模糊数学试题07
模糊数学练习题
2.设“年老”的隶属函数为:
0 B ( x) 1 5 2 1 ( ) x 50 0 x 50
50 x 100
1)作出隶属函数曲线; 2)求 A B, A B, A, B 的隶属函数 ; 3)对x=30,40,45,分别求出对上述模糊集合 的隶属度;
A a1 a2 a3 A X B 0.1 0.4 0.7 b1 b2 b3 B Y CZ
0.9 0.6 0.3 C c1 c2 c3
1)求“若x为A且y为B,则z为C”的模糊关系矩阵; 2)若 A 1 0.4 1 , B 0.7 0.4 0.1 ,求 C ;
a1 a2 a3 b1 b2 b3
8.试写出下列模糊规则的关系矩阵表达式: 1)如果x为A或者B,则y为C; 2)如果x为A且B,则y为C; 3)如果x为A且y为B,则z为C或D;
3.设模糊集合为:
A 0.2 0 0.1 0.6 1 0.4 0.8 a b c d e f g
求截集 A0.3 , A0.5 , A0.8 及A的支集;
4.设X={0,1,2,3,4,5},Y={0,1,2,…,25} 有映射f:X→Y,f(x)=x2, 对于X上的两个模糊集合:
1 1 0.9 0.7 0.3 A 0 1 2 3 4 0.2 0.5 0.8 1 B 2 3 4 5
求f(A),f(B);
5.已知模糊关系矩阵
0.5 1 0 R1 0.5 1 0 0.5 0 1 0.5 0 1 R2 0 1 0.5 1 0.5 0
求 R1 R2 , R1 R2 , R1 R2 , R1 R2 , R2 R1 ;
最新模糊数学考试题
西北工业大学研究生院学 位 研 究 生 课 程 考 试 试 题考试科目:模糊数学 课程编号:105012 考试时间:2014年1月13日说 明:所有答案必须写在答题册上,否则无效。
共4页 第1页一.填空题 (14空×2分,共28分)1、设~~B A ,是论域U 上的模糊子集,则~~B A 和~~B A 的隶属函数分别是 =)(~~u B A μ ,=)(~~u B A μ 。
2、设[]10,=U ,~A ,2)(u u =则=)(u A c ~____________,( ~A c A ~)(u )=_____________,~(A c A ~)(u )=________________,~(A cA ~)(21)=_________。
3、设给定模糊矩阵R=(r ij ), 对于任意的λ∈[0,1],记R λ=(λr ij ) , 其中λr ij = ,则称R λ=(λr ij )为R 的λ截矩阵。
4、模糊矩阵R=n n ij r ⨯)(如果满足自反性 ,对称性 ,传递性 , 就称R 是一个 。
5、设论域U={n u u u ,...,,21},~A ,~B ∈)(U F ,其绝对欧氏距离、相对欧氏距离及欧氏模糊度分别定义为e(~A ,~B )= ,ε(~A ,~B )= ,=)(~A D 。
二、计算题(3题×10分,共30分)1、 设},,,,{54321u u u u u U =,)8.0,1.0,3.0,4.0,7.0(~=A ,)6.0,5.0,1.0,9.0,2.0(~=B , 请分别求出c A ~与~A c B ~。
2、设~A =ed c b a 17.06.05.03.0++++,求5.0A 与1A 。
3、已知论域},,{z y x U =,)1.0,7.0,4.0(~=A ,)8.0,6.0,5.0(~=B ,分别求出绝对海明距离),(~~B A d 和相对海明距离),(~~B A δ。
模糊数学 习题答案
模糊数学习题答案模糊数学习题答案模糊数学是一门研究不确定性和模糊性的数学分支,它的应用涵盖了各个领域,例如控制理论、人工智能、经济学等。
在学习模糊数学的过程中,习题是不可或缺的一部分。
下面是一些常见的模糊数学习题及其答案,希望对你的学习有所帮助。
1. 什么是模糊集合?答:模糊集合是一种用来描述不确定性和模糊性的数学工具。
与传统的集合论不同,模糊集合中的元素可以具有不同的隶属度,即某个元素可以同时属于多个集合。
2. 什么是隶属函数?答:隶属函数是用来描述元素与模糊集合之间的隶属关系的函数。
它将一个元素映射到一个隶属度的值,表示该元素在模糊集合中的隶属程度。
3. 什么是模糊关系?答:模糊关系是一种用来描述事物之间模糊联系的数学工具。
与传统的关系不同,模糊关系中的元素可以具有不同的隶属度,表示它们之间的模糊程度。
4. 什么是模糊逻辑?答:模糊逻辑是一种用来处理模糊命题的逻辑系统。
在传统的逻辑中,命题只有真和假两种取值,而在模糊逻辑中,命题的取值可以是一个介于0和1之间的隶属度值。
5. 什么是模糊推理?答:模糊推理是一种用来从模糊事实中得出模糊结论的推理方法。
它基于模糊逻辑和模糊关系,通过对隶属度的运算和推理规则的应用,得出模糊结论。
6. 什么是模糊控制?答:模糊控制是一种用来处理模糊输入和输出的控制方法。
它基于模糊逻辑和模糊关系,通过对输入和输出的模糊化和去模糊化处理,实现对复杂系统的控制。
7. 什么是模糊聚类?答:模糊聚类是一种用来对数据进行模糊分类的方法。
它基于模糊集合和模糊关系,通过对数据的隶属度进行计算和调整,将相似的数据归为同一类别。
8. 什么是模糊优化?答:模糊优化是一种用来处理模糊目标和约束的优化方法。
它基于模糊集合和模糊关系,通过对目标函数和约束条件的模糊化和去模糊化处理,寻找最优解。
9. 什么是模糊神经网络?答:模糊神经网络是一种结合了神经网络和模糊逻辑的计算模型。
它通过对输入和输出的模糊化和去模糊化处理,实现对复杂问题的建模和求解。
模糊数学例题大全
模糊数学例题大全标题:模糊数学例题大全模糊数学,又称为模糊性数学或者弗晰数学,是一个以模糊集合论为基础的数学分支。
它不仅改变了过去精确数学的观念,而且广泛应用于各个领域,从物理学、生物学到社会科学,甚至。
下面,我们将通过一些具体的例题来展示模糊数学的应用。
例1:模糊逻辑门在经典的逻辑门中,我们使用AND、OR和NOT等操作符来处理布尔值(0或1)。
然而,在现实世界中,很多情况并不是绝对的0或1。
例如,我们可以将“温度高”定义为大于25度,但24度是否算高呢?模糊逻辑门提供了更广泛的定义方式,允许我们使用模糊集合来描述这些边界情况。
例2:模糊聚类分析在统计学中,聚类分析是一种将数据集分类成几个组的方法,其中同一组内的数据点相似度高。
然而,在某些情况下,我们无法用精确的数值来描述数据点的相似度。
这时,模糊聚类分析就派上用场了。
它允许我们使用模糊矩阵来表示数据点之间的相似度,从而更准确地分类数据。
例3:模糊决策树在机器学习中,决策树是一种用于分类和回归的算法。
然而,在某些情况下,我们无法用精确的规则来描述决策过程。
这时,模糊决策树就派上用场了。
它允许我们在决策节点使用模糊规则来代替传统的布尔值规则,从而更好地模拟人类的决策过程。
例4:模糊控制系统在控制系统中,我们通常需要设计一个控制器来控制系统的行为。
然而,在某些情况下,系统的输入和输出并不是绝对的0或1。
这时,模糊控制系统就派上用场了。
它允许我们使用模糊集合来描述系统的输入和输出,从而更准确地控制系统的行为。
例5:模糊图像处理在图像处理中,我们通常需要分类、识别或分割图像中的对象。
然而,在某些情况下,图像中的对象边界并不清晰。
这时,模糊图像处理就派上用场了。
它允许我们使用模糊集合来描述图像中的对象边界,从而更准确地分类、识别或分割图像中的对象。
以上只是模糊数学众多应用的一小部分。
这个领域仍在不断发展,为解决各种复杂的现实问题提供了新的工具和方法。
通过学习模糊数学,我们可以更好地理解和处理那些边界模糊、难以用传统数学方法描述的问题。
模糊数学题库(存档版)
4
页
7、设有论域 X = Y = {1,2,3,4,5}, A = 小 = 1 ~
B = [大] = 4 ~
0 .5
+1 5
[ ]
1
+
0 .5 2
, A′ = 较小 = 1 + 2 ~
1
[
]
0.4
. + 032 ,
,有模糊似然推理句: “若 x 小,则 y 大” ,若已知 x 较小,问 y 如何?
第
4
页 / 共
~ ~ ~ ~
δ ( A, B) =
~ ~
,海明模糊度 D ( A) =
~
。
15、设论域 U={ u1 , u 2 ,..., u n }, A , B ∈ F (U ) ,其绝对欧氏距离、相对欧氏距离及欧氏模糊度分
~ ~
别定义为 e( A ,B )=~ ~ຫໍສະໝຸດ ,ε ( A ,B ) =
~ ~
,D ( A) =
~
,α×β=
。 。
21、若模糊概念 a 在论域 U 上的模糊集为 A ,则判断句“u 是 a”的真值为
~ ~
22、 若模糊概念 a, 在论域 U 上的模糊集为 A , , b B 推理句 “若 u 是 a, u 是 b” ( 则 记为 (a) →(b)) , 则其真值为( (a)→(b)) (u)=
~
~
λ∈[ 0 ,1]
第
2
页 / 共
4
页
2、设 A ∈ F (U ) ,证明分解定理 A = U
~ ~
λ∈[ 0 ,1]
λAλ
3.设 A , ∈ F( U ) B ,则( A U B ) λ =A λ U B λ
2013-2014模糊数学练习题
2013-2014模糊数学练习题
1、设模糊集合123456
0.50.70.20.80.40.6A u u u u u u =+++++,计算截集A 0.3与
A 0.6. 2、设论域U = {u 1, u 2, u 3, u 4},设{}{}{}{}1234123131
,,,00.3,,0.30.5,0.50.80.81
u u u u u u u A u u u λλλλλ?≤≤?<≤??=<≤??<≤
,试计算模糊集合A . 3、设X = Y = {1, 2, 3, 4, 5},模糊集合A = “重”=
0.10.20.40.70.912345++++模糊集合 B = “轻”= 0.90.70.60.40.112345
++++。
(1)若A(很)轻,则B 重;问若A 很轻,则B 如何?
(2)若A 轻,则B 重,否则B 不重。
问若A 不很轻,则问B 如何?
4、某企业生产茶叶,茶叶的质量有3个指标确定,茶叶的级别分别为一级,二级,三级,外等。
其中,根据上述4个等级给定的单因素评判矩阵如下:
=12.026.022.040.023.025.032.020.027.013.024.036.01R 设三个指标的权重为A = (0.3, 0.42, 0.28),采用模型M(∧, ∨)对该产品进行模糊综合评价,并按最大隶属度原则判断该产品属于哪一级?
5、模糊推理(重点的书上例7,8)、模糊决策(重点是ppt 上模糊二元对比决策例题)、模糊综合评价(一级模糊综合评价方法)、模糊聚类分析(按等价关系聚类)、模糊模式识别PPT 上出现的所有例题。
模糊数学考试习题
模糊数学考试习题第一篇:模糊数学考试习题一、填空(每空3分)1.经典集合是论域U到集合的映射.2.模糊集合是论域U到集合的映射.3.经典集合的关系矩阵是.4.模糊集合的模糊关系矩阵是.5.模糊的不确定性即使时间过去了(或者实际作了一次试验)仍然是6.模糊数学把数学的应用范围从精确现象扩大到领域.7.模糊矩阵运算关于交的分配律.8.模糊集的隶属函数是专家给出的.9.模糊集强调的是集合边界的定义.10.模糊聚类方法给出的分类结果不是说事物绝对的属于或绝对的不属于类.11.集合U、V的直积U⨯V的子集R称为U到V的关系.12.U⨯V的一个模糊子集R称为U到V的关系.~13.经典集合的值域是.14.模糊集合的值域是.15.经典集合YI c的排中(互补)律.16.模糊集合YI c的排中(互补)律.17.模糊集的隶属函数是存在.18.模糊聚类方法给出的分类结果.19.模糊模式识别的最大隶属原则有个.20.模糊集的λ截集将模糊集的隶属函数转化为普通集合的二、简述题(每小题15分)1.简述模糊集的一种表示方法,并进行说明.2.简述模糊聚类的编网法.3.写出三种模糊分布函数.4.简述模糊集的一种运算,并进行说明.5.简述模糊聚类的最大树法.6.简述分解定理与扩张原理。
三、举一应用模糊数学方法解决实际问题的例子(25分)第二篇:数学考试一、聪明的你来填一填:(每空0.5分,共12分)1.在()里填上合适的单位:一块玻璃的厚度大约是3()骑自行车每小时行驶15()李明体重35()一辆汽车载重5()2、在()里填上合适的数:5厘米=()毫米2千米=()米()米=50分米4000千克=()吨6千克=()克8吨=()千克1600千克-600千克=()吨14厘米 + 26厘米 =()分米3、在○里填上“>、<或=”:70厘米○90毫米5千米○4500米990克○1千克1500千克○2吨4、把序号填在下面的括号内:5、括号里最大能填几?()×6<498×()<63()×5<446、用0、1、2组成最大的三位数是(),最小的三位数是(),他们的差是()。
模糊数学阅读练习及答案
模糊数学阅读练习及答案导读:我根据大家的需要整理了一份关于《模糊数学阅读练习及答案》的内容,具体内容:数学的特点是精确,如今却与"模糊"攀上了亲,似乎不可思议。
模糊数学引起人们的浓厚兴趣,世界各国的研究者与日俱增、以下是我为你整理的,希望能帮到你。
《模糊...数学的特点是精确,如今却与"模糊"攀上了亲,似乎不可思议。
模糊数学引起人们的浓厚兴趣,世界各国的研究者与日俱增、以下是我为你整理的,希望能帮到你。
《模糊数学》阅读材料模糊数学1965年,世界上诞生了一门新的学科——模糊数学。
数学的特点是精确,如今却与"模糊"攀上了亲,似乎不可思议。
确实,模糊数学引起人们的浓厚兴趣,世界各国的研究者与日俱增,正如1975年纪念模糊数学诞生十周年的论文集所指出的:"未来的十年,将是模糊数学大发展的十年。
"模糊数学的诞生,是科学技术发展到一定阶段的必然产物。
人类应用数学工具,对世界的认识从模糊到精确,是一个飞跃。
今天,精确的数学计算在许多场合必不可少。
然而,当我们要求电子计算机具备人脑功能的时候,精确这个长处在一定的程度上反而成了短处。
例如,我们在判别走过来的人是谁时,总是将来人的高矮、胖瘦、走路姿态等与大脑中储存的样本进行比较,从而得出相应的结论。
一般说来,这是轻而易举的事情。
即使一位旧友多年不见,面貌有变化,仍能依稀相认。
然而要是让电子计算机来做这件事,那就复杂了。
得测量来人的身高、体重、手臂摆动的角度以及鞋底对地面的正压力、摩擦力、速度、加速度等等数据,而且非要精确到小数点后几十位才肯罢休。
如果某熟人近来消瘦了点,计算机就"翻脸不认人"了。
显然,这样的"精确",反使人糊涂。
由此可见,要使计算机能模拟人脑功能,一定程度的模糊,倒是需要的。
模糊数学以客观世界的模糊性为研究对象,它的基础是模糊集合论。
模糊数学考试题
模糊数学考试题一、选择题(每题1分,共30分)1. 模糊集合最早由哪位数学家引入?A. George KlirB. Lotfi ZadehC. Zadeh LotfiD. George Boole2. 模糊逻辑的基本操作是?A. 与、或、非B. 加、减、乘、除C. 并、交、差D. 集合的包含与被包含3. 模糊集合的隶属函数的取值范围是?A. [0,1]B. [0,∞)C. (0,1)D. (0,∞)4. 以下哪个是模糊推理的方法?A. BP神经网络B. 遗传算法C. 最大似然估计D. 模糊推理算法5. 模糊数学最初的应用领域是?A. 人工智能B. 控制理论C. 图像处理D. 统计学...二、填空题(每题2分,共20分)1. 模糊数学是基于()集合理论的一种数学理论。
2. 模糊逻辑中,非真即()。
3. 模糊集合的隶属函数可用()函数来表示。
4. 模糊数学中,我们用模糊关系来描述()。
5. 模糊数学最重要的应用之一是在()理论中。
...三、问题解答题(每题15分,共60分)1. 简述模糊集合的定义和特点。
模糊集合是指在给定的范围内,每个元素都具有一定的隶属度,是介于完全属于和完全不属于之间的中间状态。
模糊集合的隶属度用隶属函数表示。
与传统集合不同,模糊集合的元素可以部分属于集合,这种模糊边界的概念反映了现实世界中存在的不确定性和模糊性。
2. 简述模糊逻辑的基本原理。
模糊逻辑是基于模糊集合理论的一种逻辑系统。
它以真值不再是二值(0或1)为基础,而是用模糊集合的隶属度来表示概率。
模糊逻辑中,逻辑运算包括模糊与、模糊或、模糊非等。
与传统逻辑相比,模糊逻辑更能应对真实世界中存在的不确定性和模糊性。
3. 简述模糊推理的基本方法。
模糊推理是根据给定的模糊规则和事实,通过运用模糊逻辑的方法进行推理推断。
模糊推理的基本方法包括模糊匹配、模糊推理和模糊控制。
其中,模糊匹配是将模糊规则中的条件与已知事实进行匹配;模糊推理是根据匹配的程度和隶属度进行推理;模糊控制是将推理的结果转化为对系统的控制动作。
模糊数学习题解答
3. 证明: (2) 设n m ij n m ij b B a A ××==)(,)(,则ij ij ij ij ij ij ij ij a b a b b a b a B A =∧⇔=∨⇔≤⇔⊆。
即A B A B B A B A =∩⇔=∪⇔⊆(4) 设,则,。
故,)(n m ij a A ×=,)()(n m ij a A ×=λλm n ij T c A ×=)()(λ11)(=⇔≥⇔=λλji ji ij a a c 00)(=⇔<⇔=λλji ji ij a a c T T A A )()(λλ=5. 证明:先用归纳法证A B B A k k o o =,事实上,k =1时成立,设k=n 时成立,即A B B A n n o o =, k=n+1时,B A B B B A B A n n n o o o o o ==+1,A B A B B n n o o o 1+==,故有A B B A k k o o =再证。
事实上,k =1时成立,设k=n 时成立,即k k k B A B A o o =)(n n n B A B A o o =)( k=n+1时, B B A A B A B A B A B A B A n n n n n n o o o o o o o o o o ===+)()()(111++=n n B A o 。
故有k k k B A B A o o =)(6. 证明:用归纳法。
m =1时成立,设m=n 时成立,m=n +1 时,11)()()()()(++∪∪∪=∪∪∪∪=∪∪=∪n n n n A A I A I A A I A I A I A I L o L o 故m=n +1 时成立。
所以有m m A A I A I ∪∪∪=∪L )(8. 证明:设,由A, B 都是模糊自反矩阵,,所以,,n n ij n n ij b B a A ××==)(,)(1,1==ii ii b a 1=∨ii ii b a 1=∧ii ii b a 1)()(=∧≥∧∨ii ii ki ik b a b a ,又,因此有1)(≤∧∨ki ik b a 1)(=∧∨ki ik b a 。
最新模糊数学试题07
东北大学考试试卷(A B 卷) 2007 — 2008学年 第2学期课程名称:模糊数学 ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 2分 共计10分) 12345{,,,,}U u u u u u =,F 模糊集(0.5,0.1,0,1,0.8)A =,(0.1,0.4,0.9,0.7,0.2)B =,(0.8,0.2,1,0.4,0.3)C =。
则_________A B ⋃=___________A B ⋂= ()____________A B C ⋃⋂=_________c A =2. 设论 域{,,,,}U a b c d e =, {}0.70.8{,}0.50.7{,,}0.30.5{,,,}0.10.3{,,,,}00.1d c d A c de b c d e a b c d e λλλλλλ<≤⎧⎪<≤⎪⎪=<≤⎨⎪<≤⎪≤≤⎪⎩ F 集A有=_________________二、 计算题(共5小题,每题精品文档1. 设[0,10]U =为论域,对[0,1]λ∈,若F 集A 的λ截集分别为[0,10]0[3,10]00.6[5,10]0.61[5,10]1A λλλλλλ=⎧⎪<≤⎪=⎨<<⎪⎪=⎩,求出:(1)(),[0,10]A x x ∈;(2)SuppA ;(3)KerA2. 设F 集112340.20.40.50.1A x x x x =+++,212340.20.50.30.1A x x x x =+++,312340.20.30.40.1A x x x x =+++, 12340.60.30.1B x x x =++,21230.20.30.5B x x x =++,试用格贴近度判断12,i B B A 与哪个最接近。
精品文档3.设120.100.80.70.20.40.90.50,0.30.10.600.40.310.50.2R R ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,求12121,,cR R R R R ⋃⋂4.设12345{,,,,}U u u u u u =,在U 上存在F 关系,使10.800.10.20.810.400.900.41000.10010.50.20.900.51R ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,求ˆR,并由此进行聚类分析,画出聚类分析图。
模糊数学试题精选全文
可编辑修改精选全文完整版华南理工大学研究生课程考试《 模糊数学 》样卷注意事项:1. 所有答案请按要求填写在答题纸上; 2. 课程代码:(S0003006)3.考试形式:闭卷( √ ) 开卷( ) 开闭卷结合( ) 4. 考试类别:博士研究生(√ ) 硕士研究生(√ )5. 试卷共 十二大题,满分100分,考试时间150分钟。
一、填空题1.设论域U={u 1,u 2,u 3,u 4,u 5},F 集A=(0.5,0.1,0,1,0.8), B=(0.1,0.4,0.9,0.7,0.2),则(A ⋃B)C =_______________。
2.设论域R=[0,3],且01112(),()213323xx x x A x B x x x x x ≤≤-≤≤⎧⎧==⎨⎨-<≤-<≤⎩⎩则它们的黎曼贴近度N(A,B)=_______________________。
3.0.410.70.510.62,323=_______123234=++=++⨯设,则。
4. 设A =[3,9], B =[7,10],则A +B = ,A ⨯B = 。
5.设论域U={1,2,…,10},且 0.20.40.60.811110.80.60.40.2[],[]4567891012345=++++++=++++大小 则[不大也不小]=_____________________________。
二、判断题(请在每小题的括号内认为正确的打“√”错误的打“⨯”) 1.λ≤μ ⇒ A λ ⊇A μ ( )2(A λ)c =(A c )λ ( ) 3 若A ⊆ B ⊆ C , 则N (A ,C ) ≤ N (A ,B )∨N (B ,C ) ( ) 4 若R 1⊆S 1, R 2⊆S 2,则 R 1∪R 2 ⊆ S 1∪S 2 ( ) 5 R∪R c = E ( )三、简答题(10分)1. 请写出隶属度函数的确定有哪几种方法。
2013-2014模糊数学练习题
1、设模糊集合123456
0.50.70.20.80.40.6A u u u u u u =+++++,计算截集A 0.3与A 0.6. 2、设论域U = {u 1, u 2, u 3, u 4},设{}{}{}{}1234123131
,,,00.3,,0.30.5,0.50.80.81
u u u u u u u A u u u λλλλλ⎧≤≤⎪<≤⎪⎪=<≤⎨⎪<≤⎪⎪⎩
,试计算模糊集合A . 3、设X = Y = {1, 2, 3, 4, 5},模糊集合A = “重”=
0.10.20.40.70.912345++++模糊集合B = “轻”= 0.90.70.60.40.112345
++++。
(1)若A(很)轻,则B 重;问若A 很轻,则B 如何?
(2)若A 轻,则B 重,否则B 不重。
问若A 不很轻,则问B 如何?
4、某企业生产茶叶,茶叶的质量有3个指标确定,茶叶的级别分别为一级,二级,三级,外等。
其中,根据上述4个等级给定的单因素评判矩阵如下:
⎪⎪⎪⎭
⎫ ⎝⎛=12.026.022.040.023.025.032.020.027.013.024.036.01R 设三个指标的权重为A = (0.3, 0.42, 0.28),采用模型M(∧, ∨)对该产品进行模糊综合评价,并按最大隶属度原则判断该产品属于哪一级?
5、模糊推理(重点的书上例7,8)、模糊决策(重点是ppt 上模糊二元对比决策例题)、模糊综合评价(一级模糊综合评价方法)、模糊聚类分析(按等价关系聚类)、模糊模式识别PPT 上出现的所有例题。
模糊控制的数学基础习题
模糊控制的数学基础习题1、比较模糊集合与普通集合的异同。
2、已知年龄的论域为[0.200],且设“年老O ”和“年轻Y ”两个模糊集的隶属函数分别为()⎪⎩⎪⎨⎧≤<⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+≤≤=--200505501500 012O a a a a μ ()⎪⎩⎪⎨⎧≤<⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+≤≤=-200255251250 112Y a a a a μ 求:“很年轻W ”、“不年老也不年轻 V ”两个模糊集的隶属函数。
3、设误差的离散论域为【-30,-20,-10,0,10,20,30】,且已知误差为零(ZE )和误差为正小(PS )的隶属函数为()()300203.010103.0100200300300200104.001104.0200300ZE ++++-+-+-=++++-+-+-=e e PS μμ 求:(1)误差为零和误差为正小的隶属函数()()e e PS μμ ZE ;(2)误差为零和误差为正小的隶属函数()()e e PS μμ ZE 。
4、已知模糊矩阵P 、Q 、R 、S 为⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=0.50.60.20.1S 0.70.70.30.2R 0.40.10.70.5Q 0.70.20.90.6P 求:(1)()R Q P ;(2)()S Q P ;(3)()()S Q S P 。
5、考虑如下条件语句:如果 转角误差远远大于15○ 那么快速减小方向角其隶属度函数定义为A=转角误差远远大于15○=0/15 + 0.2/17.5 + 0.5/20 + 0.8/22.5 + 1.0/25B=那么快速减小方向角=1/-20 + 0.8/-15 + 0.4/-10 + 0.1/-5 + 0/0问:当A ‘=转角误差大约在20○时方向角应该怎样变化?设A ‘=转角误差大约在20○的隶属函数=0.1/15 + 0.6/17.5 + 1/20 + 0.6/22.5 + 0.1/25。
模糊数学期末试卷
长春理工大学研究生期末考试试题科目名称:模糊数学命题人:适用专业:计算机审核人:开课学期:2014 ―― 2015 学年第学期□开卷□闭卷一、填空题:(2*15=30分)1. 设A ,B是论域U上的模糊子集,A=B<=> ________________ .2. 设论域u={甲、乙、丙}, U中三个模糊子集为A二(编程能力强)、B=(编程能力一般)、C 二(编程能力差)。
它们的隶属函数为A =( 0.8,0.3,0.1 八B =( 0.2,0.6,0.1 )、C 二(0,0.1,0.8 ),〜〜〜〜那么甲乙丙各应属于的类别为,,。
3. 设给定论域U上的模糊子集A,对任意入€ [0,1],成普通集合A {卩「A(U) 一入,卩€ U}为A的入的水平截集,若入、卩€ [0,1]且入兰□,则___________________ 。
4. 设P= , Q= ________________ .则P U Q= __________ ,P A Q=5. 设X=.贝y = ___________ , = ____________ 。
6. 设论域U={ }, A=(0.6,0.3,0.8). 求D( A)= ___________________7. 设论域U ={论以2以3,人} , /A = (0. 8,0. 5,0. 3,0. 7) , B = ( 0. 4,0. 7,0. 5,0. 2),贝UA B ___________ , A o B ________________ , (A,B)二______________8. 若模糊概念a, b在不同论域U, V上的模糊集为A ,B,似然推理“若u是a,则u是b”的真值为(A - B )(x, y) _______________________________二、证明题(4*5=20分)1. 设A,B F(U),则(A B) =A, B.A F(U) A2. 设〜,证明分解定理~ = A..;40,1]3. 在模糊矩阵运算中,若R?S,则对任意入,有?AD (A ) - A4.设~是有限论域U 上的模糊子集,证明海明模糊度的两种定义是等价的:2、:(-,1-2 卫,F ),其中 F =(0.5 , 0.5 , 0.5,…,0.5 )三、简述题(5*5=25分)1、简述Fuzzy 度的Delaca 公理的内容。
模糊数学试题试卷答案
1.设~A 的隶属函数2~2()()1,x a A x x R σ-=-∈,其中,0a R σ∈>。
①对任意的[0,1]λ∈,求~A λ ②1λ=时,求~A λ解:①2~~2(){|()}{|1}{|x a A x A x x x a x a λλλσ-=≥=-≥=-≤+②当1λ=时,~{}A a λ=2.设论域123{,,}U x x x =在U 定义模糊集~1230.90.50.1A x x x =++表示“质量好”,~1230.10.20.9B x x x =++表示“质量差”, ①写出模糊集“质量不好”的表达式②分析“质量好”与“质量差”是否为相同的模糊集解:①~1230.10.50.9cA x x x =++ ②很明显~~cA B ≠,所以“质量不好”与“质量差”不是相同的模糊集。
3.设~A 是一个模糊阵,证明~()ccA A =证明:设~()ij m n A a ⨯=,则~(1)c ij m n A a ⨯=-,同理~()[1(1)]()cc ij m n ij m n A a a ⨯⨯=--=4.设~~10.70.40.70,0.40.610.80.500.3A B ⎛⎫⎛⎫ ⎪== ⎪ ⎪⎝⎭ ⎪⎝⎭解:①~~0.40.610.7A B ⎛⎫=⎪⎝⎭②~~11 00.41101 0.4<0.6 11()00 0.6<0.71100 0.7<110A B λλλλλ⎧⎫⎛⎫≤≤⎪⎪ ⎪⎝⎭⎪⎪⎪⎪⎛⎫⎪⎪≤ ⎪⎪⎪⎝⎭=⎨⎬⎛⎫⎪⎪≤ ⎪⎪⎪⎝⎭⎪⎪⎪⎪⎛⎫≤⎪⎪ ⎪⎝⎭⎩⎭5.设~1:R X Y ⨯上模糊关系,其隶属函数2~()1(,)x y R x y e --=,~2:R Y Z ⨯上的模糊关系,其隶属函数2~()2(,)y z R x y e--=,求~~12R R解:22~~~~()()1212(,)[(,)(,)][]x y y z y Yy YR R x z R x y R y z e e ----∈∈=∨∧=∨∧,对于固定的,x z ,可以分别画出2()x y e--,2()y z e--的图像,交点即为所求的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
东北大学考试试卷(A B 卷) 2007 — 2008学年 第2学期
课程名称:模糊数学
┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 2分 共计10分) 1. 设论域12345{,,,,}U u u u u u =,F 模糊集(0.5,0.1,0,1,0.8)A =,(0.1,0.4,0.9,0.7,0.2)B =,(0.8,0.2,1,0.4,0.3)C =。
则_________A B ⋃=___________A B ⋂= ()____________A B C ⋃⋂=_________c A = 2. 设论 域{,,,,}U a b c d e =, 有{}0.70.8{,}0.50.7{,,}0.30.5{,,,}0.10.3{,,,,}00.1d c d A c d e b c d e a b c d e λλλλλλ<≤⎧⎪<≤⎪⎪
=<≤⎨⎪<≤⎪
≤≤⎪⎩ F 集A =_________________ 二、 计算题(共5小题,每题12分) 1. 设[0,10]U =为论域,对[0,1]λ∈,若F 集A 的λ截集分别为 [0,10]0[3,10]00.6[5,10]0.61[5,10]
1A λλλλλλ=⎧⎪<≤⎪=⎨<<⎪⎪=⎩,求出:(1)(),[0,10]A x x ∈;(2)SuppA ;(3)KerA
2. 设F 集112340.20.40.50.1A x x x x =+++,212340.20.50.30.1A x x x x =+++,312340.20.30.40.1A x x x x =+++, 12340.60.30.1B x x x =++,21230.20.30.5B x x x =++,试用格贴近度判断12,i B B A 与哪个最接近。
3.设120.100.80.70.20.40.90.50,0.30.10.600.40.310.50.2R R ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭
,求12121,,c
R R R R R ⋃⋂
4.设12345{,,,,}U u u u u u =,在U 上存在F 关系,使
10.800.10.20.810.400.900.41000.10010.50.20.900.51R ⎡⎤⎢⎥⎢⎥
⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦
,求ˆR
,并由此进行聚类分析,画出聚类分析图。
5
.
求
方
程
的
解
12340.3
0.50.70.90.80.2
0.40.30.60.5(,,,)(0.7,0.4,0.4,0.3,0.6)0.70.40.20.10.60.80.90.70.20.4x x x x ⎡⎤⎢⎥⎢
⎥=⎢⎥
⎢⎥
⎣⎦
三.应用题
(共2小题,每题15分)
1.在小麦亲本识别中,以小麦百粒重为论域,记为X ,五个基本类型用F 集表示: 早熟2
3.7()0.3
1()x A x e
--=;矮杆2
2.9(
)0.3
2()x A x e
--=;大粒2
5.6(
)0.3
3()x A x e
--=
高肥丰产2
3.9(
)0.3
4()x A x e --= ;中肥丰产2
3.7()0.2
5()x A x e --=,现测得一个小麦品种的样品的百粒重为0 4.6x g =,试判定0x 代表的品种
属于哪个亲本。
2. 对某产品质量作综合评判,考虑由四种因素1234{,,,}U u u u u =来评价产品,将质量分为四等
V ={Ⅰ,Ⅱ,Ⅲ,Ⅳ},设单因素评判是F 映射::()f U F V →
12()(0.3,0.6,0.1,0),()(0,0.2,0.5,0.3)f u f u ==34()(0.5,0.3,0.1,0.1),()(0.1,0.3,0.2,0.4)f u f u ==
及权重分配:(0.2,0.4,0.1,0.3)A =,试评价该产品相对的属于哪一级。
THANKS !!!
致力为企业和个人提供合同协议,策划案计划书,学习课件等等
打造全网一站式需求
欢迎您的下载,资料仅供参考。