐标为(-b/2a, c-b^2/4a)。
详细描述
二次函数的顶点是抛物线的最低点或最高点,其坐标为(-b/2a, c-b^2/4a),其中 a、b、c分别为二次项、一次项和常数项的系数。
解一元二次方程的方法包括公式法和 因式分解法等。
利用二次函数解决一元一次方程问题
当一元一次方程有重根时,可以通过构建二次函数来求解。
构建二次函数的方法是将一元一次方程转化为二次函数的形 式,然后利用二次函数的性质找到根。
06 综合练习与提高
初三数学复习《二次函数》(专题复习)PPT课件
面积问题
面积问题
在二次函数中,可以通过求函数与坐标轴的交点来计算图形的面积。例如,当函数与x轴交于两点时 ,可以计算这两点之间的面积;当函数与y轴交于一点时,可以计算这一点与原点之间的面积。这些 方法在解决实际问题时非常有用,例如在计算利润、产量等方面。
求解方法ቤተ መጻሕፍቲ ባይዱ
求出二次函数与x轴和y轴的交点坐标,然后根据这些坐标计算图形的面积。对于更复杂的问题,可能 需要使用积分或其他数学方法来求解。
05
综合练习与提高
基础练习题
巩固基础 覆盖全面 由浅入深
基础练习题主要针对二次函数的基本概念、性质和公 式进行设计,旨在帮助学生巩固基础知识,提高解题的 准确性和速度。
基础练习题应涵盖二次函数的各个方面,包括开口方 向、顶点坐标、对称轴、与坐标轴的交点等,确保学生 对二次函数有全面的了解。
题目难度应从易到难,逐步引导学生深入理解二次函 数,从简单的计算到复杂的综合题,逐步提高学生的解 题能力。
初三数学复习《二次函数》(专题复习)ppt课 件
目录 Contents
• 二次函数的基本概念 • 二次函数的解析式 • 二次函数的图像与性质 • 二次函数的实际应用 • 综合练习与提高
01
二次函数的基本概念
二次函数的定义
总结词
理解二次函数的定义是掌握其性 质和图像的基础。
详细描述
二次函数是形式为$f(x) = ax^2 + bx + c$的函数,其中$a, b, c$是 常数,且$a neq 0$。这个定义表 明二次函数具有两个变量$x$和 $y$,并且$x$的最高次数为2。
03
二次函数的图像与性质
开口方向
总结词:根据二次项系数a的正负判断开口方向 a>0时,开口向上
初三二次函数课件ppt
已知抛物线$y = ax^2 + bx + c$ 经过点$(0,3)$和$(3,0)$,且顶点 在第四象限,求抛物线的方程。
综合习题
综合习题1
已知抛物线$y = x^2 - 2x - 3$与直线$y = 2x + k$相交于点$(x_1, y_1)$和$(x_2, y_2)$,求证:$x_1 cdot x_2 < 0$。
位移变换会改变二次函数的开口方向、开口大小和顶 点位置,但不会改变顶点位置。
04
CATALOGUE
二次函数的实际应用
最大值与最小值问题
总结词
求二次函数的最值
详细描述
通过配方法或顶点式,找到二 次函数的对称轴,从而确定函 数的最大值或最小值。
总结词
求最值时的参数条件
详细描述
根据二次函数的开口方向和顶 点位置,确定参数的取值范围 ,确保函数取得最大值或最小
顶点式二次函数解析式
总结词
顶点式二次函数解析式是 $y=a(x-h)^2+k$,其中 $(h, k)$ 是函数的顶点。
详细描述
顶点式二次函数解析式是二次函数的一种特殊形式,其中 $(h, k)$ 是函数的顶点 。这个解析式可以很方便地表示函数的顶点和对称轴,并且可以很容易地转化为 一般二次函数解析式。
配方式二次函数解析式
总结词
配方式二次函数解析式是 $y=a(xh)^2+k$,其中 $h$ 和 $k$ 是常数,可 以通过配方将一般二次函数转化为这种 形式。VSFra bibliotek详细描述
配方式二次函数解析式可以通过配方将一 般二次函数转化为这种形式,其开口方向 和开口大小也可以通过调整 $a$ 和 $(h, k)$ 来改变。这种形式的二次函数在解决 实际问题中经常被使用。
综合习题
综合习题1
已知抛物线$y = x^2 - 2x - 3$与直线$y = 2x + k$相交于点$(x_1, y_1)$和$(x_2, y_2)$,求证:$x_1 cdot x_2 < 0$。
位移变换会改变二次函数的开口方向、开口大小和顶 点位置,但不会改变顶点位置。
04
CATALOGUE
二次函数的实际应用
最大值与最小值问题
总结词
求二次函数的最值
详细描述
通过配方法或顶点式,找到二 次函数的对称轴,从而确定函 数的最大值或最小值。
总结词
求最值时的参数条件
详细描述
根据二次函数的开口方向和顶 点位置,确定参数的取值范围 ,确保函数取得最大值或最小
顶点式二次函数解析式
总结词
顶点式二次函数解析式是 $y=a(x-h)^2+k$,其中 $(h, k)$ 是函数的顶点。
详细描述
顶点式二次函数解析式是二次函数的一种特殊形式,其中 $(h, k)$ 是函数的顶点 。这个解析式可以很方便地表示函数的顶点和对称轴,并且可以很容易地转化为 一般二次函数解析式。
配方式二次函数解析式
总结词
配方式二次函数解析式是 $y=a(xh)^2+k$,其中 $h$ 和 $k$ 是常数,可 以通过配方将一般二次函数转化为这种 形式。VSFra bibliotek详细描述
配方式二次函数解析式可以通过配方将一 般二次函数转化为这种形式,其开口方向 和开口大小也可以通过调整 $a$ 和 $(h, k)$ 来改变。这种形式的二次函数在解决 实际问题中经常被使用。
二次函数的应用ppt
余弦定理
余弦定理同样可以将二次函数与三角函数联系起来,通过余弦定理可以推导出一 些关于二次函数的性质和结论。
二次函数在微积分中的应用
导数
在微积分中,导数是研究函数性质的重要工具之一。二次函 数的导数可以用来研究其图像的切线性质以及极值点等重要 信息。
积分
积分是微积分的另一个重要组成部分,二次函数在积分中也 扮演着重要的角色。例如,利用积分可以计算出二次函数与 坐标轴所围成图形的面积等等。
日常生活中的二次函数
金融理财
在日常生活中,二次函数被广泛应用在理财和投资中。例如 ,计算固定收益产品的现值和未来值,可以通过二次函数进 行计算。
交通运输
在交通运输中,二次函数也被广泛应用。例如,计算最优路 径或时间表安排时,可以通过二次函数来求解最优化问题。
05
二次函数的扩展应用
二次函数与其他函数的图像比较
线性函数
二次函数与线性函数的图像在形式上有很大的区别,二次函数呈现出曲线特 性,而线性函数则是直线特性。
反比例函数
二次函数与反比例函数的图像在性质上也有很大的不同,反比例函数在整个 区间上的值域都是非负的,而二次函数的值域则可能是正数或负数。
二次函数与三角函数的结合应用
正弦定理
通过利用正弦定理,可以建立二次函数与三角函数之间的联系,从而将二次函数 问题转化为三角函数问题。
二次函数的应用
xx年xx月xx日
目 录
• 引言 • 二次函数图像和性质 • 二次函数的应用场景 • 实际应用案例 • 二次函数的扩展应用 • 总结与展望
01
引言
课题介绍
二次函数作为数学学科中的重要内容,在初等 数学中占有重要地位。
二次函数具有丰富的性质和多种应用,是解决 实际问题的重要工具。
余弦定理同样可以将二次函数与三角函数联系起来,通过余弦定理可以推导出一 些关于二次函数的性质和结论。
二次函数在微积分中的应用
导数
在微积分中,导数是研究函数性质的重要工具之一。二次函 数的导数可以用来研究其图像的切线性质以及极值点等重要 信息。
积分
积分是微积分的另一个重要组成部分,二次函数在积分中也 扮演着重要的角色。例如,利用积分可以计算出二次函数与 坐标轴所围成图形的面积等等。
日常生活中的二次函数
金融理财
在日常生活中,二次函数被广泛应用在理财和投资中。例如 ,计算固定收益产品的现值和未来值,可以通过二次函数进 行计算。
交通运输
在交通运输中,二次函数也被广泛应用。例如,计算最优路 径或时间表安排时,可以通过二次函数来求解最优化问题。
05
二次函数的扩展应用
二次函数与其他函数的图像比较
线性函数
二次函数与线性函数的图像在形式上有很大的区别,二次函数呈现出曲线特 性,而线性函数则是直线特性。
反比例函数
二次函数与反比例函数的图像在性质上也有很大的不同,反比例函数在整个 区间上的值域都是非负的,而二次函数的值域则可能是正数或负数。
二次函数与三角函数的结合应用
正弦定理
通过利用正弦定理,可以建立二次函数与三角函数之间的联系,从而将二次函数 问题转化为三角函数问题。
二次函数的应用
xx年xx月xx日
目 录
• 引言 • 二次函数图像和性质 • 二次函数的应用场景 • 实际应用案例 • 二次函数的扩展应用 • 总结与展望
01
引言
课题介绍
二次函数作为数学学科中的重要内容,在初等 数学中占有重要地位。
二次函数具有丰富的性质和多种应用,是解决 实际问题的重要工具。
二次函数的应用ppt
斜坡行驶问题
要点一
总结词
通过二次函数模型研究汽车在斜坡上 行驶时的加速度、速度和位移等动力 学问题。
要点二
详细描述
在汽车行驶过程中,会遇到各种斜坡 和坡道,不同斜率会对汽车的动力学 性能产生影响。通过二次函数模型可 以分析和优化汽车在不同斜坡上的行 驶性能,提高行车安全性和舒适性。
要点三
实际应用案例
2023
二次函数的应用
目录
• 引言 • 二次函数的图像和性质 • 常见的二次函数应用 • 不同类型的二次函数 • 解决实际问题 • 二次函数的应用进阶
01
引言
课程背景
1
二次函数是初中数学的重要知识点之一,是数 学建模的基础。
2
通过学习二次函数,能够提高学生解决实际问 题的能力。
3
本课程旨在让学生掌握二次函数的应用,为后 续数学学习和实际应用打下基础。
03
常见的二次函数应用
最大利润问题
总结词
在各种不同的条件下,通过求解 二次函数最大值,得到利润最大 化的解决方案。
详细描述
在商业和工业生产中,通常会遇 到在一定成本范围内,如何分配 资源以获得最大利润的问题。在 实际情况下,还需要考虑市场、 竞争对手和政策等多种因素。
实际应用案例
比如开一家小卖部,需要考虑如 何进货、定价、促销等,使得利 润最大化。
根据极值点附近函数的单调性判 断极值的类型,包括极小值和极 大值。
求出极值
将极值点代入二次函数中,计算得 到极值。
如何利用导数研究二次函数的性质
求出导函数
研究单调性
对二次函数求导,得到导函数。
通过导函数的正负符号,判断原函数的单调 性。
研究极值点
(新)初三数学中考复习二次函数的应用复习课PPT幻灯片(32页)
一、二次函数与方程、不等式
(新)初三数学中考复习:二次函数 的应用 复习课 教学PPT-(32页)-PPT执教课件【推荐 】
(形)
(数)
解法一:观察图像,
(新)初三数学中考复习:二次函数 的应用 复习课 教学PPT-(32页)-PPT执教课件【推荐 】
一、二次函数与方程、不等式
(新)初三数学中考复习:二次函数 的应用 复习课 教学PPT-(32页)-PPT执教课件【推荐 】
一、二次函数与方程、不等式
(新)初三数学中考复习:二次函数 的应用 复习课 教学PPT-(32页)-PPT执教课件【推荐 】
(新)初三数学中考复习:二次函数 的应用 复习课 教学PPT-(32页)-PPT执教课件【推荐 】
三、典型例题分析
(新)初三数学中考复习:二次函数 的应用 复习课 教学PPT-(32页)-PPT执教课件【推荐 】
➢ 认识从函数角度看二次方程、不等式的联系 ➢ 抛物线与直线交点是关键点。
(新)初三数学中考复习:二次函数 的应用 复习课 教学PPT-(32页)-PPT执教课件【推荐 】 (新)初三数学中考复习:二次函数 的应用 复习课 教学PPT-(32页)-PPT执教课件【推荐 】
(新)初三数学中考复习:二次函数 的应用 复习课 教学PPT-(32页)-PPT执教课件【推荐 】
(新)初三数学中考复习:二次函数 的应用 复习课 教学PPT-(32页)-PPT执教课件【推荐 】
(新)初三数学中考复习:二次函数 的应用 复习课 教学PPT-(32页)-PPT执教课件【推荐 】
(形)
(数)
解法一:观察图像,
(新)初三数学中考复习:二次函数 的应用 复习课 教学PPT-(32页)-PPT执教课件【推荐 】
相关主题