一元二次方程的解法总结
一元二次方程解法知识点总结
一元二次方程解法知识点总结一元二次方程是高中数学中重要的概念之一,解一元二次方程是解决实际问题中的关键步骤。
在本文中,我将总结一元二次方程解法的主要知识点。
以下是详细介绍:一、一元二次方程的定义和一般形式一元二次方程指形如ax² + bx + c = 0的方程,其中a、b和c是已知常数,且a ≠ 0。
二、求一元二次方程的解的三种方法1. 因式分解法因式分解法是解一元二次方程的一种简单方法,适用于方程可以因式分解的情况。
2. 完全平方式当一元二次方程无法因式分解时,我们可以使用完全平方式解方程。
公式为:x = (-b ± √(b² - 4ac)) / (2a)。
3. 直接法(配方法)当一元二次方程无法因式分解且也不适用完全平方式时,我们可以使用配方法解方程。
通过变形将一元二次方程转化为一个平方的求解问题。
三、一元二次方程解的判别式判别式用于判断一元二次方程的解的性质。
判别式的公式为:Δ = b² - 4ac,其中Δ≥0且Δ<0代表不同的解的情况。
四、一元二次方程解的特殊情况1. 重根情况:当判别式Δ = 0时,方程仅有一个解,此时方程的两个解重合。
2. 无解情况:当判别式Δ < 0时,方程无实数解。
五、一元二次方程解法的应用一元二次方程解法的应用非常广泛,例如可以用来解决关于运动、生活中的数学题目,比如求解物体下落时间、销售利润最大化等。
六、例题与解析为了更好地理解一元二次方程解法,以下是两个例题的详细解析:例题1: 解方程x² - 5x + 6 = 0。
解析:首先计算判别式Δ = b² - 4ac = (-5)² - 4*1*6 = 25 - 24 = 1。
由于判别式Δ > 0,方程有两个不相等的实数解。
接下来使用公式 x = (-b ± √Δ) / 2a 计算解,得到:x₁ = (5 + √1) / 2 = 3x₂ = (5 - √1) / 2 = 2所以,方程的解为x₁ = 3和x₂ = 2。
(完整版)一元二次方程归纳总结
一元二次方程归纳总结1、一元二次方程的一般式:20 (0)ax bx c a ++=≠,a 为二次项系数,b 为一次项系数,c 为常数项。
2、一元二次方程的解法(1)直接开平方法 (也可以使用因式分解法) ①2(0)xa a =≥解为:x = ②2()(0)x a b b +=≥解为:x a += ③2()(0)ax b c c +=≥解为:ax b += ④22()()()ax b cx d a c +=+≠ 解为:()ax b cx d +=±+(2)因式分解法:提公因式分,平方公式,平方差,十字相乘法(3)公式法:一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:2224()24b b ac x a a -+= ①当240b ac ∆=->时,右端是正数.因此,方程有两个不相等的实根:1,22b x a-=② 当240b ac ∆=-=时,右端是零.因此,方程有两个相等的实根:1,22b x a=-③ 当240bac ∆=-<时,右端是负数.因此,方程没有实根。
注意:虽然所有的一元二次都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选用。
备注:公式法解方程的步骤:①把方程化成一般形式:一元二次方程的一般式:20 (0)ax bx c a ++=≠,并确定出a 、b 、c②求出24bac ∆=-,并判断方程解的情况。
③代公式:1,2x =3、一元二次方程的根与系数的关系法1:一元二次方程20 (0)axbx c a ++=≠的两个根为:1222b b x x a a-+-==所以:12bx x a+=+=-,221222()422(2)4b b b ac cx x a a a a a-+----⋅=⋅===定理:如果一元二次方程20 (0)axbx c a ++=≠定的两个根为12,x x ,那么:1212,b cx x x x a a+=-=法2:如果一元二次方程20 (0)axbx c a ++=≠定的两个根为12,x x ;那么2120()()0ax bx c a x x x x ++=⇔--= 两边同时除于a ,展开后可得:2212120()0b c x x x x x x x x a a++=⇔-++= 12b x x a ⇒+=-;12cx x a •=法3:如果一元二次方程20 (0)axbx c a ++=≠定的两个根为12,x x ;那么21122200ax bx c ax bx c ⎧++=⎪⎨++=⎪⎩①-②得:12bx x a+=-(余下略) 常用变形:222121212()2x x x x x x +=+-,12121211x x x x x x ++=,22121212()()4x x x x x x -=+-,12||x x -=2212121212()x x x x x x x x +=+,22111212121222212()4x x x x x x x x x x x x x x ++-+==等 练习:【练习1】若12,x x 是方程2220070xx +-=的两个根,试求下列各式的值:(1)2212x x +;(2)1211x x +;(3)12(5)(5)x x --;(4)12||x x -.【练习2】已知关于x 的方程221(1)104xk x k -+++=,根据下列条件,分别求出k 的值.(1) 方程两实根的积为5; (2) 方程的两实根12,x x 满足12||x x =.【练习3】已知12,x x 是一元二次方程24410kxkx k -++=的两个实数根.(1) 是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值;若不存在, 请您说明理由.(2) 求使12212x x x x +-的值为整数的实数k 的整数值. 4、应用题(1)平均增长率的问题:(1)n a x b += 其中:a 为基数,x 为增长率,n 表示连续增长的次数,①②b 表示增长后的数量。
一元二次方程的解法总结
一元二次方程的解法总结一元二次方程是代数学中最基本的方程形式之一,求解一元二次方程有多种方法,本文将对几种常见的解法进行总结。
方法一:因式分解法对于形如ax^2+bx+c=0的一元二次方程,首先需要将其因式分解为两个一次方程的乘积形式。
例如:x^2+5x+6=0可以分解为(x+2)(x+3)=0,然后令每个因式等于零,解得x=-2和x=-3,即为方程的解。
方法二:配方法当一元二次方程无法直接因式分解时,可以尝试使用配方法。
配方法的基本思路是将方程中的二次项与一次项配对,并进行变量代换。
具体步骤如下:1. 将方程形式为ax^2+bx+c=0,其中a≠0。
2. 将方程两边同时除以a,得到x^2+(b/a)x+(c/a)=0。
3. 将方程右侧的常数项c/a拆分为两个数的乘积,使得这两个数之和等于b/a,即将其配对。
4. 在方程左侧增加与拆分后的两个数相等的数,构成一个完全平方项的形式。
即在x^2+(b/a)x上加上一个常数d/d,使得(x+d)^2=x^2+(b/a)x+d^2。
5. 将方程重新写为扩展后的形式(x+d)^2+d^2=c/a,这就是已经变量代换后的方程。
6. 将方程左侧完全平方项展开,并与方程右侧常数项进行化简,得到新方程x^2+2dx+d^2-d^2=c/a,即x^2+2dx=(c/a-d^2)。
7. 整理方程,得到(x+d)^2-d^2=(c/a-d^2)。
8. 使用平方差公式,将等式左侧进行运算,得到(x+d-d)(x+d+d)=(c/a-d^2)。
9. 化简等式左侧,得到(x+2d)(x)=(c/a-d^2)。
10. 若c/a-d^2≥0,即存在实数解,解方程(x+2d)(x)=(c/a-d^2),得到x+2d=0或x=c/a-d^2。
11. 解方程x+2d=0,得到x=-2d,然后将其代入方程(x+2d)(x)=c/a-d^2中,求解得到剩下的解。
方法三:求根公式法求根公式是一元二次方程的一种解法,通过使用求根公式,可以直接求得方程的解。
一元二次方程的解法总结
x a 0或x a 0
x1 a
形如
2
x2 a
的式子运用完全平方公式得:
x2 2ax a 2 0
( x a) 0 x1 x2 a 或 x1 x2 a
例题讲解
例1 解下列方程
16(2 x) 9 0 (1) 解:原方程变形为: 9 2 (2 x) 16
解:提公因式得:
(3x 2)( x 6) 0
(3x 5)( x 2) 0
3x 5 0或x 2 0
3x 2 0或x 6 0
2 x1 3
5 x1 3
x2 6
x2 2
平方差公式与完全平方公式
形如
x2 a2 0 运用平方差公式得:
2
(2) x( x 2) 1 0 解:原方程变形为:
直接开平方得:
x2 2 x 1 0
( x 1)2 0
3 2 x 4 11 5 x2 x1 4 4
x1 x2 1
2 十字相乘法
步骤:
1 二次项系数为1的情况:
将一元二次方程常数项进行分解成两个数(式)p , q的乘 积的形式,且p + q = 一次项系数。
例题讲解
例1. 用配方法解下列方程
x2+6x-7=0
解:
x 6x 7 2 x 6x 9 7 9 2 x 3 16 x 3 4 x1 1 x2 7
2
例题讲解
例2. 用配方法解下列方程
2x2+8x-5=0
5 解: x 4x 2 5 2 x 4x 4 4 2
一元二次方程的解法的解题技巧总结
一元二次方程的解法的解题技巧总结一元二次方程是中学数学中的常见题型,求解方程的过程需要掌握一定的解题技巧。
下面将对一元二次方程的解题方法进行总结,希望对你的学习有所帮助。
一、一元二次方程的一般形式一元二次方程的一般形式可以表示为:ax² + bx + c = 0,其中 a、b、c 都是已知实数,且a ≠ 0。
二、求解一元二次方程的基本步骤求解一元二次方程的基本步骤如下:1. 将方程按照一般形式准确写出。
2. 判断一元二次方程是否可以因式分解,如果可以,进行因式分解得到两个一次方程,再求解这两个一次方程得到原方程的解。
3. 如果方程不可以因式分解,可以采用配方法,将方程转化为一个平方差的形式,再进行变量替换,进而求解得到方程的解。
4. 如果配方法不适用,可以采用求根公式,即二次方程的根公式,根据公式直接求解得到方程的解。
5. 对于复杂数字的解,应给出复数解的明确形式。
三、因式分解的技巧1. 一元二次方程的因式分解要找到两个整数 m、n,使得 a(m + n) + bn = 0。
2. 通过观察系数 a、b 的正负关系来判断 m 和 n 是否为整数。
3. 不断尝试不同的 m、n 值,直到找到满足条件的因式分解。
四、配方法的技巧1. 配方法是将一元二次方程转化为一个平方差的形式,即 a(x + m)²+ n = 0。
2. 通过观察系数 a、b、c 的关系来确定配方的具体步骤。
3. 根据配方法将方程转化为平方差的形式后,再进行变量替换,得到一个一次方程,从而求解得到方程的解。
五、求根公式的应用1. 一元二次方程的求根公式为:x = (-b ± √(b² - 4ac)) / (2a)。
2. 公式中的 ±表示两个不同的解。
3. 当判别式 b² - 4ac 大于 0 时,方程有两个不相等的实数解。
4. 当判别式 b² - 4ac 等于 0 时,方程有一个实数解。
一元二次方程的解法
一元二次方程的解法一元二次方程是指形如ax^2 + bx + c = 0的方程,其中a、b、c为已知常数,而x为未知数。
解一元二次方程的方法有多种,下面将介绍两种常用的解法:因式分解法和配方法。
一、因式分解法因式分解法是指将一元二次方程分解成两个一次因式的乘积,再令每个一次因式等于零,解得方程的两个根。
例如,解方程x^2 - 5x + 6 = 0:首先,找到两个数的乘积等于常数项c,且和等于中间项b的相反数。
在本例中,c为6,b为-5,可以将6拆解为-2和-3,-2与-3的和为-5,符合要求。
然后,将方程分解为(x - 2)(x - 3) = 0。
接下来,令每个一次因式等于零,即(x - 2) = 0和(x - 3) = 0。
最后,解得x = 2和x = 3,这两个值分别为方程的两个根。
二、配方法配方法是指通过将一元二次方程移项,并用一个常数将方程的两边补全为一个完全平方的形式,从而将一元二次方程转化为一个平方差的形式,进而求解方程。
例如,解方程x^2 + 4x - 5 = 0:首先,将方程移项,得到x^2 + 4x = 5。
然后,通过添加一个与方程中一次项的系数一半相等的常数的平方,使得方程的左边成为一个完全平方。
在本例中,一次项的系数为4,可以添加(4/2)^2 = 4的平方,得到x^2 + 4x + 4 = 5 + 4,即(x + 2)^2 = 9。
接下来,令要解的方程的平方项等于右边的常数,即(x + 2)^2 = 9。
最后,开方,解得x + 2 = ±3,即x = 1和x = -5,这两个值分别为方程的两个根。
总结起来,一元二次方程的解法包括因式分解法和配方法。
通过运用这两种解法,可以求得一元二次方程的根,从而解决实际问题。
一元二次方程的解法归纳总结
一元二次方程的解法归纳总结一元二次方程是高中数学中的重要内容之一,它可以通过求解来确定方程的根或解。
解一元二次方程的方法有多种,包括公式法、配方法、图像法等。
本文将对这些方法进行归纳总结,以便读者更清晰地理解和应用一元二次方程的解法。
一、公式法公式法是解一元二次方程最常用的方法之一,它基于一元二次方程的标准形式ax^2 + bx + c = 0。
一元二次方程的解可通过求根公式得到。
求根公式:对于一元二次方程ax^2 + bx + c = 0,其中a、b、c为已知常数,且a ≠ 0。
1. 判别式D = b^2 - 4ac。
- 当D > 0时,方程有两个不相等的实根。
- 当D = 0时,方程有两个相等的实根。
- 当D < 0时,方程没有实根。
2. 根据判别式的情况,求解一元二次方程的根。
- 当D > 0时,方程的两个根为 x1 = (-b + √D)/(2a) 和 x2 = (-b -√D)/(2a)。
- 当D = 0时,方程的两个根为 x1 = x2 = -b/(2a)。
- 当D < 0时,方程没有实根。
公式法适用于所有一元二次方程,但需注意的是,当D < 0时,方程没有实数解,因此解为复数,需要用复数域来表示。
二、配方法对于一些特殊形式的一元二次方程,如完全平方差、平方差、求负等,可以通过配方法将其转化成更容易求解的方程,进而求得解。
1. 完全平方差形式对于形如(x ± a)^2 = b的方程,可利用完全平方差公式,将其转化为(x ± a) = √b的形式,然后解得解x。
2. 平方差形式对于形如x^2 - a^2 = b的方程,可通过配方法将其转化为(x + a)(x -a) = b的形式,然后选取合适的值求解。
3. 求负对于形如x^2 + px = q的方程,可通过将方程两边同乘以负一进行转化,变为x^2 - px = -q的形式,然后应用配方法解方程。
配方法是解特殊形式一元二次方程的有效方法,通过将方程转化为更简单的形式,能够简化解的过程。
一元二次方程解法总结
一元二次方程解法总结一元二次方程是指形如ax^2+bx+c=0的方程,其中a、b、c为已知实数,x为未知数。
解一元二次方程的方法有以下几种:公式法、配方法、因式分解法和图像法。
1. 公式法:公式法是解一元二次方程最常用的方法。
对于一元二次方程ax^2+bx+c=0,它的解可以用下面的公式表示:x = (-b±√(b^2-4ac))/(2a)。
这个公式称为一元二次方程的求根公式,通过将方程中的a、b、c带入公式中,可以计算出方程的两个解x1和x2的值。
其中,b^2-4ac称为判别式,通过判别式的值可以判断方程的解的性质:- 当判别式大于0时,方程有两个不相等的实数解;- 当判别式等于0时,方程有两个相等的实数解;- 当判别式小于0时,方程没有实数解,有两个共轭的复数解。
2. 配方法:配方法是一种通过将方程变形的方法来解一元二次方程的方法。
对于一元二次方程ax^2+bx+c=0,可以通过配方法将其变形为(x+p)^2=q的形式,然后通过开平方的方式求解。
具体步骤如下:- 将方程移到等号右边,即ax^2+bx=-c;- 对方程进行配方,即在方程两边同时加上一个适当的常数p,使得左侧可以完全平方;- 然后再次移项得到(x+p)^2=q的形式,其中q=c-(b^2)/(4a);- 对方程两边同时开平方,得到x=-p±√q;通过配方法得到的解与公式法得到的解是一致的。
3. 因式分解法:对于一元二次方程ax^2+bx+c=0,如果能够将它因式分解为(a1x+b1)(a2x+b2)=0的形式,那么方程的解就可以通过因式分解得到。
具体步骤如下:- 对方程进行因式分解,即将方程因式分解为(a1x+b1)(a2x+b2)=0的形式;- 然后求解方程(a1x+b1)=0和(a2x+b2)=0,得到x的值;由于一元二次方程的解要满足原方程,因此需要将求得的x值代入原方程进行检验。
4. 图像法:图像法是通过观察一元二次方程在坐标系上的图像来解方程的方法。
一元二次方程的解法归纳总结
一元二次方程的解法归纳总结一元二次方程的解法是每一个中学生都必须掌握的,共有5种解法,其中直接开平方法、因式分解法、配方法和公式法是教材上重点讲解的四种方法,并没有提到换元法,我们在这次归纳总结中给于详细的讲解.另外,还将介绍某些特殊的一元二次方程的解法.在上面提到的四种解一元二次方程的方法中,直接开平方法是最直接的方法,因式分解法是最简单的方法,配方法是最基本的方法,而公式法是最万能的方法.我们要根据一元二次方程的特点选择合适的解法,如一元二次方程缺少一次项,选择用直接开平方法求解;一元二次方程缺少常数项,选择用因式分解法(缺常选因)求解.一、直接开平方法解形如p x =2(p ≥0)和()c b ax =+2(c ≥0)的一元二次方程,用直接开平方法. 用直接开平方法解一元二次方程的一般步骤:(1)把一元二次方程化为p x =2(p ≥0)或()c b ax =+2(c ≥0)的形式; (2)直接开平方,把方程转化为两个一元一次方程;(3)分别解这两个一元一次方程,得到一元二次方程的两个解.注意:(1)直接开平方法是最直接的解一元二次方程的方法,并不适合所有的一元二次方程的求解;(2)对于一元二次方程p x =2,当0<p 时,方程无解;(3)对于一元二次方程()c b ax =+2: ①当0>c 时,一元二次方程有两个不相等的实数根;②当0=c 时,一元二次方程有两个相等的实数根;③当0<c 时,一元二次方程没有实数根.例1. 解下列方程:(1)022=-x ; (2)081162=-x .分析:观察到两个方程的特点,都可以化为p x =2(p ≥0)的形式,所有选择用直接开平方法求解.当一元二次方程缺少一次项时,考虑使用直接开平方法求解.解:(1)22=x2±=x ∴2,221-==x x ;(2)1681,811622==x x 491681±=±=x ∴49,4921-==x x . 例2. 解下列方程:(1)()0932=--x ; (2)()092122=--x . 分析:观察到两个方程的特点,都可以化为()c b ax =+2(c ≥0)的形式,所有选择用直接开平方法求解.解:(1)()932=-x 33±=-x∴33=-x 或33-=-x∴0,621==x x ;(2)()92122=-x ()4312922==-x ∴23432±=±=-x ∴232=-x 或232-=-x ∴232,23221-=+=x x . 习题1. 下列方程中,不能用直接开平方法求解的是 【 】(A )032=-x (B )()0412=--x (C )022=+x (D )()()2221-=+x 习题2. 若()41222=-+y x ,则=+22y x _________.习题3. 若b a ,为方程()1142=+-x x 的两根,且b a >,则=ba 【 】 (A )5- (B )4- (C )1 (D )3习题4. 解下列方程:(1)()16822=-x ; (2)()642392=-x .习题5. 解下列方程:(1)()09142=--x ; (2)4312=⎪⎭⎫ ⎝⎛-+x x .习题6. 对于实数q p ,,我们用符号{}q p ,min 表示q p ,两数中较小的数,如{}12,1min =.(1){}=--3,2min _________;(2)若(){}1,1min 22=-x x ,则=x _________. 习题7. 已知直角三角形的两边长y x ,满足091622=-+-y x ,求这个直角三角形第三边的长.(注意分类讨论第三边的长)二、因式分解法因式分解法解一元二次方程的一般步骤是:(1)移项 把方程的右边化为0;(2)化积 将方程的左边分解为两个一次因式的乘积;(3)转化 令每个因式等于0,得到两个一元一次方程;(4)求解 解这两个一元一次方程,得到一元二次方程的两个解.例1. 用因式分解法解方程:x x 32=.解:032=-x x()03=-x x∴0=x 或03=-x∴3,021==x x .例2. 用因式分解法解方程:()()01212=---x x x . 解:()()0211=---x x x()()()()011011=+-=---x x x x ∴01=-x 或01=+x∴1,121-==x x .例3. 解方程:121232-=-x x .解:0121232=+-x x()()023044322=-=+-x x x∴221==x x .例4. 解方程:332+=+x x x .解:()0332=+-+x x x()()()()0310131=-+=+-+x x x x x∴01=+x 或03=-x∴3,121=-=x x .因式分解法解高次方程例5. 解方程:()()0131222=---x x . 解:()()031122=---x x()()()()()()022*******=-+-+=--x x x x x x∴01=+x 或01=-x 或02=+x 或02=-x∴2,2,1,14321=-==-=x x x x .例6. 解方程:()()0343222=+-+x x . 解:()()043322=-++x x()()()()()0113013222=-++=-+x x x x x∵032>+x∴()()011=-+x x∴01=+x 或01=-x∴1,121=-=x x .用十字相乘法分解因式解方程对于一元二次方程()002≠=++a c bx ax ,当ac b 42-=∆≥0且∆的值为完全平方数时,可以用十字相乘法分解因式解方程.例7. 解方程:0652=+-x x .分析:()124256452=-=⨯--=∆,其结果为完全平方数,可以使用十字相乘法分解因式. 解:()()032=--x x∴02=-x 或03=-x∴3,221==x x .例8. 解方程:03722=++x x .分析:25244932472=-=⨯⨯-=∆,其结果为完全平方数,可以使用十字相乘法分解因式.解:()()0312=++x x∴012=+x 或03=+x ∴211-=x ,32-=x . 例9. 设方程()012012201420132=-⨯-x x 的较大根为a ,方程020*******=-+x x 的较小根为b ,求b a -的值.解:()012012201420132=-⨯-x x ()()()()()()()0120131011201301201320130112013120132013222222=+-=-+-=-+-=--⨯+-x x x x x x x x x x∴01=-x 或0120132=+x ∴22120131,1-==x x ∵a 是该方程的较大根∴1=a020*******=-+x x()()020121=+-x x∴01=-x 或02012=+x∴2012,121-==x x∵b 是该方程的较小根∴2012-=b∴()201320121=--=-b a .习题1. 方程x x 22=的根是__________.习题2. 方程()022=-+-x x x 的根是__________.习题3. 方程0442=+-x x 的解是__________.习题4. 方程()()232+=-+x x x 的解是__________.习题5. 如果()0211+=--x x x ,那么x 的值为 【 】 (A )2或1- (B )0或1(C )2 (D )1-习题6. 方程()x x x =-2的根是__________.习题7. 已知等腰三角形的腰和底的长分别是一元二次方程0862=+-x x 的根,则该三角形的周长为__________.习题8. 解下列方程:(1)()()x x x -=-2223; (2)()1232+=+x x ;(3)()222344x x x -=+-; (4)2422-=-x x .习题9. 解下列方程:(1)0322=--x x ; (2)0452=+-x x .习题10. 解方程:()()01122122=++++x x .三、配方法解用配方法解一元二次方程02=++c bx ax ()0≠a 共分六步:一移、二化、三配、四开、五转、六解.(1)一移 把常数项移到方程的右边,注意变号;c bx ax -=+2(2)二化 在方程的左右两边同时除以二次项系数a ,化二次项系数为1;ac x a b x -=+2 (3)三配 即配方,把方程的左边配成完全平方的形式,需要在方程的左右两边同时加上一次项系数一半的平方;22222⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛++a b a c a b x a b x 222442a ac b a b x -=⎪⎭⎫ ⎝⎛+ (4)四开 直接开平方; aac b a b x 2422-±=+ (注意:当ac b 42-=∆≥0时方程有实数根) (5)五转 把第(4)步得到的结果转化为两个一元一次方程;a acb a b x 2422-=+或aac b a b x 2422--=+ (6)解 解这两个一元一次方程,得到一元二次方程的两个解.aac b b x a ac b b x 24,242221---=-+-=. 说明:由上面配方的结果可以确定一元二次方程有实数根的条件和求根公式:一元二次方程02=++c bx ax ()0≠a 有实数根的条件是ac b 42-=∆≥0,求根公式为:aac b b x 242-±-=. 例1. 用配方法解方程:0142=--x x .解:142=-x x()5252414422±=-=-+=+-x x x x ∴52=-x 或52-=-x ∴52,5221-=+=x x .例2. 解方程:03232=-+x x .分析:按照用配方法解一元二次方程的一般步骤,在移项之后,要化二次项系数为“1”. 解:3232=+x x910319119132132222=⎪⎭⎫ ⎝⎛++=++=+x x x x x 31031±=+x ∴31031=+x 或31031-=+x ∴31031,3103121--=+-=x x . 例3. 用配方法解关于x 的方程:02=++q px x (q p 42-≥0).解:q px x -=+224244244222222q p p x q p p x p q p px x -±=+-=⎪⎭⎫ ⎝⎛++-=++∴242,24222q p p x q p p x --=+-=+ ∵q p 42-≥0 ∴24,242221q p p x q p p x ---=-+-=. 说明: q p 42-≥0既是二次根式q p 42-有意义的条件,也是一元二次方程02=++q px x 有实数根的前提.因此把q p 42-叫做一元二次方程02=++q px x 的根的判别式.习题1. 用配方法解方程0142=++x x ,配方后的方程是 【 】(A )()322=+x (B )()322=-x (C )()522=-x (D )()522=+x 习题 2. 若方程082=+-m x x 可以通过配方写成()62=-n x 的形式,那么582=++m x x 可以配成 【 】(A )()152=+-n x (B )()12=+n x (C )()1152=+-n x (D )()112=+n x 习题3. 用配方法解方程:(1)012=-+x x ; (2)01632=+-x x ;(3)0652=--x x ; (4)011242=--x x .四、公式法一元二次方程的求根公式一元二次方程02=++c bx ax (0≠a )的求根公式为:aac b b x 242-±-=(ac b 42-≥0) 当042<-ac b 时,一元二次方程无实数根.例1. 证明一元二次方程的求根公式.分析:用配方法可以证明一元二次方程的求根公式.证明:02=++c bx axaac b a b x a ac b a b x ab ac a b x a b x ac x a b x cbx ax 2424424422222222222-±=+-=⎪⎭⎫ ⎝⎛++-=++-=+-=+ ∴a ac b a b x 2422-=+或aac b a b x 2422--=+ ∴aac b b x a ac b b x 24,242221---=-+-= 即一元二次方程02=++c bx ax (0≠a )的根为a ac b b x 242-±-=(ac b 42-≥0). 注意:当ac b 42-≥0时,一元二次方程02=++c bx ax (0≠a )有实数根;当042<-ac b 时,二次根式ac b 42-无意义,方程无实数根.公式法解一元二次方程的一般步骤:用公式法解一元二次方程的一般步骤是:(1)把一元二次方程化为一般形式;(2)确定c b a ,,的值,包括符号;(3)当ac b 42-≥0时,把c b a ,,的值代入求根公式求解;当042<-ac b 时,方程无实数根.例1. 用公式法解方程:0622=-+x x .分析:用公式法解一元二次方程时要先将方程化为一般形式,并正确确定c b a ,,的值,包括符号.解:6,1,2-===c b a∴()496241422=-⨯⨯-=-ac b ∴4714491±-=±-=x ∴2471,2347121-=--==+-=x x . 例2. 解下列方程:(1)242=+x x ; (2)x x x 8110442-=++.解:(1)0242=-+x x()24244422=-⨯-=-ac b ∴6226242244±-=±-=±-=x ∴62,6221--=+-=x x ;(2)091242=++x x014414494412422=-=⨯⨯-=-ac b ∴80128012±-=±-=x ∴2321-==x x . 说明:当042=-ac b 时,一元二次方程02=++c bx ax (0≠a )有两个相等的实数根. 例3. 解方程:0162=+-x x .解:()3243646422=-=--=-ac b ∴22322462326±=±=±=x ∴223,22321-=+=x x .用公式法解一元二次方程获得的启示对于一元二次方程02=++c bx ax (0≠a ),可以用c b a ,,的值确定方程解的情况以及方程的解,并且求根公式里面的二次根式ac b 42-有意义的条件即为方程有解的条件:当ac b 42-≥0时,二次根式ac b 42-,一元二次方程有实数根;当042<-ac b 时,二次根式ac b 42-无意义,一元二次方程无实数根.(1)当042>-ac b 时,一元二次方程有两个不相等的实数根;(2)当042=-ac b 时,方程有两个相等的实数根.把ac b 42-叫做一元二次方程根的判别式,用“∆”表示,所以ac b 42-=∆.在不解方程的前提下,可以由∆的符号确定一元二次方程根的情况.习题1. 解方程:(1)622=-x x ; (2)21342-=--x x x ;(3)0222=+-x x ; (4)()122-=+x x .习题2. 已知a 是一元二次方程0142=+-x x 的两个实数根中较小的根.(1)求201842+-a a 的值; (2)化简并求值:aa a a a a a a 112121222--+---+-.五、换元法解某些高次方程或具有一定结构特点的方程时,我们可以通过整体换元的方法,把方程转化为一元二次方程进行求解,从而达到降次或变复杂为简单的目的.换元法的实质是换元,关键是构造元和设元,体现的是转化化归思想.用换元法解某些高次方程例1. 解方程:03224=--x x .分析:这是一元四次方程,可设y x =2(注意:y ≥0),这样通过换元就把原方程转化为关于 y 的一元二次方程.解:设y x =2,则有:y ≥0∴0322=--y y()()031=-+y y∴01=+y 或03=-y∴3,121=-=y y∵y ≥0∴3=y (1-=y 舍去)∴32=x ∴3,321-==x x .用换元法解具有一定结构特点的方程例2. 解方程:()()022322=+---x x . 分析:注意到该方程中整体()2-x 出现了两次,可整体设元,从结构上简化方程.解:设t x =-2,则有:0232=+-t t()()021=--t t∴01=-t 或02=-t∴2,121==t t∴12=-x 或22=-x∴4,321==x x .例3. 解方程:()()0128222=+---x x x x . 分析:本题中的方程若展开整理,则得到的是一个高次方程,但方程本身具有非常明显的结构特点,可整体换元,不用展开即可得到一个简洁的一元二次方程.解:设y x x =-2,则有:01282=+-y y()()062=--y y∴02=-y 或06=-y∴6,221==y y∴22=-x x 或62=-x x解方程22=-x x 得:2,121=-=x x ;解方程62=-x x 得:3,221=-=x x综上,原方程的解为3,2,2,14321=-==-=x x x x .例4. 解方程:112122=+-+x x x x . 分析:方程中21xx +与12+x x 互为倒数,若设t x x =+21,则t x x 112=+,经过这样的换元,最后可把原方程转化为关于t 的整式方程,且为一元二次方程.解:设t x x =+21,则有:12=-tt 整理得:022=--t t()()021=-+t t∴2,121=-=t t ∴112-=+x x 或212=+x x 由112-=+xx 得:012=++x x ,此时方程无解; 由212=+xx 得:0122=--x x ,解之得:1,2121=-=x x . 综上,原方程的解为1,2121=-=x x .例5. 解方程:01122=+++xx x x .分析:设y x x =+1,则22112222-=-⎪⎭⎫⎝⎛+=+y x x x x .解:01122=+++x x x x02112=-⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛+x x x x 设y x x =+1,则有:022=-+y y()()021=+-y y∴01=-y 或02=+y∴2,121-==y y ∴11=+x x 或21-=+x x 由11=+x x 得:012=+-x x ,此时方程无解; 由21-=+x x 得:0122=++x x ,解之得:121-==x x .综上,原方程的解为121-==x x .本题变式: 已知实数x 满足01122=+++x x x x ,那么x x 1+的值是【 】 (A )1或2- (B )1-或2 (C )1 (D )2-例6. 已知()()1212222=+++y x y x ,求22y x +的值.分析:整体设元:设m y x =+22,则m ≥0,据此注意根的取舍.解:设m y x =+22,则有:m ≥0∴()121=+m m整理得:0122=-+m m解之得:4,321-==m m∵m ≥0 ∴3=m∴22y x +的值为3.习题1. 解下列方程:(1)()()6222=+++x x x x ; (2)()()061512=+---x x .习题2. 解方程:1222=---xx x x .习题3. 阅读下面的材料,回答问题:解方程04524=+-x x ,这是一个一元四次方程,根据该方程的特点,它的解法通常是: 设y x =2,则原方程变形为:0452=+-y y ①解之得:4,121==y y当1=y 时,12=x ,解之得:1±=x ;当4=y 时,42=x ,解之得:2±=x .综上,原方程的解为:2,2,1,14321-==-==x x x x .(1)在由原方程得到方程①的过程中,利用_________法达到_________的目的,体现了数学的转化思想;(2)解方程:()()0124222=-+-+x x x x .特殊一元二次方程的解法举例某些方程的解需采用特殊的处理和方法,下面列举几例.例1. 解方程:()()7751522=++++x x x x .分析:若把该方程展开并整理,会得到一个一元四次方程,这不是我们想看到的结果.可使用换元法解该方程:设t x x =++152,这样就能把原方程转化为关于t 的一元二次方程. 解:设t x x =++152,则原方程可转化为:()76=+t t∴0762=-+t t()()071=+-t t∴01=-t 或07=+t∴7,121-==t t∴1152=++x x 或7152-=++x x由1152=++x x 得:052=+x x ,解之得:5,021-==x x ;由7152-=++x x 得:0852=++x x ,此时方程无解.综上,原方程的解为5,021-==x x .例2. 解方程:022=-+x x .解法1:当x ≥0,原方程可化为:022=-+x x ,解之得:1=x (2-=x 舍去);当0<x 时,原方程可化为:022=--x x ,解之得:1-=x (2=x 舍去).综上所述,原方程的解为1,121-==x x .解法2:原方程可化为:022=-+x x ∴()()021=+-x x ∵02>+x ∴1,01==-x x∴1,121-==x x∴原方程的解为1,121-==x x .解法3:(图象法)原方程可化为:x x =+-22 设x x g x x f =+-=)(,2)(2,在同一平面直角坐标系中画出二者的图象如图所示.∵两个函数的图象有两个交点()1,1-和()1,1 ∴方程x x =+-22有两个实数根,且根为1,121=-=x x∴原方程的解为1,121=-=x x .习题1. 参照例2的解法,解方程:03362=+---x x x .例3. 解方程:()()()()484321=----x x x x .解:()()()()483241=----x x x x∴()()48654522=+-+-x x x x设t x x =+-552,则有:()()4811=+-t t∴49,48122==-t t∴7,721-==t t当7552=+-x x 时,解之得:2335,233521-=+=x x ; 当7552-=+-x x 时,此时方程无解.综上所述,原方程的解为2335,233521-=+=x x . 习题2. 方程027422=-+-x x 的所有根的和为_________.习题3. 已知实数x 满足01122=+++x x x x ,那么x x 1+的值是 【 】 (A )1或2-(B )1-或2 (C )1(D )2-。
总结解一元二次方程的常用技巧
总结解一元二次方程的常用技巧解一元二次方程是数学中的基础知识之一,也是很多学生常常遇到的问题。
掌握解一元二次方程的常用技巧对于提高数学能力和解题速度具有重要意义。
本文将总结解一元二次方程的常用技巧,帮助读者更好地掌握这一知识点。
一、一元二次方程的定义及基本形式一元二次方程是指只含有一个未知数的二次方程。
其一般形式为:ax² + bx + c = 0,其中a、b、c为已知系数,且a ≠ 0。
二、求解一元二次方程的常用技巧1. 通过因式分解法求解当一元二次方程可以被因式分解为两个一次因式相乘的形式时,我们可以通过解这两个一次方程来求解原方程。
例如,对于方程x² - 5x + 6 = 0,可以因式分解为(x - 2)(x - 3) = 0,从而得到x = 2或x = 3,即原方程的解为x = 2或x = 3。
2. 利用配方法求解当一元二次方程不能直接进行因式分解时,可以利用配方法来求解。
配方法的基本思路是通过添加合适的常数使得方程左边成为一个平方差的形式,从而方便求解。
具体步骤如下:a. 如果原方程为ax² + bx + c = 0,首先计算方程的判别式Δ = b² -4ac。
b. 如果Δ大于0,则可得到两个实根。
假设方程的根为x₁和x₂,则通过方程x₁ + x₂ = -b/a和x₁x₂ = c/a来求解。
c. 如果Δ等于0,则可得到两个相等的实根。
通过方程x = -b / 2a来求解。
d. 如果Δ小于0,则无实根,方程只有复数解。
举例说明:以方程x² - 4x + 4 = 0为例,使用配方法来求解:a. 计算Δ = (-4)² - 4 * 1 * 4 = 0。
b. 由于Δ等于0,方程有两个相等的实根x = -(-4) / 2*1 = 2。
即原方程的解为x = 2。
3. 利用求根公式求解一元二次方程还可以通过求根公式来求解。
一元二次方程的求根公式为:x = (-b ± √(b² - 4ac)) / 2a。
一元二次方程的标准解法
一元二次方程的标准解法
一元二次方程的标准解法如下:
对于一元二次方程形如ax²+bx+c=0的情况,其中a、b、c为已知实数,且a ≠ 0。
1. 首先,计算该方程的判别式Δ = b² - 4ac。
根据Δ的值可以分
为三种情况:
- 当Δ > 0时,方程有两个不相等的实数根。
根据求根公式可得: x₁ = (-b + √Δ) / 2a
x₂ = (-b - √Δ) / 2a
- 当Δ = 0时,方程有两个相等的实数根。
根据求根公式可得:
x₁ = x₂ = -b / 2a
- 当Δ < 0时,方程没有实数根,只有两个共轭虚根。
根据求根
公式可得:
x₁ = (-b + √-Δ) / 2a
x₂ = (-b - √-Δ) / 2a
2. 根据计算得到的解x₁和x₂验证是否满足原方程。
将x₁和x₂代
入方程ax²+bx+c=0中,若两个解均使方程成立,则证明解是正确的。
标准解法中,通过求解方程的判别式Δ,可以判断方程的根的性质。
然后利用求根公式得到方程的实数根或共轭虚根。
最后通过验证解的
方法,验证计算得到的解是否满足原方程。
一元二次方程及其解法知识点总结笔记
一元二次方程及其解法知识点总结笔记
一元二次方程是形如 $ax^2+bx+c=0$ 的方程,其中 $a, b, c$ 是已知的实数,$a\neq 0$。
解一元二次方程的方法主要有以下三种:
1. 因式分解法:当方程的系数 $a, b, c$ 之间存在较简单的关系时,可以尝试通过因式分解的方法来求解。
例如,方程 $x^2-5x+6=0$ 可以因式分解为 $(x-2)(x-3)=0$,从而得到两个解
$x=2$ 和 $x=3$。
2. 完全平方法:当方程的二次项和一次项可以组成一个完全平方时,可以利用完全平方公式 $(x+a)^2=x^2+2ax+a^2$ 来求解方程。
例如,方程 $x^2+6x+9=0$ 可以写成 $(x+3)^2=0$,解出 $x=-3$。
3. 直接使用求根公式:一元二次方程的通解可以用求根公式$x = \frac{-b\pm\sqrt{b^2-4ac}}{2a}$ 来表示。
其中,
$\Delta=b^2-4ac$ 是方程的判别式。
如果 $\Delta > 0$,方程有两个不相等的实根;如果 $\Delta = 0$,方程有两个相等的实根;如果 $\Delta < 0$,方程没有实根,但可以在复数域内求解。
一元二次方程的解法
一元二次方程的解法汇总1.直接开方法解一元二次方程(1)直接开方法解一元二次方程:利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法.(2)直接开平方法的理论依据:平方根的定义.(3)能用直接开平方法解一元二次方程的类型有两类:(点击图片可放大阅览)要点诠释:用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.2.因式分解法解一元二次方程(1)用因式分解法解一元二次方程的步骤:①将方程右边化为0;②将方程左边分解为两个一次式的积;③令这两个一次式分别为0,得到两个一元一次方程;④解这两个一元一次方程,它们的解就是原方程的解.(2)常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等.要点诠释:(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0;(3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式.【典型例题】类型一、用直接开平方法解一元二次方程(点击图片可放大阅览)【总结升华】应当注意,如果把x+m看作一个整体,那么形如(x+m)2=n(n≥0)的方程就可看作形如x2=k的方程,也就是可用直接开平方法求解的方程;这就是说,一个方程如果可以变形为这个形式,就可用直接开平方法求出这个方程的根.所以,(x+m)2=n可成为任何一元二次方程变形的目标.举一反三:(点击图片可放大阅览)类型二、因式分解法解一元二次方程(点击图片可放大阅览)【总结升华】若把各项展开,整理为一元二次方程的一般形式,过程太烦琐.观察题目结构,可将x+1看作m,将(2-x)看作n,则原方程左端恰好为完全平方式,于是此方程利用分解因式法可解.举一反三:【变式】方程(x-1)(x+2)=2(x+2)的根是________.【答案】将(x+2)看作一个整体,右边的2(x+2)移到方程的左边也可用提取公因式法因式分解.即(x-1)(x+2)-2(x+2)=0,(x+2)[(x-1)-2]=0.∴ (x+2)(x-3)=0,∴ x+2=0或x-3=0.∴ x1=-2 x2=3.(点击图片可放大阅览)【总结升华】如果把视为一个整体,则已知条件可以转化成一个一元二次方程的形式,用因式分解法可以解这个一元二次方程.此题看似求x、y 的值,然后计算,但实际上如果把看成一个整体,那么原方程便可化简求解。
一元二次方程的解法归纳总结
一元二次方程的解法归纳总结一元二次方程的解法是每一个中学生都必须掌握的,共有 5 种解法,其中直接开平方法、因式分解法、配方法和公式法是教材上重点讲解的四种方法,并没有提到换元法,我们在这次归纳总结中给于详细的讲解.另外,还将介绍某些特殊的一元二次方程的解法.在上面提到的四种解一元二次方程的方法中,直接开平方法是最直接的方法,因式分解法是最简单的方法,配方法是最基本的方法,而公式法是最万能的方法.我们要根据一元二次方程的特点选择合适的解法,如一元二次方程缺少一次项,选择用直接开平方法求解;一元二次方程缺少常数项,选择用因式分解法(缺常选因)求解.一、直接开平方法解形如x2 p (p≥0)和ax b 2 c(c ≥0)的一元二次方程,用直接开平方法. 用直接开平方法解一元二次方程的一般步骤:(1)把一元二次方程化为x2 p (p≥0)或ax b 2 c(c ≥0)的形式;(2)直接开平方, 把方程转化为两个一元一次方程;(3)分别解这两个一元一次方程, 得到一元二次方程的两个解. 注意:(1)直接开平方法是最直接的解一元二次方程的方法, 并不适合所有的一元二次方程的求解;(2)对于一元二次方程x2 p,当p 0时,方程无解;(3)对于一元二次方程ax b 2 c:①当 c 0时, 一元二次方程有两个不相等的实数根;②当 c 0时, 一元二次方程有两个相等的实数根;③当 c 0 时, 一元二次方程没有实数根.例 1. 解下列方程:(1)x2 2 0; (2)16x2 81 0.分析:观察到两个方程的特点,都可以化为x2 p(p≥0)的形式,所有选择用直接开平方法求解. 当一元二次方程缺少一次项时, 考虑使用直接开平方法求解.解:( 1) x 2 2 x2∴x 1 2,x 22;2 281(2)16x 2 81,x 21681 9 x 16 4∴9 9 ∴ x1,x 2.44例 2. 解下列方程 :22(1) x 3 2 9 0; (2)12 2 x 2 9 0.分析:观察到两个方程的特点 ,都可以化为 ax b 2 c ( c ≥0)的形式 ,所有选择用直接开 平方法求解 . 解:( 1) x 3 2 9 x 3 3∴ x 3 3 或 x 3 322)12 x 2 2 9293x 2 2 192 34 ∴ x 2 3 342 33∴ x 2 或 x 2 2233∴x 1 2 , x 2 2 1 2 2习题 2. 若 x 2 y 2 12 4,则 x 2 y 2___________________习题 1. 下列方程中 ,不能用直接开平方法求解的是A ) x 2 3 0B ) x 1 240C ) x 22 02D ) x 1 222习题 3. 若a,b为方程x2 4 x 1 1的两根,且a b,则 a b(A5 (B)4 (C)1(D)3)习题4. 解下列方程:(1)2x 8 2 16 ;(2) 29 3x 2 64.习题 5. 解下列方程:1)4x 1 2 9 0 ;习题 6. 对于实数p,q ,我们用符号min p,q 表示p,q两数中较小的数,如min 1,2 1.(1)min 2 , 3 _____________ ;(2)若min x 1 2, x2 1,则x ______________.习题7. 已知直角三角形的两边长x, y满足x2 16 y2 9 0 ,求这个直角三角形第三边的长.(注意分类讨论第三边的长)、因式分解法 因式分解法解一元二次方程的一般步骤是 : (1)移项 把方程的右边化为 0;(2)化积 将方程的左边分解为两个一次因式的乘积 ; (3)转化 令每个因式等于 0, 得到两个一元一次方程 ;(4)求解 解这两个一元一次方程 , 得到一元二次方程的两个解 例 1. 用因式分解法解方程 : x 2 3x . 解:x 2 3x 0 x x 3 0 ∴ x 0 或 x 3 0∴x 1 0,x 2 3.解 : x 1 x 1 2x 0∴x 1 1, x 2 1.例 3. 解方程 :3x 2 12x 12. 解:3x 2 12x 12 0 3 x 2 4x 4 0 3 x 2 2 0∴x 1 x 2 2.例 4. 解方程 :x 2 x 3x 3. 解:x 2 x 3x 3 0∴x 11,x 2 3.因式分解法解高次方程 例 5. 解方程 : x 2 1 2 3 x 2 1 0. 解: x 2 1 x 2 1 3 0例 2. 用因式分解法解方程 2: x 1 22x x 1 0.x2 1 x 2 4 0x 1 x 1 x 2 x 2 0∴ x 1 0 或x 1 0或x 2 0 或x 2 0∴x11, x2 1,x32, x4 2.例 6. 解方程: x2 3 2 4 x2 3 0.解: x2 3 x2 3 4 022x2 3 x2 1 0x2 3 x 1 x 1 0∵ x2 3 0∴ x 1 x 1 0∴ x 1 0 或x 1 0∴x1 1,x2 1.用十字相乘法分解因式解方程对于一元二次方程ax2 bx c 0 a 0 , 当b2 4ac ≥0 且的值为完全平方数时可以用十字相乘法分解因式解方程.例7. 解方程:x2 5x 6 0.分析: 5 2 4 6 25 24 1,其结果为完全平方数,可以使用十字相乘法分解因式解: x 2 x 3 0∴ x 2 0 或x 3 0∴ x1 2,x2 3.例 8. 解方程 :2x 2 7x 3 0. 分析 : 72 4 2 3 49 24 25, 其结果为完全平方数 , 可以使用十字相乘法分解因式.解 : 2x 1 x 3 0 ∴ 2x 1 0 或 x 3 0例 9. 设方程 2013x 2 2014 2012x 1 0的较大根为 a ,方程 x 2 2011x 2012 0 的较 小根为 b ,求 a b 的值 .2 解 : 2013x 22014 2012x 1 0 22013x 22013 1 2013 1 x 1 0 2 2 220132x 2 20132 x x 1 02 20132x x 1 x 1 0 x 1 20132 x 1 0 ∴ x 1 0 或 20132 x 1 01∴ x11,x 2 21220132∵ a 是该方程的较大根 ∴ a 12x 2 2011x 2012 0 x 1 x 2012 0 ∴ x 1 0 或 x 2012 0 ∴ x 1 1, x 2 2012 ∵ b 是该方程的较小根 ∴ b 2012∴ a b 1 2012 2013.1∴x 1 2 ,x 23.习题 1. 方程x2 2x的根是___________ .习题 2. 方程x x 2 x 2 0 的根是 ________________ .习题 3. 方程x2 4x 4 0 的解是______________ .习题 4. 方程x 2 x 3 x 2 的解是 _________________习题 5. 如果x 2 x 1 x 1 ,那么x 的值为(A)2 或1 (B)0或1(C)2(D)1习题 6. 方程x x 2 x 的根是_________ .习题7. 已知等腰三角形的腰和底的长分别是一元二次方程x 2 6x 的周长为_________ .习题8. 解下列方程:(1)3x x 2 2 2 x ;(2)x2 3 2 x 1 ;22 (3)x 2 4x 4 3 2x ;2(4)2x2 4x 2 .0的根,则该三角形习题9. 解下列方程:22)x 2 5x 4 0 .2习题 10. 解方程 : 2x 1 2 2 2x 1 1 0 .、配方法解用配方法解一元二次方程 ax 2 bx c 0 a 0 共分六步 :一移、二化、三配、四开、五转、 六解 .1)一移 把常数项移到方程的右边 ,注意变号 ;ax 2 bx c2)二化 在方程的左右两边同时除以二次项系数a ,化二次项系数为 1;x 2 b x c aa3)三配 即配方 ,把方程的左边配成完全平方的形式 ,需要在方程的左右两边同时加上次项系数一半的平方 ;说明 :由上面配方的结果可以确定一元二次方程有实数根的条件和求根公式bx abc 2a a2ab 2 4ac4a 2(4)四开直接开平方 ; b b 24acx(注意 2a2a(5)五转 把第( 4)步得到的bb 2 4acbx 或x2a 2a2a(6)解 解这两个一元一次方程2:当b 2 4ac ≥ 0 时方程有实数根)元一次方程 ;b b 2 4ac 2ab b 2 4ac2ax 12b a2b 2 4ac2a,x 2,得到一元二次方程的两个解22一元二次方程 ax 2 bx c 0 a 0 有实数根的条件是b 2 4ac ≥0, 求根公式为b b 2 4acx . 2a例 1. 用配方法解方程 :x 2 4x 1 0 . 解:x 2 4x 1 2 x 24x 4 1 4 2x 2 5 x 2 5∴ x 2 5 或 x 2 5 ∴ x 1 2 5, x 2 2 5 . 例 2. 解方程 :3x 2 2x 3 0 .分析:按照用配方法解一元二次方程的一般步骤 ,在移项之后 , 要化二次项系数为“ 1 解:3x 2 2x 3x2 2x 1 322 1 1 x 2x139 921210 x3 91 10x331 10 1 10∴x 或 x3 3 3 3 1 10 1 10∴ x 1 ,x 21 3 323 3 例 3. 用配方法解关于 x 的方程 :22x px q 0 ( p4q ≥ 0) .解:x 2 px q 222p p x px q44 x p p 2 4q x 2 4p p 2 4qx pp 2 3 4q ,x p p 2 4qx2 2 ,x 2 2 p 2 4q ≥022p p 4q p p 4q∴ x12,x22说明:p 2 4q ≥0 既是二次根式 p 2 4q 有意义的条件 ,也是一元二次方程 x 2 px q 0有实数根的前提 . 因此把 p 2 4q 叫做一元二次方程 x 2 px q 0 的根的判别式 . 习题 1. 用配方法解方程 x 2 4x 1 0,配方后的方程是【 】22(A ) x 2 2 3(B ) x 2 2 3 22(C ) x 2 2 5(D ) x 2 2 5习题 2. 若方程 x 2 8x m 0 可以通过配方写成 x n 2 6 的形式 ,那么 x 2 8x m 5 可以配成2(A ) x n 5 2 12( B ) x n 2 12( D ) x n 2 1122) 3x 2 6x 1 0;2 4) 4x 212x 1 0 .2(C ) x n 5 2 11 习题 3. 用配方法解方程 (1) x 2 x 1 0; 3 x 2 5x 6 0;四、公式法元二次方程的求根公式b b 2 4ac x2a例 1. 证明一元二次方程的求根公式 分析 :用配方法可以证明一元二次方程的求根公式bb2 4ac( b 2 4ac ≥0).2a注意:当b 2 4 ac ≥ 0时,一元二次方程 ax 2 bx c 0(a 0 )有实数根 ;当b 2 4ac 0时, 二次根式 b 2 4ac 无意义 ,方程无实数根 .公式法解一元二次方程的一般步骤 : 用公式法解一元二次方程的一般步骤是 : (1)把一元二次方程化为一般形式 ; (2)确定 a,b,c 的值, 包括符号 ;(3)当 b 2 4ac ≥0时,把 a,b,c 的值代入求根公式求解 ;当b 2 4ac 0时,方程无实数根 .证明 :ax 2 bx c 0ax 2 bx c a b 2 4ba 22 b x a b x a b 2 b 2a c b 2 a 4a 2 x 2a 4ac4a2b b 2 4ac2a ∴ x b 2ab 2 4ac 或x 2a b b 2 4ac2a2ab b 2 4ac ∴ x 1 2a , x 2b b 2 4ac2a元二次方程 ax 2bx c 0 ( a 0 )的求根公式为 :当 b 2 4ac 0 时 ,元二次方程无实数根2b4ac ≥ 0)即一元 次方程 ax 2 bx c 0( a 0)的根为例 1. 用公式法解方程 :2x 3 x 6 0 . 分析:用公式法解一元二次方程时要先将方程化为一般形式 ,并正确确定 a,b,c 的值 ,包括符 号.解:a 2,b 1,c 6 ∴ b 2 4ac 12 4 2 6 494 173∴x 1,x 242例 2. 解下列方程 :解:( 1) x 2 4x 2 0 22b 24ac 42 4 2 242 6,x 2 2 6 ;2) 4x 2 12x 9 022b 24ac 122 4 4 9 144 144 03 ax 2bx c 0 ( a 0 )有两个相等的实数根 .x 1 0.4 322 2.次方程获得的启示a 0 ),可以用 a,b,c 的值确定方程解的情况以及方12 0 12 0 ∴x 83∴x 1 x 21 22说明:当b 2 4ac 0 时,一元二次方程对于一元二次方程 ax 2 bx c 01 49 1 7 ∴x 1) x 2 4x 2;22) 4x 2 4x 10 1 8x .4 24 4 2 6 ∴x26b 2 4ac 有意义的条件即为方程有解的条件:当程的解,并且求根公式里面的二次根式∴x 1 3,x 2 4.b 2 4ac ≥0 时,二次根式 b 2 4ac ,一元二次方程有实数根 ;当b 2 4ac 0时,二次根式 b 2 4ac 无意义 ,一元二次方程无实数根 .(1)当 b 2 4ac 0 时,一元二次方程有两个不相等的实数根 ;(2)当 b 2 4ac 0 时,方程有两个相等的实数根 .把 b 2 4ac 叫做一元二次方程根的判别式 ,用 “ ”表示 ,所以 b 2 4ac .在不解方程的前提下 ,可以由 的符号确定一元二次方程根的情况 . 习题 1. 解方程 :1)求 a 2 4a 2018的值 ;1 2a a2 a 2 2a 1 12a 1 a a a1) 2x 2 x 6 ;22) 4x 2 3x 1 x 2 ;3) x 2 2x 2 0 ;4) 2x x 2 1 .习题 2. 已知 a 是一元二次方程 x 2 4x 1 0 的两个实数根中较小的根2)化简并求值五、换元法解某些高次方程或具有一定结构特点的方程时 ,我们可以通过整体换元的方法 ,把方程转 化为一元二次方程进行求解 ,从而达到降次或变复杂为简单的目的 .换元法的实质是换元 ,关键是构造元和设元 ,体现的是转化化归思想 . 用换元法解某些高次方程 例 1. 解方程 :x 4 2x 2 3 0.分析 : 这是一元四次方程 , 可设 x 2 y (注意 : y ≥0), 这样通过换元就把原方程转化为关于 y 的一元二次方程 . 解:设 x 2 y ,则有 : y ≥0 ∴ y 2 2y 3 0∴ y 1 1, y 2 3∵ y ≥0∴ y 3 ( y 1 舍去) ∴ x 2 3用换元法解具有一定结构特点的方程 例 2. 解方程 : x 2 2 3 x 2 2 0.分析 : 注意到该方程中整体 x 2 出现了两次 , 可整体设元 , 从结构上简化方程 解:设 x 2 t ,则有 :t 2 3t 2 0∴t 1 1,t 2 2∴ x 2 1 或 x 2 2∴x 13,x 2 3.∴x 1 3,x 2 4.例 3. 解方程 : x 2 x 8 x 2 x 12 0.分析 : 本题中的方程若展开整理 , 则得到的是一个高次方程 , 但方程本身具有非常明显的结 构特点 , 可整体换元 , 不用展开即可得到一个简洁的一元二次方程 . 解:设 x 2 x y ,则有 : y 2 8y 12 0 y 2 y 6 0∴y 2 0 或y 6 0 ∴y 1 2,y 2 6∴ x 2 x 2 或 x 2 x 6解方程 x 2 x 2得: x 1 1,x 2 2 ; 解方程 x 2 x 6 得: x 1 2,x 2 3综上 ,原方程的解为 x 1 1,x 2 2,x 3 2,x 4 3.原方程转化为关于 t 的整式方程 , 且为一元二次方程 . x 1 2 解:设 x 21 t ,则有 : t 2 1 x 2t 整理得 :t 2 t 2 0∴t 1 1,t 2 2x 1 2由 2 1得: x 2x 1 0 ,此时方程无解 ;x x 1 1由 2 2得:2x 2x 10,解之得 :x 1 ,x 21.x 221综上 ,原方程的解为 x 1 1,x 2 1.1 2 211 例 5. 解方程 :x 22 x 0.x 2x2分析 : 设 x 1 y , 则 x 2 12x 1 2 y 2 2.xx 2x2 x 1 2x 2 例 4. 解方程 : x 1 2x2x x 1 x2分析 : 方程中 x 1 与 x x 11.x 2x 1x1互为倒数 , 若设 x 1 t , 则x11 1, 经过这样的换元 , 最后可把 t1或 x 2 1x2x211解:x 22 x 0 x 2x1 21 x x2 0 xx设 x 1 y ,则有 : y y 2 0 x y 1 y 2 0 ∴ y 1 0 或 y 2 0 ∴ y 1 1, y 2 211 ∴x 1 或 x 2xx 12 由 x 1得: x 2 x 1 0,此时方程无解 ; x 12 由 x 2得: x 2 2x 1 0,解之得 :x 1 x 2 1. x综上 ,原方程的解为 x 1 x 2 1.211 1本题变式 : 已知实数 x 满足 x 212x 10,那么 x1的值是【 】 x 2xx(A )1或 2(B ) 1或 2 (C )1 (D ) 2例 6. 已知 x 2 y 2 x 2 y 2 1 12 ,求 x 2 y 2 的值 .分析:整体设元 :设 x 2 y 2 m ,则 m ≥ 0,据此注意根的取舍 . 解:设 x 2 y 2 m ,则有 :m ≥0 ∴m m 1 12 整理得 :m 2 m 12 0 解之得 :m 1 3,m 2 4∵ m ≥ 0 ∴ m 3 22∴ x 2 y 2 的值为 3.习题 1. 解下列方程 :22习题 2. 解方程 : x 2 x 22 1.x 2 x习题 3. 阅读下面的材料 ,回答问题 :解方程 x 4 5x 2 4 0 ,这是一个一元四次方程 ,根据该方程的特点 ,它的解法通常是 : 设 x 2 y ,则原方程变形为 : y 2 5y 4 0 ①解之得 :y 1 1, y 2 4当 y 1时, x 2 1,解之得 : x 1 ;2当 y 4时,x 2 4,解之得 : x 2.综上 ,原方程的解为 : x 1 1, x 2 1, x 3 2, x 4 2 .(1)在由原方程得到方程 ①的过程中 ,利用 ________ 法达到 ________ 的目的 ,体现了数学的转化思想 ;(2)解方程 : x 2 x 2 4 x 2 x 12 0 .1) x 2 x 2 x 2 x 6 ;22) x 1 5 x 1 6 0 .特殊一元二次方程的解法举例某些方程的解需采用特殊的处理和方法,下面列举几例.例 1. 解方程: x2 5x 1 x2 5x 7 7.分析:若把该方程展开并整理,会得到一个一元四次方程, 这不是我们想看到的结果. 可使用换元法解该方程: 设x2 5x 1 t , 这样就能把原方程转化为关于t 的一元二次方程解:设x2 5x 1 t ,则原方程可转化为:t t 6 7∴ t 2 6t 7 0t 1 t 7 0∴ t 1 0或t 7 0∴ t1 1,t 27∴ x2 5x 1 1 或x2 5x 1 7由x2 5x 1 1得:x2 5x 0,解之得:x1 0,x25;由x2 5x 1 7 得:x2 5x 8 0 ,此时方程无解.综上,原方程的解为x1 0,x2 5.例 2. 解方程:x 2 x 2 0.解法1:当x ≥0,原方程可化为: x2 x 2 0,解之得:x 1(x 2舍去);当x 0 时,原方程可化为:x2 x 2 0,解之得:x 1(x 2 舍去).综上所述,原方程的解为x1 1,x2 1.解法2:原方程可化为: x 2 x 2 0∴ x 1 x 2 0∵ x 2 0∴ x 1 0, x 1∴x1 1, x2 1∴原方程的解为x1 1, x2 1.解法3:(图象法)原方程可化为: x 2 2 x设 f (x) x2 2,g(x) x ,在同一平面直角坐标系中画出二者的图象如图所示∵两个函数的图象有两个交点1,1 和1,1∴方程x2 2 x 有两个实数根,且根为x1 1, x2 1 ∴原方程的解为x11, x2 1 .习题 1. 参照例 2 的解法,解方程: x2 6x x 3 3 0 .例 3. 解方程: x 1 x 2 x 3 x 4 48 .解: x 1 x 4 x 2 x 3 48∴ x 2 5x 4 x 2 5x 6 48设x2 5x 5 t ,则有: t 1 t 1 48∴ t2 1 48,t 2 49∴ t1 7, t 2 7第 21 页 5x 5 7时,解之得: x 15 33,x 2 5 33 ; 22当 x 2 5x 5 7 时,此时方程无解 . 综上所述 ,原方程的解为 x 1 5 233,x 2 5 233习题 2. 方程 x 2 2 x 4 27 0的所有根的和为 ________________ 1 1 1 习题 3. 已知实数 x 满足 x 2 2 x 0 ,那么 x 的值是 x 2x x (A )1或 2 (B ) 1或 2(C )1 【】 D ) 2。
一元二次方程的解法
一元二次方程的解法一元二次方程是形如ax^2 + bx + c = 0的方程,其中a、b和c分别代表不为零的实数常数。
解一元二次方程的方法有多种,包括因式分解法、配方法、求根公式法等。
下面将逐一介绍这些解法。
一、因式分解法当一元二次方程的因式分解形式为(x + m)(x + n) = 0时,方程的解即为x = -m和x = -n。
通过因式分解法求解一元二次方程的具体步骤如下:1. 将方程移项,将其化为形如ax^2 + bx + c = 0的标准形式。
2. 如果方程可以因式分解为两个一次式的乘积,即可直接得到方程的解。
3. 如果方程无法因式分解,可以通过配方法或求根公式等其他方法求解。
二、配方法对于一元二次方程ax^2 + bx + c = 0,通过配方法将其变形为(a'x + p)(b'x + q) = 0的形式,从而得到方程的解。
具体步骤如下:1. 将方程移项,将其化为形如ax^2 + bx + c = 0的标准形式。
2. 根据配方法的原则,首先将方程中二次项的系数a拆分为两个数m和n,使得a = m * n,并保证m + n等于一次项的系数b。
3. 将方程进行变形,得到(ax^2 + mx + nx + c = 0)。
4. 对方程进行因式分组,将前两项和后两项分组并提取公因式,得到((ax^2 + mx) + (nx + c) = 0)。
5. 分别对括号中的项进行因式分解,得到(x(a + m) + (n + c) = 0)。
6. 化简方程,继续合并同类项,得到(x(a + m) + (n + c) = 0)。
7. 根据方程(x(a + m) + (n + c) = 0),可得到方程的解。
三、求根公式法求根公式法是一种比较常用的解一元二次方程的方法,通过求解一元二次方程ax^2 + bx + c = 0来得到方程的解。
求根公式法的具体步骤如下:1. 将方程移项,将其化为形如ax^2 + bx + c = 0的标准形式。
一元二次方程的解法总结
一元二次方程的解法(直接开平方法、配方法、公式法和分解法)一元二次方程定义:只含有一个未知数,并且未知数的最高次数为2的整式方程叫做一元二次方程。
一般形式:ax²+bx+c=0(a,b,c为常数,x为未知数,且a≠0)。
顶点式:y=a(x—h)²+k(a≠0,a、h、k为常数)交点式:y=a(x—x₁)(x—x₂)(a≠0)[有交点A(x₁,0)和B(x₂,0)的抛物线,即b²—4ac≥0] .直接开平方法:直接开平方法就是用直接开平方求解一元二次方程的方法。
用直接开平方法解形如(x-m)²=n(n≥0)的方程,其解为x=m±配方法:1。
将此一元二次方程化为ax²+bx+c=0的形式(此一元二次方程满足有实根)2。
将二次项系数化为13。
将常数项移到等号右侧4。
等号左右两边同时加上一次项系数一半的平方5。
将等号左边的代数式写成完全平方形式6。
左右同时开平方7.整理即可得到原方程的根公式法:1。
化方程为一般式:ax²+bx+c=0 (a≠0)2。
确定判别式,计算Δ(=b²—4ac);3。
若Δ>0,该方程在实数域内有两个不相等的实数根:x=若Δ=0,该方程在实数域内有两个相等的实数根:x₁=x₂=若Δ〈0,该方程在实数域内无实数根因式分解法:因式分解法又分“提公因式法”;而“公式法”(又分“平方差公式”和“完全平方公式”两种),另外还有“十字相乘法”,因式分解法是通过将方程左边因式分解所得,因式分解的内容在八年级上学期学完。
用因式分解法解一元二次方程的步骤1. 将方程右边化为0;2. 将方程左边分解为两个一次式的积;3. 令这两个一次式分别为0,得到两个一元一次方程;4. 解这两个一元一次方程,它们的解就是原方程的解。
用待定系数法求二次函数的解析式(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax²+bx+c(a≠0).(2)当题给条件为已知图象的顶点坐标或对称轴或极大(小)值时,可设解析式为顶点式:y=a(x—h)²+k(a≠0)。
解一元二次方程的方法总结
解一元二次方程的方法总结一元二次方程是高中数学中的重要知识点,在各种数学问题中都有广泛的应用。
解一元二次方程的方法有多种,本文将对常见的几种方法进行总结和分析。
一、因式分解法对于形如ax^2+bx+c=0的一元二次方程,如果可以将其因式分解为(a1x+m)(a2x+n)=0的形式,那么方程就可以简化为两个一次方程相乘的形式,进而求得方程的解。
这种方法要求我们能够巧妙地分解方程,并利用因子之间的关系进行求解。
例如,对于方程x^2+5x+6=0,我们可以将其分解为(x+2)(x+3)=0,进而得到x=-2和x=-3两个解。
二、配方法当方程无法直接因式分解时,我们可以考虑使用配方法。
配方法的关键是通过加减恰当的常数,将方程转化为一个完全平方的形式。
具体而言,对于形如ax^2+bx+c=0的方程,我们可以通过添加或减去b^2/4a,将方程的左侧转化为(a*x^2+b*x+b^2/4a)的形式,从而可以化简为(a*x+b/2a)^2=0的形式,进而求得方程的解。
例如,对于方程x^2+4x+4=0,我们可以通过配方法将其转化为(x+2)^2=0的形式,进而得到x=-2的解。
三、求根公式求根公式是解一元二次方程的基本方法之一。
对于一元二次方程ax^2+bx+c=0,其中a≠0,它的解可以由以下公式得到:x = (-b ± √(b^2-4ac))/(2a)这里的±表示两个解,即正负两个可能的值。
通过代入方程的系数a、b和c,我们可以求得方程的根。
例如,对于方程x^2+3x+2=0,通过求根公式,我们可以得到x=-1和x=-2两个解。
四、图像法一元二次方程的解还可以通过图像法得到。
我们可以将方程表示为y=ax^2+bx+c的二次曲线方程,进而绘制出对应的抛物线图像。
方程的解即为抛物线与x轴交点的横坐标。
通过观察抛物线的开口方向、顶点位置以及与x轴的交点,我们可以直观地得到方程的解。
综上所述,解一元二次方程的方法包括因式分解法、配方法、求根公式和图像法。
一元二次方程解法总结
一元二次方程解法总结
嘿,朋友们!今天咱就来好好唠唠一元二次方程的解法总结。
先来说说直接开平方法,就好像是打开一扇神秘的门一样直接!比如说方程x²=4,那不是一下就能知道 x 等于正负 2 嘛,简单粗暴!
然后就是配方法啦,这就像是给方程精心打扮一番。
比如方程
x²+4x=5,我们就把左边加上 4 变成完全平方,这不就好解了!
还有因式分解法,哇塞,这可真是个神奇的办法!比如方程x²-
5x+6=0,可以分解成(x-2)(x-3)=0,那马上就知道 x 等于 2 或者 3 呀。
再讲讲公式法,它就像一把万能钥匙!不管啥样的一元二次方程都能试试。
比如方程2x²+3x-1=0,直接套公式,总能求出答案。
我跟你们说,这几种解法就像是我们手里的利器,对付一元二次方程那叫一个得心应手!想象一下,方程就像一个小怪兽,我们用这些方法一下就把它打败了,多牛啊!你说是不是?咱可不能被那些方程给难住了呀!
一元二次方程的解法真的很重要啊,学会了它们,我们就能在数学的海洋里畅游无阻啦!我们要把这些解法牢牢掌握,在遇到问题时能迅速找出最适合的方法来解决,别犹豫,别害怕,勇敢地去挑战那些一元二次方程吧!
这就是我对一元二次方程解法的总结啦,朋友们可得好好记住呀!。
一元二次方程解法归纳总结
一元二次方程解法归纳总结一元二次方程是数学中常见的一种方程形式,它的一般形式为:ax^2 + bx + c = 0,其中a、b、c为已知实数,且a ≠ 0。
解一元二次方程的过程基于求根公式,通过代入已知数值并进行计算,可以得到方程的解。
本文将对一元二次方程的解法进行归纳总结,并以示例来说明每种解法的具体步骤。
一、因式分解法当一元二次方程可以被因式分解时,可以利用因式分解的性质来解方程。
具体步骤如下:1. 将方程的左侧化简为一个完全平方的形式;2. 设方程两边分别等于0,并利用因式分解的性质,将方程的左侧分解为两个因子的乘积;3. 令每个因子分别等于0,解得每个因子的解,即得到方程的解。
例如,考虑方程:x^2 - 5x + 6 = 01. 将方程的左侧化简为一个完全平方的形式:(x - 2)(x - 3) = 02. 令每个因子分别等于0:x - 2 = 0 或者 x - 3 = 03. 解得x的值:x = 2 或者 x = 3所以,方程的解为x = 2或者x = 3。
二、配方法当一元二次方程无法通过因式分解来解时,可以使用配方法(也称为“加法配平法”)来解方程。
具体步骤如下:1. 将方程化为一个可完全平方的形式,即将方程的左侧表示为完全平方的平方差形式;2. 根据配方法的原则,将方程的右侧与左侧进行配平,使得方程两侧相等;3. 对方程两侧进行化简,得到一个可求解的简化方程;4. 解简化方程,即可得到原方程的解。
例如,考虑方程:x^2 - 6x + 9 = 41. 将方程化为一个完全平方的形式:(x - 3)^2 = 42. 配方法的原则是:对方程的右侧加上一个适当的数,使得方程两侧相等。
在本例中,我们需要加上5。
所以,将方程两侧加上5:(x - 3)^2 + 5 = 4 + 53. 化简得到简化方程:(x - 3)^2 + 5 = 94. 解简化方程:(x - 3)^2 = 4由于平方的结果是4,所以x - 3 = ±2解得x的值:x = 3 ± 2所以,方程的解为x = 1或者x = 5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程的解法总结
:
y=a(x-x₁)(x-x₂)
(a≠0)
[有交点A(x₁,0)和 B(x₂,0)的抛物线,即b-
4ac≥0] 、直接开平方法:直接开平方法就是用直接开平方求解一元二次方程的方法。
用直接开平方法解形如(x-m)=n(n≥0)的方程,其解为x=m 配方法:1、将此一元二次方程化为ax+bx+c=0的形式(此一元二次方程满足有实根)
2、将二次项系数化为1
3、将常数项移到等号右侧
4、等号左右两边同时加上一次项系数一半的平方
5、将等号左边的代数式写成完全平方形式
6、左右同时开平方
7、整理即可得到原方程的根公式法:1、化方程为一般式:ax+bx+c=0 (a≠0)2、确定判别式,计算Δ(=b-4ac);3、若Δ>0,该方程在实数域内有两个不相等的实数根:x=若Δ=0,该方程在实数域内有两个相等的实数根:x₁=x₂=若Δ<0,该方程在实数域内无实数根因式分解法:因式分解法又分“提公因式法”;而“公式法”(又分“平方差公式”和“完全平方公式”两种),另外还有“字相乘法”,因式分解法是通过将方程左边
因式分解所得,因式分解的内容在八年级上学期学完。
用因式分解法解一元二次方程的步骤1、将方程右边化为0;2、将方程左边分解为两个一次式的积;3、令这两个一次式分别为0,得到两个一元一次方程;4、解这两个一元一次方程,它们的解就是原方程的解、用待定系数法求二次函数的解析式(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax+bx+c(a≠0)。
(2)当题给条件为已知图象的顶点坐标或对称轴或极大(小)值时,可设解析式为顶点式:
y=a(x-h)+k(a≠0)。
(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x₁)(x-x₂)(a≠0)。
增减性当a>0且y在对称轴右侧时,y随x增大而增大,y在对称轴左侧则相反,同增同减。
当a<0且y在对称轴右侧时,y随x增大而减小,y在对称轴左侧则相反,大小小大。
常用公式总结:;
一、根据判别式,讨论一元二次方程的根。
例1:已知关于的方程(1)有两个不相等的实数根,且关于的方程(2)没有实数根,问取什么整数时,方程(1)有整数解?
分析:在同时满足方程(1),(2)条件的的取值范围中筛选符合条件的的整数值。
解:∵方程(1)有两个不相等的实数根,∴,解得;∵方程(2)没有实数根∴ ,解得;于是,同时满足方程(1),(2)条件的的取值范围是其中,的整数值有
或当时,方程(1)为,无整数根;当时,方程(1)为,有整数根。
解得:
所以,使方程(1)有整数根的的整数值是。
说明:熟悉一元二次方程实数根存在条件是解答此题的基础,正确确定的取值范围,并依靠熟练的解不等式的基本技能和一定的逻辑推理,从而筛选出,这也正是解答本题的基本技巧。
二、判别一元二次方程两根的符号。
例1:不解方程,判别方程两根的符号。
分析:对于来说,往往二次项系数,一次项系数,常数项皆为已知,可据此求出根的判别式△,但△只能用于判定根的存在与否,若判定根的正负,则需要确定或的正负情况。
因此解答此题的关键是:既要求出判别式的值,又要确定或的正负情况。
解:∵,∴△=7)=65>0 ∴方程有两个不相等的实数根。
设方程的两个根为,∵<0 ∴原方程有两个异号的实数根。
说明:判别根的符号,需要把“根的判别式”和“根与系数的关系”结合起来进行确定,另外由于本题中<0,所以可判定方程的根为一正一负;倘若>0,仍需考虑的正负,方可判别方程是两个正根还是两个负根。
三、已知一元二次方程的一个根,求出另一个根以及字母系数的值。
例2:已知方程的一个根为2,求另一个根及的值。
分析:此题通常有两种解法:一是根据方程根的定义,把代入原方程,先求出的值,再通过解方程办法求出另一个根;二是利用一元二次方程的根与系数的关系求出另一个根及的值。
解法一:把代入原方程,得:
即,解得当时,原方程均可化为:,解得:∴方程的另一个根为4,的值为3或1。
说明:比较起来,解法二应用了韦达定理,解答起来较为简单。
例3:已知方程有两个实数根,且两个根的平方和比两根的积大21,求的值。
分析:本题若利用转化的思想,将等量关系“两个根的平方和比两根的积大21”转化为关于的方程,即可求得的值。
解:∵方程有两个实数根,∴△,解得≤0
设方程两根为 ;则,∵ ∴ ∴ 整理得:
解得:
又∵,∴ 说明:当求出后,还需注意隐含条件,应舍去不合题意的。
四、运用判别式及根与系数的关系解题。
例5:已知、是关于的一元二次方程的两个非零实数根,问和能否同号?若能同号,请求出相应的的取值范围;若不能同号,请说明理由,解:因为关于的一元二次方程有两个非零实数根,∴则有∴ 又∵、是方程的两个实数根,所以由一元二次方程根与系数的关系,可得:
假设、同号,则有两种可能:
(1)(2)若,则有:
;即有:,解不等式组得∵时方程才有实树根,∴此种情况不成立。
若,则有:;即有:,解不等式组,得;又∵,∴当时,两根能同号说明:一元二次方程根与系数的关系深刻揭示了一元二次方程中根与系数的内在联系,是分析研究有关一元二次方程根的问题的重要工具,也是计算有关一元二次方程根的计算问题的重要工具。
知识的运用方法灵活多样,是设计考察创新能力试题的良好载体,在中考中与此有联系的试题出现频率很高,应是同学们重点练习的内容。
六、运用一元二次方程根的意义及根与系数的关系解题。
例:已知、是方程的两个实数根,求的值。
分析:本题可充分运用根的意义和根与系数的关系解题,应摒弃常规的求根后,再带入的方法,力求简解。
解法一:由于是方程的实数根,所以设,与相加,得:
)(变形目的是构造和)根据根与系数的关系,有:
,,得:
∴=0 解法二:由于、是方程的实数根,∴ ∴ 说明:既要熟悉问题的常规解法,也要随时想到特殊的简捷解法,是解题能力提高的重要标志,是努力的方向。
有关一元二次方程根的计算问题,当根是无理数时,运算将分繁琐,这时,如果方程的系数是有理数,利用根与系数的关系解题可起到化难为易、化繁为简的
作用。
这类问题在解法上灵活多变,式子的变形具有创造性,重在考查能力,多年来一直受到命题老师的青睐。
七、运用一元二次方程根的意义及判别式解题。
例8:已知两方程和至少有一个相同的实数根,求这两个方程的四个实数根的乘积。
分析:当设两方程的相同根为时,根据根的意义,可以构成关于和的二元方程组,得解后再由根与系数的关系求值。
解:设两方程的相同根为,根据根的意义,有和两式相减,得当时,,方程的判别式方程无实数解当时,有实数解
代入原方程,得,所以于是,两方程至少有一个相同的实数根,4个实数根的相乘积为说明:(1)本题的易错点为忽略对的讨论和判别式的作用,常常除了犯有默认的错误,甚至还会得出并不存在的解:
当时,,两方程相同,方程的另一根也相同,所以4个根的相乘积为:;(2)既然本题是讨论一元二次方程的实根问题,就应首先确定方程有实根的条件:且另外还应注意:求得的的值必须满足这两个不等式才有意义。
一、填空题:
1、如果关于的方程的两根之差为2,那么。
2、已知关于的一元二次方程两根互为倒数,则。
3、已知关于的方程的两根为,且,则。
4、已知是方程的两个根,那么:
;;。
5、已知关于的一元二次方程的两根为和,且,则;。
6、如果关于的一元二次方程的一个根是,那么另一个根是,的值为。
7、已知是的一根,则另一根为,的值为。
8、一个一元二次方程的两个根是和,那么这个一元二次方程为:。
二、求值题:
1、已知是方程的两个根,利用根与系数的关系,求的值。
2、已知是方程的两个根,利用根与系数的关系,求的值。
3、已知是方程的两个根,利用根与系数的关系,求的值。
4、已知两数的和等于6,这两数的积是4,求这两数。
5、已知关于x的方程的两根满足关系式,求的值及方程的两个根。
6、已知方程和有一个相同的根,求的值及这个相同的根。
三、能力提升题:
1、实数在什么范围取值时,方程有正的实数根?
2、已知关于的一元二次方程(1)求证:无论取什么实数值,这个方程总有两个不相等的实数根。
(2)若这个方程的两个实数根、满足,求的值。
3、若,关于的方程有两个相等的正的实数根,求的值。
4、是否存在实数,使关于的方程的两个实根,满足,如果存在,试求出所有满足条件的的值,如果不存在,请说明理由。
5、已知关于的一元二次方程()的两实数根为,若,求的值。
6、实数、分别满足方程和,求代数式的值。