2016数学中考基础训练6

合集下载

2016年武汉市中考数学基础题训练

2016年武汉市中考数学基础题训练

2016年武汉市中考数学基础题训练一、选择题(共10小题,每小题3分,共30分)1.估计5介于( )A .0与1之间B .1与2之间C .2与3之间D .3与4之间 2.若分式21-x 在实数范围内有意义,则x 的取值范围是( ) A .x ≥2B .x >2C .x ≥-2D .x ≠2 3.计算()()33-∙+x x 正确的是( )A .92+xB .x 2C .92-xD .62-x 4. 掷一枚质地均匀的硬币10次,下列说法正确的是( )A. 可能有5次正面朝上 B.必有5次下面朝上 C. 掷2次必有1次正面朝上 D.不可能10次正面朝上5. 下列计算正确的是( )A 2x 2x x 2=⋅ B.1x 3x 222-=- C.326x 3x 2x 6=÷ D.2x 2x x 2=+6. 如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点D (5,3)在边AB 上,以C 为中心,把△CDB 旋转90°,则旋转后点D 的对应点D '的坐标是( )A. (2,10)B.(-2,0)C. (2,10)或(-2,0)D.(10,2)或(-2,0)7. 如图是由4个大小相同的正方体搭成的几何体,其左视图是( )8. 以下是某手机店1~4月份的两个统计图,分析统计图,对3、4月份手机的销售情况四个同学得出的以下四个结论,其中正确的为( )A. 4月份三星手机销售额为65万元B. 4月份三星手机销售额比3月份有所上升C. 4月份三星手机销售额比3月份有所下降D. 3月份与4月份的三星手机销售额无法比较,只能比较该店销 售总额二、填空题(共6小题,每小题3分,共18分)11. (-2)×3的结果是 。

12. 某企业去年为国家缴纳税金达到4100000元,用科学记数法表示为13. 小玲在一次班会中参与知识抢答活动,现有语文题6个,数学题5个,综合题9个,她从中随机抽取1个,抽中数学题的概率为 。

天津市2016年中考数学试题含答案分解

天津市2016年中考数学试题含答案分解

2016年天津市初中毕业生学业考试试卷数学、选择题(本大题共12小题,每小题3分,共3636分,在每小题给出的 四个选项中,只有一个是符合题目要求的)(1)计算(-2)-5的结果等于(3)下列图形中,可以看作是中心对称图 形的是(A) ( B ) (C )(4) 2016年5月24日《天津日报》报道,2015年天津外环线内新栽植树木(A )-7(2)sin60的值等于(B )-3(C ) 3(D) 7XIAl2 26120 000株,将6120 000用科学记数法表示应为(A) -a < 0 < -b(A) 0.612 X 107(B) 6.12 X 06 (D ) 612 X 1044个相同的正方体组成的立体图形,它的主视第(5)题图(B)(C )(D)(6)估计6的值在(A ) 2和3之间(B)3和4之间 (C ) 4和5之间(D) 5和6之间x , 1(7)计算丄的结果为x x(B ) x(C)(D)(8)方程x 2,2x-12=0的两个根为(A) X 1= -2,X 2=6(B )X 1= -6,X 2=2 (C) x 1= -3,x 2=4 (D) x 1=-4, X 2=3(9) 实数a ,b 在数轴上的对应点的位置如图所示, 把-a ,-b ,0按照从小到大的顺序排列,正确的是a 0 b第(9)题图(C ) 61.2 X 105(B)0 < -a < -b(C)-b < 0 < -a(D)0 < -b < -a(10) 如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B, AB ' 与DC相交于点E,则下列结论一定正确的是第(10)题图(B)ZACD= ZB 'CD(C)AD=AE ( D) AE=CE3 (11) 若点A (-5, y i), B (-3, y2), C (2 , y)在反比例函数y 二—错误!x未找到引用源。

2016届中考数学真题模拟集训:专题16+图形的初步试题(新人教版含解析)(2年中考1年模拟)

2016届中考数学真题模拟集训:专题16+图形的初步试题(新人教版含解析)(2年中考1年模拟)

专题16 图形的初步知识点名师点晴直线、射线、线段直线的性质理解并掌握直线的性质线段的性质能利用线段的中点和线段的性质进行线段的有关计算相交线对顶角与邻补角理解并掌握对顶角与邻补角的有关性质垂线的性质理解垂线的性质,并能解决相关的实际问题平行线平行线的定义与画法掌握平行公理及平行线的画法平行线的判定定理利用平行线的判定证明两直线互相平行平行线的性质能利用平行线的性质解决有关角的计算问题☞2年中考【2015年题组】1.(2015南宁)如图,一块含30°角的直角三角板ABC的直角顶点A在直线DE上,且BC∥DE,则∠CAE等于()A.30°B.45°C.60°D.90°【答案】A.【解析】试题分析:∵∠C=30°,BC∥DE,∴∠CAE=∠C=30°.故选A.考点:平行线的性质.2.(2015贵港)如图,直线AB∥CD,直线EF与AB,CD相交于点E,F,∠BEF的平分线与CD相交于点N.若∠1=63°,则∠2=()A.64°B.63°C.60°D.54°【答案】D.考点:平行线的性质.3.(2015天水)如图,将矩形纸带ABCD,沿EF折叠后,C.D两点分别落在C′、D′的位置,经测量得∠EFB=65°,则∠AED′的度数是()A.65°B.55°C.50°D.25°【答案】C.【解析】试题分析:∵AD∥BC,∠EFB=65°,∴∠DEF=65°,∴∠DED′=2∠DEF=130°,∴∠AED′=180°﹣130°=50°.故选C.考点:1.平行线的性质;2.翻折变换(折叠问题).4.(2015天水)如图,在四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=22,CD=2,点P在四边形ABCD的边上.若点P到BD的距离为32,则点P的个数为()A.2 B.3 C.4 D.5 【答案】A.考点:1.等腰直角三角形;2.点到直线的距离.5.(2015北海)已知∠A=40°,则它的余角为()A.40°B.50°C.130°D.140°【答案】B.【解析】试题分析:∠A的余角等于90°﹣40°=50°.故选B.考点:余角和补角.6.(2015崇左)下列各图中,∠1与∠2互为余角的是()A.B.C.D.【答案】C.【解析】试题分析:观察图形,互为余角的只能是C,故选C.考点:余角和补角.7.(2015崇左)如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是()A.的B.中C.国D.梦【答案】D.考点:专题:正方体相对两个面上的文字.8.(2015无锡)如图的正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是()A .B .C .D .【答案】D.【解析】试题分析:根据正方体的表面展开图,两条黑线在一列,故A错误,且两条相邻成直角,故B错误,中间相隔一个正方形,故C错误,只有D选项符合条件,故选D.考点:几何体的展开图.9.(2015广元)一副三角板按如图方式摆放,且∠1比∠2大50°,若设∠1=x°,∠2=y°.则可得到的方程组为()A.50180x yx y=-⎧⎨+=⎩B.50180x yx y=+⎧⎨+=⎩C.5090x yx y=-⎧⎨+=⎩D.5090x yx y=+⎧⎨+=⎩【答案】D.考点:1.由实际问题抽象出二元一次方程组;2.余角和补角.10.(2015西宁)如图,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数是()A.74°12′B.74°36′C.75°12′D.75°36′【答案】C.【解析】试题分析:过点D作DF⊥AO交OB于点F.∵入射角等于反射角,∴∠1=∠3,∵CD∥OB,∴∠1=∠2(两直线平行,内错角相等);∴∠2=∠3(等量代换);在Rt△DOF中,∠ODF=90°,∠AOB=37°36′,∴∠2=90°﹣37°36′=52°24′;∴在△DEF中,∠DEB=180°﹣2∠2=75°12′.故选C.考点:1.平行线的性质;2.度分秒的换算;3.跨学科.11.(2015崇左)若直线a∥b,a⊥c,则直线b____c.【答案】⊥.【解析】试题分析:∵a⊥c,∴∠1=90°,∵a∥b,∴∠1=∠2=90°,∴c⊥b.故答案为:⊥.考点:1.平行线的性质;2.垂线.12.(2015梧州)如图,已知直线AB与CD交于点O,ON平分∠DOB,若∠BOC=110°,则∠AON的度数为度.【答案】145.考点:1.对顶角、邻补角;2.角平分线的定义.13.(2015钦州)如图,直线AB和OC相交于点O,∠AOC=100°,则∠1= 度.【答案】80.【解析】试题分析:由邻补角互补,得∠1=180°﹣∠AOC=180°﹣100°=80°,故答案为:80.考点:对顶角、邻补角.14.(2015宿迁)如图,在平面直角坐标系中,点P的坐标为(0,4),直线343-=xy与x轴、y轴分别交于点A,B,点M是直线AB上的一个动点,则PM长的最小值为.【答案】28 5.考点:1.一次函数图象上点的坐标特征;2.垂线段最短;3.最值问题.15.(2015扬州)如图,已知矩形纸片的一条边经过直角三角形纸片的直角顶点,若矩形纸片的一组对边与直角三角形纸片的两条直角边相交成∠1、∠2,则∠2﹣∠1= .【答案】90°.【解析】试题分析:∵∠2+∠3=180°,∴∠3=180°﹣∠2.∵直尺的两边互相平行,∴∠4=∠3,∴∠4=180°﹣∠2.∵∠4+∠1=90°,∴180°﹣∠2+∠1=90°,即∠2﹣∠1=90°.故答案为:90°.考点:平行线的性质.16.(2015泰州)如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2= .【答案】140°.考点:平行线的性质.17.(2015绵阳)如图,AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=130°,则∠F= .【答案】9.5°.【解析】试题分析:∵AB∥CD,∠CDE=119°,∴∠AED=180°﹣119°=61°,∠DEB=119°.∵GF交∠DEB的平分线EF于点F,∴∠GEF=12×119°=59.5°,∴∠GEF=61°+59.5°=120.5°.∵∠AGF=130°,∴∠F=∠AGF﹣∠GEF=130°﹣120.5°=9.5°.故答案为:9.5°.考点:平行线的性质.18.(2015宿迁)如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.【答案】证明见试题解析.考点:1.等腰三角形的性质;2.平行线的性质;3.和差倍分.19.(2015武汉)如图,点B、C、E、F在同一直线上,BC=EF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)AB∥DE.【答案】(1)证明见试题解析;(2)证明见试题解析.【解析】试题分析:(1)用SAS证明△ABC≌△DEF;(2)由△ABC≌△DEF,得出∠B=∠DEF,即可得出结论.试题解析:(1)∵AC⊥BC于点C,DF⊥EF于点F,∴∠ACB=∠DFE=90°,在△ABC和△DEF中,∵BC=EF,∠ACB=∠DFE,AC=DF,∴△ABC≌△DEF(SAS);(2)∵△ABC≌△DEF,∴∠B=∠DEF,∴AB∥DE.考点:1.全等三角形的判定与性质;2.平行线的判定.20.(2015益阳)如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.【答案】50°.考点:平行线的性质.21.(2015六盘水)如图,已知,l1∥l2,C1在l1上,并且C1A⊥l2,A为垂足,C2,C3是l1上任意两点,点B在l2上,设△ABC1的面积为S1,△ABC2的面积为S2,△ABC3的面积为S3,小颖认为S1=S2=S3,请帮小颖说明理由.【答案】理由见试题解析.【解析】试题分析:根据两平行线间的距离相等,即可得出结论.试题解析:∵直线l1∥l2,∴△ABC1,△ABC2,△ABC3的底边AB上的高相等,∴△ABC1,△ABC2,△ABC3这3个三角形同底,等高,∴△ABC1,△ABC2,△ABC3这些三角形的面积相等.即S1=S2=S3.考点:1.平行线之间的距离;2.三角形的面积.22.(2015曲靖)如图,过∠AOB平分线上一点C作CD∥OB交OA于点D,E是线段OC 的中点,请过点E画直线分别交射线CD、OB于点M、N,探究线段OD、ON、DM之间的数量关系,并证明你的结论.【答案】①当M在线段CD上时,OD=DM+ON;②当M在线段CD延长线上时,OD=ON -DM,证明见试题解析.考点:1.全等三角形的判定与性质;2.平行线的性质;3.等腰三角形的判定与性质;4.分类讨论;5.探究型;6.综合题.23.(2015金华)图1、图2为同一长方体房间的示意图,图3为该长方体的表面展开图.(1)蜘蛛在顶点A′处.①苍蝇在顶点B处时,试在图1中画出蜘蛛为捉住苍蝇,沿墙面爬行的最近路线;②苍蝇在顶点C处时,图2中画出了蜘蛛捉住苍蝇的两条路线,往天花板ABCD爬行的最近路线A′GC和往墙面BB′C′C爬行的最近路线A′HC,试通过计算判断哪条路线更近;(2)在图3中,半径为10dm的⊙M与D′C′相切,圆心M到边CC′的距离为15dm,蜘蛛P 在线段AB上,苍蝇Q在⊙M的圆周上,线段PQ为蜘蛛爬行路线,若PQ与⊙M相切,试求PQ长度的范围.【答案】(1)①作图见试题解析;②往天花板ABCD爬行的最近路线A′GC更近;(2)206dm≤PQ≤55dm.试题解析:(1)①根据“两点之间,线段最短”可知:线段A′B为最近路线,如图1所示.②Ⅰ.将长方体展开,使得长方形ABB′A′和长方形ABCD在同一平面内,如图2①.在Rt△A′B′C中,∠B′=90°,A′B′=40,B′C=60,∴22406052002013Ⅱ.将长方体展开,使得长方形ABB′A′和长方形BCC′B′在同一平面内,如图2②.在Rt △A′C′C 中,∠C′=90°,A′C′=70,C′C=30,∴A′C=227030+=5800=1058.∵5200<5800,∴往天花板ABCD 爬行的最近路线A′GC 更近;(2)过点M 作MH ⊥AB 于H ,连接MQ 、MP 、MA 、MB ,如图3.∵半径为10dm 的⊙M 与D′C′相切,圆心M 到边CC′的距离为15dm ,BC′=60dm ,∴MH=60﹣10=50,HB=15,AH=40﹣15=25,根据勾股定理可得AM=22AH MH +=222550+=255,MB=22BH MH +=221550+=2725,∴50≤MP≤255.∵⊙M 与D′C′相切于点Q ,∴MQ ⊥PQ ,∠MQP=90°,∴PQ=222210PM QM MP -=-.当MP=50时,PQ=2400=206;当MP=255时,PQ=3025=55. ∴PQ 长度的范围是206dm≤PQ≤55dm .考点:1.圆的综合题;2.几何体的展开图;3.切线的性质;4.综合题;5.压轴题.【2014年题组】1.(2014年福建龙岩)如图,直线a ,b 被直线c 所截,a ∥b ,∠1=∠2,若∠3=40°,则∠4等于( )A .40°B .50°C .70°D .80°【答案】C.考点:平行线的性质;平角定义.2.(2014年甘肃白银)将直角三角尺的直角顶点靠在直尺上,且斜边与这根直尺平行,那么,在形成的这个图中与∠α互余的角共有()A.4个 B.3个C.2个D.1个【答案】C.【解析】试题分析:如答图,∵斜边与这根直尺平行,∴∠α=∠2.又∵∠1+∠2=90°,∴∠1+∠α=90°.又∠α+∠3=90°,∴与α互余的角为∠1和∠3.故选C.考点:1.平行线的性质;2.互余的定义.3.(2014年广东汕尾)如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE 【答案】D.考点:平行线的判定.4(2014抚顺)如图所示,已知AB∥CD,CE平分∠ACD,当∠A=120°时,∠ECD的度数是()A. 45°B. 40°C. 35°D. 30°【答案】D.【解析】试题分析:∵AB∥CD,∠A=120°,∴∠DCA=180°-∠A=60°,∵CE平分∠ACD,∴∠ECD=∠DCA=30°,故选D.考点:平行线的性质.5.(2014·吉林)如图,将三角形的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为()A.10°B. 15°C. 20°D. 25°【答案】D.考点:平行线的性质.6.(2014年湖南岳阳)如图,若AB∥CD∥EF,∠B=40°,∠F=30°,则∠BCF= .【答案】70°.【解析】试题分析:∵AB∥CD∥EF,∴∠B=∠BCD,∠F=∠DCF.又∠B=40°,∠F=30°,∴∠BCF=∠BCD +∠DCF =70°.考点:平行线的性质.7.(2014镇江)如图,直线m∥n,Rt△ABC的顶点A在直线n上,∠C=90°,若∠1=25º,∠2=70º.则∠B=°.【答案】45.考点:1.平行线的性质;2.直角三角形两锐角的关系.8.(2014长沙)如图,直线a∥b,直线c分别与a,b相交,若∠1=70°,则∠2=.【答案】110°.【解析】试题分析:直线a∥b,直线c分别与a,b相交,根据平行线的性质,以及对顶角的定义可求出.试题解析:如图:∵∠1=70°,∴∠3=∠1=70°,∵a∥b,∴∠2+∠3=180°,∴∠2=180°﹣70°=110°.考点:1.平行线的性质;2.对顶角、邻补角.☞考点归纳归纳1:直线、射线和线段基础知识归纳:1.直线(1)直线公理:经过两个点有一条直线,并且只有一条直线。

2016年数学中考试题及答案

2016年数学中考试题及答案

2016年数学中考试题及答案【篇一:2016年全国中考数学模拟卷及答案】=txt>数学试卷一、选择题下面各题均有四个选项,其中只有一个是符合题意的。

..1.截止到2016年6月1日,北京市已建成39个地下调蓄设施,蓄水能力达到2 40 000立方平米。

将1240 000用科学记数法表示应为2.实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是a.a b.bc.cd.d3.一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为 a. b. c. d.4.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为6.如图,公路ac,bc互相垂直,公路ab的中点m与点c被湖隔开,若测得am的长为1.2km,则m,c两点间的距离为a.0.5km b.0.6km c.0.9km d.1.2km7.某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是 a.21,21 b.21,21.5 c.21,22 d.22,228.右图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图。

若这个坐标系分别以正东、正北方向为x轴、y轴的正方向。

表示太和门的点坐标为(0,-1),表示九龙壁的点的坐标为(4,1),则表示下列宫殿的点的坐标正确的是a.景仁宫(4,2)b.养心殿(-2,3) c.保和殿(1,0) d.武英殿(-3.5,-4)9.一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:a.购买a类会员年卡b.购买b类会员年卡 c.购买c类会员年卡d.不购买会员年卡10.一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的ab,bc,ca,oa,ob,oc组成。

为记录寻宝者的进行路线,在bc的中点m处放置了一台定位仪器,设寻宝者行进的时间为x,寻宝者与定位仪器之间的距离为y,若寻宝者匀速行进,且表示y与x的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为a.a→o→bb.b→a→cc.b→o→c d.c→b→o 二、填空题11.分解因式:5x2-10x2=5x=_________.12.右图是由射线ab,bc,cd,de,组成的平面图形,则∠1+∠2+∠3+∠4+∠5=_____.13.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架。

2016陕西中考数学试题及答案word版

2016陕西中考数学试题及答案word版

2016陕西中考数学试题及答案word版一、选择题(本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一个是正确的,请将正确选项的字母填入题后的括号内。

)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. 3答案:B2. 如果一个角的度数是90°,那么这个角是:A. 锐角B. 直角C. 钝角D. 平角答案:B3. 计算下列表达式的值:(2+3)×4A. 20B. 24C. 28D. 32答案:A4. 一个数的平方根是4,这个数是:A. 16B. -16C. 4D. 8答案:A5. 以下哪个是二次方程?A. x + 2 = 0B. x^2 + 2x + 1 = 0C. x^3 - 4 = 0D. x^2 - 4x = 0答案:B6. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 75πD. 100π答案:B7. 以下哪个是不等式的解集?A. x > 3B. x < 3C. x = 3D. x ≤ 3答案:A8. 一个数的绝对值是5,这个数可能是:A. 5B. -5C. 5 或 -5D. 都不是9. 一个三角形的内角和是:A. 90°B. 180°C. 270°D. 360°答案:B10. 如果一个数的立方根是3,那么这个数是:A. 27B. 9C. 3D. 81答案:A二、填空题(本题共5小题,每小题3分,共15分。

请将答案填写在题后的横线上。

)11. 一个数的相反数是-5,这个数是 __________。

答案:512. 如果一个三角形的两边长分别是3和4,第三边长x满足1 < x < 7,那么x的取值范围是 __________。

答案:1 < x < 713. 一个数的平方是25,这个数是 __________。

答案:±514. 一个圆的周长是2πr,其中r是圆的半径,如果圆的周长是12π,那么半径r是 __________。

人教版九年级数学中考复习第一轮专题--6.强化训练第六章 圆

人教版九年级数学中考复习第一轮专题--6.强化训练第六章 圆
(3)解:如图,连接 BD,AD,DO,作∠BAF=∠DBA,交 BD 于点 F,
∵DO=BO, ∴∠ODB=∠OBD, ∴∠AOD=2∠ODB=∠EDO. ∵∠CAB=∠CDB=45°=∠EDO+∠ODB=3∠ODB, ∴∠ODB=15°=∠OBD. ∵∠BAF=∠DBA=15°,
∴AF=BF,∠AFD=30°. ∵AB 是直径,∴∠ADB=90°, ∴AF=2AD,DF= AD, ∴BD=DF+BF= AD+2AD,
C.G,H,E
D.H,E,F
5.(2018 福建)如图,AB 是☉O 的直径,BC 与☉O 相切于点 B,AC 交
☉O 于点 D,若∠ACB=50°,则∠BOD 等于( D )
A.40°
B.50°
C.60°
D.80°
第 5 题图
第 6 题图
6.(2018 哈尔滨)如图,点 P 为☉O 外一点,PA 为☉O 的切线,A 为切
(1)求证:EG 是☉O 的切线;
(2)延长 AB 交 GE 的延长线于点 M,若 AH=2,CH=2 2,求 OM 的 长. (1)证明:连接 OE,如图,
∵GE=GF,∴∠GEF=∠GFE. 而∠GFE=∠AFH,∴∠GEF=∠AFH. ∵AB⊥CD,∴∠OAF+∠AFH=90°, ∴∠GEA+∠OAF=90°. ∵OA=OE,∴∠OEA=∠OAF, ∴∠GEA+∠OEA=90°,即∠GEO=90°, ∴OE⊥GE,
第23讲 与圆有关的位置关系
1.(2011.(2019 南岗)如图,在 Rt△ABC 中,∠C=90°,AC=3,BC=4,以
点 A 为圆心作圆,如果圆 A 与线段 BC 没有公共点,那么圆 A 的半

2016年中考模拟考试数学试题(基础性检测试题)

2016年中考模拟考试数学试题(基础性检测试题)

2016年中考模拟考试数学试题时间90分钟 满分100分 2015.12.30 一、选择题 (本大题共12小题,每小题3分,共36分) 1.311-错误!未找到引用源。

的倒数是( )A .34-B .34错误!未找到引用源。

C .43- D .432. 下列运算中,结果正确的是( ) A. 3232a a a =+ B. a a2121=- C. 623)(a a a -=⋅- D. 32321-=+ 3. 世界上有一种最薄的金箔,其厚度约为0.000000092 m ,将0.000000092用科学记数法表示为( ) A. 71092.0-⨯B. 8102.9-⨯C. 7102.9-⨯D. 81092.0-⨯4. 如右图,∠1 =∠2,∠C = 130°,∠2=22°则∠DAC 的度数是( )A. 25°B. 24°C. 28°D. 22°5. 如右图,若将△ABC 绕点C 顺时针旋转90°后得到△'''C B A , 则A 点的对应点'A 的坐标是( )A.(-3,-2)B.(2,2)C.(3,0)D. (2,1)6. 已知数据32,18,21,69,10,5,x 的中位数为21,则下列数据中,x 可以取( ) A .18 B .19 C . 20 D .227.在一个袋子里有6双运动鞋,从中任取一只运动鞋,刚好是右脚穿的运动鞋的概率是( )A .61 B .121C .21D .31 8. 如图,是y 关于x 的函数的图象,则不等式0≤+b kx 的解集在数轴上可表示为( )9. 如右图,扎西要制作个高4cm ,底面直径是6cm 的圆锥形小漏斗,若不计损耗, 则她所需纸板的面积是( )A. 152cm πB. 6213cm πC. 12213cm πD. 302cm π10.桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其俯视图是( )11.若点A 的坐标为(1,-2),则下列说法正确的是( ) A. 点B (-1,-2)与点A 关于x 轴对称 B. 点A 在直线35-=x y 上 C. 以点A 为圆心,2为半径的圆与y 轴相切 D. 点A 到原点的距离为5 12. 如图是二次函数c bx ax y ++=2图像的一部分,图像过点A (-3,0),对称轴为直线1-=x ,给出四个结论:① 2b >ac 4 ② 02=+b a ③ 0=+-c b a④ a 5- b <0 其中正确的是( )A. ②④B. ①④C. ②③D. ①③ 二、填空题 (本大题共6小题,每小题3分,共18分) 13.在实数范围内分解因式:932-x =_________. 14. 如图所示,直线1L 的解析式是12-=x y ,直线2L 的解析式是1+=x y ,则方程组⎩⎨⎧=--=-121y x y x 的解是_______.15.函数6312--=x x y 的自变量取值范围是 .16.半径为8的圆内,垂直平分半径的弦长是 . 17. 在Rt△ABC 中,∠C=90°,若COSA =31,那么SinA =________. 18.观察下列图形:它们是按一定規律排列的,依照此规律,第16个图形共有_____个……...三、解答题(本大题共7小题,共46分) 19.(本小题满分5分) 计算:27)13(30tan 3310--+︒+- 20.(本小题满分5分) 先化简再求值:)2122(24--+÷--x x x x ,其中43-=x .21. (本小题满分6分)如图,甲、乙两船同时从B 地出发,甲船以每小时)31(10+海里 的速度向正东方向航行,乙船以每小时20海里的速度沿着方位角︒120的方向航行,1小时 后,甲、乙两船分别到达A 、C 两地 求:A 、C 两地之间的距离(精确到0.1海里).22. (本小题满分7分)北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批 这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一 批购进数量的2倍,但每套进价多了10元. ⑴ 该商场两次共购进这种运动服多少套?⑵ 如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价 至少是多少元?(利润率 = ×100%) 23.(本小题满分6分)如图,四边形ABCD 是菱形,DE ⊥AB 交BA 的 延长线于点E ,DF ⊥BC 交BC 的延长线于点F 。

【配套K12】中考数学 专题复习六 求最短路径问题

【配套K12】中考数学 专题复习六 求最短路径问题

中考数学专题复习学案六求最短路径问题【专题思路剖析】知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。

“饮马问题”,“造桥选址问题”。

考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。

这类问题在中考中出现的频率很高,一般与垂线段最短、两点之间线段最短关系密切解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。

在解决最短路径问题时,我们通常利用轴对称、平移等变换把不在一条直线上的两条线段转化到一条直线上,从而作出最短路径的方法来解决问题.【典型例题赏析】类型1 利用“垂线段最短”求最短路径问题例题1:(2015•辽宁省盘锦,第15题3分)如图,菱形ABCD的边长为2,∠DAB=60°,E为BC的中点,在对角线AC上存在一点P,使△PBE的周长最小,则△PBE的周长的最小值为.考点:轴对称-最短路线问题;菱形的性质.分析:连接BD,与AC的交点即为使△PBE的周长最小的点P;由菱形的性质得出∠BPC=90°,由直角三角形斜边上的中线性质得出PE=BE,证明△PBE是等边三角形,得出PB=BE=PE=1,即可得出结果.解答:解:连接BD,与AC的交点即为使△PBE的周长最小的点P;如图所示:∵四边形ABCD是菱形,∴AC⊥BD,AB=BC=CD=DA=2,∴∠BPC=90°,∵E为BC的中点,∴BE=BC=1,PE=BC=1,∴PE=BE,∵∠DAB=60°,∴∠ABC=120°,∴∠PBE=60°,∴△PBE是等边三角形,∴PB=BE=PE=1,∴PB+BE+PE=3;故答案为:3.点评:本题考查了菱形的性质、轴对称以及最短路线问题、直角三角形斜边上的中线性质;熟练掌握菱形的性质,并能进行推理计算是解决问题的关键.【方法点评】本题易错误的利用两点之间线段最短解决,解答时需要准确识图,找到图形对应的知识点.【变式练习】(2015•福建第16题 4分)如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A 长度的最小值是.考点:翻折变换(折叠问题)..分析:首先由勾股定理求得AC的长度,由轴对称的性质可知BC=CB′=3,当B′A有最小值时,即AB′+CB′有最小值,由两点之间线段最短可知当A、B′、C三点在一条直线上时,AB′有最小值.解答:解:在Rt△ABC中,由勾股定理可知:AC===4,由轴对称的性质可知:BC=CB′=3,∵CB′长度固定不变,∴当AB′+CB′有最小值时,AB′的长度有最小值.根据两点之间线段最短可知:A、B′、C三点在一条直线上时,AB′有最小值,∴AB′=AC﹣B′C=4﹣3=1.故答案为:1.点评:本题主要考查的是轴对称的性质、勾股定理和线段的性质,将求B′A的最小值转化为求AB′+CB′的最小值是解题的关键.类型2 利用“两点之间线段最短”求最短路径问题例题2:(2015•四川凉山州第26题5分)菱形ABCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为.考点:菱形的性质;坐标与图形性质;轴对称-最短路线问题..分析:点B的对称点是点D,连接ED,交OC于点P,再得出ED即为EP+BP最短,解答即可.解答:解:连接ED,如图,∵点B的对称点是点D,∴DP=BP,∴ED即为EP+BP最短,∵四边形ABCD是菱形,顶点B(2,0),∠DOB=60°,∴点D的坐标为(1,),∴点C的坐标为(3,),∴可得直线OC的解析式为:y=x,∵点E的坐标为(﹣1,0),∴可得直线ED的解析式为:y=(1+)x﹣1,∵点P是直线OC和直线ED的交点,∴点P的坐标为方程组的解,解方程组得:,所以点P的坐标为(),故答案为:().点评:此题考查菱形的性质,关键是根据一次函数与方程组的关系,得出两直线的解析式,求出其交点坐标.【方法点评】“两点(直线同侧)一线型”在直线上求一点到两点的和最短时,利用轴对称的知识作一点关于直线的对称点,连接对称点与另一点与直线的交点就是所求的点;“一点两线型”求三角形周长最短问题,作点关于两直线的对称点,连接两个对称点与两直线分别有两个交点,顺次连接所给的点与两交点即可得三角形;“两点两线型”求四边形的周长最短类比“一点两线型”即可.【变式练习】(2015•营口,第10题3分)如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()A.25° B.30° C.35° D.40°考点:轴对称-最短路线问题.分析:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,由对称的性质得出PM=CM,OP=OC,∠COA=∠POA;PN=DN,OP=OD,∠DOB=∠POB,得出∠AOB=∠COD,证出△OCD是等边三角形,得出∠COD=60°,即可得出结果.解答:解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为C,关于OB的对称点为D,∴PM=CM,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OP=OD,∠AOB=∠COD,∵△PMN周长的最小值是5cm,∴PM+PN+MN=5,∴CM+DN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°;故选:B.点评:本题考查了轴对称的性质、最短路线问题、等边三角形的判定与性质;熟练掌握轴对称的性质,证明三角形是等边三角形是解决问题的关键.类型3、求圆上点,使这点与圆外点的距离最小的方案设计在此问题中可根据圆上最远点与最近点和点的关系可得最优设计方案。

2016年中考数学考前集训50题和答案详解

2016年中考数学考前集训50题和答案详解

天津南开区2016年中考数学考前集训50题1.下列命题中,真命题是()A.菱形的对角线互相平分且相等B.矩形的对角线互相垂直平分C.对角线相等且垂直的四边形是正方形D.对角线互相平分的四边形是平行四边形2.估计32 的值()11A.在2到3之间B.在3到4之间C.在4到5之间D.在5到6之间3.如果a、b同号,那么二次函数y=ax2+bx+1的大致图象是()A. B. C. D.4.如图,已知在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为()秒时.△ABP和△DCE全等.A.1B.1或3C.1或7D.3或75.如图,AB是⊙O的直径,PA切⊙O于点A,PO交⊙O于点C,连结BC.若∠P=360,则∠BC0等于( )A.27°B.30°C.36°D.54第5题图第6题图第7题图6.如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=580,则∠BCD等于()A.116°B.32°C.58°D.64°7.如图,已知□ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA/E/,连接DA/.若∠ADC=600,∠ADA/=500,则∠DA/E/的大小为()A.130°B.150°C.160°D.170°8.如图,已知A(,y 1),B (2,y 2)为反比例函数y=图象上的两点,动点P (x,0)在x 轴正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是( )A.(,0) B.(1,0) C.(,0) D.(,0)9.如图,过点C (1,2)分别作x 轴、y 轴的平行线,交直线y=-x+6于A 、B 两点,若反比例函数y=(x>0)的图象与△ABC 有公共点,则k 的取值范围是( )A.2≤k ≤9B.2≤k ≤8C.2≤k ≤5D.5≤k ≤8 10.在同一平面直角坐标系中,函数y=kx +b 与y=bx 2+kx 的图象可能是( )11.如图,在等腰直角三角形ABC 中,∠C=900,AC=6,D 是AC 上一点,若tan ∠DBA=,则AD 长是( )A. B.2C.1D.212.如图1,在Rt △ABC 中,∠ACB=90°,点P 以每秒1cm 的速度从点A 出发,沿折线AC →CB 运动,到点B 停止.过点P 作PD ⊥AB 于点D,PD 的长y(cm)与点P 的运动时间x(秒)的函数图象如图2所示.当点P 运动5秒时,PD 的长是( ) A.1.2cmB.1.5cmC.1.8cmD.2cmCABD13.在一条笔直的公路旁依次有A 、B 、C 三个村庄,甲、乙两人同时分别从A 、B 两村出发,甲骑摩托车,乙骑电动车沿公路匀速驶向C 村,最终到达C 村.甲、乙两人到C 村的距离y 1,y 2(km )与行驶时间x (h )之间的函数关系如图所示,以下分析错误的是:A.A 、C 两村间的距离为120 kmB.点P 的坐标为(1,60)C.点P 的意义表示经过1小时甲与乙相遇且距C 村60 kmD.乙在行驶过程中,仅有一次机会距甲10 km14.如图,∠ABC=800,O 为射线BC 上一点,以点O 为圆心,21BO 为半径作⊙O.要使射线BA 与⊙O 相切,应将射线BA 绕点B 按顺时针方向旋转( )A.40°或80°B.50°或100°C.50°或110°D.60°或120°15.如图,在正方形ABCD 外侧作直线DE,点C 关于直线DE 的对称点为M,连接CM,AM,其中AM 交直线DE 于点N.若450<∠CDE<900,当MN=3,AN=4时,正方形ABCD 的边长为( )A .7B .5C .5 2D .52216.如图,抛物线y=﹣x2+2x+m+1交x轴于点A(a,0)和B(b,0),交y轴于C,抛物线顶点为D,下列四个命题:①当x>0时,y>0;②若a=﹣1,则b=4;③抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,则y1>y2;④点C关于抛物线对称轴的对称点为E,点G,F分别在x轴和y轴上,当m=2时,四边形EDFG 周长的最小值为6.其中真命题的序号是()A.①B.②C.③D.④17.如图,∠1=700,直线a平移后得到直线b,则∠2-∠3= .18.已知在Rt△ABC中,∠C=900,点P、Q分别在边AB、AC上,AC=4,BC=AQ=3,如果△APQ与△ABC相似,那么AP的长等于.19.已知m是整数,且一次函数y=(m+4)x+m+2的图象不过第二象限,则m= .20.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是.21.如图,菱形纸片ABCD,∠A=600,P为AB中点,折叠菱形纸片ABCD,使点C落在DP所在的直线上,得到经过点D的折痕DE,则∠DEC等于度.22.如图,在矩形ABCD中,AD=9cm,AB=3cm,将其折叠,使点D与点B重合,则重叠部分(△BEF)的面积为 cm2.23.把球放在长方体纸盒内,球的一部分露在盒外,其截面如图.已知EF=CD=80cm,则截面圆的半径为 cm.24.某货站用传送带传送货物,为了提高传送过程的安全性,工人师傅将原坡角为45°的传送带AB,调整为坡度i=1:的新传送带AC(如图所示).已知原传送带AB的长是4米.那么新传送带AC的长是米.25.如图,在平行四边形ADBO中,圆O经过点A、D、B,如果圆O的半径OA=4,那么弦AB= .26.如图,某建筑物BC上有一旗杆AB,从与BC相距38m的D处观测旗杆顶部A的仰角为50°,观测旗杆底部B的仰角为45°,则旗杆的高度约为m.(结果精确到0.1m,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)27.已知a,b满足+|b﹣|=0.则分式()÷= .28.半圆形纸片的半径为1cm,用如图所示的方法将纸片对折,使对折后半圆弧的中点M与圆心O重合,则折痕CD的长为cm.29.已知A(3,2)是平面直角坐标中的一点,点B是x轴负半轴上一动点,联结AB,并以AB为边在x轴上方作矩形ABCD,且满足BC:AB=1:2,设点C的横坐标是a,如果用含a的代数式表示D 点的坐标,那么D点的坐标是.30.已知△ABC中,AB=AC=5,BC=6(如图所示),将△ABC沿射线BC方向平移m个单位得到△DEF,顶点A、B、C分别与D、E、F对应.若以点A、D、E为顶点的三角形是等腰三角形,且AE为腰,则m的值是.31.如图,直线l:y=﹣x+1与坐标轴交于A,B两点,点M(m,0)是x轴上一动点,以点M为圆心,2个单位长度为半径作⊙M,当⊙M与直线l相切时,则m的值为.32.关于x的方程a(x+m)2+b=0的解是x1=-2,x2=1,(a,m,b均为常数,a≠0),则方程a(x+m+2)2+b=0的解是.33.如图,Rt△ABC,∠ACB=900,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC 沿CF翻折,使点B落在CD的延长线上的点B/处,两条折痕与斜边AB分别交于点E、F,则线段B/F的长为.34.如图,矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为.35.在矩形ABCD中,AD=15,点E在边DC上,联结AE,△ADE沿直线AE翻折后点D落到点F,过点F作FG⊥AD,垂足为点G,如图,如果AD=3GD,那么DE= .36.如图,在圆心角为90°的扇形OAB中,半径OA=2cm,C为的中点,D、E分别是OA、OB的中点,则图中阴影部分的面积为cm2.37.如图,已知正方形ABCD的边长为2,E是边BC上的动点,BF⊥AE交CD于点F,垂足为G,连结CG.下列说法:①AG>GE;②AE=BF;③点G运动的路径长为π;④CG的最小值为﹣1.其中正确的说法是.(把你认为正确的说法的序号都填上)38.如图,利用热气球探测器测量大楼AB的高度.从热气球P处测得大楼顶部B的俯角为370,大楼底部A的俯角为600,此时热气球P离地面的高度为120 m.试求大楼AB的高度(精确到0.1 m).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,3≈1.73)39.如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P.点C在OP上,且BC=PC.(1)求证:直线BC是⊙O的切线;(2)若OA=3,AB=2,求BP的长.40.如图,已知在△ABC中,AB=AC,以AC为直径的⊙O交AB于点M,交BC于点N,连接AN,过点C的切线交AB的延长线于点P.(1)求证:∠BCP=∠BAN;(2)求证: =.41.某校八年级学生小明、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作,已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.小明:如果以10元/千克的价格销售,那么每天可售出300千克.小强:如果每千克的利润为3元,那么每天可售出250千克.小红:每天的销售量y(千克)与销售单价x(元)之间存在一次函数关系.[利润=(销售价﹣进价)×销售量](1)请你根据以上对话信息,求出y(千克)与x(元)(x>0)的函数关系式;(2)设该超市销售这种水果每天获取的利润为W元,求W与x的函数关系式.当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?42.如图,轮船从B处以每小时60海里的速度沿南偏东200方向匀速航行,在B处观测灯塔A位于南偏东500方向上,轮船航行40分钟到达C处,在C处观测灯塔A位于北偏东10°方向上,求C处与灯塔A 的距离.43.如图,在⊙O中,AB是直径,点D是⊙O上一点且∠BOD=600,过点D作⊙O的切线CD交AB的延长线于点C,E为的中点,连接DE,EB.(1)求证:四边形BCDE是平行四边形;(2)已知图中阴影部分面积为6π,求⊙O的半径r.44.如图,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是300,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是480,若坡角∠FAE=300,求大树的高度(结果保留整数,参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,≈1.73)45.如图,△ABC内接于⊙O,∠B=600,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)求证:AC2=CO﹒CP;(3)若3PD,求⊙O的直径.46.一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:(1)求y(2)该批发商若想获得4000元的利润,应将售价定为多少元?(3)该产品每千克售价为多少元时,批发商获得的利润w(元)最大?此时的最大利润为多少元?47.我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;并求出自变量x的取值范围;(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?48.如图,在平面直角坐标系中,抛物线y=ax2+bx+6经过点A(-3,0)和点B(2,0),与y轴交于点C.直线y=h(h为常数,且0<h<6)与BC交于点D,与y轴交于点E,与AC交于点F,与抛物线在第二象限交于点G.(1)求该抛物线所对应的函数关系式;(2)连接BE. 求h为何值时,△BDE的面积最大;(3)已知定点M(-2,0),请问是否存在这样的直线y=h,使△OFM是等腰三角形?若存在,求出h 的值和点G的坐标;若不存在,说明理由.49.抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,3).(1)求抛物线的解析式;(2)如图1,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,当△BDC的面积最大时,求点P的坐标;(3)如图2,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.50.如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点A(﹣4,0)、点B(0,﹣8),直线AC与y轴交于点C(0,﹣4).P是抛物线上A、B两点之间的一点(P不与点A、B重合),过点P作PD∥y轴交直线AC于点D,过点P作PE⊥AC于点E.(l)求抛物线所对应的函数表达式.(2)若四边形PBCD为平行四边形,求点P的坐标.(3)求点E横坐标的最大值.答案详解1.【解答】解:A 、菱形的对角线互相平分且垂直,所以A 选项错误; B 、矩形的对角线互相平分且相等,所以B 选项错误;C 、对角线互相垂直平分且相等的四边形是正方形,所以C 选项错误;D 、对角线互相平分的四边形为平行四边形,所以D 选项正确.故选D . 2.【解答】解:∵7441126<=<,故3<431123<-<<4;故选B .3.【解答】解:a >0,b >0时,抛物线开口向上,对称轴x=﹣<0,在y 轴左边,与y 轴正半轴相交,a <0,b <0时,抛物线开口向下,对称轴x=﹣<0,在y 轴左边,与y 轴正半轴坐标轴相交,D 符合.故选D .4.【解答】解:因为AB=CD ,若∠ABP=∠DCE=90°,BP=CE=2,根据SAS 证得△ABP ≌△DCE , 由题意得:BP=2t=2,所以t=1,因为AB=CD ,若∠BAP=∠DCE=90°,AP=CE=2,根据SAS 证得△BAP ≌△DCE , 由题意得:AP=16﹣2t=2,解得t=7.所以,当t 的值为1或7秒时.△ABP 和△DCE 全等.故选C . 5.A6.【解答】解:∵AB 是⊙O 的直径,∴∠ADB=90°,∵∠ABD=58°,∴∠A=90°﹣∠ABD=32°,∴∠BCD=∠A=32°.故选B .7.【解答】解:∵四边形ABCD 是平行四边形,∠ADC=60°,∴∠ABC=60°,∠DCB=120°, ∵∠ADA ′=50°,∴∠A ′DC=10°,∴∠DA ′B=130°,∵AE ⊥BC 于点E ,∴∠BAE=30°,∵△BAE 顺时针旋转,得到△BA ′E ′,∴∠BA ′E ′=∠BAE=30°,∴∠DA ′E ′=∠DA ′B+∠BA ′E ′=160°.故选:C .8.【解答】解:∵把A (,y 1),B (2,y 2)代入反比例函数y=得:y 1=2,y 2=,∴A (,2),B (2,),∵在△ABP 中,由三角形的三边关系定理得:|AP ﹣BP|<AB ,∴延长AB 交x 轴于P ′,当P 在P ′点时,PA ﹣PB=AB ,即此时线段AP 与线段BP 之差达到最大,设直线AB 的解析式是y=kx+b ,把A 、B 的坐标代入得:,解得:k=﹣1,b=,∴直线AB 的解析式是y=﹣x+,当y=0时,x=,即P (,0),故选:D .9.【解答】解:∵点C (1,2),BC ∥y 轴,AC ∥x 轴,∴当x=1时,y=﹣1+6=5, 当y=2时,﹣x+6=2,解得x=4,∴点A 、B 的坐标分别为A (4,2),B (1,5), 根据反比例函数系数的几何意义,当反比例函数与点C 相交时,k=1×2=2最小,设反比例函数与线段AB相交于点(x,﹣x+6)时k值最大,则k=x(﹣x+6)=﹣x2+6x=﹣(x﹣3)2+9,∵1≤x≤4,∴当x=3时,k值最大,此时交点坐标为(3,3),因此,k的取值范围是2≤k≤9.故选:A.10.C11.【解答】解:作DE⊥AB于E点.∵tan∠DBA==,∴BE=5DE,∵△ABC为等腰直角三角形,∴∠A=45°,∴AE=DE.∴BE=5AE,又∵AC=6,∴AB=6.∴AE+BE=5AE+AE=6,∴AE=,∴在等腰直角△ADE中,由勾股定理,得AD=AE=2.故选B.12.略。

2016届中考数学真题类编-知识点026 直角三角形、勾股定理及逆定理2016A

2016届中考数学真题类编-知识点026  直角三角形、勾股定理及逆定理2016A

一、选择题1.(2016山东东营,9,3分)在△ABC中,AB=10,AC=BC边上的高AD=6,则另一边BC等于()A.10 B.8 C.6或10 D.8或10【答案】C【逐步提示】本题考查勾股定理,分类讨论思想.根据题意画出相应的图形,然后利用勾股定理分别求出BC的长.【详细解答】解:如图①所示,在Rt△ABD中,8,在Rt△ACD中,2,∴BC=BD+CD=8+2=10.如图②所示,同理求出BD=8,CD=2,∴BC=BD-CD=8-2=6.故选C.【解后反思】解答本题易出现漏解的错误,即只考虑高在三角形内部的情况,而忽视高在外部的情况,而造成漏解.【关键词】勾股定理;分类讨论思想2.(2016山东潍坊,7,3分)木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B 也随之沿射线OM方向滑动,下列各图中用虚线画出木杆中点P随之下落的路线,其中正确的是()【答案】D【逐步提示】本题考查了直角三角形的性质,解题的关键是掌握能够观察到图中的OP是斜边AB上的中线,利用直角三角形斜边上的中线等于斜边的一半,可得OP的长度始终保持不变,然后结合图形可选出答案.【详细解答】解:连接OP,∵△AOB为直角三角形,∴12OP AB=.故点P下落路线为以O为圆心,OP为半径的一段圆弧,故选择D .【解后反思】本题在解答时需掌握直角三角形斜边上的中线等于斜边的一半,从而OP的长度不变,本题是来源于青岛版八下课本.【关键词】直角三角形;14.3.(2016山东省烟台市,14,3分)如图,O为数轴原点,A,B两点分别对应-3,3,作腰长为4的等腰【答案】7 【逐步提示】利用等腰△ABC 三线合一定理判断出AB OC ⊥,然后利用勾股定理即可求出OM 的长,则点M 对应的实数即可求出.【详细解答】解: ∵A ,B 两点分别对应-3,3,即OA=OB ,又∵△ABC 为等腰三角形,∴AB OC ⊥, ∴ OM=OC=2234-=7 ,故答案为 7 .【解后反思】1.本题考查数轴与点一一对应关系,需要借助数轴和勾股定理判断出字母对应的数值.2.在数轴上,数轴形象地反应了数与点之间的关系,数轴上的点与实数之间是一一对应的,借助于数与形的相互转化来解决数学问题,数轴具有如下作用:(1)利用数轴可以用点直观地表示数.(2)利用数轴可以比较数的大小.(3)利用数轴可以解决绝对值问题.【关键词】等腰三角形;勾股定理;数轴;数形结合思想;4.5. (2016浙江杭州,9,3分)已知直角三角形纸片的两条直角边长分别为m 和n (m <n ),过锐角顶点把该纸片剪成两个三角形.若这两个三角形都是等腰三角形,则( )A .m 2+2mn +n 2=0B .m 2-2mn +n 2=0C .m 2+2mn -n 2=0D .m 2-2mn -n 2=0【答案】C .【逐步提示】本题考查了直角三角形从一个顶点出发的一条射线将原三角形分成两个等腰三角形条件下的两条直角边的数量关系,解题的关键是画出符合题意的图形后,利用数形结合思想将两条直角边m 、n 及其代数式表示直角三角形的三边后用勾股定理建立等量关系.在解题时,首先画出符合题意的图形,利用斜边的垂直平分线与较长直角边的交点,得到一个等腰直角三角形后就产生了两个等腰三角形;再将等腰直角三角形的斜边用n -m 表示;最后由勾股定理,得到m 、n 的等量关系,化简后即可选择正确答案.【解析】如下图,在△ABC 中,∠C =90°,AC =m ,BC =n ,过点A 的射线AD 交BC 于点D ,且将△ABC 分成两个等腰三角形:△ACD 和△ADB ,则AC =CD =m ,AD =DB =n -m .在Rt △ACD 中,由勾股定理,得m 2+m 2=(n -m )2,2m 2=m 2-2mn +n 2,从而m 2+2mn -n 2=0,故选择C .n -mn -mm mDBC A【解后反思】解答本题的关键在于将题意用图形语言表示出来,所以说几何画图是学习好数学的基本功之一.在本题中,两个等三角形一定有一个是等腰直角三角形,另一个等腰三角形也一定是顶角为135°(45°的邻补角)的等腰三角形,此时利用线段的垂直平分线上的点到线段的两个端点距离相等来画原三角形斜边的中垂线即可.在解决了画图关后,如何用m 、n 的代数式表示等腰直角三角形的斜边就容易得多了,最后利用勾股定理不难探索出m 、n 的等量关系.综上所述,对于数学的学习,尤其是几何题,将文字语言、符号语言、图形语言三者之间的相互转换,就显得尤为重要了.【关键词】直角三角形;等腰三角形;勾股定理(2016淅江丽水,7,3分)如图,▱ABCD 的对角线AC ,BD 交于点O ,已知AD=8,BD=12,AC=6,则△OBC 的周长为A.13B.17C.20D.26 【答案】【逐步提示】根据平行四边形的性质得到BC 及OB+OC 的长,从而求得△OBC 的周长.【解析】由题意得BC=AD=8, OB+OC=12(AC+BD)=9,所以△OBC 的周长=8+9=17,故选择B. 【解后反思】平行四边形的对角线互相平分,平行四边形的对边相等,对角相等.【关键词】平行四边形的性质;;;;6.(2016浙江衢州,5,3分)如图,在▱ABCD 中,M 是BC 延长线上的一点,若∠A =135°,则∠MCD 的度数是( )A.45°B.55°C.65°D.75°【答案】A.【逐步提示】利用平行四边形和平行线的性质即求.MDC B A【解后反思】利用平行四边形的性质可以寻求线的平行关系,而平行线可以转换角的关系.【关键词】平行线的性质、平行四边形的性质、角的计算.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.27.28.29.30.31.32.33.34.35.36.37.38.39.二、填空题1. (2016天津,18,3分)如图,在每个小正方形的边长为1的网格中,A,E为格点,B,F为小正方形边的中点,C为AE,BF的延长线的交点.(I)AE的长等于.(II)若点P在线段AC上,点Q在线段BC上,且满足AP=PQ=QB,请在如图所示的网格中,用无刻度尺的直尺,画出线段PQ,并简要说明P,Q的位置是如何找到的(不要求证明) .【答案】(II)如图,AC 与网格线相交,得点P ;取格点M ,连接AM 并延长与BC 相交,得点Q .连接PQ ,线段PQ 即为所求.【逐步提示】本题考查了勾股定理,直角三角形的性质,矩形的性质,三角函数等知识.解题的关键是分析题意并构造出如图所示的三个全等的三角形.在解答本题时,应先从结论AP =PQ =PB 出发,通过构造全等三角形,分析出点P 与点Q 的形成过程,由此得出用直尺画出点P 与点Q 的方法.【解析】(I)AE.(II)如图,过A .Q 作铅垂线,过A .B .P 作水平线,构造三个全等且两直角边比为1:2的直角三角形.设BH =PK =QG =a ,则QH =PG =AK =2a .则①BN =BH +PG +PK =a +2a +a =4a ;②QR =QG +AK =a +2a =3a ;③AR =KP +PG =a +2a =3a .在网格中,∵BN =6,BN =4a ,∴a =1.5,∴AK =2a =3,过点K 的水平线与AC 的交点即为点P .∵QR =AR =2a ,∠ARQ =90°,∴∠RAQ =45°,∴点Q 在AM 的延长线上,由此可确定点Q .【解后反思】在解答有关格点的问题时,应注意分析已作图形的特点,通过逆推找出用于直尺作图的网格点或直线的交点,从而得出作图的过程.2.(2016浙江舟山,16,4分)如图,在直角坐标系中,点A.B分别在x轴、y轴上,点A的坐标为(-1,0),∠ABO=30°,线段PQ的端点P从点O出发,沿△OBA的边按O→B→A→O运动一周,同时另一端点Q随之在x 轴的非负半轴上运动,如果PQ=3,那么当点P运动一周时,点Q运动的总路程为.【答案】4【逐步提示】本题考查了解直角三角形的应用,解题的关键是根据题意能将点Q运动的总路程正确分解成几段路径之和. 根据已知条件在Rt△AOB中求出OB=3,AB=2. 设AB的中点为C,当点P运动一周时,点Q运动的总路程可以分解为点P从“O→B”、“B→C”、“C→A”、“A→O”四段路径之和.【解析】∵A(-1,0),∴OA=1.在Rt△AOB中,∠AOB=90°,∠ABO=30°,∴AB=2,OB= 3.设AB的中点为C.当点P从点O→B运动时,点Q运动的路径长(自右到左)为3;当点P从点B→C运动时,点Q运动的路径长(自左到右)为1;当点P从点C→A运动时,点Q运动的路径长(自右到左)为2-3;当点P从点A→O运动时,点Q运动的路径长(自左到右)为1;因此当点P运动一周时,点Q运动的总路程为3+1+2-3+1=4,故答案为4 .【解后反思】本题的难点是点P在B→A运动过程中,点Q运动的路径长,化解该难点的方法一是抓住“AB的中点C”这个特殊的零界点,而是关注点P到达A.C.B这三个特殊点时,线段AQ相应的长度,由此可确定点Q运动的路径长.【关键词】特殊角三角函数值的运用;点的位置的确定;实验操作题型;动线题型3.(2016四川省广安市,24,8分)在数学活动课上,老师要求学生在5×5的正方形ABCD网格中(小正方形的边长为1)画直角三角形,要求三个顶点都在格点上,而且三边与AB或AD都不平行,画四种图形,并直接写出其周长(所画图形相似的只算一种).周长=周长=以画出的直角三角形的两条直角边可以有以下几种关系:两直角边相等、一条直角边等于另一条直角边的2倍、一条直角边等于另一条直角边的3倍、一条直角边等于另一条直角边的4倍等.【详细解答】解:第一种(四选一):周长=周长=周长=周长=第二种(二选一):周长=周长=5第三种:第四种:第五种:周长=周长=周长=【解后反思】(1)在网格中通过画两个45°角的和画出直角;(2)相同边长的正方形网格,如果线段在网格线上,可以通过数网格得到线段的长度,如果线段不在网格线上,还需要结合勾股定理解决问题.【关键词】直角三角形;勾股定理;网格数学题型4.5.6.7.8.9.10.11.12.13.14.15.16.17.23.24.25.26.27.28.29.30.31.32.33.34.35.36.37.38.39.三、解答题1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.31.32.33.34.35.36.37.38.39.。

中考数学知识点重难点突破与训练6---二次根式题型汇编

中考数学知识点重难点突破与训练6---二次根式题型汇编

③ ( a + b)( a b) = a b
5 二次根式的分母有理化
定义 在二次根式中 将无理数的分母化为有理数的过程
方法 分子分母同时乘以有理化因式(有理化因式是指相乘之后使分母变为有理数的因
式)
6 (1)单项根式的分母有理化 同乘以分母本身 例
1 a
=
a a
(2)两项根式的分母有理化 同乘以使分母构成平方差公式的因式
a m + b m = (a + b) m a m b m = (a b) m
3 混合运算
遵循有理式中的运算顺序 运算律和乘法公式等仍然适用
4 乘法公式的推广
① a1 a2 a3 L an = a1 a2 a3 Lan (a1 ≥ 0, a2 ≥ 0,L, an ≥ 0)
② ( a ± b)2 = a + b ± 2 ab
巩固6 已知 a ,b ,c 为 △ABC 的三边长,化简: (a + b c)2 + (a b c)2 (b c a)2 解析 ∵ a ,b ,c 为三角形的三边长 ∴ a + b > c b + c > a c + a > b
∴a+b c>0 a b c<0 b c a <0. ∴ (a + b c)2 + (a b c)2 (b c a)2 =| a + b c | + | a b c | | b c a | = 3b a c
原式
=
x2 y
9 y3 + 9xy2 4x4
=
x2 y
9y2 ( y +
4x4
x)
=
x2 y

2016数学中考基础训练4

2016数学中考基础训练4

中考基础训练41.计算:-2×3= 。

2.单项式322x y 7-的次数是 。

3.小明在中考前到文具店买了2支2B 铅笔和一副三角板,2B 铅笔每支x 元,三角板每副2元,小明共花了 元。

4.分解因式:92a 4-= 。

5.函数xy x 2=-的自变量x 的取值范围是 。

6.请你写出一个点坐标,使这点在反比例函数2y x=-的图象上,则这个点的坐标为 。

7.写出一个你所学过的既是轴对称又是中心对称图形的名称 。

8.在比例尺为1∶500 000的福建省地图上,量得省会福州到漳州的距离约为46厘米,则福州到漳州实际距离约为 千米。

9.方程2x =2x 的解是 。

.10.如图3,由Rt △ABC 的三边向外作正方形,若最大正方形的边长为8cm ,则正方形M 与正方形N 的面积之和为 2cm 。

11.222,…, (第n 个数)为 。

12.下列计算正确的是( )A 222y 6y 4-=-B 339x x x ⋅= C326x x (-)= D 632x x x ÷= 13.菱形和矩形一定都具有的性质是( )A 对角线相等B 对角线互相平分C 对角线互相垂直D 每条对角线平分一组对角14.用换元法把方程222x 16x 17x 1x 1(+)(+)+=++化为关于y 的方程62y 7y +=,那么下列换元正确的是( )A1y x 1=+ B 21y x 1=+ C 2x 1y x 1+=+ D 2x 1y x 1+=+图315.如图,在A 、B 两座工厂之间要修建一条笔直的公路,从A 地测得B 地的走向是南偏东52°,现A 、B 两地要同时开工,若干天后公路准确对接,则B 地所修公路的走向应该是( )A 北偏西52°B 南偏东52°C 西偏北52°D 北偏西38° 16.关于x 的一元二次方程2x 2x 40--=的两根为12x x 、,那么代数式1211x x +的值为( ) A 12 B 12- C 2 D -217.小明骑自行车上学,从家里出发后以某一速度匀速前进,中途由于自行车出了故障,停下修车耽误了一段时间。

江西省2016年中考数学试题(含答案)

江西省2016年中考数学试题(含答案)

一、选择题(本大题共6个小题,每小题3分,共18分,每小题只有一个正确选项)1.下列四个数中,最大的一个数是().A.2 B.C.0 D.-2【答案】 A.2.将不等式的解集表示在数轴上,正确的是().【答案】D.3.下列运算正确的是是().A.B.C.D.【答案】 B.4.有两个完全相同的长方体,按下面右图方式摆放,其主视图是().【答案】 C.5.设是一元二次方程的两个根,则的值是().A. 2B. 1C. -2D. -1【答案】 D.6.如图,在正方形网格中,每个小正方形的边长均相等,网格中三个多边形(分别标记为○1,○2,○3)的顶点都在网格上,被一个多边形覆盖的网格线......中,竖直部分线段长度之和为,水平部分线段长度之和为,则这三个多边形满足的是( )A.只有○2B.只有○3C.○2○3D.○1○2○3【答案】 C.二、填空题(本大题共6小题,每小题3分,共18分)7.计算:-3+2= ___ ____.【答案】 -1.8.分解因式____ ____.【答案】 .9.如图所示,中,绕点A 按顺时针方向旋转50°,得到,则∠的度数是___ _____.第9题 第10题 第11题第6题【答案】17°.10.如图所示,在,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为____ ___.【答案】50°.11.如图,直线于点P,且与反比例函数及的图象分别交于点A,B,连接OA,OB,已知的面积为2,则__ ____.【答案】 4.12.如图,是一长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一等腰三角形纸片(AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP 的底边长...是___ ____.【答案】5,5, .如下图所示:三、(本大题共5小题,每小题6分,共30分)13.(本题共2小题,每小题3分)(1)解方程组【解析】由○1得:,代入○2得:,解得把代入○1得:,CAEB∴原方程组的解是.(2)如图,Rt中,∠ACB=90°,将Rt向下翻折,使点A与点C重合,折痕为DE,求证:DE∥BC.【解析】由折叠知:,∴∠∠,又点A与点C重合,∴∠,∴∠∠,∴∠,∵∠,∴∠,∴∠,∴DE∥BC.14.先化简,再求值:+ )÷ ,其中.【解析】原式=+ )=+ )=-=把代入得:原式= .15.如图,过点A(2,0)的两条直线分别交轴于B,C,其中点B在原点上方,点C在原点下方,已知AB=.(1)求点B的坐标;(2)若【解析】(1) 在Rt ,∴∴∴点B的坐标是(0,3) .(2) ∵∴∴∴设, 把(2,0),代入得:∴∴的解析式是 .16.为了了解家长关注孩子成长方面的情况,学校开展了针对学生家长的“你最关注孩子哪方面成长”的主题调查,调查设置了“健康安全”,“日常学习”,“习惯养成”,“情感品质”四个项目,并随机抽取甲,乙两班共100位学生家长进行调查,根据调查结果,绘制了如下不完整的条形统计图. x项目家长人数乙甲情感品质日常学习习惯养成健康安全475172320182420161284O(1)补全条形统计图;(2)若全校共有3600位家长,据此估计,有多少位家长最关心孩子“情感品质”方面的成长?(3)综合以上主题调查结果,结合自身现状,你更希望得到以上四个项目中哪方面的关注和指导?【解析】(1)如下图所示:项目家长人数6乙甲情感品质日常学习习惯养成健康安全475172320182420161284O(2) (4+6) ÷100×3600=360∴约有360位家长最关心孩子“情感品质”方面的成长.(3) 没有确定答案,说的有道理即可.17.如图,六个完全相同的小长方形拼成一个大长方形,AB 是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:○1仅用无刻度直尺,○2保留必要的画图痕迹.(1)在图(1)中画一个45°角,使点A 或点B 是这个角的顶点,且AB 为这个角的一边;(2)在图(2)中画出线段AB 的垂直平分线.【解析】 如图所示:(1) ∠BAC=45º ; (2)OH 是AB 的垂直平分线.四、(本大题共4小题,每小题8分,共32分)18.如图,AB 是⊙O 的直径,点P 是弦AC 上一动点(不与A 、C 重合),过点P 作PE ⊥AB,垂足为E , 射线EP 交 于点F ,交过点C 的切线于点D.(1)求证DC=DP(2)若∠CAB=30°,当F 是 的中点时,判断以A 、O 、C 、F 为顶点的四边形是什么特殊四边形?说明理由;AC ACB【解析】 (1) 如图1连接OC, ∵CD 是⊙O 的切线,∴ OC ⊥CD ∴∠OCD=90º,∴∠DCA= 90º-∠OCA .又PE ⊥AB ,点D 在EP 的延长线上,∴∠DEA=90º ,∴∠DPC=∠APE=90º-∠OAC.∵OA=OC , ∴∠OCA=∠OAC.∴∠DCA=∠DPC ,∴DC=DP.(2) 如图2 四边形AOCF 是菱形. 图1 连接CF 、AF , ∵F 是 的中点,∴∴ AF=FC . ∵∠BAC=30º ,∴ =60º , 又AB 是⊙O 的直径, ∴ =120º, ∴ = 60º ,∴∠ACF=∠FAC =30º .∵OA=OC, ∴∠OCA=∠BAC=30º,BBA C =C F A F B CA CB =C F A F∴⊿OAC ≌⊿FAC (ASA) , ∴AF=OA ,∴AF=FC=OC=OA , ∴四边形AOCF 是菱形.19.如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成,闲置时鱼竿可收缩,完全收缩后,鱼竿的长度的长度即为第1节套管的长度(如图1所示),使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示),图3是这根鱼竿所有套管都处于完全拉伸状态下的平面示意图,已知第1节套管长50cm ,第2节套管长46cm ,以此类推,每一节套管都比前一节套管少4cm ,完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为cm .(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm ,求的值 .图2图1xx• • •第2节x x第1节图3【解析】 (1) 第5节的套管的长是34cm . (注:50-(5-1)×4 )(2) (50+46+…+14) -9x =311∴320-9x =311 , ∴x=1∴x的值是1.20.甲、乙两人利用扑克牌玩“10点”游戏,游戏规则如下:○1将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关);○2两人摸牌结束时,将所得牌的“点数”相加,若“点数”之和小于或等于10,此时“点数”之和就是“最终点数”,若“点数”之和大于10,则“最终点数”是0;○3游戏结束之前双方均不知道对方“点数”;○4判定游戏结果的依据是:“最终点数”大的一方获胜,“最终点数”相等时不分胜负.现甲、乙均各自摸了两牌,数字之和都是5,这时桌上还有四背面朝上的扑克牌,牌面数字分别是4,5,6,7.(1)若甲从桌上继续摸一扑克牌,乙不再摸牌,则甲获胜的概率为.(2)若甲先从桌上继续摸一扑克牌,接着乙从剩下的扑克牌中摸出一牌,然后双方不再摸牌,请用树状图或表格表示出这次摸牌后所有可能的结果,再列表呈现甲、乙的“最终点数”,并求乙获胜的概率.【解析】(1) .(2) 如图:754654764765乙甲7654开始∴所有可能的结果是(4,5)(4,6)(4,7)(5,4)(5,6)(5,7)(6,4)(6,5)(6,7)(7,4)(7,5)(7,6) 共12种.甲5[4567甲“最终点数” 9 10 11 12乙5567467457456乙“最终点数” 10 11 12 9 11 12 9 10 12 9 10 11获胜情况乙胜甲胜甲胜甲胜甲胜甲胜乙胜乙胜平 乙胜乙胜平∴21.如图1是一副创意卡通圆规,图2是其平面示意图,OA 是支撑臂,OB 是旋转臂,使用时,以点A 为支撑点,铅笔芯B端点B可以绕点A旋转作出圆.已知OA=OB=10cm.(1)当∠AOB=18º时,求所作圆的半径;(结果精确到0.01cm)(2)保持∠AOB=18º不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度.(结果精确到0.01cm)(参考数据:sin9º≈0.1564,com9º≈0.9877º,sin18º≈0.3090, com18º≈0.9511,可使用科学计算器)【解析】(1) 图1,作OC⊥AB,∵OA=OB, OC⊥AB,∴AC=BC, ∠AOC=∠BOC=∠AOB=9°,在Rt⊿AOC 中,sin∠AOC = , ∴AC≈0.1564×10=1.564,∴AB=2AC=3.128≈3.13.∴所作圆的半径是3.13cm.(2)图2,以点A为圆心,AB长为半径画弧,交OB于点C,作AD⊥BC于点D;∵AC=AB, AD⊥BC,∴BD=CD, ∠BAD=∠CAD=∠BAC,∵∠AOB=18°,OA=OB ,AB=AC,CBDB∴∠BAC=18°, ∴∠BAD=9°,在Rt⊿BAD 中,sin∠BAD = ,∴BD≈0.1564×3.128≈0.4892,∴BC=2BD=0.9784≈0.98∴铅笔芯折断部分的长度约为0.98cm. 图2五、(本大题共10分)22.【图形定义】如图,将正n边形绕点A顺时针旋转60°后,发现旋转前后两图形有另一交点O,连接AO,我们称AO 为“叠弦”;再将“叠弦”AO所在的直线绕点A逆时针旋转60°后,交旋转前的图形于点P,连接PO,我们称∠OAB为“叠弦角”,⊿AOP为“叠弦三角形”.【探究证明】(1)请在图1和图2中选择其中一个证明:“叠弦三角形”(即⊿AOP)是等边三角形;(2)如图2,求证:∠OAB=∠OAE'.【归纳猜想】(3)图1、图2中“叠弦角”的度数分别为,;(4)图n中,“叠弦三角形”等边三角形(填“是”或“不是”);【解析】 (1) 如图1 ∵四ABCD 是正方形,由旋转知:AD=AD ',∠D=∠D '=90°, ∠DAD '=∠OAP=60°∴∠DAP=∠D 'AO ,∴⊿APD ≌⊿AOD '(ASA )∴AP=AO ,又∠OAP=60°, ∴⊿AOP 是等边三角形.(2)如右图,作AM ⊥DE 于M, 作AN ⊥CB 于N.∵五ABCDE 是正五边形,MD'由旋转知:AE=AE',∠E=∠E'=108°,∠EAE'=∠OAP=60°∴∠EAP=∠E'AO ,∴⊿APE≌⊿AOE'(ASA)∴∠OAE'=∠PAE.在Rt⊿AEM和Rt⊿ABN中,∴Rt⊿AEM≌Rt⊿ABN (AAS)∴∠EAM=∠BAN , AM=AN.在Rt⊿APM和Rt⊿AON中,∴Rt⊿APM≌Rt⊿AON (HL).∴∠PAM=∠OAN,∴∠PAE=∠OAB∴∠OAE'=∠OAB (等量代换).(3) 15°, 24°(4) 是(5) ∠OAB= ÷2=60°-六、(本大题共共12分)23.设抛物线的解析式为y = a x2 , 过点B1 (1, 0 )作x轴的垂线,交抛物线于点A1 (1, 2);过点B2 (1, 0 )作x 轴的垂线,交抛物线于点A 2 ,… ;过点B n (, 0 ) (n 为正整数 )作x 轴的垂线,交抛物线于点A n , 连接A n B n+1 , 得直角三角形A n B n B n+1 .(1)求a 的值;(2)直接写出线段A n B n ,B n B n+1 的长(用含n 的式子表示);(3)在系列Rt ⊿A n B n B n+1 中,探究下列问题:○1当n 为何值时,Rt ⊿A n B n B n+1 是等腰直角三角形? ○2设1≤k <m ≤n (k , m 均为正整数) ,问是否存在Rt ⊿A k B k B k+1 与Rt ⊿A m B m B m+1 相似?若存在,求出其相似比;若不存在,说明理由.xyO【解析】 (1) 把A(1 , 2)代入 得: 2= , ∴ .(2) 2× ==- =(3) ○1 若Rt ⊿A n B n B n+1 是等腰直角三角形 ,则. ∴ , ∴n=3.○2 若Rt ⊿A k B k B k+1 与Rt ⊿A m B m B m+1相似,则或,∴或,∴m=k (舍去) 或k+m=6∵m>k ,且m , k都是正整数,∴,∴相似比= ,或.∴相似比是8:1或64:1。

2016年中考模拟数学试题(附答案)

2016年中考模拟数学试题(附答案)

2016年中考模拟数学试题注意事项:1.本试卷满分130分,考试时间为120分钟.2.卷中除要求近似计算的结果取近似值外,其余各题均应给出精确结果. 一、细心填一填(本大题共有14小题,16个空,每空2分,共32分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,相信你一定会填对的!) 1.13-的相反数是 ,16的算术平方根是 . 2. 分解因式:29x -= .3. 据无锡市假日办发布的信息,“五一”黄金周无锡旅游市场接待量出现罕见的“井喷”,1日至7日全市旅游总收入达23.21亿元,把这一数据用科学记数法表示为 亿元. 4.如果x =1是方程x a x 243-=+的解,那么a = . 5. 函数11y x =-中,自变量x 的取值范围是 . 6. 不等式组31530x x -<⎧⎨+≥⎩的解集是 .7. 如图,两条直线AB 、CD 相交于点O ,若∠1=35o,则∠2= °.8. 如图,D 、E 分别是△ABC 的边AC 、AB 上的点,请你添加一个条件: , 使△ADE 与△ABC 相似.9. 如图,在⊙O 中,弦AB =1.8cm ,圆周角∠ACB =30︒,则⊙O 的直径为__________cm .10. 若两圆的半径是方程2780x x -+=的两个根,且圆心距等于7,则两圆的位置关系是___________________.11. 为了调查太湖大道清扬路口某时段的汽车流量,交警记录了一个星期同一时段通过该路口的汽车辆数,记录的情况如下表:那么这一个星期在该时段通过该路口的汽车平均每天为_______辆.12. 无锡电视台“第一看点”节目从接到的5000个热线电话中,抽取10名“幸运观众”,小颖打通了一次热线电话,她成为“幸运观众”的概率是 .A (第7题) E D CB A (第8题) (第9题) 班级 姓名 准考号 ------------------------------------------------------------------------------------------------------------------------------------------------------------------- (密封线内不准答题)13. 小明自制一个无底圆锥形纸帽,圆锥底面圆的半径为5cm ,母线长为16cm ,那么围成这个纸帽的面积(不计接缝)是_________2cm (结果保留三个有效数字). 14. 用黑白两种颜色的正方形纸片,按如下规律拼成一列图案,则(1)第5个图案中有白色纸片 张;(2)第n 个图案中有白色纸片 张.二、精心选一选(本大题共有6小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.只要你掌握概念,认真思考,相信你一定会选对的!)15.下列运算中,正确的是 ( ) A .4222a a a =+ B .236a a a •= C .236a a a =÷ D .()4222b a ab =16.下列运算正确的是 ( ) A.y yx y x y=----B.2233x y x y +=+C.22x y x y x y+=++ D.221y x x y x y-=--+17.某物体的三视图如下,那么该物体形状可能是 ( )A .长方体B . 圆锥体C .立方体D . 圆柱体 18.下列事件中,属于随机事件的是 ( ) A .掷一枚普通正六面体骰子所得点数不超过6 B .买一张体育彩票中奖C .太阳从西边落下D .口袋中装有10个红球,从中摸出一个白球. 19.一个钢球沿坡角31o的斜坡向上滚动了5米,此时钢球距地面的高度是( )米 A.5sin 31oB.5cos31oC.5tan31oD.正视图左视图俯视图第3个第2个第1个20.二次函数2y ax bx c =++的图象如图所示,则下列各式:①0abc <;②0a b c ++<;③a c b +>;④2c ba -<中成立的个数是 ( ) A . 1个 B . 2个 C . 3个 D . 4个三、认真答一答(本大题共有8小题,共62分.解答需写出必要的文字说明、演算步骤或证明过程.只要你积极思考,细心运算,你一定会解答正确的!) 21.(本题满分8分)(1)计算:221-⎪⎭⎫ ⎝⎛-ο45sin 2 +121+; (2)解方程:11222=--+x x22. (本题满分6分)已知:如图,△ABC 中,∠ACB =90°,AC =BC ,E 是BC 延长线上的一点,D 为AC 边上的一点,且CE =CD .求证:AE =BDEDC B A 班级 姓名 准考号------------------------------------------------------------------------------------------------------------------------------------------------------------------- (密封线内不准答题)23. (本题满分7分) “石头、剪刀、布”是同学们广为熟悉的游戏,小明和小林在游戏时,双方约定每一次游戏时只能出“石头”、“剪刀”、“布”这三种手势中的一种.假设双方每次都是等可能地出这三种手势.(1)用树状图(或列表法)表示一次游戏中所有可能出现的情况. (2)一次游戏中两人出现不同手势的概率是多少?24. (本题满分7分)如图,点O 、A 、B 的坐标分别为O )0,0(、A )0,3(-、B )2,4(-,将 △OAB 绕点O 顺时针旋转90°得△B A O ''. (1)请在方格中画出△B A O ''; (2)A '的坐标为( , ),B B '= .x25. (本题满分7分)初三(1)班的何谐同学即将毕业,5月底就要填报升学志愿了,为此她就本班同学的升学志愿作了一次调查统计,通过采集数据后,绘制了两幅不完整的统计图,请根据图中提供的信息,解答下列问题: (1)初三(1)班的总人数是多少?(2)请你把图1、图2的统计图补充完整.(3)若何谐所在年级共有620名学生,请你估计一下全年级想就读职高的学生人数.26. (本题满分9分)今年无锡城市建设又有大手笔:首条穿越太湖内湖---蠡湖的湖底隧道将于年底建成.现有甲、乙两工程队从隧道两端同时开挖,第4天时两队挖的隧道长度相等.施工期间,乙队因另有任务提前离开,余下的工程由甲队单独完成,直至隧道挖通.如图是甲、乙两队所挖隧道的长度y (米)与开挖时间t (天)之间的函数图象,请根据图象提供的信息解答下列问题:(1) 蠡湖隧道的全长是多少米?(2) 乙工程队施工多少天时,两队所挖隧道的长相差10米?图1别图2乙甲班级 姓名 准考号 ------------------------------------------------------------------------------------------------------------------------------------------------------------------- (密封线内不准答题)27. (本题满分9分)如图,梯形ABCD 中,AB ∥CD ,∠ABC =ο90,且AB =BC ,以BC 为直径的⊙O 切AD 于E . (1) 试求AEDE的值; (2) 过点E 作EF ∥AB 交BC 于F ,连结EC .若EC CF =1,求梯形ABCD 的面积.28. (本题满分9分)已知:如图,在平面直角坐标系中,点A 和点B 的坐标分别是A )2,0(,B )6,4(-. (1) 在x 轴上找一点C ,使它到点A 、点B 的距离之和(即CA +CB )最小,并求出点C 的坐标.(2) 求过A 、B 、C 三点的抛物线的函数关系式.(3) 把(2)中的抛物线先向右平移1个单位,再沿y 轴方向平移多少个单位,才能使抛物线与直线BC 只有一个公共点?C BAO四、实践与探索(本大题共有2小题,满分18分.只要你开动脑筋,大胆实践,勇于探索,你一定会成功!)29. (本题满分8分)某研究性学习小组在一次研讨时,将一足够大的等边△AEF 纸片的顶点A 与菱形ABCD 的顶点A 重合,AE 、AF 分别与菱形的边BC 、CD 交于点M 、N .纸片由图①所示位置绕点A 逆时针旋转,设旋转角为α(︒≤≤︒600α),菱形ABCD 的边长为4.(1) 该小组一名成员发现:当︒=0α和︒=60α(即图①、图③所示)时,等边△AEF 纸片与菱形ABCD 的重叠部分的面积恰好是菱形面积的一半,于是他们猜想: 在图②所示位置,上述结论仍然成立,即菱形四边形S S AMCN 21=. 你认为他们的猜想成立吗?若成立,给出证明;若不成立,请说明理由.(2) 连结MN ,当旋转角α为多少度时,△AMN 的面积最小?此时最小面积为多少?请说明理由.EBF图③图②B F 图① 班级 姓名 准考号 -------------------------------------------------------------------------------------------------------------------------------------------------------------- (密封线内不准答题)30. (本题满分10分)直线10-=x y 与x 轴、y 轴分别交于A 、B 两点,点P 从B 点出发,沿线段BA 匀速运动至A 点停止;同时点Q 从原点O 出发,沿x 轴正方向匀速运动 (如 图1),且在运动过程中始终保持PO =PQ ,设OQ =x . (1)试用x 的代数式表示BP 的长.(2)过点O 、Q 向直线AB 作垂线,垂足分别为C 、D (如图2),求证:PC =AD .(3)在(2)的条件下,以点P 、O 、Q 、D 为顶点的四边形面积为S ,试求S 与x 的函数关系式,并写出自变量x 的范围.xx初三数学试题参考答案 2016.5一、填空题1.31,4 2.)3)(3(-+x x 3.110321.2⨯ 4.9 5.1≠x 6.23<≤-x 7.145 8.ACABAE AD C AED B ADE =∠=∠∠=∠或或 9.3.6 10.外切 11.90 12.0.002 13.251 14.16, 13+n二、选择题15.D 16.D 17.D 18.B 19.A 20.B 三、解答题21.(1)原式=122224-+⋅- --------(3分) =3 -------(4分)(2)去分母得 )1)(2()2(2)1(2-+=+--x x x x -------(1分) 整理得 042=++x x -------(2分)∵0161<-=∆ -------(3分) ∴原方程无解 -------(4分) 22.∵BC AC = -------(1分) ︒=∠=∠90ACE ACB -------(2分) CD CE = -------(3分)∴△ACE ≌△BCD (SAS ) -------(5分) ∴BD AE = -------(6分) 23.-------(5分)∴P (出现不同手势)=3296= -------(7分)24.(1)图画对 -------(3分) 25.(1)人50%5025=÷ -------(2分) (2))3,0('A -------(5分) (2)图补正确 -------(5分) 102'=BB -------(7分) (3)人2485020620=⨯-------(7分) 26.(1)法①:由图象可知,乙6天挖了480米 法②:设)60(≤≤=t kt y 乙石头剪刀 布石头剪刀 剪刀 布 石头布 剪刀 布 石头 小林 小明∴乙每天挖80米 ∴4天挖320米 (1分) ∴k 6480= 即甲第4天时也挖了320米 ∴80=k ∴甲从第2天开始每天挖米7024180320=-- (2分) ∴t y 80=乙 -----(1分)∴从第2天到第8天甲挖了米420670=⨯ 米时乙320,4==y t故甲共挖420+180=600米 ----(3分) 设b at y +=甲 )82(≤≤t ∴隧道全长600+480=1080米 ----(4分) 则可得 2a+b=1804a+b=32∴70=a ,40=b ∴4070+=t y 甲 ----(2分) 当t=8时,米甲60040560=+=y (3分)∴隧道全长600+480=1080米 ----(4分)(2)当20≤≤t 时,由图可求得t y 90=甲 ---------(5分)∴t t t y y 108090=-=-乙甲,1010=t∴1=t ----------(6分) 当42≤≤t 时,4010804070+-=-+=-t t t y y 乙甲104010=+-t ∴3=t ----------(7分)当64≤≤t 时,4010407080-=--=-t t t y y 甲乙104010=-t ∴5=t ----------(8分)答:乙队施工1天或3天或5天时,两队所挖隧道长相差10米。

【6章】2016年中考数学基础复习配套检测题及答案

【6章】2016年中考数学基础复习配套检测题及答案

【6章】2016年中考数学基础复习配套检测题及答案目录第一章数与式 (2)第1讲实数 (2)第2讲代数式 (4)第3讲整式与分式 (7)第4讲二次根式 (12)第一章基础题强化提高测试 (20)第二章方程与不等式 (20)第1讲方程与方程组 (20)第2讲不等式与不等式组 (28)第二章基础题强化提高测试 (37)第三章函数 (38)第1讲函数与平面直角坐标系 (38)第2讲一次函数 (42)第3讲反比例函数 (45)第4讲二次函数 (48)第三章基础题强化提高测试 (60)第四章图形的认识 (61)第1讲角、相交线和平行线 (61)第2讲三角形 (65)第3讲四边形与多边形 (71)第4讲圆 (78)第5讲尺规作图 (86)第四章基础题强化提高测试 (110)第五章图形与变换 (111)第1讲图形的轴对称、平移与旋转 (111)第2讲图形的相似 (114)第3讲解直角三角形 (118)第4讲视图与投影 (120)第五章基础题强化提高测试 (131)第六章统计与概率 (133)第1讲抽样与数据分析 (133)第2讲事件的概率 (137)第六章基础题强化提高测试 (145)第一章 数与式第1讲 实数A 级 基础题1.(2015年广东梅州)12的相反数是( )A .2B .-2 C.12 D .-122.(2015年广东佛山)-3的倒数是( )A .-13 B.13C .3D .-33.(2015年广东广州)四个数-3.14,0,1,2中为负数的是( ) A .-3.14 B .0 C .1 D .24.(2015年内蒙古呼和浩特)以下四个选项表示某天四个城市的平均气温,其中平均气温最低的是( )A .-3 ℃B .15 ℃C .-10 ℃D .-1 ℃5.(2015年广东汕尾)今年五月份香港举办“保普选反暴力”大联盟大型签名行动,9天共收集超121万个签名,将121万用科学记数法表示为( )A .1.21×106B .12.1×105C .0.121×107D .1.21×1056.(2015年湖南永州)在数轴上表示数-1和2014的两点分别为A 和B ,则A ,B 两点间的距离为( )A .2013B .2014C .2015D .20167.(2015年黑龙江绥化)在实数0,π,227, 2 ,-9中,无理数的个数有( )A .1个B .2个C .3个D .4个 8.(2015年山东威海)已知实数a ,b 在数轴上的位置如图1-1-2,下列结论错误的是( )图1-1-2A.||a <1<||b B .1 <-a <b C .1 < ||a <b D .-b <a <-1 9.(2015年湖北武汉)计算:-10+(+6)=________.10.(2015年吉林长春)比较大小:2__________1.(填“>”“=”或“<”) 11.(2015年江苏镇江)已知一个数的绝对值是4,则这个数是__________. 12.计算:(1)(2015年广东梅州)计算:8+|2 2-3|-⎝⎛⎭⎫13-1-(2015+2)°. (2)(2015年广东佛山)计算:9+20150+(-2)3+2 3×sin60°.B 级 中等题13.(2015年山东青岛)某种计算机完成一次基本运算的时间约为0.000 000 001 s ,将0.000 000 001 s 用科学记数法表示为( )A .0.1×10-8 sB .0.1×10-9 sC .1×10-8 sD .1×10-9 s 14.(2015年山东菏泽)如图1-1-3,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )图1-1-3A .点MB .点NC .点PD .点Q 15.(2015年重庆)下列图形都是由几个黑色和白色的正方形按一定规律组成.在图1-1-4中,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,按此规律,图⑩中黑色正方形的个数是( )图1-1-4A .32B .29C .28D .2616.(2015年贵州遵义)按一定规律排列的一列数依次为:45,48,411,414,…,按此规律,这列数中的第10个数与第16个数的积是__________.C 级 拔尖题17.(2015年湖南娄底)下列数据是按一定规律排列的(如图1-1-5),则第7行的第一个数为__________.图1-1-5第2讲 代数式A 级 基础题1.若x =1,y =12,则x 2+4xy +4y 2的值是( )A .2B .4 C.32 D.122.(2015年吉林)购买1个单价为a 元的面包和3瓶单价为b 元的饮料,所需要钱数为( )A .(a +b )元B .3(a +b )元C .(3a +b )元D .(a +3b )元3.(2015年四川自贡)为庆祝抗战胜利70周年,我市某楼盘让利于民,决定将原价为a 元/米2的商品房价降价10%销售,降价后的销售价为( )A .a -10%元/米2B .a ·10%元/米2C .a (1-10%)元/米2D .a (1+10%)元/米24.(2015年福建厦门)某商店举办促销活动,促销的方法是将原价x 元的衣服以⎝⎛⎭⎫45x -10元出售,则下列说法中,能正确表达该商店促销方法的是( )A .原价减去10元后再打8折B .原价打8折后再减去10元C .原价减去10元后再打2折D .原价打2折后再减去10元5.(2015年海南)某企业今年1月份产值为x 万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是( )A .(1-10%)(1+15%)x 万元B .(1-10%+15%)x 万元C .(x -10%)(x +15%)万元D .(1+10%-15%)x 万元 6.(2015年重庆)如图1-2-4所示的图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第④个图形中小圆圈的个数为( )图1-2-4A .21个B .24个C .27个D .30个7.(2015年湖南株洲)如果手机通话每分钟收费m 元,那么通话a 分钟,收费________元.8.(2014年江苏苏州)若a -2b =3,则9-2a +4b 的值为________. 9.(2015年湖南益阳)如图1-2-5是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…,则第n 个图案中有________根小棒.图1-2-510.(2015年四川内江)如图1-2-6是由火柴棒搭成的几何图案,则第n 个图案中有________根火柴棒.(用含n 的代数式表示)图1-2-611.已知a =3,b =|-2|,c =12,求代数式a 2+b -4c 的值.12.已知a ,b 互为相反数,c ,d 互为倒数,m 的绝对值是2,求||a +b 2m 2+1+4m -3cd 的值.B 级 中等题13.按如图1-2-7所示的程序计算,若开始输入n 的值为1,则最后输出的结果是( )图1-2-7A .3B .15C .42D .63 14.(2015年黑龙江绥化)如图1-2-8,填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a +b +c =________.图1-2-815.(2015年江苏淮安)将连续正整数按如下规律排列(如图1-2-9):图1-2-9若正整数565位于第a 行,第b 列,则a +b =________. 16.(2014年四川达州)《庄子·天下篇》中写道:“一尺之棰,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图1-2-10.图1-2-10由图易得:12+122+123+…+12n =________.C 级 拔尖题17.(2014年安徽)观察下列关于自然数的等式: 32-4×12=5;① 52-4×22=9;② 72-4×32=13;③ ……根据上述规律解决下列问题:(1)完成第四个等式:92-4×________2=________;(2)写出你猜想的第n 个等式(用含n 的式子表示),并验证其正确性.(列代数式)第3讲 整式与分式 第1课时 整式A 级 基础题1.(2015年浙江台州)单项式2a 的系数是( ) A .2 B .2a C .1 D .a2.(2015年广东珠海)计算-3a 2×a 3的结果为( ) A .-3a 5 B .3a 6 C .-3a 6 D .3a 53.(2015年四川巴中)若单项式2x 2y a +b 与-13x a -b y 4是同类项,则a ,b 的值分别为( )A .a =3,b =1B .a =-3,b =1C .a =3,b =-1D .a =-3,b =-1 4.(2015年湖南邵阳)已知a +b =3,ab =2,则a 2+b 2的值为( ) A .3 B .4 C .5 D .65.(2015年广东佛山)若(x +2)(x -1)=x 4+mx +n ,则m +n =( ) A .1 B .-2 C .-1 D .26.(2015年广东深圳)下列说法错误的是( )A .a ·a =a 2B .2a +a =3aC .(a 3)2=a 5D .a 3÷a -1=a 47.(2015年浙江金华)已知a +b =3,a -b =5,则代数式a 2-b 2=________. 8.(2015年广东珠海)填空:x 2+10x +________=(x +________)2. 9.(2015年四川绵阳)计算:a (a 2÷a )-a 2=________.10.(2015年山东菏泽)若x 2+x +m =(x -3)(x +n )对x 恒成立,则n =__________. 11.(2015年广东梅州)已知a +b =-2,求代数式(a -1)2+b (2a +b )+2a 的值.12.(2015年北京)已知2a 2+3a -6=0.求代数式3a ()2a +1-()2a +1()2a -1的值.B 级 中等题13.(2015年山东临沂)观察下列关于x 的单项式,探究其规律: x,3x 2,5x 3,7x 4,9x 5,11x 6,…,按照上述规律,第2015个单项式是( ) A .2015x 2015 B .4029x 2014 C .4029x 2015 D .4031x 201514.(2015年安徽)按一定规律排列的一列数:21,22,23,25,28,213,…,若x,y,z表示这列数中的连续三个数,猜想x,y,z满足的关系式是____________.15.(2014年浙江宁波)一个大正方形和四个全等的小正方形按图1-3-2(1)(2)两种方式摆放,则图(2)的大正方形中未被小正方形覆盖部分的面积是________.(用a,b的代数式表示)图1-3-216.(2015年河北)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个二次三项式,形式如下:-3x=x2-5x+1(1)求所捂住的二次三项式;(2)若x=6+1,求所捂住的二次三项式的值.C级拔尖题17.利民商店出售一种原价为a的商品,有如下几种方案:(1)先提价10%,再降价10%;(2)先降价10%,再提价10%;(3)先提价20%,再降价20%.问:用这三种方案调价的结果是否一样,最后是不是都恢复了原价?第2课时 因式分解A 级 基础题1.(2014年海南)下列式子从左到右变形是因式分解的是( ) A .a 2+4a -21=a (a +4)-21 B .a 2+4a -21=(a -3)(a +7) C .(a -3)(a +7)=a 2+4a -21 D .a 2+4a -21=(a +2)2-25 2.(2015年湖北武汉)把a 2-2a 分解因式,正确的是( ) A .a (a -2) B .a (a +2) C .a (a 2-2) D .a (2-a ) 3.(2014年辽宁葫芦岛)计算:552-152=( ) A .40 B .1600 C .2400 D .28004.(2015年浙江台州)把多项式2x 2-8分解因式,结果正确的是( )A .2()x 2-8 B .2()x -22C .2()x +2()x -2D .2x ⎝⎛⎭⎫x -4x 5.(2015年贵州毕节)下列因式分解正确的是( )A .a 4b -6a 3b +9a 2b =a 2b (a 2-6a +9)B .x 2-x +14=⎝⎛⎭⎫x -122 C .x 2-2x +4=(x -2)2 D .4x 2-y 2=(4x +y )(4x -y )6.(2015年广西贺州)把多项式4x 2y -4xy 2-x 3分解因式的结果是( ) A .4xy (x -y )-x 3 B .-x (x -2y )2C .x (4xy -4y 2-x 2)D .-x (-4xy +4y 2+x 2) 7.(2015年山东枣庄)如图1-3-3,边长为a ,b 的矩形的周长为14,面积为10,则a 2b+ab 2的值为( )图1-3-3A .140B .70C .35D .248.(2015年广东梅州)分解因式:m 3-m =________. 9.(2015年广东广州)分解因式:2mx -6my =________. 10.(2015年广东深圳)分解因式:3a 2-3b 2________.11.(2015年山东东营)分解因式:4+12(x -y )+9(x -y )2=________. 12.已知ab =-3,a +b =2.求代数式a 3b +ab 3的值.B 级 中等题13.(2015年湖南衡阳)已知a +b =3,a -b =-1,则a 2-b 2的值为________. 14.(2015年湖北孝感)分解因式:(a -b )2-4b 2__________. 15.(2015年甘肃平凉)分解因式:x 3y -2x 2y +xy =________.16.(2015年湖南株洲)分解因式:x 2()x -2-16()x -2=____________________.C 级 拔尖题17.分解因式:x 2-y 2-3x -3y .第3课时 分式A 级 基础题1.(2015年浙江丽水)分式-11-x可变形为( )A .-1x -1 B.11+x C .-11+x D.1x -12.(2015年浙江金华)要使分式xx +4有意义,则x 的取值应满足( )A .x =-4B .x ≠4C .x >-4D .x ≠-43.(2015年湖南)若分式3-xx +1的值为0,则x 的值为( )A .3或-1B .0C .3D .-14.(2014年内蒙古赤峰)化简a 2b -ab 2b -a的结果正确的是( )A .abB .-abC .a 2-b 2D .b 2-a 25.(2015年山东济南)化简 m 2m -3-9m -3 的结果是( )A .m +3B .m -3 C.m -3m +3 D.m +3m -36.(2015年湖南益阳)下列等式成立的是( ) A.1a +2b =3a +b B.22a +b =1a +b C.ab ab -b 2=a a -b D.a -a +b =-a a +b7.(2015年广东珠海)若分式3x -5有意义,则x 应满足________.8.(2015年江苏镇江)当x =__________时,分式x +1x -2的值为0.9.(2015年吉林)计算:x x -y ·x 2-y2x=________.10.(2015年贵州六盘水)已知c 4=b 5=a6≠0,则b +c a 的值为________.11.(2015年广东佛山)计算:2x -2-8x 2-4.12.(2015年广东广州)已知A =x 2+2x +1x 2-1-xx -1.(1)化简A ;(2)当x 满足不等式组⎩⎪⎨⎪⎧x -1≥0,x -3<0,且x 为整数时,求A 的值.B 级 中等题 13.(2015年山东临沂)计算:a a +2-4a 2+2a = ______________.14.(2015年湖南邵阳)先化简⎝⎛⎭⎫1x -2-2x ·x 2-2x 2,再从0,1,2中选取一个合适的x 的值代入求值.15.(2015年湖北襄阳)先化简,再求值:⎝ ⎛⎭⎪⎫5x +3yx 2-y 2+2x y 2-x 2÷1x 2y -xy 2,其中x =3+2,y =3- 2.16.(2015年贵州黔东南州)先化简,再求值:m -33m 2-6m ÷⎝⎛⎭⎫m +2-5m -2,其中m 是方程x 2+2x -3=0的根.C 级 拔尖题 17.(2015年广东梅州)若1(2n -1)(2n +1)=a 2n -1+b2n +1,对任意自然数n 都成立,则a=______,b =______;计算:m =11×3+13×5+15×7+…+119×21=________.第4讲 二次根式A 级 基础题1.(2015年重庆)计算3 2-2的值是( ) A .2 B .3 C. 2 D .2 22.(2015年安徽)计算8×2的结果是( ) A.10 B .4 C. 6 D .23.(2015年江苏无锡)函数y =x -4中自变量x 的取值范围是( ) A .x >4 B .x ≥4 C .x ≤4 D .x ≠44.(2015年四川凉山州)下列根式中,不能与3合并的是( )A.13B.33C.23D.125.(2015年江苏淮安)下列式子为最简二次根式的是( )A. 3B. 4C.8D.126.(2015年湖北潜江)下列各式计算正确的是( ) A.2+3= 5 B .4 3-3 3=1 C .2 3×3 3=6 3 D.27÷3=37.(2015年湖南衡阳)计算8-2=________.8.(2015年江苏南京)计算5×153的结果是________.9.(2015年江苏泰州)计算:18-2 12等于________.10.(2015年湖北荆门)当1<a <2时,代数式()a -22+||1-a 的值是________.11.(2014年广东佛山)计算:8÷2-1+327×[2+(-2)3].12.(2014年湖北荆门)计算:24×13-4×18×(1-2)0.B 级 中等题13.(2014年安徽)设n 为正整数,且n <65<n +1,则n 的值为( ) A .5 B .6 C .7 D .814.(2014年山东济宁)如果ab>0,a+b<0,那么下面各式:①ab=ab;②ab·ba=1;③ab÷ab=-b,其中正确的是()A.①②B.②③C.①③D.①②③15.(2015年四川攀枝花)若y=x-3+3-x+2,则x y=________.16.(2014年山东德州)若y=x-4+4-x2-2,则(x+y)y=________.C级拔尖题17.(2015年山西)阅读与计算:阅读以下材料,并完成相应的任务.斐波那契(约1170—1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰好是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用:斐波那契数列中的第n个数可以用15⎝⎛⎭⎪⎫1+52n-⎝⎛⎭⎪⎫1-52n表示.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.第一章基础题强化提高测试时间:45分钟 满分:100分一、选择题(本大题共6小题,每小题5分,共30分) 1.-15的相反数是( )A .15B .-15 C.115 D .-1152.用科学记数法表示316 000 000为( )A .3.16×107B .3.16×108C .31.6×107D .31.6×106 3.下列二次根式中的最简二次根式是( )A.30B.12C.8D.124.下列运算正确的是( )A .a 2+a 3=a 5 B.()-a 32=a 6 C .ab 2·3a 2b =3a 2b 2 D .-2a 6÷a 2=-2a 3 5.下列计算正确的是( ) A .ab ·ab =2ab B .(2a )3=2a 3C .3 a -a =3(a ≥0) D.a ·b =ab (a ≥0,b ≥0) 6.下列运算正确的是( )A.2+3= 5 B .3x 2y -x 2y =3 C.a +b 2a +b=a +b D.()a 2b 3=a 6b 3 二、填空题(本大题共4小题,每小题5分,共20分)7.若分式1x -5有意义,则实数x 的取值范围是________.8.81的平方根是________.9.若a 2-3b =5,则6b -2a 2+2015=________. 10.化简:2(8-2)=________.三、解答题(本大题共5小题,每小题10分,共50分) 11.分解因式:m 3n -4mn .12.化简:1x +3+6x 2-9.13.先化简,再求值:(2a +b )(2a -b )+(4ab 3-8a 2b 2)÷4ab ,其中a =-2,b =1.14.计算:|-3|+2sin45°+tan60°-⎝⎛⎭⎫-13-1-12+(π-3)0.15.先化简,再求值:⎝ ⎛⎭⎪⎫a 2-b 2a 2-2ab +b 2+a b -a ÷b 2a 2-ab ,其中a ,b 满足a +1+|b -3|=0.第一部分 中考基础复习第一章 数与式 第1讲 实数【演练·巩固提升】1.D 2.A 3.A 4.C 5.A 6.C 7.B 8.A 9.-4 10.> 11.±412.解:(1)原式=2 2+3-2 2-3-1=-1.(2)原式=3+1-8+2 3×32=-4+3=-1.13.D 14.C 15.B 16.110017.22 解析:由排列的规律可得,第n -1行结束的时候排了1+2+3+…+n -1=12n (n -1)个数.所以第n 行的第1个数为12n (n -1)+1.所以n =7时,第7行的第1个数为22.第2讲 代数式【演练·巩固提升】1.B 2.D 3.C 4.B 5.A6.B 7.am 8.3 9.5n +1 10.2n (n +1)11.解:当a =3,b =|-2|=2,c =12时,a 2+b -4c =3+2-2=3.12.解:根据题意,可知:a +b =0,① cd =1,②|m |=2,即m =±2.③把①②代入原式,可得原式=0+4m -3×1=4m -3. 当m =2时,4m -3=2×4-3=5;当m =-2时,4m -3=-2×4-3=-11. 所以,原式的值是5或-11.13.C 解析:把n =1代入,得n (n +1)=2<15,把n =2代入,得n (n +1)=6<15,把n =6代入,得n (n +1)=42>15,则最后输出的结果为42.14.110 解析:根据左上角+4=左下角,左上角+3=右上角,右下角的数是左下角与右上角两个数的乘积加上1的和,可得6+4=a,6+3=c ,ac +1=b ,可得a =10,c =9,b =91,所以a +b +c =10+9+91=110.15.147 解析:∵565÷4=141……1,∴正整数565位于第142行,即a =142.∵奇数行的数字在前四列,数字逐渐增加;偶数行的数字在后四列,数字逐渐减小,∴正整数565位于第五列,即b =5.∴a +b =142+5=147.16.2n -12n 解析:取n 天后剩下12n ,所以n 天共取走1-12n ,即12+122+123+…+12n =1-12n=2n-12n .17.解:(1)4 17(2)第n 个等式为(2n +1)2-4n 2=4n +1. 证明如下:左边=(2n +1)2-4n 2=4n 2+4n +1-4n 2=4n +1=右边. ∴(2n +1)2-4n 2=4n +1.第3讲 整式与分式第1课时 整式【演练·巩固提升】1.A 2.A 3.A 4.C 5.C 6.C 7.15 8.25 5 9.0 10.411.解:原式=a 2-2a +1+2ab +b 2+2a =()a +b 2+1, 当a +b =-2时,()a +b 2+1=()-22+1=3. 12.解:原式=6a 2+3a -(4a 2-1) =6a 2-4a 2+3a +1 =2a 2+3a +1.因为2a 2+3a -6=0,所以2a 2+3a =6,所以原式=7.13.C 解析:先看x 的指数,第一个指数是1,第二个指数是2,第2015个单项式的指数是2015;再看系数,系数是连续的奇数,所以第2015个奇数为4029,所以第2015个单项式为4029x 2015.14.xy =z 解析:∵a m a n =a m +n ,21×22=23,22×23=25,23×25=28,25×28=213,故答案为xy =z .15.ab 解析:设大正方形的边长为x 1,小正方形的边长为x 2,由图①和②列出方程组得⎩⎪⎨⎪⎧x 1+2x 2=a ,x 1-2x 2=b ,解得⎩⎨⎧x 1=a +b 2,x 2=a -b 4.图②的大正方形中未被小正方形覆盖部分的面积=⎝⎛⎭⎫a +b 22-4×⎝⎛⎭⎫a -b 42=ab . 16.解:(1)设所捂的二次三项式为A ,则A =x 2-5x +1+3x =x 2-2x +1.(2)若x =6+1,则A =()x -12=()6+1-12=6.17.解:方案(1)的调价结果为(1+10%)(1-10%)a =0.99a ; 方案(2)的调价结果为(1-10%)(1+10%)a =0.99a ; 方案(3)的调价结果为(1+20%)(1-20%)a =0.96a .由此可以得到方案(1)(2)的调价结果是一样的,方案(3)的调价结果与(1)(2)不一样.最后都没有恢复原价.第2课时 因式分解【演练·巩固提升】1.B 2.A 3.D 4.C 5.B 6.B 7.B 8.m ()m +1()m -1 9.2m ()x -3y 10.3()a +b ()a -b 11.(3x -3y +2)212.解:∵a +b =2,∴(a +b )2=4.∴a 2+2ab +b 2=4. 又∵ab =-3,a 2+2ab +b 2=4,∴a 2+b 2=10. ∴a 3b +ab 3=ab (a 2+b 2)=-30.13.-3 14.(a +b )(a -3b ) 15.xy (x -1)2 16.(x -2)(x -4)(x +4)17.解:原式=(x +y )(x -y )-3(x +y ) =(x +y )(x -y -3)第3课时 分式【演练·巩固提升】1.D 2.D 3.C 4.B 5.A 6.C 7.x ≠5 8.-1 9.x +y10.32 解析:由题意,可设a =6k ,b =5k ,c =4k ,则b +c a =5k +4k 6k =32. 11.解:原式=2()x +2-8()x +2()x -2=2()x -2()x +2()x -2=2x +2.12.解:(1)A =x 2+2x +1x 2-1-x x -1=()x +12()x +1()x -1-x x -1=x +1x -1-x x -1=1x -1.(2)解x -1≥0,得x ≥1.解x -3<0,得x <3.∴⎩⎪⎨⎪⎧x -1≥0,x -3<0的解为1≤x <3. ∵x 为整数,∴x =1,2.当x =1时,分式无意义;当x =2时,A =12-1=1.13.a -2a 解析:原式=a a +2-4a (a +2)=a 2a (a +2)-4a (a +2)=a 2-4a (a +2)=(a +2)(a -2)a (a +2)=a -2a. 14.解:原式=⎣⎢⎡⎦⎥⎤x x (x -2)-2(x -2)x (x -2)·x (x -2)2=x -2(x -2)x (x -2)·x (x -2)2=x -2x +42=-x +42,由于x ≠0,且x ≠2,因此只能取x =1.所以当x =1时,原式的值为-x +42=-1+42=32.15.解:原式=⎝ ⎛⎭⎪⎫5x +3yx 2-y 2-2x x 2-y 2÷1xy (x -y )=3(x +y )(x +y )(x -y )·xy (x -y ) =3xy .把x =3+2,y =3-2代入,可得: 原式=3(3+2)(3-2)=3.16.解:原式=m -33m (m -2)÷⎝ ⎛⎭⎪⎫m 2-4m -2-5m -2=m -33m (m -2)·m -2(m +3)(m -3)=13m (m +3).∵m 是方程x 2+2x -3=0的根,∴m =-3或m =1. 当m =-3时,原式无意义;当m =1时,原式=13m (m +3)=13×1×(1+3)=112.17.12 -12 1021. 解析:∵1()2n -1()2n +1=12()2n -1-12()2n +1=a 2n -1+b 2n +1, ∴a =12,b =-12.∴m =11×3+13×5+15×7+…+119×21=⎝⎛⎫12-16+⎝⎛⎫16-110+…+⎝⎛⎫138-142=1021. 第4讲 二次根式【演练·巩固提升】1.D 2.B 3.B 4.C 5.A 6.D 7.2 8.5 9.2 2 10.1 解析:原式=||a -2+||1-a =2-a +a -1=1.11.解:原式=2 2÷12+3×(2-2 2)=4 2+6-6 2=6-2 2.12.解:(1)原式=24×13-4×24×1=2 2-2= 2.13.D 14.B15.9 解析:由题意,得x -3≥0,且3-x ≥0,得x =3,故y =2.∴x y =9. 16.14解析:由题意,得x -4≥0,且4-x ≥0. 解得x ≥4,且x ≤4.所以x =4.所以y =-2.所以(x +y )y =(4-2)-2=14.17.解:第1个数:当n =1时,15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n =15⎣⎢⎡⎦⎥⎤1+52-1-52=15×5=1.第2个数:当n =2时, 15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n =15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+522-⎝ ⎛⎭⎪⎫1-522=15⎝ ⎛⎭⎪⎫1+52-1-52⎝ ⎛⎭⎪⎫1+52+1-52 =15×5×1=1.第一章基础题强化提高测试1.A 2.B 3.A 4.B 5.D 6.D 7.x ≠5 8.±3 9.2005 10.211.解:原式=mn ()m 2-4= mn (m +2)(m -2).12.解:原式=x -3(x +3)(x -3)+6(x +3)(x -3)=x -3+6(x +3)(x -3)=x +3(x +3)(x -3)=1x -3. 13.解:原式=4a 2-b 2+b 2-2ab =2a (2a -b ). 当a =-2,b =1时,原式=2×(-2)×[2×(-2)-1]=20.14.解:原式=3+2×22+3-(-3)-2 3+1=3+1+3+3-2 3+1=5.15.解:原式=⎣⎢⎡⎦⎥⎤(a +b )(a -b )(a -b )2-a a -b ·a (a -b )b 2 =⎝ ⎛⎭⎪⎫a +b a -b -a a -b ·a (a -b )b2=b a -b ·a (a -b )b 2=a b . ∵a +1+|b -3|=0,∴a +1=0,b -3=0.解得a =-1,b = 3.∴原式=-13=-33.第二章 方程与不等式第1讲 方程与方程组第1课时 一元一次方程和二元一次方程组A 级 基础题 1.(2015年山东济南)若代数式4x -5与2x -12的值相等,则x 的值是( )A .1 B.32 C.23D .22.(2015年广东深圳)某商品的标价为200元,8折销售仍赚40元,则商品进价为( ) A .140元 B .120元 C .160元 D .100元3.(2015年广东广州)已知a ,b 满足方程组⎩⎪⎨⎪⎧a +5b =12,3a -b =4,则a +b 的值为( )A .-4B .4C .-2D .24.(2015年浙江杭州)某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%.设把x 公顷旱地改为林地,则可列方程( )A .54-x =20%×108B .54-x =20%(108+x )C .54+x =20%×162D .108-x =20%(54+x )5.(2015年湖南长沙)长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为( )A .562.5元B .875元C .550元D .750元 6.(2015年山东泰安)小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x 千克,乙种水果y 千克,则可列方程组为( )A.⎩⎪⎨⎪⎧ 4x +6y =28,x =y +2B.⎩⎪⎨⎪⎧ 4y +6x =28,x =y +2C.⎩⎪⎨⎪⎧ 4x +6y =28,x =y -2D.⎩⎪⎨⎪⎧4y +6x =28,x =y -2 7.(2015年江苏常州)已知x =2是关于x 的方程a (x +1)=12a +x 的解,则a 的值是________.8.(2015年四川甘孜州)已知关于x 的方程3a -x =x2+3的解为2,则代数式a 2-2a +1的值是________.9.如果某日杜鹃园售出门票100张,成人票50元,儿童票30元,门票收入共4000元,那么当日售出成人票________张.10.(2015年黑龙江牡丹江)某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为________元.11.解方程:(1)(2015年广东广州)解方程:5x =3(x -4).(2)(2015年湖北荆州)解方程组:⎩⎪⎨⎪⎧3x -2y =-1, ①x +3y =7. ②12.(2014年江西)小锦和小丽购买了价格分别相同的中性笔和笔芯,小锦买了20支中性笔和2盒笔芯,用了56元;小丽买了2支中性笔和3盒笔芯,仅用了28元.求每支中性笔和每盒笔芯的价格.B 级 中等题13.(2015年四川南充)已知关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧2x +3y =k ,x +2y =-1的解互为相反数,则k 的值是________.14.(2015年浙江嘉兴)公元前1700年的古埃及纸草书中,记载着一个数学问题:“它的全部,加上它的七分之一,其和等于19.”此问题中“它”的值为________.图2-1-215.(2015年北京)如图2-1-2所示的《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问每头牛、每只羊值金多少两?”设每头牛值金x ,每只羊各值金y 两,可列方程组为____________.16.(2015年湖南张家界)如图2-1-3,小华从家里到学校的路是一段平路和一段下坡路,假设他始终保持平路每分钟走60 m ,下坡路每分钟走80 m ,上坡路每分钟走40 m ,则他从家里到学校需10 min ,从学校到家里需15 min.问:从小华家到学校的平路和下坡路各有多远?图2-1-3C 级 拔尖题17.(2015年广东珠海)阅读材料:善于思考的小军在解方程组⎩⎪⎨⎪⎧2x +5y =3, ①4x +11y =5 ②时,采用了一种“整体代换”的解法.解:将方程②变形: 即2(2x +5y )+y =5.③ 把方程①代入③,得2×3+y =5.∴y =-1.把y =-1代入,①得x =4.∴方程组的解为⎩⎪⎨⎪⎧x =4,y =-1.请你解决以下问题:(1)模仿小军的“整体代换”法解方程组⎩⎪⎨⎪⎧3x -2y =5, ①9x -4y =19; ②(2)已知x ,y 满足方程组⎩⎪⎨⎪⎧3x 2-2xy +12y 2=47, ③2x 2+xy +8y 2=36. ④ ⅰ)求x 2+4y 2的值;ⅱ)求1x +12y的值.第2课时 分式方程A 级 基础题1.(2015年贵州遵义)若x =3是分式方程a -2x -1x -2=0的根,则a 的值是( )A .5B .-5C .3D .-32.(2015年湖南常德)分式方程2x -2+3x2-x=1的解为( )A .1B .2 C.13D .03.(2015年湖北荆州)若关于x 的分式方程m -1x -1=2的解为非负数,则m 的取值范围是( )A .m >-1B .m ≥1C .m >-1,且m ≠1D .m ≥-1,且m ≠14.(2015年黑龙江齐齐哈尔)关于x 的分式方程5x =ax -2有解,则字母a 的取值范围是( )A .a =5或a =0B .a ≠0C .a ≠5D .a ≠5,且a ≠05.(2015年湖南岳阳)岳阳市某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x 元,则下列所列方程正确的是( )A.200x =350x -3B.200x =350x +3C.200x +3=350xD.200x -3=350x 6.(2015年四川遂宁)遂宁市某生态示范园,计划种植一批核桃,原计划总产量达36万千克.为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克.种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万千克?设原计划每亩平均产量x 万千克,则改良后平均亩产量为1.5x 万千克.根据题意列方程为( )A.36x -36+91.5x =20B.36x -361.5x =20C.36+91.5x -36x =20D.36x +36+91.5x=20 7.若分式x 2-1x -1的值为0,则x =________.8.(2015年广东佛山)分式方程1x -2=3x 的解是________.9.(2015年山东东营)若分式方程x -ax +1=a 无解,则a 的值为________.10.(2015年辽宁锦州)制作某种机器零件,小明做220个零件与小芳做180个零件所用的时间相同,已知小明每小时比小芳多做20个零件.设小芳每小时做x 个零件,则可列方程为________.11.解方程:(1)(2015年江苏镇江)解方程:3+x 4-x =12;(2)(2015年广东深圳)解方程:x 2x -3+53x -2=4.12.(2015年四川雅安)某车间按计划要生产450个零件,由于改进了生产设备,该车间实际每天生产的零件数比原计划每天多生产20%,结果提前5天完成任务,求该车间原计划每天生产的零件个数?B 级 中等题13.若关于x 的方程ax x -2=4x -2+1无解,则a 的值是________.14.(2015年湖北襄阳)分式方程1x -5-10x 2-10x +25=0 的解是________.15.(2015年广西贺州)解分式方程:x +14x 2-1=32x +1-44x -2.16.(2015年浙江宁波)宁波火车站北广场将于2015年底投入使用,计划在广场内种植A ,B 两种花木共 6600棵,若A 花木数量是B 花木数量的2倍少600棵.(1)A ,B 两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A 花木60棵或B 花木40 棵,应分别安排多少人种植A 花木和B 花木,才能确保同时完成各自的任务?C 级 拔尖题17.(2015年浙江湖州)某工厂计划在规定时间内生产24 000个零件.若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数;(2)为了提前完成生产任务,工厂在安排原有工人按原计划生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%.按此测算,恰好提前两天完成24 000个零件的生产任务,求原计划安排的工人人数.第3课时 一元二次方程A 级 基础题1.一元二次方程x 2+2x =0的根是( ) A .x 1=0,x 2=-2 B .x 1=1,x 2=2 C .x 1=1,x 2=-2 D .x 1=0,x 2=22.用配方法解一元二次方程x 2-6x -6=0,下列变形正确的是( ) A .(x -6)2=-6+36 B .(x -6)2=6+36 C .(x -3)2=-6+9 D .(x -3)2=6+93.(2015年山西)我们解一元二次方程3x 2-6x =0时,可以运用因式分解法,将此方程化为3x (x -2)=0,从而得到两个一元一次方程:3x =0或x -2=0,进而得到原方程的解为x 1=0,x 2=2.这种解法体现的数学思想是( )A .转化思想B .函数思想C .数形结合思想D .公理化思想4.(2015年广东珠海)一元二次方程x 2+x +14=0的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定根的情况5.(2015年湖南益阳)沅江市近年来大力发展芦笋产业,某芦笋生产企业在两年内的销售额从20万元增加到80万元.设这两年的销售额的年平均增长率为x ,根据题意可列方程为()A.20(1+2x)=80 B.2×20(1+x)=80C.20(1+x2)=80 D.20(1+x)2=806.(2015年广东佛山)如图2-1-5,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2 m,另一边减少了3 m,剩余一块面积为20 m2的矩形空地,则原正方形空地的边长是()图2-1-5A.7 m B.8 m C.9 m D.10 m7.(2015年广西柳州)若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为________.8.(2015年辽宁盘锦)方程(x+2)(x-3)=x+2的解是____________.9.(2015年广西邵阳)关于x的方程x2+2x-m=0有两个相等的实数根,则m=________.10.(2015年甘肃酒泉)关于x的方程kx2-4x-23=0有实数根,则k的取值范围是________.11.(2015年广东梅州)已知关于x的方程x2+2x+a-2=0.(1)若该方程有两个不相等的实数根,求实数a的取值范围;(2)当该方程的一个根为1时,求a的值及方程的另一根.12.(2015年广东广州)某地区2013年投入教育经费2500万元,2015年投入教育经费3025万元.(1)求2013年至2015年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2016年该地区将投入教育经费多少万元.13.(2015年广东珠海)白溪镇2012年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2014年达到82.8公顷.(1)求该镇2012年至2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷?B级中等题14.(2015年广东广州)已知2是关于x的方程x2-2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为() A.10 B.14 C.10或14 D.8或1015.(2015年内蒙古呼和浩特)若实数a,b满足(4a+4b)(4a+4b-2)-8=0,则a+b=________.16.(2015年湖北)如图2-1-6,一农户要建一个矩形猪舍,猪舍的一边利用长为12 m的住房墙,另外三边用25 m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1 m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80 m2?图2-1-6C级拔尖题17.(2015年山东东营)2013年,东营市某楼盘以每平方米6500元的均价对外销售,因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2015年的均价为每平方米5265元.(1)求平均每年下调的百分率;(2)假设2016年的均价仍然下调相同的百分率,张强准备购买一套100平方米的住房,他持有现金20万元,可以在银行贷款30万元,张强的愿望能否实现?(房价每平方米按照均价计算)第2讲 不等式与不等式组A 级 基础题1.(2015年四川乐山)下列说法不一定成立的是( )A .若a >b ,则a +c >b +cB .若a +c >b +c ,则a >bC .若a >b ,则ac 2>bc 2D .若ac 2>bc 2,则a >b2.(2015年广东汕尾)使不等式x -1≥2与3x -7<8同时成立的x 的整数值是( ) A .3,4 B .4,5 C .3,4,5 D .不存在3.(2015年广东深圳)解不等式2x ≥x -1,并把解集在数轴上表示( ) A. B.C.D.4.(2015年广东佛山)不等式组⎩⎪⎨⎪⎧x +1<3,2x -1>x的解集是( )A .x >1B .x <2C .1≤x ≤2D .1<x <25.(2015年湖北恩施州)关于x 的不等式组⎩⎪⎨⎪⎧3x -1>4()x -1,x <m 的解集为x <3,那么m的取值范围为( )A .m =3B .m >3C .m <3D .m ≥36.(2015年山东东营)东营市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收1.5元(不足1千米按1千米计).某人从甲地到乙地经过的路程是x 千米,出租车费为15.5元,那么x 的最大值是( )A .11B .8C .7D .57.(2015年浙江衢州)写出一个解集为x >1的一元一次不等式:________. 8.(2015年贵州铜仁)不等式5x -3<3x +5的最大整数解是________.9.(2015年江苏宿迁)关于x 的不等式组⎩⎪⎨⎪⎧2x +1>3,a -x >1的解集为1<x <3,则a 的值为________.10.(2015年四川达州)对于任意实数m ,n ,定义一种运算m ※n =mn -m -n +3,等式的右边是通常的加减和乘法运算,例如:3※5=3×5-3-5+3=10.请根据上述定义解决问题:若a <2※x <7,且解集中有两个整数解,则a 的取值范围是________.11.解不等式:(1)(2015年江苏南京)解不等式2(x +1)-1≥3x +2,并把它的解集在数轴上表示出来(如图2-2-3).图2-2-3(2)(2015年北京)解不等式组⎩⎪⎨⎪⎧4(x +1)≤7x +10,x -5<x -83,并写出它的所有非负整数解.12.(2015年宁夏)某校在开展“校园献爱心”活动中,准备向南部山区学校捐赠男、女两种款式的书包.已知男款书包的单价为50元/个,女款书包的单价为70元/个.(1)原计划募捐3400元,购买两种款式的书包共60个,那么这两种款式的书包各买多少个?(2)在捐款活动中,由于学生捐款的积极性高涨,实际共捐款4800元,如果至少购买两种款式的书包共80个,那么女款书包最多能买多少个?B 级 中等题13.(2015年江苏南通)关于x 的不等式x -b >0恰有两个负整数解,则b 的取值范围是( )A .-3<b <-2B .-3<b ≤-2C .-3≤b ≤-2D .-3≤b <-214.(2015年贵州毕节)已知不等式组⎩⎪⎨⎪⎧x >2,x <a 的解集中共有5个整数,则a 的取值范围为( )A .7<a ≤8B .6<a ≤7C .7≤a <8D .7≤a ≤815.(2015年甘肃武威)定义新运算:对于任意实数a ,b 都有:a ⊕b =a (a -b )+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2-5)+1=2×(-3)+1=-5,那么不等式3⊕x <13的解集为________.16.(2014年广东珠海)阅读下列材料:解答“已知x -y =2,且x >1,y <0,试确定x +y 的取值范围”有如下解法: 解:∵x -y =2,∴x =y +2. 又∵x >1,∴y +2>1. ∴y >-1.又∵y <0,∴-1<y <0. ① 同理,得1<x <2. ②由①+②,得-1+1<y +x <0+2. ∴x +y 的取值范围是0<x +y <2. 请按照上述方法,完成下列问题:(1)已知x -y =3,且x >2,y <1,则x +y 的取值范围是________;(2)已知y >1,x <-1,若x -y =a 成立,求x +y 的取值范围.(结果用含a 的式子表示)。

初中数学中考复习 第6关 以新定义与阅读理解问题为背景的选择填空题(原卷版)

初中数学中考复习 第6关 以新定义与阅读理解问题为背景的选择填空题(原卷版)

第6关 以新定义与阅读理解问题为背景的选择填空题【考查知识点】所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力. 阅读理解型问题在近几年的全国中考试题中频频“亮相”,特别引起我们的重视.这类问题一般文字叙述较长,信息量较大,各种关系错综复杂,考查的知识也灵活多样,既考查学生的阅读能力,又考查学生的解题能力的新颖数学题.【解题思路】“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移.解决阅读理解问题的关键是要认真仔细地阅读给定的材料,弄清材料中隐含了什么新的数学知识、结论,或揭示了什么数学规律,或暗示了什么新的解题方法,然后展开联想,将获得的新信息、新知识、新方法进行迁移,建模应用,解决题目中提出的问题.【典型例题】【例1】(2019·湖南中考真题)从1-,1,2,4四个数中任取两个不同的数(记作,k k a b )构成一个数组{},K k k M a b =(其中1,2,,k S =,且将{},k k a b 与{},k k b a 视为同一个数组),若满足:对于任意的{},i i i M a b =和{},(,1,1)j i j M a b i j i S j S =≠≤≤≤≤都有i i j j a b a b +≠+,则S 的最大值( )A .10B .6C .5D .4【名师点睛】本题考查了规律型:数字的变化类,找出i i a b +共有几个不同的值是解题的关键.【例2】(2020·四川绵阳实中、绵阳七中初三月考)阅读材料:定义:如果一个数的平方等于1-,记为21i =-,这个数i 叫做虚数单位,把形如a bi +(a ,b 为实数)的数叫做复数,其中a 叫这个复数的实部,b 叫这个复数的虚部.它的加、减、乘法运算与整式的加、减、乘法运算类似. 例如计算:(4)(62)(46)(12)10i i i i ++-=++-=-;2(2)(3)6326(1)7i i i i i i i -+=-+-=---=-; 2(4)(4)1616(1)17i i i +-=-=--=;22(2)4444134i i i i i +=++=+-=+根据以上信息,完成下面计算:2(12)(2)(2)i i i +-+-=_______.【名师点睛】本题考查有理数的混合运算,解题的关键是读懂题意,掌握有理数的混合运算.【例3】(2019·湖南中考真题)规定:如果一个四边形有一组对边平行,一组邻边相等,那么称此四边形为广义菱形.根据规定判断下面四个结论:①正方形和菱形都是广义菱形;②平行四边形是广义菱形;③对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;④若M 、N 的坐标分别为(0,1),(0,1),-P 是二次函数214y x =的图象上在第一象限内的任意一点,PQ 垂直直线1y =-于点Q ,则四边形PMNQ 是广义菱形.其中正确的是_____.(填序号) 【名师点睛】本题考查新定义,二次函数的性质,特殊四边形的性质;熟练掌握平行四边形,菱形,二次函数的图象及性质,将广义菱形的性质转化为已学知识是求解的关键.【例4】(2018新疆中考)如图,已知抛物线y 1=﹣x 2+4x 和直线y 2=2x .我们规定:当x 取任意一个值时,x 对应的函数值分别为y 1和y 2,若y 1≠y 2,取y 1和y 2中较小值为M ;若y 1=y 2,记M=y 1=y 2.①当x >2时,M=y 2;②当x <0时,M 随x 的增大而增大;③使得M 大于4的x 的值不存在;④若M=2,则x=1.上述结论正确的是_____(填写所有正确结论的序号).【名师点睛】本题考查了一次函数的性质、二次函数的性质、一次函数图象上点的坐标特征以及二次函数图象上点的坐标特征,逐一分析四条结论的正误是解题的关键.【方法归纳】阅读试题提供新定义、新定理,根据所给的内容类比解决新问题 ;阅读相关信息,通过归纳探索,发现规律,得出结论阅读试题信息,借助已有数学思想方法解决新问题;阅读理解型问题是指通过阅读材料,理解材料中所提供新的方法或新的知识,并灵活运用这些新方法或新知识,去分析、解决类似的或相关的问题。

2016届中考考前数学基础训练题

2016届中考考前数学基础训练题

2016届中考考前数学基础训练题中考复习最忌心浮气躁,急于求成。

指导复习的教师,应给学生一种乐观、镇定、自信的精神面貌。

要扎扎实实地复习,一步一步地前进,下文为大家准备了中考考前数学基础训练题。

一、选择题1、在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有的图案都是轴对称图形的概率为( )2、现有四个外观完全一样的粽子,其中有且只有一个有蛋黄.若从中一次随机取出两个,则这两个粽子都没有蛋黄的概率是( )3、有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为( )4、小明与小刚一起玩抛掷两枚硬币的游戏,游戏规则:抛出两个正面--小明赢1分;抛出其他结果--小刚赢1分;谁先到10分,谁就获胜.这是个不公平的游戏规则,要把它修改成公平的游戏,下列做法中错误的是( )A.把抛出两个正面改为抛出两个同面B.把抛出其他结果改为抛出两个反面C.把小明赢1分改为小明赢3分D.把小刚赢1分改为小刚赢3分5、服务他人,提升自我,七一学校积极开展志愿者服务活动,来自初三的5名同学(3男两女)成立了交通秩序维护小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰好是一男一女的概率是( )6、如图,随机闭合开关K1,K2,K3中的两个,则能让两盏灯泡同时发光的概率为( )7、一枚质地均匀的正方体骰子,六个面上的数字分别是1,2,3,4,5,6.掷两次骰子,其朝上面上的两个数字之和为6的概率是( )8、有四张形状、大小和质地完全相同的卡片,每张卡片的正面写有一个算式.将这四张卡片背面向上洗匀,从中随机抽取一张(不放回),接着再随机抽取一张.则抽取的两张卡片上的算式都正确的概率是( D )二、填空题9、在一个不透明的口袋中,有3个完全相同的小球,他们的标号分别是2,3,4,从袋中随机地摸取一个小球然后放回,再随机的摸取一个小球,则两次摸取的小球标号之和为5的概率是_____10、如右图,在某十字路口,汽车可直行、可左转、可右转.若这三种可能性相同,则两辆汽车经过该路口都向右转的概率为_____11、如图所示,小明和小龙做转陀螺游戏,他们同时分别转动一个陀螺,当两个陀螺都停下来时,与桌面相接触的边上的数字都是奇数的概率是_____12、把同一副扑克中的红桃2,3,4,5有数字的一面朝下放置,洗匀后甲先抽取一张,记下数字后将牌放回,洗匀后乙再抽取一张.设先后两次抽得的数字分别记为x和y,则|x-y| 2的概率为_______标签:模拟题汇编。

2016年中考基础试卷(4)

2016年中考基础试卷(4)

2016年中考基础模拟试卷(4)一、选择题(共9题,每题3分)1、实数的值在( )A .0与1之间B .1与2之间C .2与3之间D .3与4之间2、要使分式有意义,则应满足的条件是( )A .B .C .D .3、计算2x (3x 2+1),正确的结果是( )A .5x 3+2xB .6x 3+1C .6x 3+2xD .6x 2+2x4、下列事件中,是必然事件的为( )A .3天内会下雨B .打开电视机,正在播放广告C .367人中至少有2人公历生日相同D .某妇产医院里,下一个出生的婴儿是女孩5、下列运算正确的是( )A .B .C .D .6、在平面直角坐标系中,将点 A (﹣2,3)向右平移3个单位长度后得到的对应点 A ′的坐标是( )A .(1,3)B .(﹣2,﹣3)C .(﹣2,6)D .(﹣2,1)7、如图是由4个大小相同的正方体组合而成的几何体,其俯视图是( )A .B .C .D .8、为了解我市外来务工人员的专业技术状况,劳动部门随机抽查了一批外来务工人员,并根据所收集的数据绘制了两幅不完整的统计图:若我市共有外来务工人员15000人,试估计有中级或高级专业技术的外来务工人员共有( )A .2100人B .50人C .2250人D .4500人9、观察下列图形,则第个图形中三角形的个数是( )A .B .C .D .二、填空题(共4题,每题3分)11、计算:-2-(-5)= ,12、 环境污染日益严重,据统计,全球每分钟约有8500000吨污水排入江河湖海,这个排污量用科学计数法表示为_____吨。

13、从长度分别为2,4,6,7的四条线段中随机取三条,能构成三角形的概率是 14、如图,把长方形ABCD 沿EF 对折,若∠1=500,则∠AEF 的度数等于 .三、解答题17、 解方程18、如图,D 是AABC 的边BC 的中点,CE ∥AB ,E 在AD 的延长线上,求证:△ABD ≌△ECD 。

湖南常德2016中考试题数学卷(解析版)

湖南常德2016中考试题数学卷(解析版)

一、选择题(本大题8个小题,每小题3分,满分24分)1.4的平方根是()A.2 B.﹣2 C.±2D.±2【答案】D.【解析】试题分析:根据平方根的定义可得4的平方根是±2.故答案选D.考点:平方根.2.下面实数比较大小正确的是()A.3>7 B. C.0<﹣2 D.22<3【答案】B.考点:实数的大小比较.3.如图,已知直线a∥b,∠1=100°,则∠2等于()A.80° B.60° C.100° D.70°【答案】A.【解析】试题分析:根据对顶角相等可得∠3=∠1=100°,再根据两直线平行,同旁内角互补可得∠2=180°﹣∠3=180°﹣100°=80°.故答案选A.考点:平行线的性质.4.如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A. B. C. D.【答案】A.【解析】试题分析:从上面看可知上面第一层中间有1个正方形,第二层有3个正方形.下面一层左边有1个正方形,故答案选A.考点:简单组合体的三视图.5.下列说法正确的是()A.袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机抽出一个球,一定是红球B.天气预报“明天降水概率10%”,是指明天有10%的时间会下雨C.某地发行一种福利彩票,中奖率是千分之一,那么,买这种彩票1000张,一定会中奖D.连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上【答案】D.考点:概率的意义6.若﹣x3y a与x b y是同类项,则a+b的值为()A.2 B.3 C.4 D.5【答案】C.【解析】试题分析:已知﹣x3y a与x b y是同类项,根据同类项的定义可得a=1,b=3,则a+b=1+3=4.故答案选C.考点:同类项.7.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,下列结论:①b<0;②c>0;③a+c<b ;④b 2﹣4ac >0,其中正确的个数是( )A .1B .2C .3D .4【答案】C.考点:二次函数图象与系数的关系.8.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( )A .9天B .11天C .13天D .22天【答案】B.【解析】试题分析:根据题意设有x 天早晨下雨,这一段时间有y 天;有9天下雨,即早上下雨或晚上下雨都可称之为当天下雨,①总天数﹣早晨下雨=早晨晴天;②总天数﹣晚上下雨=晚上晴天;列方程组⎩⎨⎧=--=-6)9(7x y x y ,解得x=4,y=11,所以一共有11天,故答案选B . 考点:二元一次方程组的应用.二、填空题(本大题8个小题,每小题3分,满分24分)9.使代数式有意义的x 的取值范围是 .【答案】:x ≥3.【解析】试题分析:根据二次根式有意义的条件被开方数为非负数可得2x ﹣6≥0,解得x ≥3. 考点:二次根式有意义的条件.10.计算:a 2•a 3= .【答案】a 5.【解析】试题分析:根据同底数的幂的乘法,底数不变,指数相加,可对方a 2•a 3=a 2+3=a 5. 考点:同底数幂的乘法.11.如图,OP 为∠AOB 的平分线,PC⊥OB 于点C ,且PC=3,点P 到OA 的距离为 .【答案】3.考点:角平分线的性质.12.已知反比例函数y=xk 的图象在每一个象限内y 随x 的增大而增大,请写一个符合条件的反比例函数解析式 . 【答案】x y 2-=(答案不唯一,符合k <0即可)【解析】 试题分析:已知反比例函数y=xk 的图象在每一个象限内y 随x 的增大而增大,根据反比例函数的性质即可得出k <0,写出一个符合条件的解析式即可.考点:反比例函数的性质.13.张朋将连续10天引体向上的测试成绩(单位:个)记录如下:16,18,18,16,19,19,18,21,18,21.则这组数据的中位数是 .【答案】18.【解析】试题分析:对这组数据按从小到大的顺序重新排序:16,16,18,18,18,18,19,19,21,21;可得位于最中间的两个数都是18,所以这组数据的中位数是18.考点:中位数.14.如图,△ABC是⊙O的内接正三角形,⊙O的半径为3,则图中阴影部分的面积是.【答案】3π.考点:圆周角定理;扇形面积的计算.,折痕为EF,若15.如图,把平行四边形ABCD折叠,使点C与点A重合,这时点D落在D1AD= .∠BAE=55°,则∠D1【答案】55°.考点:平行四边形的性质;折叠的性质.16.平面直角坐标系中有两点M(a,b),N(c,d),规定(a,b)⊕(c,d)=(a+c,b+d),则称点Q(a+c,b+d)为M,N的“和点”.若以坐标原点O与任意两点及它们的“和点”为顶点能构成四边形,则称这个四边形为“和点四边形”,现有点A(2,5),B(﹣1,3),若以O,A,B,C四点为顶点的四边形是“和点四边形”,则点C的坐标是.【答案】(1,8).【解析】试题分析:已知以O ,A ,B ,C 四点为顶点的四边形是“和点四边形”,根据题意可得点C 的坐标为(2﹣1,5+3),即C (1,8)考点:阅读理解题.三、(本大题2个小题,每小题5分,满分10分)17.计算:﹣14+sin60°+()﹣2﹣()0. 【答案】5.【解析】试题分析:根据乘方的运算、特殊角的三角函数值、负整数指数幂、零指数幂依次计算后合并即可.试题解析:原式=﹣1+2233⨯+4﹣1=﹣1+3+3=5. 考点:实数的运算.18.解不等式组,并把解集在是数轴上表示出来..【答案】详见解析.考点:解一元一次不等式组;在数轴上表示不等式的解集.四、(本大题2个小题,每小题6分,满分12分)19.先化简,再求值:(),其中x=2.【答案】原式=11+x ,当x=2时,原式=31.【解析】试题分析:根据分式的运算法则化简后再代入求值即可.试题解析:原式=11311)1)(1()1(2-+-+÷⎥⎦⎤-+⎢⎣⎡-+-x x x x x x x x x =112112-++÷-+x x x x x =21111)(+-⋅-+x x x x =11+x , 当x=2时,原式=31121=+. 考点:分式的化简求值.20.如图,直线AB 与坐标轴分别交于A (﹣2,0),B (0,1)两点,与反比例函数的图象在第一象限交于点C (4,n ),求一次函数和反比例函数的解析式.【答案】y=21x+1,y=x 12.【解析】试题分析:设一次函数的解析式为y=kx+b ,把A (﹣2,0),B (0,1)代入得出方程组,解方程组即可;求出点C 的坐标,设反比例函数的解析式为y=x m ,把C (4,3)代入y=xm 求出m 即可.∴C (4,3),把C (4,3)代入y=xm 得:m=3×4=12, ∴反比例函数的解析式为y=x 12. 考点:反比例函数与一次函数的交点问题.五、(本大题2个小题,每小题7分,满分14分)21.某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.(1)这两次各购进这种衬衫多少件?(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于1950元,则第二批衬衫每件至少要售多少元?【答案】(1)第一批T 恤衫进了30件,第二批进了15件;(2)第二批衬衫每件至少要售170元.【解析】(1)设第一批T 恤衫每件进价是x 元,则第二批每件进价是(x ﹣10)元,再根据等量关系“第二批进的件数=21×第一批进的件数”列方程解方程即可;(2)设第二批衬衫每件售价y 元,由利润=售价﹣进价,根据这两批衬衫售完后的总利润不低于1950元,可列不等式求解.答:第一批T恤衫进了30件,第二批进了15件;(2)设第二批衬衫每件售价y元,根据题意可得:30×+15(y﹣140)≥1950,解得:y≥170,答:第二批衬衫每件至少要售170元.考点:分式方程的应用;一元一次不等式的应用.22.南海是我国的南大门,如图所示,某天我国一艘海监执法船在南海海域正在进行常态化巡航,在A处测得北偏东30°方向上,距离为20海里的B处有一艘不明身份的船只正在向正东方向航行,便迅速沿北偏东75°的方向前往监视巡查,经过一段时间后,在C处成功拦截不明船只,问我海监执法船在前往监视巡查的过程中行驶了多少海里(最后结果保留整数)?(参考数据:cos75°=0.2588,sin75°=0.9659,tan75°=3.732, =1.732, =1.414)【答案】海监执法船在前往监视巡查的过程中行驶了67海里.【解析】试题分析:过B作BD⊥AC,在RtABD中,利用勾股定理求出BD与AD的长,在RtBCD中,求出CD的长,再由AD+DC求出AC的长即可.考点:解直角三角形的应用.六、(本大题2个小题,每小题8分,满分16分)23.今年元月,国内一家网络诈骗举报平台发布了《2015年网络诈骗趋势研究报告》,根据报告提供的数据绘制了如下的两幅统计图:(1)该平台2015年共收到网络诈骗举报多少例?(2)2015年通过该平台举报的诈骗总金额大约是多少亿元?(保留三个有效数字)(3)2015年每例诈骗的损失年增长率是多少?(4)为提高学生的防患意识,现准备从甲、乙、丙、丁四人中随机抽取两人作为受骗演练对象,请用树状图或列表法求恰好选中甲、乙两人的概率是多少?【答案】(1)24886例;(2)1.27亿元;(3)147%;(4)61.(4)画树状图为:(用A 、B 、C 、D 分别表示甲乙丙丁)共有12种等可能的结果数,其中选中甲、乙两人的结果数为2,所以恰好选中甲、乙两人的概率=122=61.考点:条形统计图;折线统计图;用样本估计总体;列表法与树状图法.24.如图,已知⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,且BD=BC ,延长AD 到E ,且有∠EBD=∠CAB.(1)求证:BE 是⊙O 的切线;(2)若BC=,AC=5,求圆的直径AD 及切线BE 的长.【答案】(1)详见解析;(2)R=3,BE=5113.【解析】试题分析:(1)连接OB ,根据已知条件易证∠EBD=∠CAB ,继而得到∠BAD=∠EBD ,根据直径所对的圆周角为直角即可证得结论;(2)连接CD ,交OB 于点F ,易证OF 为三角形ADC的中位线,根据三角形的中位线定理求得OF,再用平行线分线段成比例定理求出半径R,最后用切割线定理即可.∴∠ABD=90°,OA=BO,∴∠BAD=∠ABO,∴∠EBD=∠ABO,∴∠OBE=∠EBD+∠OBD=∠ABD+∠OBD=∠ABD=90°,∵点B在⊙O上,∴BE是⊙O的切线,(2)如图2,设圆的半径为R,连接CD,∵AD为⊙O的直径,∴∠ACCD=90°,∵BC=BD,∴OB⊥CD,即353DE =, ∴DE=53, ∵∠OBE=∠OFD=90°,∴DF ∥BE , ∴OEOD OB OF =, ∴5325+=R R R , ∵R >0,∴R=3,∵BE 是⊙O 的切线,∴BE=5113)5332(53=+⨯⨯=⨯AE DE . 考点:圆的综合题.七、(本大题2个小题,每小题10分,满分20分)25.已知四边形ABCD 中,AB=AD ,AB⊥AD,连接AC ,过点A 作AE⊥AC,且使AE=AC ,连接BE ,过A 作AH⊥CD 于H 交BE 于F .(1)如图1,当E 在CD 的延长线上时,求证:①△ABC≌△ADE;②BF=EF;(2)如图2,当E 不在CD 的延长线上时,BF=EF 还成立吗?请证明你的结论.【答案】(1)详见解析;(2)结论仍然成立,理由详见解析.【解析】试题分析:(1)①根据已知条件,利用SAS即可判定△ABC≌△ADE;②易证BC∥FH和CH=HE,根据平行线∵∴△ABC≌△ADE(SAS);②如图1,∵△ABC≌△ADE,∴∠AEC=∠3,在Rt△ACE中,∠ACE+∠AEC=90°,∴∠BCE=90°,∵AH⊥CD,AE=AC,∴CH=HE,∵∠AHE=∠BCE=90°,∴∠ACH=∠HAE ,∴∠3=∠ACH ,在△MAE 和△DAC 中, ∵∴△MAE ≌△DAC (ASA ),∴AM=AD ,∵AB=AD ,∴AB=AM ,∵AF ∥ME , ∴AM ABFE BF=1,∴BF=EF .考点:全等三角形的判定与性质.26.如图,已知抛物线与x 轴交于A (﹣1,0),B (4,0),与y 轴交于C (0,﹣2).(1)求抛物线的解析式;(2)H 是C 关于x 轴的对称点,P 是抛物线上的一点,当△PBH 与△AOC 相似时,求符合条件的P 点的坐标(求出两点即可);(3)过点C 作CD∥AB,CD 交抛物线于点D ,点M 是线段CD 上的一动点,作直线MN 与线段AC 交于点N ,与x 轴交于点E ,且∠BME=∠BDC,当CN 的值最大时,求点E 的坐标.【答案】(1)y=21x 2﹣23x ﹣2;(2)P 的坐标为(﹣1,0)或(8,18);(3)E 的坐标为(﹣617,0).后即可求出P 的坐标;(3)设M 的坐标为(m ,0),由∠BME=∠BDC 可知∠EMC=∠MBD ,所以△NCM ∽△MDB ,利用对应边的比相等即可得出CN 与m 的函数关系式,利用二次函数的性质即可求出m=23时,CN 有最大值,∴△AOC 是直角三角形,∴△PBH 也是直角三角形,由题意知:H (0,2),∴OH=2,∵A (﹣1,0),B (4,0),∴OA=1,OB=4, ∴OH OBOA OH∵∠AOH=∠BOH ,∴△AOH ∽△BOH ,∴∠AHO=∠HBO ,∴∠AHO+∠BHO=∠HBO+∠BHO=90°, ∴∠AHB=90°,设直线AH 的解析式为:y=kx+b ,把A (﹣1,0)和H (0,2)代入y=kx+b , ∴,∴解得k=2,b=2,∴直线AH 的解析式为:y=2x+2, 联立,解得:x=1或x=﹣8,当x=﹣1时,y=0,当x=8时, y=18∴x=0或x=3,∴D (3,﹣2),∵B (4,0),∴由勾股定理可求得:BD=5, ∵M (m ,0),∴MD=3﹣m ,CM=m (0≤m ≤3)∴由抛物线的对称性可知:∠NCM=∠BDC , ∴△NCM ∽△MDB , ∴BD CNMD CN=, ∴53mm CN=-,∴CN=2059)23(55)3(5522+--=--m m m ,∴当m=23时,CN 可取得最大值,∴此时M 的坐标为(23,﹣2),∴MF=2,BF=25,MD=23∴由勾股定理可求得:MB=241,∵E (n ,0),∴EB=4﹣n ,∵CD ∥x 轴,考点:二次函数综合题.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考基础训练6
1.下列运算正确的是( )
(A)3332a a a =+ (B)a a a =-23 (C)6332a a a =⋅ (D)3
26a a a =÷
2. 如图,AB ∥CD ,AD ,BC 相交于O 点,∠BAD=35°, ∠BOD=76°,则∠C 的度数是
( )(A)31° (B)35° (C)41° (D)76°
3. 在反比例函数x
k
y =(k<0)的图象上有两点A(x1,y1),B(x2,y2),且1x >2x >0,则12y y -的值为( ) (A)正数
(B)负数 (C)非正数 (D)非负数
4. 如图,平行四边形ABCD 中,对角线AC ,BD 相交于点O ,将△AOD 平移至△BEC 的位置,则图中与OA 相等的其它线段有( )
(A)1条
(B)2条 (C)3条
(D)4条
5. 两个不相等的实数m ,n 满足462
=-m m ,
462=-n n ,则mn 的值为( ) (A) 6 (B) -6 (C) 4 (D) -4
6. 如图,
(阴影部分)与△ABC 相似的是(

7.学校计划将120名学生平均分成若干个读书小组,若每个小组比原计划多1人,则要比原计划少分出6个小组,那么原计划要分成的小组数是( ) (A)40
(B)30 (C)24
(D)20
8. 如图,在□ABCD 中,对角线AC ,BD 相交于点O ,E ,F 是对角线AC 上的两点,当E ,F 满足下列哪个条件时,四边形DEBF 不一定是平行四边形( ) (A )AE=CF (B )DE= BF (C )∠ADE=∠CBF
(D )∠AED=∠CFB
A
D
B
C
E O
第4题
(A)
(B)
(C)
(D)
A
B
C
(第6题)
A
B
O C
D (第2题)
(第10题)
A C
A
E
B
D
F
O
(第8题)
9.不等式组⎩⎨⎧+>+<+1,
159m x x x 的解集是2>x ,则m 的取值范围是( )
(A) m ≤2
(B) m ≥2 (C) m ≤1
(D) m>1
10. 如图,圆锥的母线长是3,底面半径是1,A 是底面圆周上一点,从点A 出发绕侧面一周,再回到点A 的最短的路线长是( ) (A)36
(B) 23
3 (C)33
(D)3
11. 在直角坐标系中,O 为坐标原点,已知A (1,1),在x 轴上确定点P ,使△AOP 为等腰三角形,则符合条件的点P 的个数共有( ) (A )4个
(B )3个 (C )2个
(D )1个
12. 台湾是我国最大的岛屿,总面积为35 989.76平方千米,这个数据用科学记数法表示为________平方千米(保留两位有效数字).
14. 如图,直线 A 1A ∥BB 1∥CC 1,若AB=8,BC=4,A 1B 1=6,则线段B 1C 1的长是________.
15.已知12+=x ,求x
x x x x x x 112122÷⎪⎭⎫ ⎝⎛+---+的值.
16、化简求值:()b b a b a b a ÷-+-+2212)(,其中2
1
=a ,2=b 。

(第14题)
A
B C
A 1
B 1
C 1
(第10题) A。

相关文档
最新文档