18.1平行四边形的性质与判定复习(经典)

合集下载

18.1.1平行四边形的性质第二课时

18.1.1平行四边形的性质第二课时

课后作业
作业:教科书第49页习题18.1第3题; 教科书第51页第14题.
A E
D
O
B
F C
课后研讨:图中还有哪些量相等?
随堂检测
课堂小结
(1)到此,我们学习了平行四边形的哪些性质? (2)结合本节的学习,谈谈研究平行四边形性质的思
想方法.
平行四边形的对边相等;
A
D
平行四边形的对角相等; 平行四边形的对角线互相平分. B
O C
研究平行四边形,常常把它转化为三角形问题.
学习重点: 平行四边形对角线性质的探究与应用.
知识回顾与学法指导
平行四边形的性质: (1)平行四边形的对边相等; A (2)平行四边形的对角相等。
B
D C
在证明以上性质时,课本引导我们 把平行四边形问题转化为三角形问题.
发现问题,引入新课
一位饱经沧桑的老人,经过一辈子的辛勤劳动,到 晚年的时候,终于拥有了一块平行四边形的土地.由于 年迈体弱,他决定把这块土地平分给他的四个孩子,他 是这样分的:
课件说明
在学生“合作解答”后, 可用投影展示学生解答书写, 由学生自述解题思路
在“随堂检测”完成后,请 超链接本压缩包里随堂检测题 进行评讲,检查测试效果
八年级 下册
18.1.1 平行四边形的性质 (二课时)始兴县九龄中学 李桂秀
明确目标与重点
学习目标: 1.掌握平行四边形对角线性质; 2.经历对平行四边形性质的猜想与证明的过程, 渗透转化思想,体会图形性质探究的一般思路.
证明:∵ ABCD,
D1
3C
∴ AB∥CD, AB=CD;
∴ ∠1=∠2,∠3=∠4; ∴ △COD ≌ △AOB; A

初中数学:18.1.1 平行四边形的性质(人教版八年级数学下册第十八章平行四边形)

初中数学:18.1.1 平行四边形的性质(人教版八年级数学下册第十八章平行四边形)

18.1平行四边形18.1.1平行四边形的性质第1课时平行四边形的边、角的特征1.理解平行四边形的定义及有关概念。

2.能根据定义探索并掌握平行四边形的对边相等、对角相等的性质。

3.了解平行四边形在实际生活中的应用,能根据平行四边形的性质进行简单的计算和证明。

重点:平行四边形的概念和性质。

难点:如何添加辅助线将平行四边形问题转化为三角形问题解决的思想方法.1.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.平行四边形的定义既是平行四边形的性质,也是判断一个四边形是平行四边形的重要方法.2.平行四边形的性质:(1)平行四边形的对角相等,邻角互补;(2)平行四边形的对边平行且相等;(3)平行四边形的对角线互相平分.平行四边形的性质为以后证明线段平行或相等以及角相等提供了新的理论依据.3.推论:夹在两条平行线间的平行线段相等.探究点一:平行四边形的定义如图,在四边形ABCD中,∠B=∠D,∠1=∠2.求证:四边形ABCD是平行四边形.解析:根据三角形内角和定理求出∠DAC=∠ACB,根据平行线的判定推出AD∥BC,AB∥CD,根据平行四边形的定义推出即可.证明:∵∠1+∠B+∠ACB=180°,∠2+∠D+∠CAD=180°,∠B=∠D,∠1=∠2,∴∠DAC=∠ACB,∴AD∥BC.∵∠1=∠2,∴AB∥CD,∴四边形ABCD是平行四边形.方法总结:平行四边形的定义既是平行四边形的性质,也是判断一个四边形是平行四边形的重要方法.探究点二:平行四边形的边、角特征【类型一】利用平行四边形的性质求边长如图,在△ABC中,AB=AC=5,点D,E,F分别是AC,BC,BA延长线上的点,四边形ADEF为平行四边形,DE=2,则AD=________.解析:∵四边形ADEF为平行四边形,∴DE=AF=2,AD=EF,AD∥EF,∴∠ACB =∠FEB.∵AB=AC,∴∠ACB=∠B,∴∠FEB=∠B,∴EF=BF.∴AD=BF,∵AB=5,∴BF=5+2=7,∴AD=7.方法总结:本题考查了平行四边形对边平行且相等的性质及等腰三角形的性质,熟练掌握各性质是解题的关键.【类型二】利用平行四边形的性质求角如图,在平行四边形ABCD中,CE⊥AB于E,若∠A=125°,则∠BCE的度数为A.35°B.55°C.25°D.30°解析:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180°.∵∠A=125°,∴∠B=55°.∵CE⊥AB于E,∴∠BEC=90°,∴∠BCE=90°-55°=35°.故选A.方法总结:平行四边形对角相等,邻角互补,并且已知一个角或已知两个邻角的关系,可求出其他角,所以利用该性质可以解决和角度有关的问题.【类型三】利用平行四边形的性质证明有关结论如图,点G 、E 、F 分别在平行四边形ABCD 的边AD 、DC 和BC 上,DG =DC ,CE =CF ,点P 是射线GC 上一点,连接FP ,EP .求证:FP =EP .解析:根据平行四边形的性质推出∠DGC =∠GCB ,根据等腰三角形性质求出∠DGC =∠DCG ,推出∠DCG =∠GCB ,根据“等角的补角相等”求出∠DCP =∠FCP ,根据“SAS”证出△PCF ≌△PCE 即可得出结论.证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠DGC =∠GCB .∵DG =DC ,∴∠DGC =∠DCG ,∴∠DCG =∠GCB .∵∠DCG +∠ECP =180°,∠GCB +∠FCP =180°,∴∠ECP =∠FCP .在△PCF 和△PCE =CE ,FCP =∠ECP ,=CP ,∴△PCF ≌△PCE (SAS),∴PF =PE .方法总结:平行四边形性质,等腰三角形的性质,全等三角形的性质和判定等常综合应用,利用平行四边形的性质可以解决一些相等的问题,在证明时应用较多.【类型四】判断直线的位置关系如图,在平行四边形ABCD 中,AB =2AD ,M 为AB 的中点,连接DM 、MC ,试问直线DM 和MC 有何位置关系?请证明.解析:由AB =2AD ,M 是AB 的中点的位置关系,可得出DM 、CM 分别是∠ADC 与∠BCD 的平分线.又由平行线的性质可得∠ADC +∠BCD =180°,进而可得出DM 与MC 的位置关系.解:DM 与MC 互相垂直.证明如下:∵M 是AB 的中点,∴AB =2AM .又∵AB =2AD ,∴AM =AD ,∴∠ADM =∠AMD .∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠AMD =∠MDC ,∴∠ADM =∠MDC ,则∠MDC =12∠ADC ,同理∠MCD =12∠BCD .∵AD ∥BC ,∴∠ADC +∠DCB =180°,∴∠MDC +∠MCD =12∠BCD +12∠ADC =90°.∵∠MDC +∠MCD +∠DMC =180°,∴∠DMC =90°,∴DM 与MC 互相垂直.方法总结:根据平行四边形的性质,将已知条件转化到同一个三角形中,即可判断两条直线的关系.探究点三:两平行线间的距离如图,已知l1∥l 2,点E ,F 在l 1上,点G ,H 在l 2上,试说明△EGO 与△FHO 面积相等.解析:结合平行线间的距离相等和三角形的面积公式即可证明.证明:∵l 1∥l 2,∴点E ,F 到l 2之间的距离都相等,设为h .∴S △EGH =12GH ·h ,S △FGH =12GH ·h ,∴S △EGH =S △FGH ,∴S △EGH -S △GOH =S △FGH -S △GOH ,∴△EGO 的面积等于△FHO 的面积.方法总结:根据两平行线间的距离可知,夹在两条平行线间的任何平行线段都相等,而后可推出两三角形同底等高,面积相等.第2课时平行四边形的对角线的特征1.探索并掌握平行四边形的性质:平行四边形的对角线互相平分.2.会运用平行四边形的性质进行推理和计算.重点:平行四边形的对角线互相平分.难点:平行四边形性质的灵活运用及几何计算题的解题表达.平行四边形的性质:(1)平行四边形的对角相等,邻角互补;(2)平行四边形的对边平行且相等;(3)平行四边形的对角线互相平分.平行四边形的性质为以后证明线段平行或相等以及角相等提供了新的理论依据.探究点一:平行四边形的对角线互相平分【类型一】利用平行四边形对角线互相平分求线段已知▱ABCD 的周长为60cm ,对角线AC 、BD 相交于点O ,△AOB 的周长比△DOA的周长长5cm ,求这个平行四边形各边的长.解析:平行四边形周长为60cm ,即相邻两边之和为30cm.△AOB 的周长比△DOA 的周长长5cm ,而AO 为共用,OB =OD ,因而由题可知AB 比AD 长5cm ,进一步解答即可.解:∵四边形ABCD 是平行四边形,∴OB =OD ,AB =CD ,AD =BC .∵△AOB 的周长比△DOA 的周长长5cm ,∴AB -AD =5cm ,又∵▱ABCD 的周长为60cm ,∴AB +AD =30cm ,则AB =CD =352cm ,AD =BC =252cm.方法总结:平行四边形被对角线分成四个小三角形,相邻两个三角形的周长之差等于邻边边长之差.【类型二】利用平行四边形对角线互相平分证明线段或角相等如图,▱ABCD 的对角线AC 、BD 相交于点O ,EF 过点O 与AB 、CD 分别相交于点E 、F .求证:OE =OF .解析:根据平行四边形的性质得出OD =OB ,DC ∥AB ,推出∠FDO =∠EBO ,证出△DFO ≌△BEO 即可.证明:∵四边形ABCD 是平行四边形,∴OD =OB ,DC ∥AB ,∴∠FDO =∠EBO .在△DFO 和△BEO ∠FDO =∠EBO ,OD =OB ,∠FOD =∠EOB ,∴△DFO ≌△BEO (ASA),∴OE =OF .方法总结:利用平行四边形的性质解决线段的问题时,要注意运用平行四边形的对边相等,对角线互相平分的性质.【类型三】判断直线的位置关系如图,平行四边形ABCD 中,AC 、BD 交于O 点,点E 、F 分别是AO 、CO 的中点,试判断线段BE 、DF 的关系并证明你的结论.解析:根据平行四边形的性质“对角线互相平分”得出OA =OC ,OB =OD .利用中点的意义得出OE =OF ,从而利用△FOD ≌△EOB 可得出BE =DF ,BE ∥DF .解:BE =DF ,BE ∥DF .理由如下:∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD .∵E 、F 分别是OA 、OC 的中点,∴OE =OF ,又∵∠FOD =∠EOB ,∴△FOD ≌△EOB (SAS),∴BE =DF ,∠ODF =∠OBE ,∴BE ∥DF .方法总结:在解决平行四边形的问题时,如果有对角线的条件时,则首选对角线互相平分的方法解决问题.探究点二:平行四边形的面积在▱ABCD 中,(1)如图①,O 为对角线BD 、AC 的交点.求证:S △ABO =S △CBO ;(2)如图②,设P 为对角线BD 上任一点(点P 与点B 、D 不重合),S △ABP 与S △CBP 仍然相等吗?若相等,请证明;若不相等,请说明理由.解析:(1)根据“平行四边形的对角线互相平分”可得AO =CO ,再根据等底等高的三角形的面积相等解答;(2)根据平行四边形的性质可得点A 、C 到BD 的距离相等,再根据等底等高的三角形的面积相等解答.(1)证明:在▱ABCD 中,AO =CO .设点B 到AC 的距离为h ,则S △ABO =12AO ·h ,S △CBO =12CO ·h ,∴S △ABO =S △CBO ;(2)解:S △ABP =S △CBP .理由如下:在▱ABCD 中,点A 、C 到BD 的距离相等,设为h ,则S △ABP =12BP ·h ,S △CBP =12BP ·h ,∴S △ABP =S △CBP .方法总结:平行四边形的对角线将平行四边形分成四个面积相等的三角形.另外,等底等高的三角形的面积相等.本节学习总结:1.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.平行四边形的定义既是平行四边形的性质,也是判断一个四边形是平行四边形的重要方法.2.平行四边形的性质:(1)平行四边形的对角相等,邻角互补;(2)平行四边形的对边平行且相等;(3)平行四边形的对角线互相平分.平行四边形的性质为以后证明线段平行或相等以及角相等提供了新的理论依据.3.推论:夹在两条平行线间的平行线段相等.更多内容请见:资料下载汇总表(提示:按住ctrl+鼠标左键打开链接)。

平行四边形的性质与判定复习课

平行四边形的性质与判定复习课

FC
达标
• 1、平行四边形的周长为36cm,相邻两边 的比为1:2,则它的两邻边长分别是
____________
• 2、在平行四边形ABCD中,已知AB、BC、
CD三条边的长度分别为(x+3),(x-4)和16,
则这个四边形的周长是

达标
3、如图,在平行四边形ABCD中,EF∥AD, GH ∥ AB, EF 、 GH相交于点O,则图中共有_____个平行四边形.
于G, 交BC于H, 连结EH、HF、FG、GE,
求证: 四边形EHFG是平行四边形.
E
证明: 在 ABCD中
A1
G
3
D
AD∥BC, OA=OC, ∴∠1=∠2, ∠3=∠4,
O
∴△AOG≌△COH ∴ OG = OH
B
42
H
C
又∵ AE=CF ∴ OE=OF
F∴四边形EHFG是平行四边形.
合作探究
证明:连接BD交AC于点O
∵ 四边形ABCD是平行四边形
O
∴OB=OD OA=OC
∵ AE=CF ∴OA-AE=OC-CF
即OE=OF ∴四边形BFDE是平行四边形
变式2、已知:如图,在□ABCD中,点E,F在
对角线AC上, 且AE=CF. 求证:四边形BFDE是平行四边形
证明:连接BD交AC于O
∵ 四边形ABCD是平行四边形
O
∴OB=OD OA=OC
∵ AE=CF ∴ AE-OA=CF-OC
即OE=OF
∴四边形BFDE是平行四边形
变式3、已知:如图,在□ABCD中,点E,F在
对角线AC所在的直线上, 且AE=CF. 求证:四边形BFDE是平行四边形

平行四边形的性质与判定

平行四边形的性质与判定

平行四边形的性质与判定一、平行四边形的性质1.对边平行且相等:平行四边形的对边分别平行且相等。

2.对角相等:平行四边形的对角线互相平分,且对角线交点将平行四边形分为两个相等的三角形,这两个三角形的角相等。

3.对角线互相平分:平行四边形的对角线互相平分,即平行四边形的对角线交点是对角线中点的两倍。

4.相邻角互补:平行四边形的相邻角互补,即它们的和为180度。

5.对边角相等:平行四边形的对边角相等,即平行四边形的对边上的角相等。

6.对角线所在的平行线间的距离相等:平行四边形的对角线所在的平行线间的距离相等。

二、平行四边形的判定1.两组对边分别平行的四边形是平行四边形。

2.两组对边分别相等的四边形是平行四边形。

3.一组对边平行且相等的四边形是平行四边形。

4.对角线互相平分的四边形是平行四边形。

5.相邻角互补的四边形是平行四边形。

6.对边角相等的四边形是平行四边形。

7.对角线所在的平行线间的距离相等的四边形是平行四边形。

8.矩形:矩形是四个角都是直角的平行四边形。

9.菱形:菱形是四条边都相等的平行四边形。

10.正方形:正方形是四个角都是直角且四条边都相等的平行四边形。

四、平行四边形的应用1.计算平行四边形的面积:平行四边形的面积可以通过底边长乘以高得到。

2.证明平行四边形的性质:利用平行四边形的性质证明四边形的形状或关系。

3.解决实际问题:应用平行四边形的性质解决生活中的实际问题,如设计图形、计算面积等。

知识点:__________习题及方法:1.习题:已知ABCD是平行四边形,AB=6cm,AD=4cm,求BC和CD 的长度。

答案:BC和CD的长度分别为6cm和4cm。

解题思路:根据平行四边形的性质,对边相等,所以BC=AD=4cm,CD=AB=6cm。

2.习题:在平行四边形ABCD中,∠B=60°,求∠D的度数。

答案:∠D的度数为120°。

解题思路:根据平行四边形的性质,相邻角互补,所以∠D=180°-∠B=120°。

平行四边形专题详解

平行四边形专题详解

平行四边形专题详解18.1 平行四边形知识框架{基础知识点{ 平行四边形的定义平行四边形的性质平行四边形的判定定理三角形中位线定理典型题型{利用平行线的性质求角度平行线间距离的运用平行四边形的证明难点题型{平行四边形间距离的应用平行四边形有关的计算平行四边形的有关证明一、基础知识点知识点1 平行四边形的定义1)平行四边形的定义:两组对边分别平行的四边形。

平行四边形用“▱”表示,平行四边形ABCD 表示为“▱ABCD ”,读作“平行四边形ABCD ”注:只要满足对边平行的四边形都是平行四边形。

矩形、菱形、正方形都是特殊的平行四边形 2)平行四边形的高:一条边上任取一点作另一边的垂线,该垂线的长度称作平行四边形在该边上的高。

3)两条平行线之间的距离:一条直线上任一点到另一直线的距离。

平行线间距离处处相等。

例1.如图,AB ∥EG ,EF ∥BC ,AC ∥FG ,A ,B ,C 分别在EF ,EG 上,则图中有 个平行四边形,可分别记作 。

例2.如图,▱ABCD 中,DE ⊥AB ,BF ⊥CD ,垂足分别为E ,F .求证:BE=DF 。

例3.如图,a∥b,AB∥CD,CE⊥b,FG⊥b,点E,G为垂足,则下列说法错误的是()A.AB=CDB.CE=FGC.直线a,b之间的距离是线段AB的长D.直线a,b之间的距离是线段CE的长知识点2 平行四边形的性质平行四边形的性质,主要讨论:边、角、对角线,有时还会涉及对称性。

如下图,四边形ABCD是平行四边形:1)性质1(边):①对边相等;②,即:AB=CD,AD=BC;AB∥CD,AD∥BC2)性质2(角):对角相等,即:∠BAD=∠BCD,∠ABC=∠ADC3)性质3(对角线):对角线相互平分,即:AO=OC,BO=OD注:①平行四边形仅对角线相互平分,对角线不相等,即AC≠BD(矩形的对角线才相等);②平行四边形对角相等,但对角线不平分角,即∠DAO≠∠BAO(菱形对角线才平分角)4)性质4(对称性):平行四边形不是轴对称图形,是中心对称图形。

平行四边形的性质-经典教学教辅文档

平行四边形的性质-经典教学教辅文档

18.1 平行四边形18.1.1 平行四边形的性质第1课时平行四边形的性质(1)思想方法(即为甚么要添加对角线).教学预备教学过程(师生活动)设计理念创设情境,导入新课引言前面我们曾经学习了许多图形与几何知识,掌握了一些探求和证明图形几何性质的方法,本节开始,我们继续研讨生活中的常见图形.成绩 1 观察以下图片, 从中能找到甚么几何图形的抽象?师生活动:先生积极积极发言,教师用电脑演示你知道甚么样的图形叫做平行四边形吗?平行四边形是四边形中比较特殊的一类,那么平行四边形性质有哪些特殊的性质?本节课我们一同来探求平行设计意图:经过图片展现,让先生逼真感受生活中存在大量平行四边形的原型.进而从实践背景中抽象出平行四边形,让先生经历将实物抽象为图形的过程.四边形及其性质!合作探求,探求新知活动1:平行四边形相关概念1、结合之前学习的知识,你能从以下图形中找出平行四边形吗?2、归纳概念让先生本人归纳定义定义:有两组对边__________________的四边形叫平形四边形。

表示方法:平行四边形用“______”表示,平行四边形ABCD记作__________.如图□ABCD中,对边有组,分别是对角有_____组,分别是_________________3、想一想:你还能说出生活中哪些平行四边形的例子吗?设计意图:给出定义,强调定义的作用.621师生活动:教师引导先生回顾小学学习过的平行四边形的概念:两组对边分别平行的四形叫做平行四边形.阐明定义的两方面作用:既可以作为性质,又可以作为判定平行四边形的根据.介绍平行四边形的表示方法.活动2:猜想证明,探求性质理想世界中很多物体都有平行四边形的抽象,为甚么平行四边形外形的物体到处可见呢?这与平行四边形的性质有关。

1、由平行四边形的定义可知,平行四边形有甚么性质?2、除此之外,平行四边形的边与边,角与角之间还有怎样的关系呢?大家一同探求平行四边形边、角的其它性质。

平行四边形知识点及经典例题

平行四边形知识点及经典例题

第十八章平行四边形18.1.1 平行四边形的性质第一课时平行四边形的边、角特征知识点梳理1、有两组对边分别平行的四边形叫做平行四边形,平行四边形ABCD记作□ABCD。

2、平行四边形的对边相等,对角相等,邻角互补。

3、两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条直线之间的距离。

知识点训练1.(3分)如图,两X对边平行的纸条,随意穿插叠放在一起,转动其中一X,重合的局部构成一个四边形,这个四边形是________.2.(3分)如图,在□ABCD中,EF∥BC,GH∥AB,EF,GH相交于点O,那么图中共有平行四边形( )A.6个B.7个C.8个D.9个3.(3分)在□ABCD中,AB=6 cm,BC=8 cm,那么□ABCD的周长为cm.4.(3分)用40 cm长的绳子围成一个平行四边形,使其相邻两边的长度比为3∶2,那么较长的边的长度为cm.5.(4分)在□ABCD中,假设∠A∶∠B=1∶5,那么∠D=;假设∠A+∠C=140°,那么∠D=.6.(4分)(2014·XX)如图,在□ABCD中,DE平分∠ADC,AD=6,BE=2,那么□ABCD 的周长是.7.(4分)如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,假设∠EAD =53°,那么∠BCE的度数为( )A.53°B.37°C.47°D.123°8.(8分)(2013·XX)如下图,在平行四边形ABCD中,BE=DF.求证:AE=CF.9.(4分)如图,点E,F分别是□ABCD中AD,AB边上的任意一点,假设△EBC的面积为10 cm²,那么△DCF的面积为。

10.(4分)如图,梯形ABCD中,AD∥BC,记△ABO的面积为S1,△COD的面积为S2,那么S1,S2的大小关系是( )A.S1>S2 B.S1=S2 C.S1<S2 D.无法比拟11.在□ABCD中,∠A∶∠B∶∠C∶∠D的值可能是( )A.1∶2∶3∶4 B.1∶2∶2∶1C.2∶2∶1∶1 D.2∶1∶2∶112.如图,将平行四边形ABCD折叠,使顶点D恰落在AB边上的点M处,折痕为AN,那么对于结论:①MN∥BC;②MN=AM,以下说法正确的选项是( )A.①②都对B.①②都错C.①对②错D.①错②13.如图,在□ABCD中,BE⊥CD,BF⊥AD,垂足分别为E,F,CE=2,DF=1,∠EBF =60°,那么□ABCD的周长为__.14.(2013·XX)如图,□ABCD与□DCFE的周长相等,且∠BAD=60°,∠F=110°,那么∠DAE的度数为。

平行四边形的性质和判定复习课PPT

平行四边形的性质和判定复习课PPT
平行四边形的性质和判定
复习课教学设计
复习目标
1、进一步掌握平行四边形 的性质和判定;
2、培养学生应用平行四边 形的性质和判定解决问题 的能力.
回顾梳理
平行四边形有哪些性质?
平行四边形的性质有:
B
平行四边形的对边相等 AB=CD;AD=CB
平行四边形的对边平行 AB∥CD;AD∥BC 平行四边形的对角相等
周长是
.
课后练习
3、某平行四边形的对角线长为 x和y,一边长为12,则x和y的
值可能是( D )
A. 8和14 B. 10和14 C. 18和20 D. 10和34
课后练习
4、如图,在平行四边形ABCD中, EF∥AD, GH ∥ AB, EF 、 GH相 交于点O,则图中共有________个 平行四边形.
巩固练习
3、如图, 在平行四边形ABCD中, DB=DC,∠A=65°,CE⊥BD于E,
则∠BCE= 25o .
D CE AB 巩固练习4、如图,在四边形ABCD中,AB∥CD,
∠D=2∠B,若AD=3,AB=5,则CD= 2 .
E
巩固练习
5、如图,在 ABCD中,E,F分别为AD,
BC边上的一点,若添加一个条件
课后练习
5、平行四边形ABCD中,∠A= 450,
BC= 2 , 则AB与CD之间的距离 是 ;若AB= 3,四边形ABCD
的面积是
, △ABD的面积


课后练习
6、平行四边形的两个邻角的平分 线相交所成的角是______°. 7、一个平行四边形的一边长为10, 一条对角线的长为7,则它的另一 条对角线x的取值范围是_______.
5、如图,E,F是 ABCD对角线BD上的 两点,请你添加一个适当的条件: ,使四边形AECF是平行四边形.

平行四边形的性质与运算知识点总结

平行四边形的性质与运算知识点总结

平行四边形的性质与运算知识点总结平行四边形是几何形状中的一种特殊形式,具有一些独特的性质和运算特点。

本文将对平行四边形的性质和相关的运算知识点进行总结。

一、平行四边形的定义和性质1. 定义:平行四边形是具有两对对边分别平行的四边形。

2. 性质:a) 对边平行性质:平行四边形的对边是平行的,即如果一对对边平行,则另一对对边也必定平行。

b) 对角线性质:平行四边形的对角线相交于一点,且对角线互相平分。

c) 对边长度性质:平行四边形的对边长度相等。

d) 内角和性质:平行四边形的内角和为180度。

e) 对顶角性质:平行四边形的对顶角相等,即相邻的内角互补。

二、平行四边形的运算知识点1. 周长计算:平行四边形的周长等于各边长度的和。

如果已知平行四边形的一边长度和对角线长度,可以通过相应的运算公式计算周长。

2. 面积计算:平行四边形的面积可以通过底边长度和高的乘积来计算。

即面积 = 底边长度 ×高,其中高是垂直于底边且与底边的长度相等。

3. 直角条件:当平行四边形的对边相等时,可以推断出该平行四边形是矩形,即具有四个直角。

4. 平方差公式:平行四边形的平方差公式表示了平行四边形各边长度平方的差等于对角线长度平方的差。

如若平行四边形的一对对边平行,其对角线长度分别为d1和d2,对边长度分别为a和b,则有 a^2 -b^2 = d1^2 - d2^2。

5. 平行四边形的判定:判定一个四边形是否是平行四边形的一种方法是通过判定其对边是否平行。

若对边平行,则可以得出该四边形为平行四边形。

综上所述,平行四边形具有对边平行、对角线互相平分、对边长度相等、内角和为180度、对顶角相等等性质。

在运算方面,可以通过周长计算、面积计算、直角条件、平方差公式等方式进行运算和判定。

平行四边形是几何学中常见的形状,对于解决几何问题具有重要的意义。

此外,学习平行四边形的性质和运算,还可以扩展到其他几何形状的学习中,提高几何推理和问题解决的能力。

平行四边形的性质与判定复习作业

平行四边形的性质与判定复习作业

18.1.2 平行四边形的性质与判定复习作业一、选择题1.已知一个平行四边形两邻边的长分别为4和7,那么它的周长为()A.11 B.18 C.22 D.282.在▱ABCD中,∠A∶∠B∶∠C∶∠D可能是( )A.1∶2∶2∶1 B.1∶2∶3∶4 C.2∶1∶1∶2 D.2∶1∶2∶13.如图,▱ABCD中,对角线AC和BD相交于点O,若AC=8,AB=6,BD=m,那么m的取值范围是()A.2<m<10 B.2<m<14 C.6<m<8 D.4<m<20第3题第4题第5题第6题4.如图,E是▱ABCD边AD延长线上一点,连接BE,CE,BD,BE交CD于点F.添加以下条件,不能判定四边形BCED为平行四边形的是()A.∠ABD=∠DCE B.DF=CF C.∠AEB=∠BCD D.∠AEC=∠CBD二、填空题5.如图,在平行四边形ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为____________.6.如图,▱ABCD中,AC,BD相交于点O,若AD=6,AC+BD=16,则△BOC的周长为___.7.一个四边形的四条边长依次是a,b,c,d,且满足a2+b2+c2+d2=2ac+2bd,则这个四边形一定是______________,依据是________________________________________.三、解答题8.如图,D是△ABC的边AB的中点,DE∥BC,CE∥AB,AC与DE相交于点F.求证:△ADF≌△CEF.9.如图,在▱ABCD中,点E,F分别是边AD,BC的中点.求证:BE=DF.10.如图,▱ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.11.如图,▱ABCD 中,点E 是边AD 的中点,连接CE 并延长交BA 的延长线于点F ,连接AC ,DF.求证:四边形ACDF 是平行四边形.12.如图,在▱ABCD 中,E ,F 分别是AD ,BC 上的点,且DE =CF ,BE 和AF 的交点为M ,CE 和DF 的交点为N ,求证:MN ∥AD ,MN =12AD.13.如图,▱ABCD 中,E ,G ,F ,H 分别是四条边上的点,且AE =CF ,BG =DH.求证:EF 与GH 互相平分.14.如图,以△ABC 的三边为边在BC 的同一侧作等边△ABP ,等边△ACQ ,等边△BCR ,那么四边形AQRP 是平行四边形吗?若是,请证明;若不是,请说明理由.15.如图所示,在△ABC 中,∠BAC=90°,AD ⊥BC 于D ,BE 平分∠ABC 交AD•于E ,EF ∥BC 交AC 于F ,那么AE 与CF 相等吗?请验证你的结论.。

18.1.1平行四边形的性质(1)

18.1.1平行四边形的性质(1)

A
A2
B
C
A3
课堂小结
(1)本节课我们学习了哪些知识? (2)通过本节的学习和过去三角形的学习经历,你认
为对一个几何图形的研究通常是怎样进行的? (3)对于平行四边形,你感兴趣的还有哪些方面?你
认为有必要进一步研究思考吗?
课后作业
作业:教科书第43页练习第1,2题; 习题18.1第1,2,7,8题.
又∵∠1=∠2,∠3=∠4
B
3 2
C
∴∠1+∠4=∠2+∠3 即∠BAD=∠DCB
用两个全等的三角形纸片可以 拼出几种形状不同的平行四边形? 从拼图可以得到什么启示?
小结:平行四边形可以是由两个全等的三角
形组成,因此在解决平行四边形的问题时, 通常可以连结对角线转化为两个全等的三角 形进行解题。
A
D
C
b
A
B
a
平行线间的距离
随堂练习:
1.在 ABCD 中,AD=40,CD=30, A ∠B=60°,则BC= 40 ;AB= 30 ; ∠A= 120,°∠C= 12,0∠°D= 60° B
2.在 ABCD 中,∠ADC=120°, ∠CAD=20°,则∠ABC= 120°, ∠CAB= 40°
如图:四边形ABCD是平行四边形
记作: ABCD
读作:平行四边对的角称为 对角
A B
平行四边形不相邻的两个顶点连成 的线段叫平行四边形的对角线.
如图:线段AC、BD就是 ABCD的对角线
D C
合作交流 解读探究
A
D 1、定义:
有两组对边分别平行的四边形
叫做平行四边形。
2.平行四边形的对角相等.
已知: ABCD(如图)

平行四边形的性质和判定

平行四边形的性质和判定

18.1平行四边形的性质和判定(一)平行四边形的性质定义:两组对边分别平行的四边形是平行四边形平行四边形的性质:(1):平行四边形对边相等 (即:AB=CD,AD=BC);(2):平行四边形对边平行 (即:AB//CD,AD//BC);(3):平行四边形对角相等 (即:∠A=∠C,∠B=∠D);(4):平行四边形对角线互相平分 (即:OA=OC,OB=OD);一、角的计算问题例1.在□ABCD中,∠A∶∠B∶∠C∶∠D的值可以是()A.1∶2∶3∶4B.1∶2∶2∶1C.1∶1∶2∶2D.2∶1∶2∶1 例2.在□ABCD中,∠A、∠B的度数之比为5∶4,则∠C等于()A.60°B.80°C.100°D.120°练1.在中,∠A :∠B =2:3,则∠B = ,∠C = ,∠D = .练2.在□ABCD 中,∠A+∠C=270°,则∠B=______,∠C=______.例3.如图,平行四边形ABCD 中,∠-∠=︒A B 70,求平行四边形各角的度数。

练3.如图,在中,∠B =120°,DE ⊥AB ,垂足为E ,DF ⊥BC ,垂足为F .求∠ADE ,∠EDF ,∠FDC 的度数.二、边长计算问题例1.□ABCD 的周长为36 cm ,AB=75BC ,则较长边的长为( )A.15 cmB.7.5 cmC.21 cmD.10.5 cm例2.如图,□ABCD 中,EF 过对角线的交点O ,AB=4,AD=3,OF=1.3,则四边形BCEF 的周长为( )A.8.3B.9.6C.12.6D.13.6练1.在平行四边形ABCD 中,已知AB =8,周长等于24,则BC = ,CD = ,AD = . 练2.已知的周长为28cm ,AB :BC =3:4,则AB = ,BC = ,CD = ,AD = . 练3.在中,∠A =30°,AB =7 cm ,AD =6 cm ,则=____________.例3.平行四边形两邻边分别是4和6,其中一边上的高是3,则平行四边形的面积是____________ 练3.平行四边形邻边长是4 cm 和8cm ,一边上的高是5 cm ,则另一边上的高是____________.三、对角线问题例1.平行四边行的两条对角线把它分成全等三角形的对数是( )A.2B.4C.6D.8例 2.中,周长为20cm ,对角线AC 交BD 于点O ,△OAB 比△OBC 的周长多4,则边AB =________,BC =__________. 例3.如图,中,对角线AC 长为10 cm ,∠CAB =30°,AB 长为6 cm ,则的面积是____________.练1.如图,在平行四边形ABCD 中,已知对角线AC 和BD 相交于点O ,ΔAOB 的周长为15,AB =6,那么对角线AC 和BD 的和是多少?练2.如图,已知的周长为60 cm ,对角线AC 、BD 相交于点O ,△AOB 的周长比△BOC 的周长长8cm ,求这个四边形各边长.练3.如图,如果△AOB 与△AOD 的周长之差为8,而AB ∶AD =3∶2,那么的周长为多少?判定方法:1. 两组对边分别平行的四边形是平行四边形(定义判定法); (1)边:两组对边分别相等。

【最新版】八年级数学下册课件:18.1.1平行四边形的性质

【最新版】八年级数学下册课件:18.1.1平行四边形的性质
同前面易得AB=CD=EF
两条平行线间的距离相等.
巩固练习
18.1 平行四边形/
4.如图,AB∥CD,BC⊥AB,若AB=4cm,S△ABC=12cm2, 求△ABD中AB边上的高.
解:∵S△ABC
= =
1 2
AB•BC,
1 2
×4
×BC=12cm2,
∴BC=6cm.
∵AB∥CD,
∴点D到AB边的距离等于BC的长度,
又∵AD∥BC(平行四边形的对边平行)
∴∠A+∠B=180°∠C+∠D=180° (两直线平行,同旁内角互补)
∴∠B=∠D= 180 °-∠A= 180º- 52°=128 °
巩固练习
18.1 平行四边形/
3.如图: 在 ABCD中,∠A+∠C=200° A
则:∠A= 100 ,∠B= 80 °.
探究新知
18.1 平行四边形/
四边形
两组对边分别平行 A
D
平 行

B
C
两组对边分别平行的四边形叫做平行四边形.
边 形
A
D 记作: ABCD
读作:平行四边形ABCD
B
C
∵ AB∥CD
∵四边形ABCD是平行四边形
AD∥BC
∴ AB∥CD
∴四边形ABCD是平行四边形
AD∥BC
注:图形中字母的标识顺序应为顺时针方向或逆时针方向。
1. 理解并掌握平行四边形的概念及掌握平行 四边形的定义和对边相等、对角相等的两条性 质.
探究新知
18.1 平行四边形/
知识点 1 平行四边形的定义
下列常见的四边形它们的边之间有什么关系呢?
探究新知

18.1~18.2平行四边形的性质与判定练习题

18.1~18.2平行四边形的性质与判定练习题

E D C OF B A 18.1~18.2平行四边形的性质与判定一、选择题1、下面各条件中,能判定四边形是平行四边形的是 ( )A 、对角线互相垂直B 、对角线互相平分C 、一组对角相等D 、一组对边相等2、已知下列四个命题:①一组对边平行且相等的四边形;②两组对角分别相等的四边形;③对角线相等的四边形;④对角线互相平分的四边形。

其中能判定平行四边形的命题的个数为 ( )A 、1个B 、2个C 、3个D 、4个3、下列说法中错误的是( )A .平行四边形的对角线互相平分B .有两对邻角互补的四边形为平行四边形C .对角线互相平分的四边形是平行四边形D .一组对边平行,一组对角相等的四边形是平行四边形4、平行四边形的两条对角线及一边的长可依次取 ( )A 、6、6、6B 、6、4、3C 、6、4、6D 、3、4、55、以不共线三点为三个顶点作平行四边形,一共可作平行四边形的个数是 ( )A 、2个B 、3个C 、4个D 、5个6、 四边形ABCD 的四个角∠A ∶∠B ∶∠C ∶∠D 满足下列哪一条件时,四边形ABCD 是平行四边形?( )A 、1∶2∶2∶1B 、2∶1∶1∶1C 、1∶2∶3∶4D 、2∶1∶2∶17、四边形ABCD 中,AD ∥BC ,要判定四边形ABCD 是平行四边形,还应满足( )A 、∠A +∠C =180°B 、∠B +∠D =180°C 、∠A +∠B =180°D 、∠A +∠D =180°8、根据下列条件,得不到平行四边形的是( )A 、AB =CD ,AD =BC B 、AB ∥CD ,AB =CD C 、AB =CD ,AD ∥BC D 、AB ∥CD ,AD ∥BC9、如图,在□ABCD 中,EF 过对角线的交点,若AB =4,BC =7,OE =3,则四边形EFDC 的周长是( )A 、14B 、11C 、10D 、179题图 10题图 11题图 12题图10、如图,线段a 、b 、c 的端点分别在直线l 1、l 2上,则下列说法中正确的是( )A .若l 1∥l 2,则a=bB .若l 1∥l 2,则a=cC .若a∥b,则a=bD .若l 1∥l 2,且a∥b,则a=b11、如图,△ABC 中,AB=AC=15,D 在BC 边上,DE∥BA,DF∥CA,那么四边形AFDE 的周长是( )A .30B . 25C . 20D . 1512、如图,AB=CD ,BF=ED ,AE=CF ,由这些条件能得出图中互相平行的线段共有( )A .1组 B . 2组 C . 3组 D . 4组13、若□ABCD 的周长为40cm ,ΔABC 的周长为27cm ,则AC 的长是( )A 、13cmB 、3cmC 、7cmD 、11.5cm14、平行四边形的对角线长分别是x 和y ,一边长为12,则下列各组数据可能是x 与y 的值的是( )A 、8与14B 、10与14C 、18与20D 、10与3615、□ABCD 中,∠A:∠B=13:5,则∠A 和∠B 的度数分别为( )A .80° ,100°B .130°,50°C .160°,20°D .60°,120°16、一个平行四边形的两条对角线把它分成的全等三角形的对数是( )A.2B.4C.6D.817、E 、F 分别是□ABCD 的边AB 、DC 中点,DE 、BF 交AC 于M 、N ,则( )A.AM=MEB.AM=DFC.AM=NCD.AM ⊥MD18、在□ABCD 中若∠A >∠B ,则∠A 的补角与∠B 的余角之和( )A.小于90°B.等于90°C.大于90°D.不能确定19、从等腰三角形底边上任意一点分别作两腰的平行线与两腰所围成的平行四边形的周长等于三角形( )A B E C F DO A B D C A.周长 B.周长的一半 C.腰长 D.两腰长的和20、已知平行四边形两条邻边的长分别是6厘米和4厘米,它们的夹角是60°,则它的面积是( )A.123cm 2B.73cm 2C.63cm 2D.43cm 221、下列说法正确的有( )①平行四边形的对角线相等;②平行四边形的对边相等;③平行四边形的对角线互相垂直;④平行四边形的对角线互相平分;⑤两组对边分别相等的四边形是平行四边形;⑥一组对边平行而且另一组对边相等的四边形是平行四边形.A .4个 B . 3个 C . 2个 D . 1个22、平行四边形的一条对角线与一边垂直,且此对角线为另一边的一半,则此平行四边形两邻角之比为( )A.1∶2B.1∶3C.1∶4D.1∶523、如图,□ABCD 和□EAFC 的顶点D 、E 、F 、B 在一条直线上,则下列关系中一定正确的是( )A.DE >BFB.DE=BFC.DE <BFD.DE=EF=BF23题图 24题图 25题图24、如图,□ABCD 中,∠ABC=60°,AE∥BD,EF⊥BC 交BC 的延长线于点F ,DF=2,则EF 的长为( ) A .2 B . 2 C . 4 D . 425、如图,∠BAC=120°,AD⊥AC,BD=CD ,则下列结论正确的是( )A . A D=ACB . A B=AC C . A B=2ACD . A B=AC二、填空题1、□ABCD 中,∠B -∠A =40°,则∠D =________.2、□ABCD 的周长是44cm ,AB 比AD 大2cm ,则AB =________cm ,AD =________cm.3、平行四边形的两个相邻内角的平分线相交所成的角的度数是________.4、平行四边形的两条邻边的比为2∶1,周长为60cm ,则这个四边形较短的边长为________.5、如右上图,在□ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,∠BAD =120°,BE =2,FD =3,则∠EAF =________,□ABCD 的周长为________.6、若平行四边形的两邻边的长分别为16和20,两长边间的距离为8,则两短边间的距离为________.7、□ABCD 中,AB=6cm,BC=8cm ,∠B=70°,则AD=__________,CD=__________, ∠D=__________,∠A=__________,∠C=__________.8、平行四边形周长为50cm ,两邻边之差为5cm,各边长为 . 9、如右图,平行四边形ABCD 的周长为30cm,它的对角线AC 和BD 相交于O,且△AOB 的周长比△BOC 的周长大5cm,则AB=________,BC=________. 10、□ABCD 的对角线AC 和BD 相交于O,则其中全等的三角形有________对.(1)由平行四边形的一个顶点在形内向两边引垂线,二垂线夹角为65°,则这个平行四边形各内角的度数分别为________.(2)在□ABCD 中,∠A 的补角与∠B 的和等于210°,则∠A=________,∠B=________.(3)在□ABCD 中,AB ∶BC=1∶2,∠D=30°,AE ⊥BC 于E ,AE=3cm,则AB=________cm.这个平行四边形的周长是________cm.(4)平行四边形周长是40cm ,二邻边的比为3∶2,则两邻边长分别是________.(5)在□ABCD 中,两邻边AB 、AD 的比是1∶2,M 是大边AD 的中点,则∠BMC 的度数是________.(6)平行四边形的周长为50厘米,那么它两邻边之和是______cm ,每条对角线的长不能超过______cm.(7)□ABCD 中,周长为50厘米,AB=15cm ,∠A=30°,则此平行四边形的面积为______cm 2.(8)□ABCD 的周长为50厘米,对角线交于O 点,△AOB 的周长比△BOC 的周长大5厘米,则AB 、BC 的长分别是______、______.(9)有五条平行的直线,每相邻两条的距离相等,有一条直线和这组平行线相交成30°角,它介于相邻两条A BF CD EA BE CFDA BFOC DE平行线之间的线段长是10厘米,则这一组平行线最外面两条之间的距离是______厘米.(10)已知平行四边形周长为68厘米,被两条对角线分成两个不同的三角形的周长的和等于82厘米,两条对角线的长度比为2∶1,则两条对角线的长分别为______厘米,______厘米.11、等腰△ABC底边上任意一点D,AB=AC=5cm,过D作DE∥AC交AB于E,DF∥AB交AC于F,则四边形AEDF的周长为.12、如图(在下页),已知等边△ABC的边长为8,P是△ABC内一点,PD∥AC,PE∥AD,PF∥BC,点D,E,F分别在AB,BC,AC上,则PD+PE+PF= .第12题第13题第14题13、如图,在□ABCD中,E,F分别为AB,DC的中点,连接DE,EF,FB,则图中共有个平行四边形.14、如图,在□ABCD中,E,F是对角线AC上的两点且AE=CF,在①BE=DF;②BE∥DF;③AB=DE;④四边形EBFD为平行四边形;⑤S△ADE=S△ABE;⑥AF=CE这些结论中正确的是.15、如图,已知梯形ABCD,AD∥BC,∠B+∠C=90°,EF=10,E,F分别是AD,BC的中点,则BC﹣AD= .第15题第16题第17题16、如图,六边形ABCDEF的每个内角都是120°,AB∥DE,BC∥EF,CD∥FA,且AB=4,BC=5,CD=6,DE=7,那么,六边形ABCDEF的周长是.17、如图,△ABC中,如果AB=30,BC=24,AC=27,DN∥GM∥AB,EG∥DF∥BC,FM∥EN∥AC,则图中阴影部分的三个三角形周长之和为.18、如右图所示,木工师傅把曲尺的一边紧靠木板边缘,从曲尺的另一边上可以读出木板另一边缘的刻度,然后将曲尺移动到另一处(紧靠木板边缘),如果两次读数相同,说明木板两个边缘平行,其中道理是 .三、解答题与证明题1、在□ABCD中,E、F分别在DC、AB上,且DE=BF。

18.1平行四边形的性质(原卷版)

18.1平行四边形的性质(原卷版)
【变式21】在▱ABCD中(如图),连接AC,已知∠BAC=40°,∠ACB=80°,则∠BCD=( )
A.80°B.100°C.120°D.140°
【变式22】如图,在▱ABCD中,AE⊥CD于点E,∠B=60°,则∠DAE等于( )
A.15°B.25°C.30°D.65°
【变式23】如图,在平行四边形ABCD中,DE平分∠ADC,∠DEC=30°,则∠A的度数为( )
【变式35】(2021春•靖远县期末)如图,在平行四边形ABCD中,∠BAD的平分线交BC于F,交DC的延长线于E,过点B作BG⊥AE于点G.
(1)求证:AG=FG;
(2)判断△CEF的形状,并说明理由;
(3)若AB=10,AD=15,BG=8,求四边形ABCD的面积.
【例题4】(2023•雁塔区校级一模)如图,在▱ABCD中,E是BC边上一点,连接AB、AC、ED.若AE=AB,求证:AC=DE.
◆3、对角线:平行四边形的对角线互相平分.
几何语言:∵ 四边形ABCD是平行四边形,∴AO=OC,BO=OD
◆1、定义:两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离.
◆2、两条平行线之间的任何两条平行线段都相等.
◆3、如果有两条直线平行,那么一条直线上所有的点到另一条直线的距离都相等.
【变式54】(2022春•顺平县期末)在同一平面内,设a、b、c是三条互相平行的直线,已知a与b间的距离为5cm,b与c间的距离为2cm,则a与c间的距离为( )cm.
A.3B.7C.3或7D.2或3
【变式55】(2021秋•新罗区校级月考)如图,已知AB∥CD,O为∠CAB、∠ACD的角平分线的交点,OE⊥AC于E,且OE=1.5,则两平行线AB、CD间的距离等于.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D
H F E
C
A
G
B
典例1:如图,已知平行四边形ABCD中,DE是 ∠ADC的角平分线,交BC于点E. (1)求证:CD=CE; (2)若BE=CE, ∠B=800,求∠DAE的度 数.
A B E C D
【典例2】如图,在 ABCD中,点E,F分 别为边AD, BC的中点,连接BE, DF。 求证:四边形BEDF是平行四边形.
18.1.2
2、 平行四边形有哪些性质?
边 角 对角线 对边平行且相等 对角相等,邻角互补
互相平分
平行四边形是中心对称图形
3.平行四边形的判定方法
1、两组对边分别平行的四边形是
从边来判定
平行四边形
2、两组对边分别相等的四边形是 平行四边形 3、一组对边平行且相等的四边形是 平行四边形 从角来判定 两组对角分别相等的四边形是平 行四边形 从对角线来判定 两条对角线互相平分的四边形是 平行四边形
D H F E A G B C
3.如图,E、F分别是 ABCD边AD和BC上 的点,且AE=CF,AF和BE相交于点N,CE 和DF相交于M。求证:EF和MN互相平分。
已知:如图,在平行四边形ABCD 中,点G,H分别是AB,CD的中点, 点E,F在AC上,且AE=CF. 求证:四边形EGFH是平四边形.
如图,在 ABCD中,点E,F分别为边AD, BC的中点,连接BE, DF,且 EF分别为边AD, BC的中点,连接BE, DF,且 EM//NF。 求证:EF和MN互相平分。
2、已知:如图,在平行四边形ABCD中, 点G,H分别是AB,CD的中点, 点E,F在AC上,且AE=CF. 求证:四边形EGFH是平四边形.
相关文档
最新文档