微波探测器探测原理图
双鉴探测器的原理及应用
双鉴探测器的原理及应用所谓双鉴探测器,是指将两种不同技术原理的探测器整合成一体,当两种探测器都报警时才发出报警的装置。
该类探测器是入侵探测器的一种,它兼具两种探测器的优点,误报警率显著降低。
目前,市面主流的双鉴探测器是用微波(或超声波)和被动红外等两种技术复合的探测器。
本文介绍双鉴探测器的原理,探讨了导致失效或误报警的原因。
1 原理概述1.1 微波(或超声波)探测的原理微波探测是利用“多普勒效应”实现目标探测。
1)多普勒效应1842年,奥地利科学家多普勒发现:当声音、光和无线电波等振动源相对于观测者运动时,观测者所收到的振动频率与振动源所发出的频率有所不同。
这种效应被称为“多普勒效应”。
由“多普勒效应”引起的频率变化叫做“多普勒频移”,它与相对速度成正比、与振动的频率成反比,这被称为多普勒原理。
2)微波(或超声波)探测的原理微波探测的原理是,探测器持续发射微波,并接收发射回来的微波信号。
当探测区有目标移动时,利用多普勒原理,即可实现目标探测。
微波探测器的灵敏度取决于:●目标的移动速度;●目标的外形大小;●目标发射能力;●目标与探测器之间的距离微波探测器会根据频率改变的大小来产生相应强度的探测信号。
一般来说,探测灵敏度取决于目标的外形大小以及与探测器的距离。
目标越大,距离越短,探测灵敏度就越高。
图1 微波探测器的原理效果1.2 PIR(被动红外探测)的原理被动红外探测简称为PIR(Passive Infrared Detection),是利用红外辐射特性,感应移动物体与背景物体的温度差异,从而实现目标探测。
在移动物进入探测区域前,现场红外辐射稳定不变,一旦有移动物体进入,则会通过光学系统,将红外线辐射聚到热释电红外传感器上,使其输出比前期更强的电信号,而发出警报。
1)红外辐射特性任何物体,其自身温度只要高于绝对零度(即0K,或-273.15℃),就会不停地产生热辐射,而温度低于1725°C的物体产生的热辐射光谱集中在红外光区域。
高可靠微波感应人体传感器
高可靠微波感应人体传感器这里介绍的微波感应控制器和市场上常见的简易型微波感应控制器相比较,因为采用专用的微处理集成电路HT7610A,不但检测灵敏度度高,探测范围宽,而且工作非常可靠,误报率极低,能在-25~+45度的温度范围内稳定工作,最适和在中、高档防盗报警系统中作人体移动检测传感头使用。
1。
工作原理微波感应控制器使用直径9厘米的微型环形天线作微波探测,其天线在轴线方向产生一个椭圆形半径为0~5米(可调)空间微波戒备区,当人体活动时其反射的回波和微波感应控制器发出的原微波场(或频率)相干涉而发生变化,这一变化量经HT7610A进行检测、放大、整形、多重比较以及延时处理后由白色导线输出电压控制信号。
高可靠微波感应控制器内部由环形天线和微波三极管组成一个工作频率为2.4GHz的微波振荡器,环形天线既做发射天线也可接收由人体移动而反射的回波。
内部微波三极管的半导体PN结混频后差拍检出微弱的频移信号(即检测到人体的移动信号) ,微波专用微处理器HT7610A首先去除幅度太小的干扰信号只将一定强度的探测频移信号转化成宽度不同的等幅脉冲,电路只识别脉冲足够宽的单体信号,如人体、车辆其鉴别电路才被触发,或者两秒内有2~3个窄脉冲,如防范边沿区人走动2~3步,鉴宽电路也被触发,启动延时控制电路工作。
如果是较弱的干扰信号,如小体积的动物,远距离的树木晃动、高频通讯信号、远距离的闪电和家用电器开关时产生的干扰予以排除。
最后输HT7610A鉴别出真正大物体移动信号时,控制电路被触发,输出2秒左右的高电平,并有LED2同步显示,输出方式为电压方式,有输出时为高电平(8伏以上),没有输出时为低电平。
微波专用的微处理器HT7610A的时钟频率为16KH,当初次加电时,系统将闭锁60秒,期间完成微处理器的初始化并建立电场,这时LED 闪亮60秒后熄灭,系统自动进入检测状态,当检测到有效信号时,将有2秒信号输出,并由指示灯LED同步点亮。
双鉴红外探测器工作原理
双鉴红外探测器工作原理Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998微波—被动红外复合的探测器,它将微波和红外探测技术集中运用在一体。
在控制范围内,只有二种报警技术的探测器都产生报警信号时,才输出报警信号。
它既能保持微波探测器可靠性强、与热源无关的优点又集被动红外探测器无需照明和亮度要求、可昼夜运行的特点,大大降低探测器的误报率。
这种复合型报警探测器的误报率则是单技术微波报警器误报率的几百分之一。
简单的说,就是把被动红外探测器和微波探测器做在了一起,主要是提高探测性能,减少误报。
除此之外,市场上也有把微波和主动红外、振动探测器、声音探测器等组合的产品,大家可参考说明书了解。
被动红外探测技术是一探测人体红外辐射与背景物体(墙、家具、树木、地形等)红外辐射相比较而产生的差异部分依据的,背景红外辐射量往往是微弱而稳定的。
入侵者(包括各种动物在内)的红外辐射量往往是大的,可以引起警报信号。
如果只用一种技术进行探测,各种动物(如狗、猫、老鼠等)及各种非动物的红外辐射源(如暖气、强灯光、太阳光等)往往也会引起警报的,这种报警是符合工作原理的,专门从事双技术探测器研究的科研人员,将微波探测技术和被动红外探测技术组合在一个机壳里构成一种入侵探测器。
组成的这种双技术探测器,都选用了不同的工作原理的两种技术组合在一起,使从工作原理上无法避免的误报警的到了抑制。
因为双技术探测器要求两种技术都提供报警信息时,才提供一个触发报警信息。
其中任何一种提供报警信息,都不触发报警。
因此使误报问题得到有效的控制,同时也扩大了探测器的使用范围微波红外复合探测器的内部结构下图中是一款有线红外微波复合探测器,其中最上端部分为信号接收、信号处理、信号输出部分;中间为微波探测,下端为红外探测;另外,途中所标的J1、J2等跳线可以调整探测器的性能;许多探测器中还加装了防拆开关,布防状态下如果出现拆机行为,探测器将会立即触发报警;同时,部分厂家的产品将探测器性能自动检测、电池电量检测、信号传输检测等集成到一体,大大增强了产品的性能,但也因成本的增加,价格高出普通红外探测器的两倍以上甚至更多。
微波雷达测速测距传感1
微波雷达测速测距传感器1.微波雷达测速测距传感器应用范围微波测速说明微波信号源采用全固态器件,合金捛腔体喇叭形天线收发,混频管接收经反射后的微波信号与发射波信号混频。
被测物体移动时,由于直达波和反射波混合的结果在接收检波器上混频出差拍信号,该差拍信号的频率和移动物体速度成线性关系。
速度越快,差拍频率越高,速度越慢,差拍信号频率越低。
被测物体与微波腔体振荡器不移动时,输出的频率为零。
探头对目标距离近信号输出幅度大,探头对目标距离远信号输出幅度小.利用信号幅度特性可得到距离信息。
(对相对运动的物体而言)2.远程微波远程测速 /测距传感头(测程3-1000m)微波远程测速传感头用于车,船,飞鸟,等目标的远距测速>1000m(试验时大于2km)同时提供微波雷达测距传感器(测程水面大于300m)本振10G CWFM 调制频偏80mhz收发采用双头,发送电压DC8v电流80mA/20mw(测速传感器)\测距传感器(DC+12.5v电流100mA)接收+DC6-12.5V电流7 0mA3。
微波雷达测速传感器(测程0.1-300m)微波腔体振荡器频率为1 0.525G可用于非接触测量车辆供微波腔体振荡器频率为10.525G可用于非接触测量物体车辆的移动速度角度70度,腔体内包含混频管震荡管及收发谐振天线微波测距原理本雷达测距传感器是依据调频连续波原理(FMCW Frequency Mod u lat ed Continuous Wave)为基础的雷达物位计,它区别于脉冲式雷达,并因其探测近距离优越的性能而广泛应用于汽车防撞及工业物位领域。
物位测量精度不受介质介电常数、浓度(密度)、压力和温度的影响物位测量精度不受雾,泡沫、粉尘、蒸汽以及容器形状影响雷达使用线性调频高频信号,发射频率随一定时间间隔的线性(频率),频率范围为 10.5G , 波长约为3cm。
由于发射频率是随着信号调制的时间变化的,接收混频后输出与反射物体距离成比例的低频回波信号。
测试技术课程设计微波,红外双鉴器的入侵警报系统方案
目录1 设计的目的和意义12总体方案设计22.1方案比较22.2 方案论证32.3 方案选择33 单元模块设计与工作原理分析43.1 微波多普勒探测模块43.2 HB100输出信号处理模块73.3热释电红外探测模块83.4HN911L的输出信号处理模块123.5双鉴探测器模块134系统调试175系统功能和指标参数18 5.1报警系统的功能与工作过程185.2 系统指标参数186设计总结196.1 小结196.2系统前景展望与完善改进197参考文献:20附录:防盗报警系统设计原理图221 设计的目的和意义随着信息技术与传感器技术的普与和发展,尤其是跨入新世纪后,探测技术得到了迅猛的发展,微波多普勒/红外探测技术已渗透到国民经济的各行各业和人们日常生活的方方面面,在工业自动化、生产过程控制、通信、红外制导、激光武器、电子对抗、环境监测、红外加热、安全防、家用电器控制与日常生活各个方面都得到了广泛的应用。
本论文主要谈了红外技术和微波多普勒效应在防盗报警系统中的应用。
如今市场上成熟的防盗报警产品有被动式的、主动式的和多技术复合式的。
但前两者都有致命的缺点就是误报率很高,而多技术复合式的防盗报警器误报率很低,也是未来发展的主要方向。
即使如此,我依旧设计的是被动式防盗报警器,因为我以目前的水准很难对已成熟的产品有所突破而设计出一流的产品。
个人认为利用红外技术和微波多普勒效应设计防盗报警器的意义在于设计的过程,在设计的过程中我们才会把这几年在学校里学到的融合,同时也让自己明白我们的学习道路还很遥远。
报警器适用于仓库、住宅等地防盗报警。
在没有人在的情况下它可自动完成报警任务,防止盗窃的发生。
自动报警器的设计在一定情况下解决了无人看护仓库、住宅等地物品的保护,使厂家的资产和个人的财产免受损失。
本报警器可用于医院住院病人的有线呼叫,设置不间断电源,当电网停电时,备有直流稳压电源在同一地点可监视多处的安全情况,一旦出现偷盗,即可与时通过扬声器发出报警声响。
五种常用的传感器原理及应用
五种常用的传感器原理及应用目录1.序言 (1)2.传感器定义 (3)3.传感器选择的标准 (3)4.传感器分类的标准 (3)5.五种常用的传感器类型及其特点 (5)5.1.温度传感器 (5)1.2.红外传感器 (5)1.3.紫外线传感器 (7)1.4.触摸传感器 (8)1.5.接近传感器 (8)6.传感器选用原则 (9)7.先进的传感器技术 (10)7.1.条形码识别 (10)7.2.转发器 (11)7.3.制造部件的电磁识别 (11)7.4.表面声波 (11)7.5.光学字符识别(OCR) (11)1.序言一台设备所采用的的传感器是否先进、可靠有时直接决定了设备的先进性和可靠性。
图1传感器工作原理很多机械工程师在观念上有一个误区:机械工程师只负责机构的东西,传感器、电气元件选用及控制方案是电气工程师或系统工程师的事。
如果你是某个项目的总设计工程师,在方案构想阶段就要考虑到选用哪些类型的传感器以及设备的动作流程和控制方式。
生物信息:是反映生物运动状态和方式的信息。
碱基序列便是生物信息。
自然界经过漫长时期的演变,产生了生物,逐渐形成了复杂的生物世界。
生物信息形形色色,千变万化,不同类的生物发出不同的信息。
,人们对生物信息的研究已取得了一些可观的成果,人们发现,鸟有“鸟语”,兽有“兽语”,甚至花也有“花语”。
人们还发现生物信息与非生物信息之间有着某种必然的联系,如燕子、大雁的飞来飞去,预示着季节的变换和气温的升降;鱼儿浮出水面预示着大雨即将来临;动物的某些反常现象,预示着地震即将发生的信[息、******。
物理信息:包括声、光、颜色等。
这些物理信息往往表达了吸引异性、种间识别、威吓和警告等作用。
比如,毒蜂身上斑斓的花纹、猛兽的吼叫都表达了警告、威胁的意思。
萤火虫通过闪光来识别同伴。
红三叶草花的色彩和形状就是传递给当地土蜂和其它昆虫的信息。
化学信息:生物依靠自身代谢产生的化学物质,如酶、生长素、性诱激素等来传递信息。
安防报警_前端探测器_周界防范探测器01
第一章 前端探测器
第五节 周界防范探测器 周界防范报警系统 震动探测电缆传感器报警系统 1. 驻极体振动电缆报警系统
第一章 前端探测器
第五节 周界防范探测器 周界防范报警系统 震动探测电缆传感器报警系统 驻极体振动电缆报警系统 振动电缆式周界防卫系统采用驻极体振动电缆作为传感器,驻极体振动电缆是一种经过特殊 充电处理后带有永久预置电荷的同轴电缆。在制作同轴电缆时,对填充在其内、外导体之间的电 介质进行了静电偏压,使之带有永久性的预置静电荷。当驻极体电缆受到机械振动或因受压而变 形时,在电缆的内外导体之间就会产生一个变化的电压信号,此电压信号的大小和频率与受到的 机械振动力成正比。与外电路相连就可以检测出这一变化的信号电压,并可检测到较宽频域范围 内的信号。由于驻极体电缆传感器的工作原理和驻极体麦克风相类似,故又称为麦克风电缆。 由于驻极体电缆实际上就是一种精心设计的特制麦克风,因此利用它可以把入侵者破坏或翻 越栅网、触动振动电缆时的声响以及邻近的声音传送到中心控制室进行监听,用来判断是否有人 入侵。
第一章 前端探测器
第五节 周界防范探测器 周界防范报警系统 微波墙式报警器
第一章 前端探测器
第五节 周界防范探测器 周界防范报警系统 微波墙式报警器 微波墙式入侵探测器,主要也是用于周界防范。它类似主动红外对射式入侵探测器的工作方 式,不同的是用于探测的波束是微波而不是红外线。微波墙式报警系统分为微波发射单元和微波 接收单元两部分组成。工作时在发射器和接收器之间形成三维立体的不可见微波探测区域,利用 场干扰原理或波束阻断式原理来探测入侵者。一旦有人闯入防护区域,遮断微波探测波束时,系 统立即产生告警信号。 由于微波对射工作于10GHz,工作频率远离了光谱,所以天气因素对它的工作影响很小,雪天、 雾天也不会引起误报。同时微波产生的探测效果是立体波束,高和宽可以从几十厘米到10米可调, 探测效果非常良好。这种探测器在使用时,应注意使墙式微波波束控制在防范区域内,不向外扩 展,以免引起误报。另外,在防范区域(波束)内,不应有花草树木等物体,以免当有风吹动时, 产生误报。 微波对射式探测器可以和红外对射探测器共同使用,当两个探测器同时有报警信号时,才会 有告警输出,降低了系统误报的可能性。
各种探测器介绍说明
报警系统由哪几部分组成?简单的报警系统由前端探测器、中间传输部分和报警主机组成。
大一些的系统也可将探测器和报警主机看做是前端部分,从报警主机到接警机之间是传输部分,中心接警部分看做是后端部分。
报警系统按信息传输方式不同,可分哪几种?按信息传输方式不同,从探测器到主机之间可分为有线和无线2种。
从主机到中心接警机之间也可分为有线和无线2种,其中有线系统还可分为基于电话线传输和基于总线传输2种类型。
探测器分为哪几种类型?市面上常见的有哪些类型?红外、微波、震动、烟感、气感、玻璃破碎、压力、超声波等等。
其中红外探测器还可分为主动红外和被动红外,烟感还可分为离子式和光电式。
市面上常见的有红外探测器(被动红外)、对射、栅栏(主动红外)、双鉴探测器、震动探测器、玻璃破碎探测器。
主动红外探测器的工作原理?主动红外探测器由红外发射器和红外接收器组成。
红外发射器发射一束或多数经过调制过的红外光线投向红外接收器。
发射器与接收器之间没有遮挡物时,探测器不会报警。
有物体遮挡时,接收器输出信号发生变化,探测器报警。
被动红外探测器工作原理?被动红外探测器中有2个关键性元件,一个是菲涅尔透镜,另一个是热释电传感器。
自然界中任何高于绝对温度(-273o)的物体都会产生红外辐射,不同温度的物体释放的红外能量波长也不同。
人体有恒定的体温,与周围环境温度存在差别。
当人体移动时,这种差别的变化通过菲涅尔透镜被热释电传感器检测到,从而输出报警信号。
微波探测器工作原理?微波探测器应用的是多普勒效应原理。
在微波段,当以一种频率发送时,发射出去的微波遇到固定物体时,反射回来的微波频率不变,即f发=f收,探测器不会发出报警信号。
当发射出去的微波遇到移动物体时,反射回来的微波频率就会发生变化,即f发≠f收,此时微波探测器将发出报警信号。
什么是双元红外探测器?什么是四元红外探测器?把2个性能相同,极性相反的热释电传感器整合在一起的探测器是双元探测器。
传感器及其成像原理
44
二、分辨率
距离分辨率
在脉冲发射的方向上,能分辨两个目标 的最小距离。 c c Rd Rr sec 2 2
方位分辨率
指相邻的两束脉冲之间,能分辨两个目 标的最小距离。
R R
D
R
45
46
对分辨率的讨论:
距离分辨率
Rr
c
2
sec
Rd
c
2
距离分辨率与距离并无关系 可采用减小脉冲宽度的方法改善距离向分辨率 减小脉冲宽度是有一定限度的
方位分辨率
R R
D
R
要提高方位分辨率,理论上可采用波长较短的电磁波,加大天线孔径和 缩短观测距离的方法 但三种方法,使用时均受到一定限制 可采用合成孔径技术来改善方位分辨率
47
26
辐射准确度和较高辐射分辨率是定量遥感 的基础。 扫描仪内设有一个白炽灯,用来作可见光 和近红外波段的标准源;TM6用黑体源作为 校正源。 每个像元的亮度值用8bit编码。
27
ETM+
对TM的改进:
增加了一个分辨率为15米的 PAN波段(0.5~0.9微米); 使TM6的分辨率提高到60米;
8
1、扫描成像过程
旋转棱镜横越航线方向扫视
第一个扫描镜面扫视一次, 扫描视场内的地面辐射能,由刈幅的一边到另一边依次进入传感 器; (收集器) 经探测器输出视频信号,再经电子放大器放大和调制;(探测器、 处理器) 在阴极射线管上显示出一条相应于地面扫描视场内的景物的图像 线,这条图像线经曝光后在底片上记录下来(输出器)。
双鉴探测器的原理及应用
双鉴探测器的原理及应用所谓双鉴探测器,是指将两种不同技术原理的探测器整合成一体,当两种探测器都报警时才发出报警的装置。
该类探测器是入侵探测器的一种,它兼具两种探测器的优点,误报警率显著降低。
目前,市面主流的双鉴探测器是用微波(或超声波)和被动红外等两种技术复合的探测器。
本文介绍双鉴探测器的原理,探讨了导致失效或误报警的原因。
1原理概述1.1微波(或超声波)探测的原理微波探测是利用“多普勒效应”实现目标探测。
1)多普勒效应1842年,奥地利科学家多普勒发现:当声音、光和无线电波等振动源相对于观测者运动时,观测者所收到的振动频率与振动源所发出的频率有所不同。
这种效应被称为“多普勒效应”。
由“多普勒效应”引起的频率变化叫做“多普勒频移”,它与相对速度成正比、与振动的频率成反比,这被称为多普勒原理。
2)微波(或超声波)探测的原理微波探测的原理是,探测器持续发射微波,并接收发射回来的微波信号。
当探测区有目标移动时,利用多普勒原理,即可实现目标探测。
微波探测器的灵敏度取决于:●目标的移动速度;●目标的外形大小;●目标发射能力;●目标与探测器之间的距离微波探测器会根据频率改变的大小来产生相应强度的探测信号。
一般来说,探测灵敏度取决于目标的外形大小以及与探测器的距离。
目标越大,距离越短,探测灵敏度就越高。
图1微波探测器的原理效果1.2PIR(被动红外探测)的原理被动红外探测简称为PIR(Passive Infrared Detection),是利用红外辐射特性,感应移动物体与背景物体的温度差异,从而实现目标探测。
在移动物进入探测区域前,现场红外辐射稳定不变,一旦有移动物体进入,则会通过光学系统,将红外线辐射聚到热释电红外传感器上,使其输出比前期更强的电信号,而发出警报。
1)红外辐射特性任何物体,其自身温度只要高于绝对零度(即0K,或-273.15℃),就会不停地产生热辐射,而温度低于1725°C的物体产生的热辐射光谱集中在红外光区域。
第七讲报警系统
场感应、双技术等
按警戒范围分: 按警戒范围分:点控、线控、面控、空间控制 按工作方式分: 按工作方式分:主动、被动
9/85
JJB-HX-2010-03
常用探测器
开关报警探测器 把防范现场传感器的位置或工作状态的变化转 换为控制电路通断的变化,并以此来触发报警 电路。
防盗报警系统的基本组成
概念:入侵报警是指用来探测非法入侵者的移 动或其他行动的报警系统。 应用范围广泛,政府机关、军事单位、广播电 视通信系统、工矿企业、科研单位、财政金融 系统、商业系统、文物保护单位等 入侵探测与报警系统通常由探测器、信号传输 信道和控制器组成。
3/85
JJB-HX-2010-03
20/85 20/85
JJB-HX-2010-03
AyB家用阳台/ AyB家用阳台/窗户声光信号 报警器 性能:产品的主要特点是: 工作可靠,抗射频干扰和小 动物干扰,安装使用方便。
FG 1508集玻璃破碎探测器、 1508集玻璃破碎探测器、 门磁于一体,功能强大,物 超所值。实时监控门和窗是 否被打开,遇到强制进入情 况,立即输出警报信号。可 以安装在2.4m之内的墙上、 以安装在2.4m之内的墙上、 窗框上或天花板上( 窗框上或天花板上(无最小 距离) 距离)。可防护所有类型的 玻璃
14/85 14/85
JJB-HX-2010-03
2、微动开关
由按钮和簧片组成。靠外力作用在按钮上报警。 由按钮和簧片组成。靠外力作用在按钮上报警。 安装方式:门窗合页处、物体下面、金属体上、 安装方式:门窗合页处、物体下面、金属体上、可明装和 暗装。 暗装。 要点:解除报警要人工复位,安装在易接触的地方,注意 要点:解除报警要人工复位,安装在易接触的地方, 隐蔽;耐腐蚀性和动作灵敏度不如磁控开关。 隐蔽;耐腐蚀性和动作灵敏度不如磁控开关。
雷达式微波探测器
简介雷达式微波探测器是一种将微波收、发设备合置的探测器,工作原理基于多普勒效应。
微波的波长很短,在1mm~1000mm之间,因此很容易被物体反射。
微波信号遇到移动物体反射后会产生多普勒效应,即经反射后的微波信号与发射波信号的频率会产生微小的偏移。
此时可认为报警产生。
原理采用多普勒雷达的原理,将微波发射天线与接收天线装在一起。
使用体效应管作微波固态振荡源,通过与波导的组合,形成一个小型的发射微波信号的发射源。
探头中的肖基特检波管与同一波导组成单管波导混频器作为接收机与发射源耦合回来的信号混频,从而得到一个频率差,再送到低频放大器处理后控制报警的输出。
微波段的电磁波由于波长较短,穿透力强,玻璃、木板、砖墙等非金属材料都可穿透。
所以在安装时不要面对室外,以免室外有人通过引起误报。
金属物体对微波反射较强,在探测器防范区域内不要有大面积(或体积较大)物体存在,如铁柜等。
否则在其后阴影部分会形成探测盲区,造成防范漏洞。
多个微波探测器安装在一起时,发射频率应该有所差异,防止交叉干扰产生误报。
另外,如日光灯、水银灯等气体放电光源产生的100Hz调制信号由于在闪烁灯内的电离气体容易成为微波的运动反射体而引起误报。
使用微波入侵探测器灵敏度不要过高,调节到2/3时较为合适。
过高误报会增多。
与超声波一样家庭也可以使用。
使用范围探测器对警戒区域内活动目标的探测范围是一个立体防范空间,范围比较大,可以覆盖60°至90°的水平辐射角,控制面积可达几十到几百平方米。
雷达式微波探测器的发射能图与所采用的天线结构有关,采用全向天线(如1/4波长的单极天线)可产生近乎圆球形或椭圆形的发射范围,这种能场适合保护大面积的房间或仓库等处。
而采用定向天线(如喇叭天线)可以产生宽泪滴形或又窄又长的泪滴形能图,适合保护狭长的地点,如走廊或通道等。
如何作用雷达式微波防盗探测器是一种将微波收、发设备合置的探测器,工作原理基于多普勒效应。
【特别推荐】探测器原理大全
探测器原理大全(2) 激光入侵探测器激光与一般光源相比有如下特点:a.方向性好,亮度高。
一束激光的发散角可做到小于10-3~10-5弧度,即使在几公里以外激光光束的直径也仅扩展到几毫米或几厘米。
由于激光光束发散角小,几乎是一束平行光束,光束能聚集在一个很小的平面上,产生很大的光功率密度,其亮度很高。
激光光源和其它光源的亮度比较:光源亮度(w/Sr•cm2)蜡烛 0.5电灯 470太阳表面 0.165M氦-氖激光 15M红宝石激光 10亿兆~37亿兆b.激光的单色性和相干性好。
激光是单一频率的单色光,如氦氖激光器的波长为6328Å,在其频率范围内谱线宽度ΔU=10-1Hz,而其他一般光的ΔU = 107-109 Hz。
光的相干性取决于其单色性。
光的相干长度δm与谱线宽度的关系是:δm=c/ΔU,其中c为光速。
一般光源的相干长度为几个毫米。
单色光源氦-86灯,λ=6057Å,相干长度δm=38.6cm;而氦氖激光器λ= 6328Å,δm=40km。
按激光器的工作物质来分,激光器可分为如下几种:固体激光器:它的工作物质为固体,如钕玻璃、红宝石等。
液体染料激光器:它的工作物质为液体染料,如若丹明香豆素等。
气体激光器:它的工作物质是二氧化碳、氦-氖、氮分子等。
半导体激光器:它的工作物质是半导体材料,如砷化镓。
激光探测器与主动红外式探测器有些相似,也是由发射器与接收器两部分构成。
发射器发射激光束照射在接收器上,当有入侵目标出现在警戒线上,激光束被遮挡,接收机接收状态发生变化,从而产生报警信号。
激光探测器的作用距离:式中P1——激光功率;QT——光束发散角;M——调制光速调制度;SR——接收面积;PR——接收到的功率。
由上式可以看出,要提高探测器的作用距离,应增大激光源的发射光率,增加光学系统的透过率,减少发射装置的发散角,也可采用高灵敏的光电传感器。
激光具有高亮度,高方向性,所以激光探测器十分适用于远距离的线控报警装置。
中职教育-《智能交通系统》课件:第3章 交通信息自动采集技术(徐建闽 主编 人民交通出版社).ppt
第2节 磁场型交通信息采集技术
一、技术原理 磁场型交通信息采集技术是利用磁频技术进行交通信
息的检测。当有机动车通过检测区域时,在电磁感应的 作用下交通检测器内的电流会跳跃式上升。当电流超过 指定阈值时会触发记录仪对车辆数及车辆存在的持续时 间进行记录。
第3节 微波/雷达交通信息采集技术
❖ 成像激光雷达按成像系统不同分为两种:扫描成像激光 雷达和非扫描激光雷达。
2. 技术特点 激光雷达检测技术不受天气、车速和交通状况的影响,
具备较强的抗干扰能力,同时其检测精度非常高。缺点 是配套设备价格昂贵。
第4节 压力式交通信息采集技术
一、技术原理 ❖ 压力传感器也称为压电传感器,是由压电材料制成的。
四、技术特点 由于浮动车是流动性的,从整体上来说又是全天候工作
的,因此浮动车技术能够采集到24小时的较多路段的交通 信息,覆盖范围广,实时性高。
第3节 微波/雷达交通信息采集技术
五、激光检测 1.检测方法与工作原理 ❖ 激光雷达是利用激光技术与雷达技术相结合的检测器。
激光雷达由五部分组成,其中激光器作为发射机、光学 望远镜作为天线、光电探测器作为接收机,此外还有跟 踪架及信息处理等部分组成。
❖ 测距激光雷达的基本工作原理是:测量从发送激光束到 接收反射光的时间间隔(TOF ,time-of-flight),由反 射光被反射回来的时间间隔,可以得到被测距离。
第3节 微波/雷达交通信息采集技术
❖ 主动型红外检测器包括一个红外发光管和一个接收管, 其工作原理如图所示。
红外接收管
调制解 调器
选通 放大
微波车辆检测器产品手册介绍
14) 可转接以太网、光缆或无线(GPRS、CDMA) ; 15) 波特率: 5 环境与可靠性指标 1) 全天候工作: 2) 温度范围: 3) 防护措施: 4) 外壳指标: 5) 可靠性: 设备可在各种恶劣气候下工作; -45℃-+85℃; 设备在电源供电、串口通信等方面采取了防雷措施; 全面超越 IP65 设计; 平均无故障间隔时间 90000 小时 2400-115200bps 可调;
2
图2 本设备采用可视化的软件界面,设置不同的上报时间,设备根据用户设 置的时间参数,将各种交通流参数信息通过数据通道传输到指挥控制中心。 本设备可靠高效,具备多目标检测能力,包括从摩托车到多轴、高车身的车 辆;并采用先进的算法,对拖车进行高精度检测,避免了同类产品中出现的将拖 车误报为多辆车型的缺点,可检测路上每一车道所通过的车流量、车辆速度、车 道占有率、车型分类等参数。 2 产品主要特点 1) 采用国外微波探测领域最新技术,结合国内交通实际状况,设计出的真 正符合国内交通规律的探测器; 2) 采用中心频率为 24GHZ 的微波信号; 3) 产品检测不受绿化带、交通护栏及其他障碍物的影响,可以检测到被遮 挡的目标车辆。 4) 具有很强的抗干扰性能,由于微波对环境干扰不敏感,可以在雨、雪、 雾霾、沙尘暴等各种恶劣气象条件下进行准确的检测,解决了视频、线 圈等传统手段无法弥补的难题; 5) 采用国外最新的微波检测技术,结合高性能的 DSP 平台,可以满足目前 国内城市交通中出现的各种车型混合上路的交通状况,采用新型算法, 可以准确的检测并分辨各个车道的车辆信息,车流量的检测率高达 98%。 6) 自适应划分车道,由于采用的是线性调频技术,通过算法处理,距离分 辨率高达 0.3 米,可以解决车道识别问题。因此本设备可以在不同地形
HB100使用说明
HB100 微波模块使用说明书敬告请在本说明书限定和允许的条件下正确使用本品,任何高于本品承受力的外界环境和输入将会对其造成不可修复的损坏。
无特别情况不可对本品做破坏性和极限承受度试验,这样的试验亦会对其造成不可逆转之损坏焊接注意:请使用低压烙铁焊接并将烙铁可靠接地,焊接DIP的PAD时,需要焊接有有电路走线或者敷铜的那一面!!HB100微波模块是利用多普勒雷达(Doppler Radar)原理设计的微波移动物体探测器,主要应用于自动门控制开关、安全防范系统、ATM自动提款机的自动录像控制系统、火车自动信号机等场所。
HB100是标准的10.525GHz微波多普勒雷达探测器,这种探测方式与其它探测方式相比具有如下的优点:1、非接触探测;2、不受温度、湿度、噪声、气流、尘埃、光线等影响,适合恶劣环境;3、抗射频干扰能力强;4、输出功率小,对人体构不成危害;5、远距离:探测范围超过20米。
多普勒原理简介:多普勒理论是以时间为基础的,当无线电波在行进过程中碰到物体时该电波会被反射,反射波的频率会随碰到物体的移动状态而改变。
如果无线电波碰到的物体的位置是固定的,那么反射波的频率和发射波的频率应该相等。
如果物体朝着发射的方向移动,则反射回来的波会被压缩,就是说反射波的频率会增加;反之反射回来的波的频率会随之减小。
根据多普勒原理设计的微波探测器由FET介质DRO微波震荡源(10.525GHz)、功率分配器、发射天线、接收天线、混频器、检波器等电路组成(图2)。
发射天线向外定向发射微波,遇到物体时被反射,反射波被接收天线接收,然后到混合器与振荡波混合,混合、检波后的低频信号反应了物体移动的速度采用10.525GHz 的微波与采用较低频段波相比有以下优点:1、微波天线发射时具有良好的定向性,因此很容易控制微波探头的作用范围。
2、微波在传输过程中较易被衰减、吸收和反射,遇到墙壁等遮挡物时会被遮挡,因此墙壁等遮挡物外的物体对其干扰很小。
华北理工微波遥感课件第2章 微波遥感系统
一、非成像微波传感器 二、成像微波传感器 三、天线、雷达方程和灰度方程 四、空间微波遥感系统 五、辐射测量原理
在海洋,陆地和大气微波遥感应用中,常用的有 效的传感器包括下列五种:
(1)散射计 (2)高度计
非成像系统
(3)无线电地下探测器
(4)微波辐射计 (5)侧视雷达
微波辐射计主要用于探 测土壤温度、土壤成分、 海面温度、、海洋环流 等海洋动力学参数;
雷达散射计可以测量海 面风速与风向,用于海 洋动力研究。
三、无线电地下探测器 测量地下层及其分界 工作原理包括以下几个方面 1)对某些地物,低频波可以穿透其表面 2)探测器接收到的反射功率可以检测出来 3)能实现足够的距离分辨力
二、高度计
高度计是一种主动式微波测量仪,它具有独特的全 天时、长时间历程、观测面积大、观测精度高、时 间准同步、信息量大的能力和特点。
二、高度计
卫星高度计以海面作为遥测靶,它的回波信号携带 有十分丰富的海面特征信息,可以测量出瞬时海面 至平台之间的距离、电磁波海面后向散射系数及回 波波形。
海海 地 海 洋洋 球 洋 测岩 引 潮 深石 力 汐 无圈 场 图结 模 区构 型 测特 改 绘性 善
海洋动力学应用
海洋环境监测
大中 大 全
厄
海
海
尺等 洋 球
尔
浪
冰
度尺 边 海
尼
与
及
海度 界 平
诺
风
极
洋涡 流 面
与
速
区
环流 研 变
南
场
冰
流旋 究 化
方
盖
研研
涛
究究
动
用于“神舟”四号飞船 的多模态微波遥感器由 微波辐射计、雷达高度 计、雷达散射计三种模 态仪器构成。
安防系统入侵探测器-空间型探测器安装接线与使用
热释电传感器——PIR
红外传感器又称为热传感器,它是被动 式红外探测器中实现热电转换的关键器 件——热释电传感器。
热释电传感器 ——PIR
红外传感器的探测波长范围是8~ 14μ m,人体辐射的红外峰值波长 约为10μ m,正好在范围以内。
热释电传感器——PIR
红外传感器又称为热传 感器,它是被动式红外 探测器中实现热电转换 的关键器件——热释电 传感器。 红外传感器的探测波长 范围是8~14μ m,人体 辐射的红外峰值波长约 为10μ m,正好在范围 以内。
一.红外辐射知识
一.红外辐射知识 红外辐射又称红外光、红外线。波长为0.75um-1mm
红外线主要是传导热能的,所以又叫热线。是一种电磁波,波
长比红光还长
近红外:0.75-3um 中红外:3-25um 远红外:25-1000um
空间型探测器的安装接线及使用
一.红外辐射知识
物体温度 自然界物体只要温度高于绝对0度就会辐 射红外线。 人体辐射红外线波长为9.3微米。 温度越高的物体,红外辐射越强。 人是恒温动物,红外辐射也最为稳定。 人体(37℃) 273K(0℃) 373K(100℃) 573K(300℃)
雷达式微波探测器
空间型探测器的安装接线及使用
被动红外探测器
被动红外探测器
不向空间辐射任何形式的能量,而是采用热
释电探测器作为红外探测器件,探测防范区 域入侵物体的位移,引起的红外辐射能量的
变化,启动探测器报警的装置。
空间型探测器的安装接线及使用
空间型报警探测器的安装接线及使用
提问 对具有一定温度的物体比较敏感的探测器是哪种探测器?( D ) (A)视频移动探测器 (B)超声波探测器 (C)泄露电缆传感器 (D)被动红外探测器
微波探头原理应用
HB100微波模块是利用多普勒雷达(Doppler Radar)原理设计的微波移动物体探测器,主要应用于自动门控制开关、安全防范系统、ATM自动提款机的自动录像控制系统、火车自动信号机等场所。
HB100是标准的微波多普勒雷达探测器,这种探测方式与其它探测方式相比具有如下的优点:1、非接触探测;2、不受温度、湿度、噪声、气流、尘埃、光线等影响,适合恶劣环境;3、抗射频干扰能力强;4、输出功率小,对人体构不成危害;5、远距离:探测范围超过20米。
多普勒原理简介:多普勒理论是以时间为基础的,当无线电波在行进过程中碰到物体时该电波会被反射,反射波的频率会随碰到物体的移动状态而改变。
如果无线电波碰到的物体的位置是固定的,那么反射波的频率和发射波的频率应该相等。
如果物体朝着发射的方向移动,则反射回来的波会被压缩,就是说反射波的频率会增加;反之反射回来的波的频率会随之减小。
根据多普勒原理设计的微波探测器由FET介质DRO微波震荡源()、功率分配器、发射天线、接收天线、混频器、检波器等电路组成(图2)。
发射天线向外定向发射微波,遇到物体时被反射,反射波被接收天线接收,然后到混合器与振荡波混合,混合、检波后的低频信号反应了物体移动的速度微波感应范围图采用的微波与采用较低频段波相比有以下优点:1、微波天线发射时具有良好的定向性,因此很容易控制微波探头的作用范围。
2、微波在传输过程中较易被衰减、吸收和反射,遇到墙壁等遮挡物时会被遮挡,因此墙壁等遮挡物外的物体对其干扰很小。
供电:给HB100供电有连续直流供电(CW)模式和脉动供电(PW)模式两种:HB100适应电压范围为5V±5%。
在连续直流供电(CW)模式下工作时典型电流为35mA(典型值)。
在低占空比脉冲供电(PW)模式下工作时,推荐给HB100提供5V、脉冲的宽度在5μs~30μs之间(典型值为20μs)、频率为2~4kHz (典型值为)的脉冲供电。
3~10%的占空比脉冲供电时平均电流为~4mA。