2019-2020年高三数学上学期解析几何15抛物线的方程及其性质(2)教学案(无答案)
关于在高二数学教案:抛物线的简单几何性质及方程
一.课题:抛物线及其标准方程(1)二.教学目标:1.使学生掌握抛物线的定义、抛物线的标准方程及其推导过程.2.要求学生进一步熟练掌握解析几何的基本思想方法,提高分析、对比、概括、转化等方面的能力.3.通过一个简单实验引入抛物线的定义,可以对学生进行理论来源于实践的辩证唯物主义思想教育.三.教学重、难点:1. 重点:抛物线的定义和标准方程.(解决办法:通过一个简单实验与椭圆、双曲线的定义相比较引入抛物线的定义;通过一些例题加深对标准方程的认识).2. 难点:抛物线的标准方程的推导.(解决办法:由三种建立坐标系的方法中选出一种最佳方法,避免了硬性规定坐标系.)四、教学过程(一)导出课题:我们已学习了圆、椭圆、双曲线三种圆锥曲线.今天我们将学习第四种圆锥曲线——抛物线,以及它的定义和标准方程.课题是“抛物线及其标准方程”.请大家思考两个问题:问题1:同学们对抛物线已有了哪些认识?在物理中,抛物线被认为是抛射物体的运行轨道;在数学中,抛物线是二次函数的图象?问题2:在二次函数中研究的抛物线有什么特征?在二次函数中研究的抛物线,它的对称轴是平行于y轴、开口向上或开口向下两种情形.引导学生进一步思考:如果抛物线的对称轴不平行于y轴,那么就不能作为二次函数的图象来研究了.今天,我们突破函数研究中这个限制,从更一般意义上来研究抛物线.(二)抛物线的定义1.回顾:平面内与一个定点F的距离和一条定直线l的距离的比是常数e的轨迹,当0<e<1时是椭圆,当e>1时是双曲线,那么当e=1时,它又是什么曲线?2.简单实验如图2-29,把一根直尺固定在画图板内直线l的位置上,一块三角板的一条直角边紧靠直尺的边缘;把一条绳子的一端固定于三角板另一条直角边上的点A,截取绳子的长等于A 到直线l的距离AC,并且把绳子另一端固定在图板上的一点F;用一支铅笔扣着绳子,紧靠着三角板的这条直角边把绳子绷紧,然后使三角板紧靠着直尺左右滑动,这样铅笔就描出一条曲线,这条曲线叫做抛物线.反复演示后,请同学们来归纳抛物线的定义,教师总结.3.定义:平面内与一定点F和一条定直线l的距离相等的点的轨迹叫做抛物线(定点F不在定直线l上).定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.(三)抛物线的标准方程设定点F到定直线l的距离为p(p为已知数且大于0).下面,我们来求抛物线的方程.怎样选择直角坐标系,才能使所得的方程取较简单的形式呢?让学生议论一下,教师巡视,启发辅导,最后简单小结建立直角坐标系的几种方案:方案1:(由第一组同学完成,请一优等生演板.)以l为y轴,过点F与直线l垂直的直线为x轴建立直角坐标系(图2-30).设定点F(p,0),动点M的坐标为(x,y),过M作MD⊥y轴于D,抛物线的集合为:p={M||MF|=|MD|}.化简后得:y2=2px p2(p>0).方案2:(由第二组同学完成,请一优等生演板)以定点F为原点,平行l的直线为y轴建立直角坐标系(图2-31).设动点M的坐标为(x,y),且设直线l的方程为x=-p,定点F(0,0),过M作MD⊥l于D,抛物线的集合为:p={M||MF|=|MD|}.化简得:y2=2px+p2(p>0).方案3:(由第三、四组同学完成,请一优等生演板.)取过焦点F且垂直于准线l的直线为x轴,x轴与l交于K,以线段KF的垂直平分线为y轴,建立直角坐标系(图2-32).抛物线上的点M(x,y)到l的距离为d,抛物线是集合p={M||MF|=d}.化简后得:y2=2px(p>0).比较所得的各个方程,应该选择哪些方程作为抛物线的标准方程呢?引导学生分析出:方案3中得出的方程作为抛物线的标准方程.这是因为这个方程不仅具有较简的形式,而方程中的系数有明确的几何意义:一次项系数是焦点到准线距离的2倍.由于焦点和准线在坐标系下的不同分布情况,抛物线的标准方程有四种情形(列表如下):由学生讲清为什么会出现四种不同的情形,四种情形中P>0;并指出图形的位置特征和方程的形式应结合起来记忆.即:当对称轴为x轴时,方程等号右端为±2px,相应地左端为y2;当对称轴为y轴时,方程等号的右端为±2py,相应地左端为x2.同时注意:当焦点在正半轴上时,取正号;当焦点在负半轴上时,取负号.(四)四种标准方程的应用例题:(1)已知抛物线的标准方程是y2=6x,求它的焦点坐标和准线方程;(2)已知抛物线的焦点坐标是F(0,-2),求它的标准方程.方程是x2=-8y.练习:根据下列所给条件,写出抛物线的标准方程:(1)焦点是F(3,0);答案是:(1)y2=12x;(2)y2=-x;(3)焦点到准线的距离是2.(3)y2=4x,y2=-4x,x2=4y,x2=-4y.由三名学生演板,教师予以订正.这时,教师小结一下:由于抛物线的标准方程有四种形式,且每一种形式中都只含一个系数p,因此只要给出确定p的一个条件,就可以求出抛物线的标准方程.当抛物线的焦点坐标或准线方程给定以后,它的标准方程就唯一确定了;若抛物线的焦点坐标或准线方程没有给定,则所求的标准方程就会有多解.(五)小结:本次课主要介绍了抛物线的定义,推导出抛物线的四种标准方程形式,并加以运用.五、作业:到准线的距离是多少?点M的横坐标是多少?2.求下列抛物线的焦点坐标和准线方程:(1)x2=2y;(2)4x2+3y=0;(3)2y2+5x=0;(4)y2-6x=0.3.根据下列条件,求抛物线的方程,并描点画出图形:(1)顶点在原点,对称轴是x轴,并且顶点与焦点的距离等于6;(2)顶点在原点,对称轴是y轴,并经过点p(-6,-3).4.求焦点在直线3x-4y-12=0上的抛物线的标准方程.作业答案:3.(1)y2=24x,y2=-2x,(2)x2=-12y(图略)4.分别令x=0,y=0得两个焦点F1(0,-3),F2(4,0),从而可得抛物线方程为x2=-12y或y2=16x.一.课题:抛物线及其标准方程(2)二.教学目标:1.会用定义法、直译法、参数法,求与抛物线有关的动点的轨迹方程;2.会判断直线与抛物线的位置关系;3.会求解与抛物线的焦点弦有关的问题.三.教学重、难点:目标1,2,3。
抛物线性质教案
抛物线性质教案一、引言抛物线是数学中的基本曲线之一,广泛应用于物理学、工程学和计算机图形学等领域。
本教案将通过介绍抛物线的基本性质和相关公式,帮助学生全面理解和掌握抛物线的特点和应用。
二、教学目标1. 了解抛物线的定义和基本性质;2. 掌握抛物线的顶点坐标和焦点坐标的计算方法;3. 理解抛物线与直线的关系,学会通过求解方程组判断抛物线和直线的交点;4. 能够应用抛物线的性质解决实际问题。
三、教学内容1. 抛物线的定义和基本性质抛物线是平面上到定点(焦点)F 和一条定直线(准线)l 的距离相等的点的轨迹。
抛物线的对称轴是过焦点 F 并垂直于准线 l 的直线。
抛物线的顶点是抛物线与对称轴的交点。
抛物线的开口方向是焦点所在的一侧。
2. 抛物线的顶点坐标和焦点坐标的计算方法抛物线的标准方程为 y = ax^2 + bx + c,顶点坐标为 (-b/2a, -D/4a),其中 D = b^2 - 4ac。
焦点到准线的距离为 p,焦点坐标为 (h, k + p),其中 h = -b/2a,k= -D/4a,p = 1/4a。
3. 抛物线与直线的关系与交点的求解设抛物线和直线的方程分别为 y1 = ax^2 + bx + c 和 y2 = mx + n,求解方程组 y1 = y2,可得交点坐标。
4. 实际问题的应用抛物线在物理学、工程学和计算机图形学中的应用非常广泛。
例如,抛物线的形状可以用来模拟飞行物体的轨迹;飞行物体的发射角度和速度可以通过抛物线性质的计算得到。
另外,抛物线的形状也被用于天桥、拱门等工程设计中。
四、教学方法1. 教师讲解与示范教师通过讲解抛物线的定义和基本性质,示范计算抛物线的顶点坐标和焦点坐标,并演示如何求解抛物线和直线的交点。
2. 学生练习与合作学生在教师指导下进行练习,计算抛物线的顶点坐标和焦点坐标,以及抛物线和直线的交点。
3. 实践探究学生分组进行实验,利用抛物线性质计算飞行物体的轨迹,或者设计抛物线形状的建筑结构。
高三数学《抛物线》教案
高三数学《抛物线》教案一、教学内容本节课选自高三数学教材下册第五章《圆锥曲线与方程》中的第二节《抛物线》。
详细内容包括:1. 抛物线的定义与标准方程;2. 抛物线的简单几何性质;3. 抛物线的焦点、准线及其应用;4. 实践活动中抛物线的绘制。
二、教学目标1. 让学生掌握抛物线的定义、标准方程及简单几何性质;2. 培养学生运用抛物线的焦点、准线解决实际问题的能力;3. 激发学生学习兴趣,培养空间想象力和逻辑思维能力。
三、教学难点与重点重点:抛物线的定义、标准方程、简单几何性质及焦点、准线。
难点:抛物线焦点、准线的求解与应用。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔;2. 学具:直尺、圆规、量角器。
五、教学过程1. 引入:通过展示生活中抛物线的实例(如抛物线运动、拱桥等),引出本节课的主题——抛物线。
2. 新课导入:讲解抛物线的定义,引导学生观察抛物线的特点,推导抛物线的标准方程。
3. 知识讲解:(1)抛物线的定义与标准方程;(2)抛物线的简单几何性质;(3)抛物线的焦点、准线及其应用。
4. 例题讲解:(1)求抛物线的标准方程;(2)求抛物线的焦点、准线;(3)抛物线在实际问题中的应用。
5. 随堂练习:针对例题进行变式训练,巩固所学知识。
6. 实践活动:分组讨论,利用学具绘制抛物线,观察抛物线的性质,加深对知识的理解。
六、板书设计1. 定义:抛物线是平面内到一个定点(焦点)距离等于到一条定直线(准线)距离的点的轨迹;2. 标准方程:y^2=2px(p>0);3. 简单几何性质:对称性、开口方向、顶点、渐近线;4. 焦点、准线:F(p,0),x=p;5. 例题与解答。
七、作业设计1. 作业题目:(1)求抛物线y^2=8x的焦点、准线;(2)求抛物线x^2=4y的顶点、对称轴;(3)抛物线y^2=4x与直线y=2x+1相交,求交点坐标。
2. 答案:(1)焦点F(2,0),准线x=2;(2)顶点(0,0),对称轴y轴;(3)交点(2,5)。
高三数学《抛物线》教案
高三数学《抛物线》教案一、教学内容本节课选自高三数学教材下册第五章《圆锥曲线与方程》中的抛物线部分。
具体内容包括:抛物线的定义、性质、标准方程及其应用。
二、教学目标1. 理解并掌握抛物线的定义、性质和标准方程。
2. 能够运用抛物线的性质解决实际问题,提高数学应用能力。
3. 培养学生的空间想象能力和逻辑思维能力。
三、教学难点与重点重点:抛物线的定义、性质和标准方程。
难点:抛物线标准方程的推导及其在实际问题中的应用。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。
2. 学具:直尺、圆规、量角器。
五、教学过程1. 导入:通过展示生活中的抛物线实例,如拱桥、篮球抛物线等,引导学生思考抛物线的性质和用途。
2. 基本概念:(1)抛物线的定义:介绍抛物线的起源,引导学生理解抛物线的定义。
(2)抛物线的性质:通过动画演示,让学生观察抛物线的对称性、顶点、焦点等性质。
(3)抛物线的标准方程:引导学生根据性质推导出抛物线的标准方程。
3. 例题讲解:(1)求抛物线的标准方程。
(2)已知抛物线上一点,求该点处的切线方程。
4. 随堂练习:(1)判断下列图形是否为抛物线。
(2)求下列抛物线的标准方程。
5. 应用拓展:(1)抛物线在实际问题中的应用。
(2)抛物线与圆、直线等图形的位置关系。
六、板书设计1. 定义、性质、标准方程。
2. 例题解答步骤。
3. 课后作业及答案。
七、作业设计1. 作业题目:(1)求下列抛物线的标准方程:① y²=4x;② x²=4y;③ y²=8x;④ x²=8y。
(2)已知抛物线y²=4x上一点(1,2),求该点处的切线方程。
2. 答案:(1)① y²=4x,焦点(1,0),顶点(0,0);② x²=4y,焦点(0,1),顶点(0,0);③ y²=8x,焦点(2,0),顶点(0,0);④ x²=8y,焦点(0,2),顶点(0,0)。
2019-2020年高三数学 抛物线的几何性质教案 新人教A版
2019-2020年高三数学抛物线的几何性质教案新人教A版(1)抛物线的几何性质下面我们类比椭圆、双曲线的几何性质,从抛物线的标准方程y2=2px(p>0)出发来研究它的几何性质.(二)几何性质怎样由抛物线的标准方程确定它的几何性质?以y2=2px(p>0)为例,用小黑板给出下表,请学生对比、研究和填写.(2)例题的讲解与引申例3有2种解法;解法一运用了抛物线的重要性质:抛物线上任一点到焦点的距离(即此点的焦半径)等于此点到准线的距离.可得焦半径公式设P(x0,这个性质在解决许多有关焦点的弦的问题中经常用到,因此必须熟练掌握.(2)由焦半径不难得出焦点弦长公式:设AB是过抛物线焦点的一条弦(焦点弦),若A(x1,y1)、B(x2,y2)则有|AB|=x1+x2+p.特别地:当AB⊥x轴,抛物线的通径|AB|=2p例4涉及直线与圆锥曲线相交时,常把直线与圆锥曲线方程联立,消去一个变量,得到关于另一变量的一元二次方程,然后用韦达定理求解,这是解决这类问题的一种常用方法.附教学教案2019-2020年高三数学抽样方法教案同步教案新人教A版一、本讲进度1.1抽样方法1.2总体分布的估计课本第4页至第14页二、本讲主要内容1.三种抽样方法的概念及比较2.总体分布的估计——总体密度曲线三、学习指导1.随着当今社会信息化程度的日益提高,为了及时获取信息,我们往往不是对所研究的对象进行全面调查,而是采取抽样调查的方法,通过样本推测全体对象的情况,“抽样调查”一词已成为常用词汇。
那么,怎样根据问题的需要和对象的特征,合理地抽取样本呢?一般有常用的三种抽样方法:(Ⅰ)简单随机抽样:定义见课本P.4(1)特点:被抽取样本的总体的个体数有限,从总体中逐个地进行抽取且不放回抽样。
它是一种等概率抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的概率相等,而且在整个抽样过程中,各个个体被抽取的概率也相等,这样就保证了这种抽样方法的公平性。
2019-2020学年高考数学一轮复习-抛物线的性质(2)教案
2019-2020学年高考数学一轮复习 抛物线的性质(2)教案教学目标:能灵活运用抛物线的定义和几何性质处理有关直线与抛物线的综合问题教学重点:抛物线的简单几何性质 教学过程:复习引入:抛物线的定义和几何性质新课讲解:一、过抛物线焦点的直线1、有关焦半径(焦点弦)问题抛物线y 2=2px (p >0),焦点F 为_____________,准线l 为_______________(1)设),(00y x P 为抛物线上任意一点,焦半径=PF _______________推导:(2)AB 为过焦点的弦,),(11y x A ,),(22y x B ,则焦点弦AB =_________________ 推导:练习:(1).设抛物线x y 42=的焦点弦的两个端点分别为),(11y x A ,),(22y x B ,若621=+x x ,则||AB =________________(2).抛物线)0(22>=p px y 上有),1(1y A ,),(22y x B ,),5(3y C 三点,F 是它的焦点,若|||,||,|CF BF AF 成等差数列,求2x 。
例1过抛物线22(0)y px p =>焦点F 的直线交抛物线于B A ,两点,O 为坐标原点,(1)求证:以AB 为直径的圆与抛物线的准线相切F A B x OyDC xy E O F B C H(2)设1122(,),(,)A x y B x y 证明:212y y p =-2124p x x ⋅=2、 抛物线定义应用:“点到焦点的距离”与“点到准线距离”转化例2 (1)已知()P 4,1,F -为抛物线28y x =的焦点,M 为此抛物线上的点,求|MP|+|MF|的值最小,并求此时M 点的坐标.二、不过焦点的直线与抛物线:例3、当k 为何值时,直线1+=kx y 与抛物线x y 42=(1)相交 (2)相切(3)相离例4、求过点)1,0(M ,且和抛物线x y 42=仅有一个公共点的直线方程。
2019-2020学年高二数学上学期《抛物线的几何性质》学案
2019-2020学年高二数学上学期《抛物线的几何性质》学案一、教学目的: 1、能利用抛物线的标准方程推导它的几何性质2、弄清抛物线四种形式其性质的异同3、会利用抛物线的性质解决有关问题二、教学重点:抛物线的几何性质教学难点:抛物线几何性质的运用。
三、预习学案: 1、抛物线的定义、标准方程、焦点、准线方程。
2、类比椭圆、双曲线的性质自己推导抛物线的几何性质。
四、基础知识:以()022〉=p px y 为例1、 范围:2、 对称性:3、 顶点:4、 离心率: 图形标准方程焦点坐标 准线方程x 的取值范围 y 的取值范围 对称轴 离心率()00,y x M 的焦半径F lFlFFll6、 焦半径:抛物线上一点M 与焦点F 连线的线段MF 叫做焦半径。
设抛物线()022〉=p px y 上一点M(x,y)由抛物线的定义,易知20p x MF += 7、 焦点弦:过焦点的弦设AB 是过抛物线()022〉=p px y 焦点F 的一条弦,()()2211,,,y x B y x A 则有:①p x x AB ++=21 ②221221,4p y y p x x -=⋅=⋅ 特别地,当焦点弦垂直于对称轴时,又称作正焦弦(“通径”)此时p AB 2=,从而p 刻画了抛物线开口大小,p 越大,开口越宽.p 越小,开口越窄. 五、典型例题(一)利用性质求抛物线标准方程例1、抛物线以x 轴为轴,顶点在坐标原点,开口向右,且过()32,4M ,求抛物线的标准方程.若抛物线顶点在坐标原点,过()32,4M ,该抛物线标准方程为练习:抛物线以x 轴为轴,顶点在坐标原点,且顶点与焦点的距离等于3,则抛物线标准方程为(二)焦点弦问题例2、已知抛物线x y 42=过焦点F 的弦为AB ,且8=AB ,求AB 中点的横坐标.练习:已知()()()332211,,,,,y x C y x B y x A 是抛物线()022〉=p px y 上三点,F 为焦点,若CF BF AF ,,成等差数列。
2019-2020年高三数学上学期解析几何15抛物线的方程及其性质(2)教学案(无答案)
2019-2020年高三数学上学期解析几何15抛物线的方程及其性质(2)教学案(无答案)【教学目标】能根据条件熟练地求出抛物线的标准方程,培养学生分析问题、解决问题的能力【教学重点】能从函数的角度来理解抛物线,并能解决一些综合问题.【教学难点】抛物线的性质及简单应用.【教学过程】一、知识梳理:1.点P (x 0,y 0)和抛物线y 2=2px (p >0)的关系:(1)P 在抛物线内(含焦点)<2px 0;(2)P 在抛物线上=2px 0; (3)P 在抛物线外>2px 0.2.焦半径:抛物线上的点P (x 0,y 0)与焦点F 的距离称作焦半径,记作r =PF .(1)y 2=2px (p >0),r = ; (2)y 2=-2px (p >0),r = ;(3)x 2=2py (p >0),r = ; (4)x 2=-2py (p >0),r = .3.焦点弦:AB 为抛物线y 2=2px (p >0)的焦点弦,A (x 1,y 1),B (x 2,y 2),弦的中点M (x 0,y 0) .(1)x 1x 2=; (2) y 1y 2=-p 2;(3)弦长l =x 1+x 2+p ,x 1+x 2≥2=p ,即当x 1=x 2时,通径最短为2p .二、基础自测:1.抛物线的焦点到准线的距离是 .2.以双曲线的一条准线为准线,顶点在原点的抛物线方程是 .3.抛物线C 与双曲线x 2-y 2=1有相同焦点,且顶点在原点,则抛物线C 的方程是 .4.设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,PA ⊥l ,A 为垂足.如果直线AF 的斜率为-3,那么PF = .三、典型例题:例1.已知抛物线y 2=2px (p >0)的焦点为F ,A (x 1,y 1)、B (x 2,y 2)是过F 的直线与抛物线的两个交点,求证:(1)y 1y 2=-p 2,x 1x 2=p 24; (2)1AF +1BF为定值; (3)以AB 为直径的圆与抛物线的准线相切.【变式拓展】设抛物线y 2=2px (p >0)的焦点为F ,经过点F 的直线交抛物线于A 、B 两点, 反思:点C 在抛物线的准线上,且BC ∥x 轴.证明:直线AC 经过原点O .例2.在平面直角坐标系xOy中,抛物线C的顶点在原点,焦点F的坐标为(1,0).(1)求抛物线C的标准方程;(2)设M,N是抛物线C的准线上的两个动点,且它们的纵坐标之积为-4,直线MO、NO与抛物线的交点分别为点A、B,求证:动直线AB恒过一个定点.例3.已知抛物线C:y=mx2(m>0),焦点为F,直线2x-y+2=0交抛物线C于A,B两点,P是线段AB的中点,过P作x轴的垂线交抛物线C于点Q.(1)求抛物线C的焦点坐标;(2)若抛物线C上有一点R(x R,2)到焦点F的距离为3,求此时m的值;(3)是否存在实数m,使△ABQ是以Q为直角顶点的直角三角形?若存在,求出m的值;若不存在,说明理由.四、课堂反馈:1.抛物线y 2=4mx (m >0)的焦点到双曲线x 216-y 29=1的一条渐近线的距离为3,则此抛物线的 方程为_______________.2.在平面直角坐标系xOy 中,抛物线方程为x 2=2py (p >0),若直线x -y -2=0与该抛物线相切, 则实数p 的值是 .3.抛物线C :y 2=4x 焦点为F ,点P 在抛物线上,且PF =3,则点P 到直线x =-1的距离为________.4.已知抛物线y 2=4x 的焦点为F ,准线为l .过点F 作倾斜角为60°的直线与抛物线在第一象限的交点为A ,过点A 作l 的垂线,垂足为A 1,则△AA 1F 的面积是________.五、课后作业: 学生姓名:___________1.抛物线y =ax 2的准线方程是y -2=0,则a 的值是 .2.设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是 .3.抛物线的焦点到准线的距离是 .4.抛物线x 2=2py (p >0)的焦点为F ,其准线与双曲线x 23-y 23=1相交于A ,B 两点,若△ABF 为等边 三角形,则p = .5.一动圆的圆心在抛物线上,且动圆恒与直线相切,则动圆必过定点_________.6.已知抛物线y 2=2px (p >0),过其焦点且斜率为1的直线交抛物线于A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为 .7.已知抛物线y 2=2x 上的两点A 、B 到焦点距离之和为5,则以线段AB 为直径的圆与准线位置关系为 .8.已知抛物线y 2=2px (p >0)的焦点弦AB 的两端点坐标分别为A (x 1,y 1),B (x 2,y 2),则y 1y 2x 1x 2的值一定等于 .9.如图,抛物线E:y2=4x的焦点为F,准线l与x轴的交点为A.点C在抛物线E上,以C为圆心,CO 为半径作圆,设圆C与准线l交于不同的两点M,N.(1)若点C的纵坐标为2,求MN;(2)若AF2=AM·AN,求圆C的半径.10.如右图所示,在直角坐标系中,射线在第一象限,且与轴的正半轴成定角,动点在射线上运动,动点在轴的正半轴上运动,的面积为.(1)求线段中点的轨迹的方程;(2)是曲线上的动点, 到轴的距离之和为,设为到轴的距离之积.问:是否存在最大常数,使恒成立?若存在,求出这个值;若不存在,请说明理由.yxOAPQ。
《抛物线的几何性质》教案(公开课)
《抛物线的几何性质》教案一、教学目标(一)知识教学点使学生理解并掌握抛物线的几何性质,并能从抛物线的标准方程出发,推导这些性质.(二)能力训练点从抛物线的标准方程出发,推导抛物线的性质,从而培养学生分析、归纳、推理等能力.(三)学科渗透点使学生进一步掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线方程的关系概念的理解,这样才能解决抛物线中的弦、最值等问题.二、教材分析1.重点:抛物线的几何性质及初步运用.(解决办法:引导学生类比椭圆、双曲线的几何性质得出.)2.难点:抛物线的几何性质的应用.(解决办法:通过几个典型例题的讲解,使学生掌握几何性质的应用.) 3.疑点:抛物线的焦半径和焦点弦长公式.(解决办法:引导学生证明并加以记忆.)三、活动设计提问、填表、讲解、演板、口答.四、教学过程(一)复习1.抛物线的定义是什么?请一同学回答.应为:“平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线.”2.抛物线的标准方程是什么?再请一同学回答.应为:抛物线的标准方程是y2=2px(p>0),y2=-2px(p>0),x2=2py(p>0)和x2=-2py(p>0).下面我们类比椭圆、双曲线的几何性质,从抛物线的标准方程y2=2px(p>0)出发来研究它的几何性质.(二)几何性质怎样由抛物线的标准方程确定它的几何性质?以y2=2px(p>0)为例,用小黑板给出下表,请学生对比、研究和填写.填写完毕后,再向学生提出问题:和椭圆、双曲线的几何性质相比,抛物线的几何性质有什么特点?学生和教师共同小结:(1)抛物线只位于半个坐标平面内,虽然它也可以无限延伸,但是没有渐近线.(2)抛物线只有一条对称轴,这条对称轴垂直于抛物线的准线或与顶点和焦点的连线重合,抛物线没有中心.(3)抛物线只有一个顶点,它是焦点和焦点在准线上射影的中点.(4)抛物线的离心率要联系椭圆、双曲线的第二定义,并和抛物线的定义作比较.其结果是应规定抛物线的离心率为1.注意:这样不仅引入了抛物线离心率的概念,而且把圆锥曲线作为点的轨迹统一起来了.(三)应用举例为了加深对抛物线的几何性质的认识,掌握描点法画图的基本方法,给出如下例1.例1 已知抛物线关于x轴对称,它的顶点在坐标原点,并且经过点解:因为抛物线关于x轴对称,它的顶点在坐标原点,并且经过点程是y2=4x.后一部分由学生演板,检查一下学生对用描点法画图的基本方法掌握情况.第一象限内的几个点的坐标,得:(2)描点作图描点画出抛物线在第一象限内的一部分,再利用对称性,就可以画出抛物线的另一部分(如图2-33).例2 已知抛物线的顶点在原点,对称轴是x轴,抛物线上的点M(-3,m)到焦点的距离等于5,求抛物线的方程和m的值.解法一:由焦半径关系,设抛物线方程为y2=-2px(p>0),则准线方因为抛物线上的点M(-3,m)到焦点的距离|MF|与到准线的距离得p=4.因此,所求抛物线方程为y2=-8x.又点M(-3,m)在此抛物线上,故m2=-8(-3).解法二:由题设列两个方程,可求得p和m.由学生演板.由题意在抛物线上且|MF|=5,故本例小结:(1)解法一运用了抛物线的重要性质:抛物线上任一点到焦点的距离(即此点的焦半径)等于此点到准线的距离.可得焦半径公式:设P(x0,这个性质在解决许多有关焦点的弦的问题中经常用到,因此必须熟练掌握.(2)由焦半径不难得出焦点弦长公式:设AB是过抛物线焦点的一条弦(焦点弦),若A(x1,y1)、B(x2,y2)则有|AB|=x1+x2+p.特别地:当AB⊥x轴,抛物线的通径|AB|=2p(详见课本习题).例3 过抛物线y2=2px(p>0)的焦点F的一条直线与这抛物线相交于A、B 两点,且A(x1,y1)、B(x2,y2)(图2-34).证明:(1)当AB与x轴不垂直时,设AB方程为:此方程的两根y1、y2分别是A、B两点的纵坐标,则有y1y2=-p2.或y1=-p,y2=p,故y1y2=-p2.综合上述有y1y2=-p2又∵A(x1,y1)、B(x2,y2)是抛物线上的两点,本例小结:(1)涉及直线与圆锥曲线相交时,常把直线与圆锥曲线方程联立,消去一个变量,得到关于另一变量的一元二次方程,然后用韦达定理求解,这是解决这类问题的一种常用方法.(2)本例命题1是课本习题中结论,要求学生记忆.(四)练习1.过抛物线y2=4x的焦点作直线交抛物线于A(x1,y1)、B(x2,y2)两点,若x1+x2=6,求|AB|的值.由学生练习后口答.由焦半径公式得:|AB|=x1+x2+p=82.证明:与抛物线的轴平行的直线和抛物线只有一个交点.请一同学演板,其他同学练习,教师巡视.证明:可设抛物线方程故抛物线y2=2px与平行于其轴的直线只有一个交点.(五)全课小结1.抛物线的几何性质;2.抛物线的应用.五、布置作业1.在抛物线y2=12x上,求和焦点的距离等于9的点的坐标.2.有一正三角形的两个顶点在抛物线y2=2px上,另一顶点在原点,求这个三角形的边长.3.图2-35是抛物线拱桥的示意图,当水面在l时,拱顶高水面2m,水面宽4m,水下降11m后,水面宽多少?4.求证:以抛物线的焦点弦为直径的圆,必与抛物线的准线相切.作业答案:3.建立直角坐标系,设拱桥的抛物线方程为x2=-2py,可得抛物线4.由抛物线的定义不难证明六、板书设计。
人教A版选择性必修一教案3.3.2 抛物线的简单几何性质(2)
3.3.2 抛物线的简单几何性质(2)本节课选自《2019人教A 版高中数学选择性必修第一册》第三章《圆锥曲线的方程》,本节课主要学习抛物线的简单几何性质《抛物线的简单几何性质》是人教A 版选修2-1第二章第四节的内容。
本节课是在是在学习了椭圆、双曲线的几何性质的基础上,通过类比学习抛物线的简单几何性质。
抛物线是高中数学的重要内容,也是高考的重点与热点内容。
坐标法的教学贯穿了整个“圆锥曲线方程”一章,是学生应重点掌握的基本数学方法 运动变化和对立统一的思想观点在这节知识中得到了突出体现,我们必须充分利用好这部分教材进行教学.课程目标学科素养A.掌握抛物线的几何性质及其简单应用.B.掌握直线与抛物线的位置关系的判断及相关问题.C. 掌握抛物线中的定值与定点问题.1.数学抽象:抛物线的几何性质2.逻辑推理:运用抛物线的性质平行3.数学运算:抛物线中的定值与定点问题4.直观想象:抛物线几何性质的简单应用重点:抛物线的简单几何性质及其应用 难点:直线与抛物线位置关系的判断多媒体教学过程教学设计意图 核心素养目标O(0,0)【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为:==,可得y D=.设直线AB的方程为:my=x﹣,与抛物线的方程联立化为y2﹣2pm﹣p2=0,利用根与系数的关系可得.可得y D=y2.即可证明.【解答】证明:设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为:==,令x=,可得y D=.设直线AB的方程为:my=x﹣,联立,化为y2﹣2pm﹣p2=0,∴.∴.∴y D=y2.∴直线DB平行于抛物线的对称轴.例6. 如图,已知定点B (a,−ℎ),BC⊥∵2211122,4y px y y p ==-∴2121224px p y y y y y -=+++ ∴ 122(2)py x p y y =-+∴ AB 过定点(2p,0).5.如图,已知直线l :y=2x-4交抛物线y 2=4x 于A ,B 两点,试在抛物线AOB 这段曲线上求一点P ,使△PAB 的面积最大,并求出这个最大面积.思路分析:先求出弦长|AB|,再求出点P 到直线AB 的距离,从而可表示出△PAB 的面积,再求最大值即可. 解:由{y =2x -4.y 2=4x ,解得{x =4,y =4或{x =1,y =-2.∴A (4,4),B (1,-2),∴|AB|=3√5.(方法1)设P (x 0,y 0)为抛物线AOB 这段曲线上一点,d 为点P 到直线AB的距离, 则有d=|2x 0-y 0-4|√5=1√5|y 022-y 0-4|=12√5|(y 0-1)2-9|. ∵-2<y 0<4,∴(y 0-1)2-9<0. ∴d=12√5[9-(y 0-1)2].从而当y 0=1时,d max =92√5,S max =12×92√5×3√5=274.因此,当点P 的坐标为(14,1)时,△P AB 的面积取得最大值,最大面积为274.(方法2)由{y =2x -4,y 2=4x ,解得{x =4,y =4或{x =1,y =-2.∴A (4,4),B (1,-2),∴|AB|=3√5.设点P 的坐标为(4t 2,4t ),∵点P (4t 2,4t )在抛物线AOB 这段曲线上,∴-2<4t<4,得-12<t<1.由题意得点P (4t 2,4t )到直线AB 的距离d=|8t 2-4t -4|√5=4√5|2(t -14)2-98|.四、小结五、课时练学生已熟悉和掌握椭圆和双曲线的几何性质,有亲历体验、发现和探究的兴趣;具有一定的动手操作和逻辑推理的能力;有分组讨论、合作交流的习惯。
高三数学 教案 抛物线标准方程及图象性质
抛物线的性质(顶点、范围、对称性、离心率)••抛物线的性质(见下表):抛物线的焦点弦的性质:•关于抛物线的几个重要结论:(1)弦长公式同椭圆.(2)对于抛物线y2=2px(p>0),我们有P(x0,y0)在抛物线内部P(x0,y0)在抛物线外部(3)抛物线y2=2px上的点P(x1,y1)的切线方程是抛物线y2=2px(p>0)的斜率为k的切线方程是y=kx+(4)抛物线y2=2px外一点P(x0,y0)的切点弦方程是(5)过抛物线y2=2px上两点的两条切线交于点M(x0,y0),则(6)自抛物线外一点P作两条切线,切点为A,B,若焦点为F,又若切线PA⊥PB,则AB必过抛物线焦点F.利用抛物线的几何性质解题的方法:根据抛物线定义得出抛物线一个非常重要的几何性质:抛物线上的点到焦点的距离等于到准线的距离.利用抛物线的几何性质,可以进行求值、图形的判断及有关证明.抛物线中定点问题的解决方法:在高考中一般以填空题或选择题的形式考查抛物线的定义、标准方程以及几何性质等基础知识,在解答题中常常将解析几何中的方法、技巧与思想集于一身,与其他圆锥曲线或其他章节的内容相结合,考查综合分析问题的能力,而与抛物线有关的定值及最值问题是一个很好的切人点,充分利用点在抛物线上及抛物线方程的特点是解决此类题型的关键,在求最值时经常运用基本不等式、判别式以及转化为函数最值等方法。
利用焦点弦求值:利用抛物线及焦半径的定义,结合焦点弦的表示,进行有关的计算或求值。
抛物线中的几何证明方法:利用抛物线的定义及几何性质、焦点弦等进行有关的几何证明是抛物线中的一种常见题型,证明时注意利用好图形,并做好转化代换。
抛物线的标准方程及图象•抛物线的标准方程及图像(见下表):•抛物线的标准方程的理解:①抛物线的标准方程是指抛物线在标准状态下的方程,即顶点在原点,焦点在坐标轴上;②抛物线的标准方程中的系数p叫做焦参数,它的几何意义是:焦点到准线的距离.焦点到顶点以及顶点到准线的距离均为③抛物线的标准方程有四种类型,所以判断其类型是解题的关键,在方程的类型已确定的前提下,由于标准方程只有一个参数p,所以只需一个条件就可以确定一个抛物线的方程;④对以上四种位置不同的抛物线和它们的标准方程进行对比、分析,得出其异同点。
高中数学_抛物线的标准方程和简单几何性质教学设计学情分析教材分析课后反思
§2.4抛物线及其标准方程一:教学目标:1.知识与技能:(1)理解抛物线的定义,画出图形,并掌握其标准方程;(2)利用定义求标准方程,焦点,准线;(3)掌握简单运用。
2. 过程与方法:(1)根据抛物线特征选择不同解决方法;(2)从具体情境中抽象出抛物线模型;(3)用数学的思维和方法解决生活中与抛物线相关的问题。
3. 情感态度与价值观:在学习抛物线中,体会数形结合处理问题的好处。
二、学习者特征分析:1.学生有一定的圆锥曲线的基础,在此前学习过圆,椭圆的知识;2.清楚初中二次函数的图像是抛物线;3.有很强的求知欲望,思维活跃。
三:教学策略选择与设计1.采用启发式教学;创设情境,引导学生发现问题,运用类比,归纳的数学方法解决问题,是学生有被动接受转向主动学习;2.通过类比椭圆的学习体系及运用的方法,进而学习抛物线体系;3.适当的例题讲解,一方面巩固所学知识,另一方面培养自主思考解决问题能力。
教学重点:抛物线定义及如何建立适当坐标系,完成标准方程的推导过程。
教学难点:抛物线标准方程的推导过程。
四、教学资源与工具设计1. 一个多媒体教室;2. 课前制作的ppt;3.学生人手一本北师大版高中数学选修2-1;4.事先准备好的纸板、直尺、三角板、细线、胶带。
五、教学过程1.创设情境,引出课题利用PPT给出嫦娥一号飞船的运行轨迹图,引起注意,同时简单复习上节椭圆的相关知识。
今天我们一起深入来研究抛物线。
2.动手实验,概括定义师:初中,我们从函数的角度学习过抛物线,这一节课我们会冲破限界从另一个角度来认识抛物线。
下面请大家一起动手做一做:(同桌一组)把一根直尺固定在纸板上面,把一块三角板地一条直角边紧靠在支持的边缘,取一根直线,它的长度与另一直角边相等,细绳的一端固定在顶点A 处,另一端固定在纸板上点F 处。
用笔尖扣紧绳子,靠住三角板,然后将三角板沿着直尺上下滑动,画出抛物线。
(走下讲台,及时对学生给予适当指导)师:思考一下,这个过程中有什么不变量?生:点P 到F 的距离和点P 到直尺的距离相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年高三数学上学期解析几何15抛物线的方程及其性质(2)教学案
(无答案)
【教学目标】能根据条件熟练地求出抛物线的标准方程,培养学生分析问题、解决问题的能力
【教学重点】能从函数的角度来理解抛物线,并能解决一些综合问题.
【教学难点】抛物线的性质及简单应用.
【教学过程】
一、知识梳理:
1.点P (x 0,y 0)和抛物线y 2
=2px (p >0)的关系:(1)P 在抛物线内(含焦点)⇔20y <2px 0; (2)P 在抛物线上⇔20y =2px 0; (3)P 在抛物线外⇔20y >2px 0.
2.焦半径:抛物线上的点P (x 0,y 0)与焦点F 的距离称作焦半径,记作r =PF .
(1)y 2=2px (p >0),r = ; (2)y 2
=-2px (p >0),r = ;
(3)x 2=2py (p >0),r = ; (4)x 2=-2py (p >0),r = .
3.焦点弦:AB 为抛物线y 2=2px (p >0)的焦点弦,A (x 1,y 1),B (x 2,y 2),弦的中点M (x 0,y 0) . (1)x 1x 2=2
4
p ; (2) y 1y 2=-p 2;
(3)弦长l =x 1+x 2+p ,x 1+x 2=p ,即当x 1=x 2时,通径最短为2p .
二、基础自测:
1.抛物线2
4y x =的焦点到准线的距离是 . 2.以双曲线2
213
x y -=的一条准线为准线,顶点在原点的抛物线方程是 . 3.抛物线C 与双曲线x 2-y 2
=1有相同焦点,且顶点在原点,则抛物线C 的方程是 .
4.设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,PA ⊥l ,A 为垂足.如果直线AF 的斜率为-3,那么PF = .
三、典型例题:
例1.已知抛物线y 2=2px (p >0)的焦点为F ,A (x 1,y 1)、B (x 2,y 2)是过F 的直线与抛物线的两个交点,
求证:(1)y 1y 2=-p 2,x 1x 2=p 24; (2)1AF +1BF
为定值; (3)以AB 为直径的圆与抛物线的准线相切.
【变式拓展】设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线于A、B两点,反思:点C在抛物线的准线上,且BC∥x轴.证明:直线AC经过原点O.
例2.在平面直角坐标系xOy中,抛物线C的顶点在原点,焦点F的坐标为(1,0).(1)求抛物线C的标准方程;
(2)设M,N是抛物线C的准线上的两个动点,且它们的纵坐标之积为-4,直线MO、NO与抛物线的交点分别为点A、B,求证:动直线AB恒过一个定点.
例3.已知抛物线C:y=mx2(m>0),焦点为F,直线2x-y+2=0交抛物线C于A,B两点,P是线段AB的中点,过P作x轴的垂线交抛物线C于点Q.
(1)求抛物线C的焦点坐标;
(2)若抛物线C上有一点R(x R,2)到焦点F的距离为3,求此时m的值;
(3)是否存在实数m,使△ABQ是以Q为直角顶点的直角三角形?若存在,求出m的值;
若不存在,说明理由.
四、课堂反馈:
1.抛物线y 2=4mx (m >0)的焦点到双曲线x 216-y 29
=1的一条渐近线的距离为3,则此抛物线的 方程为_______________.
2.在平面直角坐标系xOy 中,抛物线方程为x 2=2py (p >0),若直线x -y -2=0与该抛物线相切, 则实数p 的值是 .
3.抛物线C :y 2=4x 焦点为F ,点P 在抛物线上,且PF =3,则点P 到直线x =-1的距离为________.
4.已知抛物线y 2=4x 的焦点为F ,准线为l .过点F 作倾斜角为60°的直线与抛物线在第一象限的交点为A ,过点A 作l 的垂线,垂足为A 1,则△AA 1F 的面积是________.
五、课后作业: 学生姓名:___________
1.抛物线y =ax 2的准线方程是y -2=0,则a 的值是 .
2.设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是 .
3.抛物线28y x =的焦点到准线的距离是 .
4.抛物线x 2=2py (p >0)的焦点为F ,其准线与双曲线x 23-y 23
=1相交于A ,B 两点,若△ABF 为等边 三角形,则p = .
5.一动圆的圆心在抛物线28y x =上,且动圆恒与直线20x +=相切,则动圆必过定点_________.
6.已知抛物线y 2=2px (p >0),过其焦点且斜率为1的直线交抛物线于A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为 .
7.已知抛物线y 2=2x 上的两点A 、B 到焦点距离之和为5,则以线段AB 为直径的圆与准线位置关系为 .
8.已知抛物线y 2=2px (p >0)的焦点弦AB 的两端点坐标分别为A (x 1,y 1),B (x 2,y 2),则y 1y 2x 1x 2
的值一定等
于 .
9.如图,抛物线E :y 2=4x 的焦点为F ,准线l 与x 轴的交点为A .点C 在抛物线E 上,以C 为圆心,CO 为半径作圆,设圆C 与准线l 交于不同的两点M ,N .
(1)若点C 的纵坐标为2,求MN ; (2)若AF 2=AM ·AN ,求圆C 的半径.
10.如右图所示,在直角坐标系xOy 中,射线OA 在第一象限,且与x 轴的正半轴成定角060,动点P 在射
线OA 上运动,动点Q 在y 轴的正半轴上运动,POQ ∆
的面积为(1)求线段PQ 中点M 的轨迹C 的方程;
(2)12 , R R 是曲线C 上的动点, 12 , R R 到y 轴的距离之和为1,设u 为12 , R R 到x 轴的距离之积.
问:是否存在最大常数m ,使u m ≥恒成立?若存在,求出这个m 值;若不存在,请说明理由.。