陕西西安市历年中考数学试题

合集下载

中考数学试卷真题西安

中考数学试卷真题西安

中考数学试卷真题西安一、选择题1. 设函数 $f(x)=2x^2+2x+1$,则 $f(-\frac{1}{2})$ 的值为()A. $1$B. $-\frac{1}{4}$C. $2$D. $-\frac{1}{2}$2. 若已知等差数列 $\{a_n\}$ 的前 $n$ 项和为 $S_n=\frac{1}{5}n^2-2n+3$,则 $a_1$ 的值为()A. $-2$B. $-1$C. $1$D. $2$3. 在 $\vartriangle ABC$ 中,若 $\angle B=30^\circ$,$\angleC=45^\circ$,则 $\cos A=$()A. $\frac{\sqrt{3}-1}{2\sqrt{2}}$B. $\frac{\sqrt{2}-1}{2\sqrt{3}}$ C. $\frac{\sqrt{6}-\sqrt{2}}{4}$ D. $\frac{\sqrt{2}-\sqrt{6}}{4}$4. 下列关于正交投影的说法正确的是()A. 切除一半B. 不改变大小C. 化为交点D. 类似幕墙5. 将数列 $2$,$3$,$5$,$6$,$8$,$9$ 进行合并排序,得到新的数列为()A. $2$,$3$,$5$,$6$,$8$,$9$B. $9$,$8$,$6$,$5$,$3$,$2$C. $9$,$8$,$6$,$5$,$2$,$3$D. $2$,$3$,$5$,$8$,$9$,$6$二、填空题6. 已知数列 $\{a_n\}$ 是一个等差数列,如果它的公差 $d=-3$,首项 $a_1=8$,则 $a_7=$()7. 设数列 $\{a_n\}$ 的前 $n$ 项和可以表示为 $S_n=3n^2-5n+2$,则$a_{10}-a_5=$()题目仅为选取的数学试卷的一部分,请以实际试卷为准,另外附上参考答案。

题目及答案:1. A2. B3. D4. B5. C6. $-14$7. $90$。

2019-2020西安市数学中考试卷带答案

2019-2020西安市数学中考试卷带答案

2019-2020西安市数学中考试卷带答案一、选择题1.如图,已知a ∥b ,l 与a 、b 相交,若∠1=70°,则∠2的度数等于( )A .120°B .110°C .100°D .70° 2.如图A ,B ,C 是上的三个点,若,则等于( )A .50°B .80°C .100°D .130°3.如图,在热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,热气球C 的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点的距离是( )A .200米B .3C .3米D .10031)米4.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A .5{152x y x y =+=-B .5{1+52x y x y =+=C .5{2-5x y x y =+=D .-5{2+5x y x y ==5.已知11(1)11A x x ÷+=-+,则A =( ) A .21x x x -+ B .21x x - C .211x - D .x 2﹣16.菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形 7.如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,如果矩形OA′B′C′与矩形OABC 关于点O 位似,且矩形OA′B′C′的面积等于矩形OABC 面积的14,那么点B′的坐标是( )A .(-2,3)B .(2,-3)C .(3,-2)或(-2,3)D .(-2,3)或(2,-3)8.下面的几何体中,主视图为圆的是( )A .B .C .D .9.下列二次根式中,与3是同类二次根式的是( ) A .18B .13C 24D 0.310.下列计算正确的是( ) A .()3473=a ba b B .()232482--=--b a bab bC .32242⋅+⋅=a a a a aD .22(5)25-=-a a11.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( ) A .1201508x x =- B .1201508x x=+ C .1201508x x=- D .1201508x x =+ 12.某商店销售富硒农产品,今年1月开始盈利,2月份盈利240000元,4月份盈利290400元,且从2月份到4月份,每月盈利的平均增长率相同,则每月盈利的平均增长率是( ) A .8%B .9%C .10%D .11%二、填空题13.色盲是伴X 染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表: 抽取的体检表数n 501002004005008001000120015002000色盲患者的频数m3 7 13 29 37 55 69 85 105 138色盲患者的频率m/n0.0600.0700.0650.0730.0740.0690.0690.0710.0700.069根据表中数据,估计在男性中,男性患色盲的概率为______(结果精确到0.01).14.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为______.15.如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,AC与OB交于点D (8,4),反比例函数y=的图象经过点D.若将菱形OABC向左平移n个单位,使点C落在该反比例函数图象上,则n的值为___.16.已知扇形AOB的半径为4cm,圆心角∠AOB的度数为90°,若将此扇形围成一个圆锥的侧面,则围成的圆锥的底面半径为________cm17.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用2,a a次;甲、丙两车合运相同次数,运完这批货物,甲车共运180吨;乙、丙两车合运相同次数,运完这批货物乙车共运270吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为___________元.(按每吨运费20元计算)18.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是_____.19.已知M、N两点关于y轴对称,且点M在双曲线12yx上,点N在直线y=﹣x+3上,设点M坐标为(a,b),则y=﹣abx2+(a+b)x的顶点坐标为.20.如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=4,BC=10,CD=6,则tanC=________.三、解答题21.光明中学全体学生900人参加社会实践活动,从中随机抽取50人的社会实践活动成绩制成如图所示的条形统计图,结合图中所给信息解答下列问题:()1填写下表:中位数众数 随机抽取的50人的社会实践活动成绩(单位:分)()2估计光明中学全体学生社会实践活动成绩的总分.22.如图,Rt △ABC 中,∠C=90°,AD 平分∠CAB ,DE ⊥AB 于E ,若AC=6,BC=8,CD=3.(1)求DE 的长; (2)求△ADB 的面积.23.已知:如图,在ABC 中,AB AC =,AD BC ⊥,AN 为ABC 外角CAM ∠的平分线,CE AN ⊥.(1)求证:四边形ADCE 为矩形;(2)当AD 与BC 满足什么数量关系时,四边形ADCE 是正方形?并给予证明24.小慧和小聪沿图①中的景区公路游览.小慧乘坐车速为30 km/h的电动汽车,早上7:00从宾馆出发,游玩后中午12:00回到宾馆.小聪骑车从飞瀑出发前往宾馆,速度为20 km/h,途中遇见小慧时,小慧恰好游完一景点后乘车前往下一景点.上午10:00小聪到达宾馆.图②中的图象分别表示两人离宾馆的路程s(km)与时间t(h)的函数关系.试结合图中信息回答:(1)小聪上午几点钟从飞瀑出发?(2)试求线段AB,GH的交点B的坐标,并说明它的实际意义;(3)如果小聪到达宾馆后,立即以30 km/h的速度按原路返回,那么返回途中他几点钟遇见小慧?25.某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元,调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元(1)若生产第五档次的蛋糕,该档次蛋糕每件利润为多少元?(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1024元,该烘焙店生产的是第几档次的产品?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【详解】如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∴∠2=∠3=110°,故选B.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.2.D解析:D【解析】试题分析:根据圆周的度数为360°,可知优弧AC的度数为360°-100°=260°,然后根据同弧所对的圆周角等于它所对的圆心角的一半,可求得∠B=130°.故选D考点:圆周角定理3.D解析:D【解析】【分析】在热气球C处测得地面B点的俯角分别为45°,BD=CD=100米,再在Rt△ACD中求出AD的长,据此即可求出AB的长.【详解】∵在热气球C处测得地面B点的俯角分别为45°,∴BD=CD=100米,∵在热气球C处测得地面A点的俯角分别为30°,∴AC=2×100=200米,∴AD223200100∴AB=AD+BD=3100(3故选D.【点睛】本题考查了解直角三角形的应用--仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.4.A解析:A【解析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】设索长为x尺,竿子长为y尺,根据题意得:515 2x yx y=+⎧⎪⎨=-⎪⎩.故选A.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.5.B解析:B【解析】【分析】由题意可知A=111)11x x++-(,再将括号中两项通分并利用同分母分式的减法法则计算,再用分式的乘法法则计算即可得到结果.【详解】解:A=11111x x++-=111xx x+-=21xx-故选B.【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.6.B解析:B【解析】【分析】根据菱形的性质逐项进行判断即可得答案.【详解】菱形的四条边相等,菱形是轴对称图形,也是中心对称图形,菱形对角线垂直但不一定相等,故选B.【点睛】本题考查了菱形的性质,解题的关键是熟练掌握菱形的性质.7.D解析:D【解析】如果两个图形不仅是相似图形,而且每组对应点的连线交于一点,对应边互相平行或在一条直线上,那么这两个图形叫做位似图形。

【高频真题解析】2022年西安市长安区中考数学历年真题汇总 卷(Ⅲ)(含答案解析)

【高频真题解析】2022年西安市长安区中考数学历年真题汇总 卷(Ⅲ)(含答案解析)

2022年西安市长安区中考数学历年真题汇总 卷(Ⅲ) 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、下列计算正确的是( ) A .223m m m += B .22x x -= C .224x x x += D .523n n n -= 2、在2,1,0,-1这四个数中,比0小的数是( ) A .2 B .0 C .1 D .-1 3、下列各数中,是不等式12x +>的解的是( ) A .﹣7 B .﹣1 C .0 D .94、下列说法中错误的是( ) A .若a b <,则11+<+a b B .若22a b ->-,则a b < C .若a b <,则ac bc <D .若()()2211a c b c +<+,则a b < 5、任何一个正整数n 都可以进行这样的分解:n =p ×q (p 、q 是正整数.且p ≤q ),如果p ×q 在n 的所有这种分解中两因数之差的绝对值最小,我们就称p ×q 是n 的最佳分解,并规定:S (n )=p q ,例如18可以分解成1×18,2×9或3×6,则S (18)=36=12,例如35可以分解成1×35,5×7,则·线○封○密○外S (35)=57,则S (128)的值是( )A .12B .34C .18D .1326、下列计算中正确的是( )A .1133--=B .22256x y x y x y -=-C .257a b ab +=D .224-=7、下列二次根式的运算正确的是( )A 3-B 2C .D .=8、如图,AB 是O 的直径,CD 是O 的弦,且CD AB ∥,12AB =,6CD =,则图中阴影部分的面积为( )A .18πB .12πC .6πD .3π9、如果23n x y +与3213m x y --的差是单项式,那么m 、n 的值是( )A .1m =,2n =B .0m =,2n =C .2m =,1n =D .1m =,1n =10、用配方法解一元二次方程x 2+3=4x ,下列配方正确的是( )A .(x +2)2=2B .(x -2)2=7C .(x +2)2=1D .(x -2)2=1第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,C 是线段AB 延长线上一点,D 为线段BC 上一点,且2CD BD =,E 为线段AC 上一点,2CE AE =,若2DE =,则AB =_________.2、在()8--,()20201-,23-,1-,225-中,负数共有______个.3、近几年,就业形式严峻,考研人数持续增加,官方统计显示2022年考研报名人数为4570000人,创下了历史新高,将数据“4570000”用科学记数法表示为______.4、某天上午的大课间,小明和小刚站在操场上,同一时刻测得他们的影子长分别是2m 和2.2m ,已知小明的身高是1.6m ,则小刚的身高是______m .5、已知点P (3m ﹣6,m +1),A (﹣1,2),直线PA 与x 轴平行,则点P 的坐标为_____. 三、解答题(5小题,每小题10分,共计50分) 1、解方程 (1)5361x x --=-+ (2)12136x x +--= 2、在整式的加减练习中,已知2232A a b ab abc =-+,小王同学错将“2A B -”看成“2A B +”算得错误结果为22434a b ab abc -+,请你解决以下问题: (1)求出整式B ; (2)求出正确计算结果.3、先化简,再求值:22214244a a a a a a a a +--⎛⎫-÷ ⎪--+⎝⎭,其中2a = 4、定义:若实数x ,y ,x ',y ',满足3x kx '=+,3y ky '=+(k 为常数,0k ≠),则在平面直角坐标系xOy 中,称点(),x y 为点(),x y ''的“k 值关联点”.例如,点()7,5-是点()1,2-的“4值关联点”. (1)判断在()2,3A ,()2,4B 两点中,哪个点是()1,1P -的“k 值关联点”;(2)设两个不相等的非零实数m ,n 满足点()22,2E m mn n +是点(),F m n 的“k 值关联点”,则mn =·线○封○密·○外_______________5、先化简,再求值.(1)已知()2230a b -+-=,求多项式()()322a b ab a b ab +--+-⎡⎤⎡⎤⎣⎦⎣⎦的值; (2)已知23212A nx x =--,21243B x mx =-+,当23A B -的值与x 的取值无关时,求多项式()()2223224mmn n nm mn n -+-+-的值.-参考答案-一、单选题1、D【分析】直接根据合并同类项运算法则进行计算后再判断即可.【详解】解:A . 23m m m +=,选项A 计算错误,不符合题意;B . 2x x x -=,选项B 计算错误,不符合题意;C . 2222x x x +=,选项C 计算错误,不符合题意;D . 523n n n -=,计算正确,符合题意故选:D【点睛】本题主要考查了合并同类项,熟练掌握合并同类项法则是解答本题的关键.2、D【分析】根据正数大于零,零大于负数,即可求解.【详解】解:在2,1,0,-1这四个数中,比0小的数是-1故选:D【点睛】本题主要考查了有理数的大小比较,熟练掌握正数大于零,零大于负数是解题的关键.3、D【分析】移项、合并同类项,得到不等式的解集,再选取合适的x 的值即可. 【详解】 解:移项得:1x >, ∴9为不等式的解, 故选D . 【点睛】 本题考查的是解一元一次不等式,熟知去分母,去括号,移项,合并同类项,化系数为1是解一元一次不等式的基本步骤是解答此题的关键. 4、C【分析】根据不等式的性质进行分析判断.【详解】解:A 、若a b <,则11+<+a b ,故选项正确,不合题意;B 、若22a b ->-,则a b <,故选项正确,不合题意;C 、若a b <,若c =0,则ac bc =,故选项错误,符合题意;·线○封○密○外D 、若()()2211a c b c +<+,则a b <,故选项正确,不合题意;故选C .【点睛】本题考查了不等式的性质.解题的关键是掌握不等式的性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.5、A【分析】由128=1×128=2×64=4×32=8×16结合最佳分解的定义即可知F (128)=81162=.【详解】解:∵128=1×128=2×64=4×32=8×16,∴F (128)=81162=,故选:A .【点睛】本题主要考查有理数的混合运算.理解题意掌握最佳分解的定义是解题的关键.6、B【分析】根据绝对值,合并同类项和乘方法则分别计算即可.【详解】解:A 、1133--=-,故选项错误;B 、22256x y x y x y -=-,故选项正确;C 、25a b +不能合并计算,故选项错误;D 、224-=-,故选项错误;故选B .【点睛】本题考查了绝对值,合并同类项和乘方,掌握各自的定义和运算法则是必要前提.7、B【分析】根据二次根式的性质及运算逐项进行判断即可.【详解】 A3=,故运算错误;B2===,故运算正确;C、D、230==,故运算错误. 故选:B 【点睛】 本题考查了二次根式的性质、二次根式的运算,掌握二次根式的性质及运算法则是关键. 8、C【分析】如图,连接OC ,OD ,可知COD △是等边三角形,60n COD =∠=︒,6r =,2==360COD n r SS π阴影扇形,计算求解即可.【详解】·线○封○密○外解:如图连接OC ,OD∵12OC OD AB CD === ∴COD △是等边三角形∴60COD ∠=︒由题意知=ACD COD S S △△,22606==6360360COD n r S S πππ⨯⨯==阴影扇形 故选C .【点睛】本题考查了扇形的面积,等边三角形等知识.解题的关键在于用扇形表示阴影面积.9、C【分析】根据23n x y +与3213m x y --的差是单项式,判定它们是同类项,根据同类项的定义计算即可.【详解】∵23n x y +与3213m x y --的差是单项式,∴23n x y +与3213m x y --是同类项,∴n +2=3,2m -1=3,∴m =2, n =1,故选C .【点睛】本题考查了同类项即含有的字母相同,且相同字母的指数也相同,准确判断同类项是解题的关键.10、D【分析】根据题意将方程常数项移到右边,未知项移到左边,然后两边都加上4,左边化为完全平方式,右边合并即可得到答案.【详解】 234x x +=, 整理得:243x x -=-, 配方得:24434x x -+=-+,即2(2)1x -=. 故选:D . 【点睛】 本题考查用配方法解一元二次方程,掌握配方法的步骤是解题的关键. 二、填空题 1、3 【分析】 设BD =a ,AE =b ,则CD =2a ,CE =2b ,根据AB =AE +BE =AE +DE -BD 代入计算即可. 【详解】设BD =a ,AE =b ,∵2CD BD =,2CE AE =,∴CD =2a ,CE =2b ,·线○封○密○外∴DE =CE -CD =2b -2a =2即b -a =1,∴AB =AE +BE =AE +DE -BD =2+b -a =2+1=3,故答案为:3.【点睛】本题考查了线段的和与差,正确用线段的和差表示线段是解题的关键.2、3【分析】将各数化简,即可求解.【详解】解:∵()88--=,()202011-=,239-=-,11-=-,22455-=-, ∴负数有23-,1-,225-,共3个. 故答案为:3【点睛】本题主要考查了乘方的运算,绝对值的性质,有理数的分类,熟练掌握乘方的运算,绝对值的性质,有理数的分类是解题的关键.3、4.57×106【分析】将一个数表示成a ×10n ,1≤a <10,n 是正整数的形式,叫做科学记数法,根据此定义即可得出答案.【详解】解:根据科学记数法的定义,4570000=4.57×106,故答案为:4.57×106.【点睛】本题主要考查科学记数法的概念,关键是要牢记科学记数法的形式.4、1.76【分析】首先设小刚的身高是x ,根据平行投影的特点可得出比例关系,然后可求出小刚的身高.【详解】解:设小刚的身高是x 米,根据平行投影特点:在同一时刻,不同物体的物高和影长成比例; 可得比例关系:21.62.2x =, 解可得: 1.76x =, 故答案为:1.76. 【点睛】 本题考查了平行投影特点,解题的关键是掌握在同一时刻,不同物体的物高和影长成比例. 5、(﹣3,2) 【分析】 由题意知m +1=2,得m 的值;将m 代入求点P 的坐标即可. 【详解】 解:∵点P (3m ﹣6,m +1)在过点A (﹣1,2)且与x 轴平行的直线上 ∴m +1=2 解得m =1 ∴3m ﹣6=3×1﹣6=﹣3 ∴点P 的坐标为(﹣3,2) 故答案为:(﹣3,2). ·线○封○密·○外【点睛】本题考查了直角坐标系中与x轴平行的直线上点坐标的关系.解题的关键在于明确与x轴平行的直线上点坐标的纵坐标相等.三、解答题1、(1)x=4(2)x=2【解析】(1)解:移项得:-5x+6x=1+3,合并得:x=4;(2)解:去分母得:2(x+1)-(x-2)=6,去括号得:2x+2-x+2=6,移项合并得:x=2.【点睛】本题考查了解一元一次方程,其步骤为:去分母,去括号,移项,合并同类项,把未知数系数化为1,求出解.2、(1)22-++a b ab abc22(2)22-a b ab85【分析】(1)根据结果减去2A,进而根据整式的加减运算化简即可求得整式B;(2)按要求计算2A B -,根据去括号,合并同类项进行计算化简即可.(1)解:∵2232A a b ab abc =-+,2A B +=22434a b ab abc -+∴224342a b ab abc A B -+-= ()2222434232a b ab abc a b ab abc =-+--+ 2222434642a b ab abc a b ab abc =-+-+- 2222a b ab abc =-++ (2) 解:∵2232A a b ab abc =-+,B 2222a b ab abc =-++ ∴2A B -=()22232a b ab abc -+()2222a b ab abc --++ 222264222a b ab abc a b ab abc =-++-- 2285a b ab =- 【点睛】 本题考查了整式的加减运算,正确的去括号是解题的关键. 3、()212a -,16 【分析】 先对括号里进行通分、合并同类项,然后进行乘除运算化为最简,最后代值求解即可. 【详解】 解:原式()()221242a a a a a a a ⎛⎫+-=-⨯ ⎪ ⎪---⎝⎭ ·线○封○密·○外()()()()222142a a a a a a a a +---=⨯-- ()2442a aa a a -=⨯-- ()212a =- 当2a =原式()()221116222a ===-. 【点睛】本题考查了分式的混合运算以及二次根式的混合运算.解题的关键在于熟练掌握混合运算的运算法则.4、(1)()2,4B(2)−3【分析】(1)根据“k 值关联点”的含义,只要找到k 的值,且满足3x kx '=+,3y ky '=+即可作出判断,这只要根据33,x y k k x y --=='',若两式求得的k 的值相等则是,否则不是; (2)根据“k 值关联点”的含义得到两个等式,消去k 即可求得mn 的值.(1)对于点A : ∵23331,011k k --==-==-∴点()2,3A 不是()1,1P -的“k 值关联点”;对于点B : ∵23431,111k k --==-==-- ∴点()2,4B 是()1,1P -的“1-值关联点”; (2)∵点()22,2E m mn n +是点(),F m n 的“k 值关联点” ∴2 3 m mn km +=+① 22 3 n kn =+② n m ⨯-⨯①②得:2233m n mn n m -=- 即()3()mn n m n m -=-- ∵m n ≠ ∴3=-mn 故答案为:−3 【点睛】 本题是材料题,考查了点的坐标,消元思想,关键是读懂题目,理解题中的“k 值关联点”的含义. 5、 (1)442a b ab +-,8 (2)-8 【分析】 (1)将所求式子去括号合并化简,再根据非负数的性质得到a ,b 的值,代入计算即可; (2)将A ,B 代入2A -3B ,去括号合并得到最简结果,再根据结果与x 值无关得到m ,n 的值,最后·线○封○密·○外将所求式子化简,代入计算即可.【小题1】解:()()322a b ab a b ab +--+-⎡⎤⎡⎤⎣⎦⎣⎦ =()()32222a b ab a b ab +--+- =66322a b ab a b ab +---+ =442a b ab +- ∵()2230a b -+-=,∴a -2=0,b -3=0,∴a =2,b =3,∴原式=4243223⨯+⨯-⨯⨯ =8【小题2】23A B - =221233212423nx x x mx ⎛⎫⎛⎫-⎪--- ⎝⎭+⎪ ⎝⎭ =()22342612nx x x mx ----+ =22342612nx x x mx ---+-=()()236414n x m x +---∵23A B -的值与x 的取值无关, ∴3n -6=0,m -4=0,∴m =4,n =2,∴()()2223224m mn n nm mn n -+-+- =2223224m mn n nm mn n -+--+ =2266m mn n -+ =22464262-⨯⨯+⨯ =8- 【点睛】 本题考查整式化简及求值,涉及非负数和为0,代数式的值与x 无关等知识,解题的关键是掌握去括号、合并同类项的法则. ·线○封○密·○外。

中考数学试题及答案西安

中考数学试题及答案西安

中考数学试题及答案西安为了帮助考生更好地备战中考数学科目,以下是一些近年来在西安地区中考数学试卷中出现的题目以及对应的答案。

希望对广大考生有所帮助。

【选择题】1. 已知正方形ABCD的边长为4cm,P为AB上的一点,且AP:PB=1:3,则△PCD的面积为()。

A. 6cm²B. 8cm²C. 9cm²D. 12cm²答案:C2. 若a:b=3:4,b:c=2:5,则a:c的值为()。

A. 6:5B. 6:7C. 3:5D. 4:5答案:A【填空题】3. 要使两位数 64A 能被 9整除,A的取值范围是__。

答案:3~74. 在一张长方形纸板上,面积是200cm²。

现在以纸板的一条边为轴,将纸板卷起成一个圆柱体。

问,这个圆柱体的体积(精确到小数点后一位)是__cm³。

答案:628.3【计算题】5. 小明想要购买一件价格为480元的衣服,但店里正在举行七折打折活动。

小明使用一张折扣券,可以再次打八折。

小明手上有480元,最后他还需要几元才能购买到这件衣服?答案:15.36元6. 银行对存款2年期、3年期、5年期分别给予2.5%、3%、4%的年利率。

小红将1000元分别存入2年期、3年期和5年期,求她两年后能得到的总金额。

答案:1060元【应用题】7. 在一个矩形围栏内有4只鸽子和若干只兔子,共计30只脚。

求这个围栏内的兔子数量。

答案:13只8. 小华的年龄是小明的5/6,小明的年龄是小红的5/4。

若小红的年龄是14岁,求小华的年龄。

答案:12岁以上是部分西安地区中考数学试题及答案,希望能帮助到考生们更好地备战考试。

请广大考生根据实际情况灵活运用,备考顺利!。

陕西省西安中考数学试卷及答案

陕西省西安中考数学试卷及答案

陕西省西安中考数学试卷及答案第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的) 1.下列计算正确的是 【 】A .(-2)0=-1B .-23=-8C .-2-(-3)=-5D .3-2=-62.如图,若数轴上的两点A 、B 表示的数分别为a 、b ,则下列结论正确的是【 】A .12b-a>0 B .a-b>0C .2a+b>0D .a+b>03. 如图,在锐角△ABC 中,CD 、BE 分别是AB 、AC 边上的高,且CD 、BE 交于一点P ,若∠A=50°,则∠BPC 的度数是【 】A .150°B .130°C .120°D .100° 4. 下列函数中,当x<0时,y 随x 的增大而减小的函数是【 】A .y=-3xB .y=4xC .y=-x 2D .y=-x25. 在下列图形中,是中心对称图形的是【 】6. 如图,⊙O1和⊙O2内切,它们的半径分别为3和1,过O1作⊙O2的切线,切点为A ,则OA 的长为【 】A .2B .4 CDA B a b -1 0 1(第2题图) DA BE (第3题图)CP A. B.D. (第6题图7. 已知圆锥形模具的母线长和底面圆的直径均是10cm ,求得这个模具的侧面积是【 】 A .50πcm2 B .75πcm2 C .100πcm2 D .150πcm2 8. 二次函数y=ax2+bx+c 的图象如图所示,则下列关于a 、b 、c 间的关系判断正确的是【 】 A.ab<0 B.bc<0 C.a+b+c>0 D.a-b+c<09. 在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm ,那么x 满足的方程是【 】A .x2+130x-1400=0B .x2+65x-350=0C .x2-130x-1400=0D .x2-65x-350=010. 如图,矩形ABCD ,AD=a ,AB=b ,要使BC 边上至少存在一点P ,使△ABP 、△APD 、△CDP 两两相似,则a,b 间的关系一定满足【 】a ≥12bB .a ≥bC. a ≥32bD .a ≥2b第Ⅱ卷(非选择题,共90分)二、填空题(共7小题,每小题3分,计21分) 11. 不等式1-2x>0的解集是 . 12. 分解因式:x3y2-4x= .13.若反比例函数y=kx 经过点(-1,2),则一次函数y=-kx+2的图象一定不经过第象限.15. 已知:在ABCD 中,AB=4cm,AD=7cm,∠ABC 的平分线交AD 于点E ,交CD 的延长线于点F ,则DF= cm.(第8题图)(第10题图)AD CB(第15题图)F E (第9题图)16. 用科学计算器或数学用表求:如图,有甲、乙两楼,甲楼高AD 是23米,现在想测量乙楼CB 的高度.某人在甲楼的楼底A 和楼顶D ,分别测得乙楼的楼顶B 的仰角为65°13′和45°,处用这些数据可求得乙楼的高度为 米.(结果精确到0.01米) 注:用数学用表求解时,可参照下面正切表的相关部分.如图,有一腰长为5cm ,底边长为4cm 的等腰三角形纸片,沿着底边上的中线将纸片剪开,得到两个全等的直角三角形纸片,用这两个直角三角形纸片拼成的平面图形中有 个不同的四边形.三、解答题(共8小题,计69分.解答应写出过程) (本题满分5分)解方程:2211.11x x -=--(本题满分6分)如图,点C 在以AB 为直径的半圆上,连结AC 、BC ,AB=10,tan ∠BAC=34,求阴影部分的面积20.(本题满分8分) 某研究性学习小组,为了了解本校初一学生一天中做家庭作业所用的大致时间(时间以整数记.单位:分钟),对本校的初一学生做了抽样调查,并把调查得到的所有数据(时间)进行整理,分成五个时间段,绘制成统计图(如图所示),请结合统计图中提供的信息,回答下(第17题图) 剪开A B(第19题图)(第20题图) 60.5 90.5 120.5 150.5 180.5 210.5 A D CB (第16题图) 45°65°13′ (甲楼) (乙楼)列问题:(1)这个研究性学习小组所抽取样本的容量是多少?(2)在被调查的学生中,一天做家庭作业所用的大致时间超过120分钟(不包括120分钟)的人数占被调查学生总人数的百分之几?(3)这次调查得到的所有数据的中位数落在了五个时间段中的哪一段内? 21. (本题满分8分)已知:如图,在△ABC 中,AB=BC=2,∠ABC=120°,BC ∥x 轴,点B 的坐标是(-3,1). (1)画出△ABC 关于y 轴对称的△A ′B ′C ′;(2)求以点A 、B 、B ′、A ′为顶点的四边形的面积.22. (本题满分10分)足球比赛的记分规则为:胜一场得3分,平一场得1分,输一场得0分.一支足球队在某个赛季中共需比赛14场,现已比赛了8场,输了1场,得17分. 请问:(1)前8场比赛中,这支球队共胜了多少场? (2)这支球队打满14场比赛,最高能得多少分?(3)通过对比赛情况的解析,这支球队打满14场比赛,得分不低于29分,就可以达到预期的目标.请你解析一下,在后面的6场比赛中,这支球队至少要胜几场,才能达到预期目标? 23. (本题满分10分)已知:如图,⊙O 是△ABC 的外接圆,且AB=AC=13,BC=24,PA 是⊙O 的切线,A 为切点,割线PBD 过圆心,交⊙O 于另一点D,连结CD. (1)求证:PA ∥BC;(2)求⊙O 的半径及CD 的长.24. (本题满分10分)如图,在Rt △ABC 中,∠ACB=90°,BC>AC,以斜边AB 所在直线为x 轴,以斜边AB 上的高所在直线为y 轴,建立直角坐标系,若OA2+OB2=17,且线段OA 、OB 的长度是关于x 的一元二次方程x2-mx+2(m-3)=0的两个根.(第21题图)(第24题图)(第23题图)(1)求C 点的坐标;(2)以斜边AB 为直径作圆与y 轴交于另一点E ,求过A 、B 、E 三点的抛物线的解析式,并画出此抛物线的草图;(3)在抛物线上是否存在点P ,使△ABP 与△ABC 全等?若存在,求出符合条件的P 点的坐标;若不存在,说明理由.25. (本题满分12分)李大爷有一个边长为a 的正方形鱼塘(图-1),鱼塘四个角的顶点A 、B 、C 、D 上各有一棵大树.现在李大爷想把原来的鱼塘扩建成一个圆形或正方形鱼塘(原鱼塘周围的面积足够大),又不想把树挖掉(四棵大树要在新建鱼塘的边沿上).(1)若按圆形设计,利用(图-1)画出你所设计的圆形鱼塘示意图,并求出网形鱼塘的面积;(2)若按正方形设计,利用(图-2)画出你所设计的正方形鱼塘示意图; (3)你在(2)所设计的正方形鱼塘中,有无最大面积?为什么?(4)李大爷想使新建鱼塘面积最大,你认为新建鱼塘的最大面积是多少?(第25题图-1)A (第25题图-2) DBC GH E F参照答案 一、二、11.12x12.(2)(2)x xy xy +- 13. 2 14.四 15. 3 16. -2.7317. 4(因还有一个凹四边形,所以填5也对) 三、18.解:去分母,得222(1) 1.20.,2,1.x x x x x x x x x -+=-∴+-==-=∴12解这个方程得=-2,=1.经检验:是原方程的根是增根原方程的根是=-2.2:,90,3tan ,43sin .5sin ,10,344106,68.533112558624.222ABC AB ACB BAC BAC BCBAC AB ABBC AC BC S S S ππ∴∠=︒∠=∴∠=∠==∴=⨯==⨯=⨯=∴⨯⨯-⨯⨯=-阴影半圆19.解为直径又=-= 解:(1)3+4+6+8+9=30.∴ 这个研究性学习小组抽取样本的容量是30. (2)(9+8+4)÷30=0.7=70%.∴一天做家庭作业所用的时间超过120分钟的学生人数占被调查学生总人数的70%. (3)中位数落在了120.5分钟~150.5分钟这个时间段内. 解:(1)(2),,180********.Rt ,1cos 21,2sin 22(3,1),(4,1,,,A AD BC CB D ABD ABC ABD BD AB ABD AD AB ABD B A AA y BB y AA BB AB A B A B B A A ∠=︒-∠=︒-︒=︒=∠=⨯==∠=⨯=-∴-''''∴''''∴过点作交的延长线于点则在中又知点的坐标为点的坐标为轴,轴,.与不平行,以点为顶点的四边形是等腰梯形.由点,48,23 6.11()(86)22B AA BB ABB A AA BB AD ''⨯==⨯=''''∴=+=⨯+=的坐标可求得=2梯形的面积解:(1)设这个球队胜x 场,则平了(8-1-x)场.根据题意,得3x+(8-1-x)=17. 解之,得x=5.答:前8场比赛中,这个球队共胜了5场.(2)打满14场比赛最高能得17+(14-8)×3=35分.(3)由题意知,以后的6场比赛中,只要得分不低于12分即可.∴胜不少于4场,一定达到预期目标,而胜3场、平3场,正好达到预期目标. ∴在以后的比赛中这个球队至要胜3场. 23.证明:(1)∵PA 是⊙O 的切线, ∴∠PAB=∠2. 又∵AB=AC ,∴∠1=∠2.∴∠PAB=∠1. ∴PA ∥BC.(2)连结OA 交BC 于点G ,则OA ⊥PA.由(1)可知,PA ∥BC ,∴OA ⊥BC.∴G 为BC 的中点. ∵BC=24, ∴BG=12. 又∵AB=13, ∴AG=5.设⊙O 的半径为R , 则OG=OA-AG=R-5. 在Rt △BOG 中, ∵OB2=BG2+OG2,∴R2=122+(R-5)2. ∴R=16.9,OG=11.9. ∵BD 是⊙O 的直径, ∴DC ⊥BC. 又∵OG ⊥BC , ∴OG ∥DC.∵点O 是BD 的中点, ∴DC=2OG=23.8. 24.解:(1)∵线段OA 、OB 的长度是关于x 的一元二次方程x2-mx+2(m-3)=0的两个根,∴,(1)2(3).(2)OA OB m OA OB m +=⎧⎨=-⎩又∵OA2+OB2=17,∴(OA+OB )2-2·OA ·OB=17.(3) ∴把(1)(2)代入(3),得m2-4(m-3)=17. ∴m2-4m-5=0.解之,得m=-1或m=5. 又知OA+OB=m>0, ∴m=-1应舍去.∴当m=5时,得方程x2-5x+4=0. 解之,得x=1或x=4. ∵BC>AC, ∴OB>OA. ∴OA=1,OB=4.在Rt △ABC 中,∠ACB=90°,CO ⊥AB , ∴OC2=OA ·OB=1×4=4. ∴OC=2.∴C (0,2).(2)∵OA=1,OB=4,C 、E 两点关于x 轴对称, ∴A(-1,0),B(4,0),E(0,-2).设经过A 、B 、E 三点的抛物线的解析式为y=ax2+bx+c,则1,20,31640,,,22. 2.a b c a b c b c c ⎧⎪-+=⎧⎪⎪⎪++==-⎨⎨⎪⎪=-⎩=-⎪⎪⎩a=解之得∴所求抛物线解析式为2132.22y x x =--(3)存在.∵点E 是抛物线与圆的交点,∴Rt △ACB ≌△AEB. ∴E (0,-2)符合条件.∵圆心的坐标(32,0)在抛物线的对称轴上,∴这个圆和这条抛物线均关于抛物线的对称轴对称. ∴点E 关于抛物线对称轴的对称点E ′也符合题意. ∴可求得E ′(3,-2).∴抛物线上存在点P 符合题意,它们的坐标是(0,-2)和(3,-2).25.(1)如(图-1)所示.S ⊙O=12πa2.(2)如(图-2)所示. (3)有最大面积. 如(图-2),由作图知,Rt △ABE ,Rt △BFC 、Rt △CDG 和Rt △AHD 为四个全等的三角形.因此,只要Rt △ABE 的面积最大,就有正方形EFGH 的面积最大.然而,Rt △ABE 的斜边AB=a 为定值,所以,点E 在以AB 为直径的半圆上,当点E 正好落在线段AB 的中垂线上时,面积最大(斜边为定值的直角三角形以等腰直角三角形面积最大),其最大面积为14a2,从而得正方形EFGH 的最大面积为4×14a2+a2=2a2.(4)由(图-1)可知,所设计的圆形鱼塘的面积为12πa2<2a2,所以,我认为李大爷新建鱼塘的最大面积是2a2,它是一个正方形鱼塘.(第25题图-1) A (第25题图-2)B DC GH E F。

西安市中考数学试题及答案

西安市中考数学试题及答案

西安市中考数学试题及答案一、选择题1. 下列各组中,哪一组数对应的数比例是1:3?a) 2,7b) 5,12c) 9,18d) 6,10答案:d) 6,102. 几何体的体积和表面积是正比例的,下列哪一个条件成立?a) 边长成比例b) 半径成比例c) 高度成比例d) 质量成比例答案:b) 半径成比例3. 若甲数是乙数的2倍,乙数是丙数的三分之二,丙数是丁数的五倍,那么甲数与丁数的比是多少?a) 1:10b) 2:10c) 3:10d) 4:10答案:c) 3:104. 若已知角A与角B互补,角B的度数是角A度数的一半,则角A的度数是多少?a) 30°b) 45°c) 60°d) 90°答案:c) 60°5. 定义函数f(x) = 2x + 5,若f(a) = 17,则a的值为多少?a) 5b) 6c) 7d) 8答案:c) 7二、填空题6. 52 ÷ 8 = ____ 余 ____。

答案: 6 余 47. 甲班有35名学生,乙班有40名学生,两个班共有多少名学生?答案: 758. 一个正方形的边长是6cm,其对角线的长度为____ cm。

答案:6√2 cm9. 假设甲地与乙地相距240km,甲地与丙地相距160km。

甲地、乙地、丙地三地连成一个等腰三角形,那么丙地与乙地的距离是多少?答案: 80km10. 已知等差数列的公差为3,首项为2,求第10项与第5项的和。

答案: 29三、解答题11. 一张正方形纸的边长是12cm,从中点向正方形边上各做一条线段,得到一个小正方形。

求小正方形边长。

解:由题意可知,大正方形的中点到顶点的距离为边长的一半,即6cm。

所以小正方形的边长为6cm。

12. 设某个等差数列的首项为a,公差为d,前n项和为Sn。

若Sn = 2n^2 + 3n,求该等差数列的首项和公差。

解:根据等差数列的前n项和公式Sn = (2a + (n-1)d)n/2,将给定的Sn代入公式得:2n^2 + 3n = (2a + (n-1)d)n/2化简得:4n^2 + 6n = 2an + ndn - d(n^2 - n)/2整理得:4n^2 + (6-2a)n - d(n^2 - n)/2 = 0由于等差数列首项和公差为实数,所以该二次方程有实数根。

西安中考数学题

西安中考数学题

一、选择题:1. 如果8x - 3 = 5x + 7,那么x的值是多少?A) 5 B) 6 C) 7 D) 82. 在一个等差数列中,公差为2,前5项之和为30,求第一项的值。

A) 1 B) 3 C) 5 D) 73. 已知一边长为3cm的正方形面积与一边长为4cm的正方形面积之和等于一个边长为x cm的正方形面积,求x的值。

A) 5 B) 7 C) 8 D) 94. 一辆车以每小时60公里的速度行驶,行驶了4小时后,剩余距离的1/3,求该段路程总长度。

A) 120 B) 160 C) 200 D) 2405. 三角形的三个内角分别是120°、30°和x°,求x的值。

A) 45 B) 50 C) 60 D) 70二、填空题:1. 一个三角形的两个内角分别是75°和45°,那么第三个内角的度数是______°。

2. 某个等差数列的公差是3,第2项是5,那么第7项是______。

3. 若一个矩形的长是2x cm,宽是(3x - 2) cm,面积为120 cm²,则x的值为______。

4. 小明用5天的时间做完一份工作的0.6,求他用3天的时间能完成多少?5. 一辆汽车以每小时60公里的速度行驶,行驶8小时后,行驶的距离为______公里。

三、应用题1. 小明买了一部价值3000元的手机,商家打折后降价20%出售,小明需要付多少钱?2. 一辆汽车以每小时60公里的速度行驶,行驶了4小时后,剩余距离的1/3,求该段路程的总长度。

3. 农田的长和宽分别是100米和80米,农民打算在田地四周修建一条宽4米的水渠,求水渠的总长度。

4. 一束光从空气射入水中,入射角为30°,求光线在水中的折射角。

5. 一个三角形的两边长分别是5cm和7cm,它们的夹角为60°,求第三条边的长度。

西安中考数学试题及答案

西安中考数学试题及答案

西安中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2.5B. √2C. 0.33333...D. 5/8答案:B2. 一个三角形的两边长分别为3和4,第三边长为x,则x的取值范围是?A. 1 < x < 7B. 1 < x < 5C. 3 < x < 7D. 4 < x < 7答案:C3. 已知函数y=2x+3,当x=1时,y的值为?A. 5B. 6C. 7D. 8答案:A4. 下列哪个图形是轴对称图形?A. 平行四边形B. 矩形C. 菱形D. 任意三角形答案:B5. 一个圆的半径为5,它的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B6. 计算下列表达式的值:(3x^2 - 2x + 1) - (x^2 - 4x + 3)。

A. 2x^2 + 2x - 2B. 2x^2 - 2x + 2C. 2x^2 + 2x + 2D. 2x^2 - 2x - 2答案:A7. 一个数的相反数是-5,这个数是多少?A. 5B. -5C. 0D. 10答案:A8. 一个等腰三角形的底角为45度,顶角为?A. 45度B. 60度C. 90度D. 120度答案:C9. 计算下列表达式的值:(2x + 3)(x - 1)。

A. 2x^2 - 2x + 3x - 3B. 2x^2 + 2x - 3x + 3C. 2x^2 - x - 3D. 2x^2 - x + 3答案:A10. 已知等差数列{an}的首项a1=2,公差d=3,第5项a5的值为?A. 17B. 14C. 11D. 8答案:B二、填空题(每题3分,共15分)11. 一个直角三角形的两直角边长分别为6和8,斜边长为______。

答案:1012. 一个数的平方根是2,这个数是______。

答案:413. 已知函数y=x^2 - 4x + 3,当x=2时,y的值为______。

陕西省中考数学历年(2016-2022年)真题分类汇编专题 代数式

陕西省中考数学历年(2016-2022年)真题分类汇编专题 代数式

陕西省中考数学历年(2016-2022年)真题分类汇编专题代数式一、单选题(共8题;共16分)1.(2分)计算:2x⋅(−3x2y3)=()A.6x3y3B.−6x2y3C.−6x3y3D.18x3y3【答案】C【解析】【解答】解:2x⋅(−3x2y3)=2×(−3)×x⋅x2×y3=−6x3y3.故答案为:C.【分析】单项式乘单项式,积的系数等于原来两个单项式的系数的积,它的各个变数字母的幂指数,等于在原来两个单项式中相应的变数字母的幂指数的和,对于只在某一个单项式中含有的字母,则连同指数作为积的一个因式,据此计算.2.(2分)计算:(﹣23x2y)3=()A.﹣2x6y3B.827x6y3C.﹣827x6y3D.﹣827x5y4【答案】C【解析】【解答】解:(﹣23x2y)3=(−23)3⋅(x2)3⋅y3=−827x6y3.故答案为:C.【分析】先根据积的乘方运算法则计算,再根据幂的乘方运算法则进行计算即可,积的乘方,等于每个因式乘方的积.3.(2分)计算:(−3)0=()A.1B.0C.3D.−13【答案】A【解析】【解答】解:(−3)0=1。

故答案为:A。

【分析】任何一个不为0的数的0次幂都等于1。

4.(2分)下列计算正确的是()A.x2+3x2=4x4B.x2y•2x3=2x4yC.(6x2y2)÷(3x)=2x2D.(﹣3x)2=9x2【答案】D【解析】【解答】解:A、原式=4x2,错误;B、原式=2x5y,错误;C、原式=2xy2,错误;D、原式=9x2,正确,故选D【分析】A、原式合并得到结果,即可作出判断;B、原式利用单项式乘以单项式法则计算得到结果,即可作出判断;C、原式利用单项式除以单项式法则计算得到结果,即可作出判断;D、原式利用积的乘方运算法则计算得到结果,即可作出判断.此题考查了整式的除法,合并同类项,幂的乘方与积的乘方,以及单项式乘单项式,熟练掌握运算法则是解本题的关键.5.(2分)计算:(a3b)−2=()A.1a6b2B.a6b2C.1a5b2D.−2a3b【答案】A【解析】【解答】解:(a3b)−2=1a6b2,故答案为:A.【分析】根据负整数指数幂的意义“任何一个不为0的数的负整数指数幂等于这个数的正整数指数幂的倒数.”和积的乘方法则“积的乘方等于把积中每一个因式分别乘方再把所得的幂相乘”可求解.6.(2分)下列计算正确的是()A.2a2⋅3a2=6a2B.(−3a2b)2=6a4b2C.(a−b)2=a2−b2D.−a2+2a2=a2【答案】D【解析】【解答】解:A. 2a2⋅3a2=6a4,故A不符合题意;B. (−3a2b)2=9a4b2,故B不符合题意;C. (a−b)2=a2−2ab+b2,故C不符合题意;D. −a2+2a2=a2,故D符合题意。

陕西中考数学试卷历年真题

陕西中考数学试卷历年真题

陕西中考数学试卷历年真题2000年陕西中考数学试卷历年真题回顾第一部分选择题1. 设一个圆的周长为20π,那么它的半径是多少?A. 5B. 10C. 20D. 402. 若(-3)²×2⁻²=().A. 0.5B. 2/9C. 1D. 33. 已知正方形ABCD的边长为a,点E是AD的中点,则△ABE的面积为().A. a²B. a²/2C. a²/4D. a²/8第二部分解答题一、计算题1. 化简:(2x²- 6)/ (x- 3) - (2x + 3)/(x - 3) = ().解答:将分子合并,有:(2x² - 6 - 2x - 3)/(x - 3)= (2x² - 2x - 9)/(x - 3)2. 按字母的次幂逐项从大到小排列:(x² + 2x³ + 3)/(x³ + x² - x - 1)= ?.解答:将分子和分母的各项按字母的次幂从大到小排列,得到:2x³ + x² + 3/(x³ + x² - x - 1)二、应用题1. 某正方形的边长为x米,若增加2米后将成为一个面积是原面积的4倍的矩形,则x=().解答:设原正方形的面积为S,增加2米后的矩形面积为4S。

由题意可列出方程:(x+2)×x=4S。

化简得:x²+2x=4S。

由于题目未给出具体面积值S,所以不能解出具体的x值,只能得到方程x²+2x=4S。

2. 小明用一个面积为56平方米的木板制作展示架,小明希望它的长是宽的2倍,求它的长和宽分别是多少米?解答:设该展示架的长为2a米,宽为a米。

根据题意,可得方程2a×a=56。

化简得:2a²=56。

将方程化为标准形式,得:a²=28。

求解得到:a=√28。

陕西省中考数学历年(2016-2022年)真题分类汇编专题12统计与概率及答案

陕西省中考数学历年(2016-2022年)真题分类汇编专题12统计与概率及答案

陕西省中考数学历年(2016-2022年)真题分类汇编专题12 统计与概率一、填空题1.已知一组数据:3,5,x,7,9的平均数为6,则x=.二、综合题2.某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶(500ml)、红茶(500ml)和可乐(600ml),抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.根据以上规则,回答下列问题:(1)求一次“有效随机转动”可获得“乐”字的概率;(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.3.某校为了了解本校学生“上周内做家务劳动所用的时间”(简称“劳动时间”)情况,在本校随机调查了100名学生的“劳动时间”,并进行统计,绘制了如下统计表:根据上述信息,解答下列问题:(1)这100名学生的“劳动时间”的中位数落在组;(2)求这100名学生的平均“劳动时间”;(3)若该校有1200名学生,请估计在该校学生中,“劳动时间”不少于90分钟的人数.4.有五个封装后外观完全相同的纸箱,且每个纸箱内各装有一个西瓜,其中,所装西瓜的重量分别为6kg,6kg,7kg,7kg,8kg.现将这五个纸箱随机摆放.(1)若从这五个纸箱中随机选1个,则所选纸箱里西瓜的重量为6kg的概率是;(2)若从这五个纸箱中随机选2个,请利用列表或画树状图的方法,求所选两个纸箱里西瓜的重量之和为15kg的概率.5.从一副普通的扑克牌中取出四张牌,它们的牌面数字分别为2,3,3,6.(1)将这四张扑克牌背面朝上,洗匀,从中随机抽取一张,则抽取的这张牌的牌面数字是3的概率为;(2)将这四张扑克牌背面朝上,洗匀.从中随机抽取一张,不放回,再从剩余的三张牌中随机抽取一张.请利用画树状图或列表的方法,求抽取的这两张牌的面数字恰好相同的概率.6.今年9月,第十四届全国运动会将在陕西省举行本届全运会主场馆在西安,开幕式、闭幕式均在西安举行.某校气象兴趣小组的同学们想预估一下西安市今年9月份日平均气温状况.他们收集了西安市近五年9月份每天的日平均气温,从中随机抽取了60天的日平均气温,并绘制成如下统计图:根据以上信息,回答下列问题:(1)这60天的日平均气温的中位数为,众数为;(2)求这60天的日平均气温的平均数;(3)若日平均气温在18℃~21℃的范围内(包含18℃和21℃)为“舒适温度”.请预估西安市今年9月份日平均气温为“舒适温度”的天数.7.王大伯承包了一个鱼塘,投放了2000条某种鱼苗,经过一段时间的精心喂养,存活率大致达到了90%.他近期想出售鱼塘里的这种鱼.为了估计鱼塘里这种鱼的总质量,王大伯随机捕捞了20条鱼,分别称得其质量后放回鱼塘.现将这20条鱼的质量作为样本,统计结果如图所示:(1)这20条鱼质量的中位数是,众数是.(2)求这20条鱼质量的平均数;(3)经了解,近期市场上这种鱼的售价为每千克18元,请利用这个样本的平均数.估计王大伯近期售完鱼塘里的这种鱼可收入多少元?8.小亮和小丽进行摸球试验.他们在一个不透明的空布袋内,放入两个红球,一个白球和一个黄球,共四个小球.这些小球除颜色外其它都相同.试验规则:先将布袋内的小球摇匀,再从中随机摸出一个小球,记下颜色后放回,称为摸球一次.(1)小亮随机摸球10次,其中6次摸出的是红球,求这10次中摸出红球的频率;(2)若小丽随机摸球两次,请利用画树状图或列表的方法,求这两次摸出的球中一个是白球、一个是黄球的概率.9.现有A、B两个不透明袋子,分别装有3个除颜色外完全相同的小球。

2024年陕西省中考数学试题含答案解析

2024年陕西省中考数学试题含答案解析

2024年陕西省初中学业水平考试数 学 试 卷注意事项:1.本试卷分为第一部分(选择题)和第二部分(非选择题),全卷共8页,总分120分,考试时间120分钟2.领到试卷和答题卡后,请用0.5毫米黑色墨水签字笔,分别在试卷和答题卡上填写姓名和准考证号,同时用2B 铅笔在答题卡上填涂对应的试卷类型信息点(A 或B )3.请在答题卡上各题的指定区域内作答,否则作答无效4.作图时,先用铅笔作图,再用规定签字笔描黑5.考试结束,本试卷和答题卡一并交回第一部分(选择题 共24分)一、选择题(共8小题,每小题3分,计24分,每小题只有一个选项是符合题意的) 1. 3−倒数是( )A. 3B. 13C. 13−D. 3−【答案】C【解析】【分析】由互为倒数的两数之积为1,即可求解. 【详解】解:∵1313 −×−=, ∴3−的倒数是13−. 故选C2. 如图,将半圆绕直径所在的虚线旋转一周,得到的立体图形是( )A. B. C. D.【答案】C【解析】【分析】本题主要考查了点、线、面、体问题.根据旋转体的特征判断即可.的【详解】解:将一个半圆绕它的直径所在的直线旋转一周得到的几何体是球,故选:C .3. 如图,AB DC ∥,BC DE ∥,145B ∠=°,则D ∠的度数为( )A. 25°B. 35°C. 45°D. 55°【答案】B【解析】 【分析】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.先根据“两直线平行,同旁内角互补”,得到35C ∠=°,再根据“两直线平行,内错角相等”,即可得到答案.【详解】AB DC ∥,180B C ∠+∠=°∴,145B ∠=°,18035C B ∴∠=°−∠=°,∥ BC DE ,35D C ∴∠=∠=°.故选B .4. 不等式()216x −≥的解集是( )A. 2x ≤B. 2x ≥C. 4x ≤D. 4x ≥【答案】D【解析】【分析】本题主要考查解一元一次不等式.通过去括号,移项,合并同类项,未知数系数化为1,即可求解.【详解】解:()216x −≥,去括号得:226x −≥,移项合并得:28x ≥,解得:4x ≥,故选:D .5. 如图,在ABC 中,90BAC ∠=°,AD 是BC 边上的高,E 是DC 的中点,连接AE ,则图中的直角三角形有( )A. 2个B. 3个C. 4个D. 5个【答案】C【解析】 【分析】本题主要考查直角三角形的概念.根据直角三角形的概念可以直接判断.【详解】解:由图得ABD △,ABC ,ADC △,ADE 为直角三角形,共有4个直角三角形.故选:C .6. 一个正比例函数图象经过点()2,A m 和点(),6B n −,若点A 与点B 关于原点对称,则这个正比例函数的表达式为 ( )A. 3y x =B. 3y x =−C. 13y x =D. 13y x =− 【答案】A【解析】【分析】本题考查正比例函数的图象,坐标与中心对称,根据关于原点对称的两个点的横纵坐标均互为相反数,求出,A B 的坐标,进而利用待定系数法求出函数表达式即可.【详解】解:∵点A 与点B 关于原点对称,∴6,2m n ==−,∴()2,6A ,()2,6B −−,设正比例函数的解析式为:()0y kx k =≠,把()2,6A 代入,得:3k =, ∴3y x =;故选A .7. 如图,正方形CEFG 的顶点G 在正方形ABCD 的边CD 上,AF 与DC 交于点H ,若6AB =,2CE =,则DH 的长为( )的A. 2B. 3C. 52D. 83【答案】B【解析】 【分析】本题考查了相似三角形的判定和性质,正方形的性质.证明ADH FGH ∽△△,利用相似三角形的性质列式计算即可求解.【详解】解:∵正方形ABCD ,6AB =,∴6AB AD CD ===,∵正方形CEFG ,2CE =,∴2CE GF CG ===,∴4DG CD CG =−=,由题意得AD GF ∥,∴ADH FGH ∽△△, ∴AD DH GF GH=,即624DH DH =−, 解得3DH =,故选:B .8. 已知一个二次函数2y ax bx c ++的自变量x 与函数y 的几组对应值如下表,x …4− 2− 0 3 5 … y … 24− 8− 0 3− 15− …则下列关于这个二次函数的结论正确的是( )A. 图象的开口向上B. 当0x >时,y 的值随x 的值增大而增大C. 图象经过第二、三、四象限D. 图象对称轴是直线1x =【答案】D【解析】【分析】本题考查了待定系数法求二次函数解析式,二次函数的性质.先利用待定系数法求得二次函数解析式,再根据二次函数的性质逐一判断即可.的【详解】解:由题意得4280933a b c c a b c −+=− = ++=− ,解得102a c b =− = =,∴二次函数的解析式为()22211y x x x =−+=−−+,∵10a =−<,∴图象的开口向下,故选项A 不符合题意;图象的对称轴是直线1x =,故选项D 符合题意;当01x <<时,y 的值随x 的值增大而增大,当1x >时,y 的值随x 的值增大而减小,故选项B 不符合题意;∵顶点坐标为()1,1且经过原点,图象的开口向下,∴图象经过第一、三、四象限,故选项C 不符合题意;故选:D . 第二部分(非选择题 共96分)二、填空题(共5小题,每小题3分,计15分)9. 分解因式:2a ab −=_______________.【答案】a (a ﹣b ).【解析】【详解】解:2a ab −=a (a ﹣b ). 故答案为a (a ﹣b ).【点睛】本题考查因式分解-提公因式法.10. 小华探究“幻方”时,提出了一个问题:如图,将0,2−,1−,1,2这五个数分别填在五个小正方形内,使横向三个数之和与纵向三个数之和相等,则填入中间位置的小正方形内的数可以是________.(写出一个符合题意的数即可)【答案】0【解析】【分析】本题考查有理数的运算,根据横向三个数之和与纵向三个数之和相等,进行填写即可得出结果.【详解】解:由题意,填写如下:()()10102020++−=++−=,,满足题意;故答案为:0.11. 如图,BC 是O 的弦,连接OB ,OC ,A ∠是 BC所对的圆周角,则A ∠与OBC ∠的和的度数是________.【答案】90°##90度【解析】【分析】本题考查了圆周角定理,等腰三角形的性质,三角形内角和定理,熟练掌握圆周角定理是解题的关键.根据圆周角定理可得2BOC A ∠=∠,结合三角形内角和定理,可证明2180A OBC OCB ∠+∠+∠=°,再根据等腰三角形的性质可知OBC OCB ∠=∠,由此即得答案.【详解】A ∠是 BC所对的圆周角,BOC ∠是 BC 所对的圆心角, 2BOC A ∴∠=∠,180BOC OBC OCB ∠+∠+∠=° ,2180A OBC OCB ∴∠+∠+∠=°,OB OC = ,OBC OCB ∴∠=∠,2180A OBC OBC ∴∠+∠+∠=°,22180A OBC ∴∠+∠=°,90A OBC ∴∠+∠=°.故答案为:90°.12. 已知点()12,A y −和点()2,B m y 均在反比例函数5y x=−的图象上,若01m <<,则12y y +________0. 【答案】<##小于【解析】【分析】本题主要考查了反比例函数的性质,先求出152y =,25y m=−,再根据01m <<,得出25y <−,最后求出120y y +<即可.【详解】解:∵点()12,A y −和点()2,B m y 均在反比例函数5y x =−的图象上, ∴152y =,25y m=−, ∵01m <<,∴25y <−,∴120y y +<.故答案为:<.13. 如图,在ABC 中,AB AC =,E 是边AB 上一点,连接CE ,在BC 右侧作BF AC ∥,且BF AE =,连接CF .若13AC =,10BC =,则四边形EBFC 的面积为________.【答案】60【解析】【分析】本题考查等边对等角,平行线的性质,角平分线的性质,勾股定理:过点C 作C M A B ⊥,CN BF ⊥,根据等边对等角结合平行线的性质,推出ABC CBF ∠=∠,进而得到CM CN =,得到CBF ACE S S = ,进而得到四边形EBFC 的面积等于ABC S ,设AM x =,勾股定理求出CM 的长,再利用面积公式求出ABC 的面积即可.【详解】解:∵AB AC =,∴A ABC CB =∠∠,∵BF AC ∥,∴ACB CBF ∠=∠,∴ABC CBF ∠=∠,∴BC 平分ABF ∠,过点C 作C M A B ⊥,CN BF ⊥,则:CM CN =, ∵11,22ACE CBF S AE CM S BF CN =⋅=⋅ ,且BF AE =, ∴CBF ACE S S = ,∴四边形EBFC 面积CBF CBE ACE CBE CBA S S S S S =+=+= ,∵13AC =,∴13AB =,设AM x =,则:13BM x =−,由勾股定理,得:22222CM AC AM BC BM =−=−,∴()2222131013x x −=−−, 解:11913x =,∴12013CM =, ∴1602CBA S AC CM ⋅ , ∴四边形EBFC 的面积为60.故答案为:60.三、解答题(共13小题,计81分。

2019-2020西安市数学中考试卷附答案

2019-2020西安市数学中考试卷附答案
25.问题:探究函数 y=x+ 的图象和性质.
小华根据学习函数的方法和经验,进行了如下探究,下面是小华的探究过程,请补充完 整: (1)函数的自变量 x 的取值范围是:____; (2)如表是 y 与 x 的几组对应值,请将表格补充完整:
x … ﹣3
﹣2 ﹣
﹣1
1
2
3

y … ﹣3
﹣3
﹣3 ﹣4
4
3
12.已知实数 a,b,若 a>b,则下列结论错误的是
A.a-7>b-7
B.6+a>b+6
C. a >b 55
D.-3a>-3b
二、填空题
13.如图,∠MON=30°,点 A1,A2,A3,…在射线 ON 上,点 B1,B2,B3,…在射线 OM 上,△A1B1A2,△A2B2A3,△A3B3A4…均为等边三角形.若 OA1=1,则△AnBnAn+1 的边
17.已知扇形 AOB 的半径为 4cm,圆心角∠AOB 的度数为 90°,若将此扇形围成一个圆锥的 侧面,则围成的圆锥的底面半径为________cm 18.关于 x 的一元二次方程(a+1)x2-2x+3=0 有实数根,则整数 a 的最大值是_____.
19.如图,在平面直角坐标系 xOy 中,函数 y= k (k>0,x>0)的图象经过菱形 OACD x
的顶点 D 和边 AC 的中点 E,若菱形 OACD 的边长为 3,则 k 的值为_____.
20.若式子 x 3 在实数范围内有意义,则 x 的取值范围是_____.
三、解答题
21.为调查广西北部湾四市市民上班时最常用的交通工具的情况,随机抽取了四市部分市 民进行调查,要求被调查者从“A:自行车,B:电动车,C:公交车,D:家庭汽车,E:其 他”五个选项中选择最常用的一项,将所有调查结果整理后绘制成如下不完整的条形统计图 和扇形统计图,请结合统计图回答下列问题:

往年陕西省西安市中考数学真题及答案

往年陕西省西安市中考数学真题及答案

往年年陕西省西安市中考数学真题及答案一、选择题(共10小题,每小题3分,共30分)1.(3分)(往年年陕西省)4的算术平方根是()A.﹣2 B. 2 C.±2 D.162.(3分)(往年年陕西省)如图是一个正方体被截去一个直三棱柱得到的几何体,则该几何体的左视图是()A.B.C.D.3.(3分)(往年年陕西省)若点A(﹣2,m)在正比例函数y=﹣x的图象上,则m的值是()A.B.﹣C.1 D.﹣14.(3分)(往年年陕西省)小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是()A. B.C.D.5.(3分)(往年年陕西省)把不等式组的解集表示在数轴上,正确的是() A. BC.D.6.(3分)(往年年陕西省)某区10名学生参加市级汉字听写大赛,他们得分情况如下表:人数 3 4 2 1分数80 85 90 95那么这10名学生所得分数的平均数和众数分别是()A.85和82.5 B.85.5和85 C.85和85 D.85.5和807.(3分)(往年年陕西省)如图,AB∥CD,∠A=45°,∠C=28°,则∠AEC的大小为()A.17°B.62°C.63°D.73°8.(3分)(往年年陕西省)若x=﹣2是关于x的一元二次方程x2﹣ax+a2=0的一个根,则a的值为()A.1或4 B.﹣1或﹣4 C.﹣1或4 D.1或﹣49.(3分)(往年年陕西省)如图,在菱形ABCD中,AB=5,对角线AC=6.若过点A作AE⊥BC,垂足为E,则AE的长为()A. 4 B. C. D. 510.(3分)(往年年陕西省)二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.c>﹣1 B.b>0 C.2a+b≠0 D.9a+c>3b二、填空题(共2小题,每小题3分,共18分)11.(3分)(往年年陕西省)计算:= .12.(3分)(往年年陕西省)因式分解:m(x﹣y)+n(x﹣y)= .请从以下两个小题中任选一个作答,若多选,则按所选做的第一题计分.13.(3分)(往年年陕西省)一个正五边形的对称轴共有条.14.(往年年陕西省)用科学计算器计算:+3tan56°≈(结果精确到0.01)15.(3分)(往年年陕西省)如图,在正方形ABCD中,AD=1,将△ABD绕点B顺时针旋转45°得到△A′BD′,此时A′D′与CD交于点E,则DE的长度为.16.(3分)(往年年陕西省)已知P1(x1,y1),P2(x2,y2)是同一个反比例函数图象上的两点,若x2=x1+2,且=+,则这个反比例函数的表达式为.17.(3分)(往年年陕西省)如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是.四、解答题(共9小题,计72分)18.(5分)(往年年陕西省)先化简,再求值:﹣,其中x=﹣.19.(6分)(往年年陕西省)如图,在Rt△ABC中,∠ABC=90°,点D在边AB上,使DB=BC,过点D作EF⊥AC,分别交AC于点E,CB的延长线于点F.求证:AB=BF.20.(7分)(往年年陕西省)根据《2013年陕西省国民经济和社会发展统计公报》提供的大气污染物(A﹣二氧化硫,B﹣氢氧化物,C﹣化学需氧量,D﹣氨氮)排放量的相关数据,我们将这些数据用条形统计图和扇形统计图统计如下:根据以上统计图提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)国务院总理李克强在十二届全国人大二次会议的政府工作报告中强调,建设美好家园,加大节能减排力度,今年二氧化硫、化学需氧量的排放量在去年基础上都要减少2%,按此指示精神,求出陕西省往年年二氧化硫、化学需氧量的排放量供需减少约多少万吨?(结果精确到0.1)21.(8分)(往年年陕西省)某一天,小明和小亮来到一河边,想用遮阳帽和皮尺测量这条河的大致宽度,两人在确保无安全隐患的情况下,现在河岸边选择了一点B(点B与河对岸岸边上的一棵树的底部点D所确定的直线垂直于河岸).①小明在B点面向树的方向站好,调整帽檐,使视线通过帽檐正好落在树的底部点D处,如图所示,这时小亮测的小明眼睛距地面的距离AB=1.7米;②小明站在原地转动180°后蹲下,并保持原来的观察姿态(除身体重心下移外,其他姿态均不变),这时视线通过帽檐落在了DB延长线上的点E处,此时小亮测得BE=9.6米,小明的眼睛距地面的距离CB=1.2米.根据以上测量过程及测量数据,请你求出河宽BD是多少米?22.(8分)(往年年陕西省)小李从西安通过某快递公司给在南昌的外婆寄一盒樱桃,快递时,他了解到这个公司除收取每次6元的包装费外,樱桃不超过1kg收费22元,超过1kg,则超出部分按每千克10元加收费用.设该公司从西安到南昌快递樱桃的费用为y(元),所寄樱桃为x(kg).(1)求y与x之间的函数关系式;(2)已知小李给外婆快寄了2.5kg樱桃,请你求出这次快寄的费用是多少元?23.(8分)(往年年陕西省)小英与她的父亲、母亲计划外出旅游,初步选择了延安、西安、汉中、安康四个城市,由于时间仓促,他们只能去其中一个城市,到底去哪一个城市三个人意见不统一,在这种情况下,小英父亲建议,用小英学过的摸球游戏来决定,规则如下:①在一个不透明的袋子中装一个红球(延安)、一个白球(西安)、一个黄球(汉中)和一个黑球(安康),这四个球除颜色不同外,其余完全相同;②小英父亲先将袋中球摇匀,让小英从袋中随机摸出一球,父亲记录下其颜色,并将这个球放回袋中摇匀,然后让小英母亲从袋中随机摸出一球,父亲记录下它的颜色;③若两人所摸出球的颜色相同,则去该球所表示的城市旅游,否则,前面的记录作废,按规则②重新摸球,直到两人所摸出求的颜色相同为止.按照上面的规则,请你解答下列问题:(1)已知小英的理想旅游城市是西安,小英和母亲随机各摸球一次,均摸出白球的概率是多少?(2)已知小英母亲的理想旅游城市是汉中,小英和母亲随机各摸球一次,至少有一人摸出黄球的概率是多少?24.(8分)(往年年陕西省)如图,⊙O的半径为4,B是⊙O外一点,连接OB,且OB=6,过点B 作⊙O的切线BD,切点为D,延长BO交⊙O于点A,过点A作切线BD的垂线,垂足为C.(1)求证:AD平分∠BAC;(2)求AC的长.25.(10分)(往年年陕西省)已知抛物线C:y=﹣x2+bx+c经过A(﹣3,0)和B(0,3)两点,将这条抛物线的顶点记为M,它的对称轴与x轴的交点记为N.(1)求抛物线C的表达式;(2)求点M的坐标;(3)将抛物线C平移到C′,抛物线C′的顶点记为M′,它的对称轴与x轴的交点记为N′.如果以点M、N、M′、N′为顶点的四边形是面积为16的平行四边形,那么应将抛物线C怎样平移?为什么?26.(12分)(往年年陕西省)问题探究(1)如图①,在矩形ABCD中,AB=3,BC=4,如果BC边上存在点P,使△APD为等腰三角形,那么请画出满足条件的一个等腰三角形△APD,并求出此时BP的长;(2)如图②,在△ABC中,∠ABC=60°,BC=12,AD是BC边上的高,E、F分别为边AB、AC的中点,当AD=6时,BC边上存在一点Q,使∠EQF=90°,求此时BQ的长;问题解决(3)有一山庄,它的平面图为如图③的五边形ABCDE,山庄保卫人员想在线段CD上选一点M 安装监控装置,用来监视边AB,现只要使∠AMB大约为60°,就可以让监控装置的效果达到最佳,已知∠A=∠E=∠D=90°,AB=270m,AE=400m,ED=285m,CD=340m,问在线段CD上是否存在点M,使∠AMB=60°?若存在,请求出符合条件的DM的长,若不存在,请说明理由.参考答案:一、选择题(共10小题,每小题3分,共30分)1.(3分)考点:算术平方根.分析:根据算术平方根的定义进行解答即可.解答:解:∵22=4,∴4的算术平方根是2.故选B.点评:本题考查了算术平方根的定义,熟记定义是解题的关键.2.(3分)考点:简单几何体的三视图;截一个几何体.分析:根据三视图的特点,知道左视图从图形的左边向右边看,看到一个正方形的面,在面上有一条实线,得到结果.解答:解:左视图从图形的左边向右边看,看到一个正方形的面,在面上有一条实线,故选:A.点评:本题考查空间图形的三视图,本题是一个基础题,正确把握三视图观察角度是解题关键.3.(3分)考点:一次函数图象上点的坐标特征.分析:利用待定系数法代入正比例函数y=﹣x可得m的值.解答:解:∵点A(﹣2,m)在正比例函数y=﹣x的图象上,∴m=﹣×(﹣2)=1,故选:C.点评:此题主要考查了一次函数图象上点的坐标特点,关键是掌握凡是函数图象经过的点必能满足解析式.4.(3分)考点:概率公式.分析:由一共有10种等可能的结果,小军能一次打开该旅行箱的只有1种情况,直接利用概率公式求解即可求得答案.解答:解:∵一共有10种等可能的结果,小军能一次打开该旅行箱的只有1种情况,∴小军能一次打开该旅行箱的概率是:.故选A.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.5.(3分)考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可解答:解:解得,故选:D.点评:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.(3分)考点:众数;中位数.分析:根据众数及平均数的定义,即可得出答案.解答:解:这组数据中85出现的次数最多,故众数是85;平均数=(80×3+085×4+90×2+95×1)=85.故选B.点评:本题考查了众数及平均数的知识,掌握各部分的概念是解题关键.7.(3分)考点:平行线的性质.分析:首先根据两直线平行,内错角相等可得∠ABC=∠C=28°,再根据三角形内角与外角的性质可得∠AEC=∠A+∠ABC.解答:解:∵AB∥CD,∴∠ABC=∠C=28°,∵∠A=45°,∴∠AEC=∠A+∠ABC=28°+45°=73°,故选:D.点评:此题主要考查了平行线的性质,以及三角形内角与外角的性质,关键是掌握两直线平行,内错角相等,三角形的外角等于与它不相邻的两个内角之和.8.(3分)考点:一元二次方程的解.分析:将x=﹣2代入关于x的一元二次方程x2﹣ax+a2=0,再解关于a的一元二次方程即可.解答:解:∵x=﹣2是关于x的一元二次方程x2﹣ax+a2=0的一个根,∴4+5a+a2=0,∴(a+1)(a+4)=0,解得a1=﹣1,a2=﹣4,故选B.点评:本题主要考查了一元二次方程的解的定义,解题关键是把x的值代入,再解关于a的方程即可.9.(3分)考点:菱形的性质.分析:连接BD,根据菱形的性质可得AC⊥BD,AO=AC,然后根据勾股定理计算出BO长,再算出菱形的面积,然后再根据面积公式BC•AE=AC•BD可得答案.解答:解:连接BD,∵四边形ABCD是菱形,∴AC⊥BD,AO=AC,BD=2BO,∴∠AOB=90°,∵AC=6,∴AO=3,∴B0==4,∴DB=8,∴菱形ABCD的面积是×AC•DB=×6×8=24,∴BC•AE=24,AE=,故选:C.点评:此题主要考查了菱形的性质,以及菱形的性质面积,关键是掌握菱形的对角线互相垂直且平分.10.(3分)考点:二次函数图象与系数的关系.专题:数形结合.分析:由抛物线与y轴的交点在点(0,﹣1)的下方得到c<﹣1;由抛物线开口方向得a >0,再由抛物线的对称轴在y轴的右侧得a、b异号,即b<0;由于抛物线过点(﹣2,0)、(4,0),根据抛物线的对称性得到抛物线对称轴为直线x=﹣=1,则2a+b=0;由于当x=﹣3时,y<0,所以9a﹣3b+c>0,即9a+c>3b.解答:解:∵抛物线与y轴的交点在点(0,﹣1)的下方.∴c<﹣1;∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴x=﹣>0,∴b<0;∵抛物线过点(﹣2,0)、(4,0),∴抛物线对称轴为直线x=﹣=1,∴2a+b=0;∵当x=﹣3时,y<0,∴9a﹣3b+c>0,即9a+c>3b.故选D.点评:本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.二、填空题(共2小题,每小题3分,共18分)11.(3分)考点:负整数指数幂.专题:计算题.分析:根据负整数指数幂的运算法则进行计算即可.解答:解:原式===9.故答案为:9.点评:本题考查的是负整数指数幂,即负整数指数幂等于该数对应的正整数指数幂的倒数.12.(3分)考点:因式分解-提公因式法.分析:直接提取公因式(x﹣y),进而得出答案.解答:解:m(x﹣y)+n(x﹣y)=(x﹣y)(m+n).故答案为:(x﹣y)(m+n).点评:此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.请从以下两个小题中任选一个作答,若多选,则按所选做的第一题计分.13.(3分)考点:轴对称的性质.分析:过正五边形的五个顶点作对边的垂线,可得对称轴.解答:解:如图,正五边形的对称轴共有5条.故答案为:5.点评:本题考查了轴对称的性质,熟记正五边形的对称性是解题的关键.14.考点:计算器—三角函数;计算器—数的开方.分析:先用计算器求出′、tan56°的值,再计算加减运算.解答:解:≈5.5678,tan56°≈1.4826,则+3tan56°≈5.5678+3×1.4826≈10.02故答案是:10.02.点评:本题考查了计算器的使用,要注意此题是精确到0.01.15.(3分)考点:旋转的性质.分析:利用正方形和旋转的性质得出A′D=A′E,进而利用勾股定理得出BD的长,进而利用锐角三角函数关系得出DE的长即可.解答:解:由题意可得出:∠BDC=45°,∠DA′E=90°,∴∠DEA′=45°,∴A′D=A′E,∵在正方形ABCD中,AD=1,∴AB=A′B=1,∴BD=,∴A′D=﹣1,∴在Rt△DA′E中,DE==2﹣.故答案为:2﹣.点评:此题主要考查了正方形和旋转的性质以及勾股定理、锐角三角函数关系等知识,得出A′D的长是解题关键.16.(3分)考点:反比例函数图象上点的坐标特征.分析:设这个反比例函数的表达式为y=,将P1(x1,y1),P2(x2,y2)代入得x1•y1=x2•y2=k,所以=,=,由=+,得(x2﹣x1)=,将x2=x1+2代入,求出k=4,得出这个反比例函数的表达式为y=.解答:解:设这个反比例函数的表达式为y=,∵P1(x1,y1),P2(x2,y2)是同一个反比例函数图象上的两点,∴x1•y1=x2•y2=k,∴=,=,∵=+,∴=+,∴(x2﹣x1)=,∵x2=x1+2,∴×2=,∴k=4,∴这个反比例函数的表达式为y=.故答案为y=.点评:本题考查了反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.同时考查了式子的变形.17.(3分)考点:垂径定理;圆周角定理.专题:计算题.分析:过点O作OC⊥AB于C,交⊙O于D、E两点,连结OA、OB、DA、DB、EA、EB,根据圆周角定理得∠AOB=2∠AMB=90°,则△OAB为等腰直角三角形,所以AB=OA=2,由于S四边形MANB=S△MAB+S△NAB,而当M点到AB的距离最大,△MAB的面积最大;当N点到AB的距离最大时,△NAB的面积最大,即M点运动到D点,N点运动到E点,所以四边形MANB面积的最大值=S四边形DAEB=S△DAB+S△EAB=AB•CD+AB•CE=AB(CD+CE)=AB•DE=×2×4=4.解答:解:过点O作OC⊥AB于C,交⊙O于D、E两点,连结OA、OB、DA、DB、EA、EB,如图,∵∠AMB=45°,∴∠AOB=2∠AMB=90°,∴△OAB为等腰直角三角形,∴AB=OA=2,∵S四边形MANB=S△MAB+S△NAB,∴当M点到AB的距离最大,△MAB的面积最大;当N点到AB的距离最大时,△NAB的面积最大,即M点运动到D点,N点运动到E点,此时四边形MANB面积的最大值=S四边形DAEB=S△DAB+S△EAB=AB•CD+AB•CE=AB(CD+CE)=AB•DE=×2×4=4.故答案为4.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理.四、解答题(共9小题,计72分)18.(5分)考点:分式的化简求值.专题:计算题.分析:原式通分并利用同分母分式的减法法则计算得到最简结果,将x的值代入计算即可求出值.解答:解:原式=﹣==,当x=﹣时,原式==.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(6分)考点:全等三角形的判定与性质.专题:证明题.分析:根据EF⊥AC,得∠F+∠C=90°,再由已知得∠A=∠F,从而AAS证明△FBD≌△ABC,则AB=BF.解答:证明:∵EF⊥AC,∴∠F+∠C=90°,∵∠A+∠C=90°,∴∠A=∠F,在△FBD和△ABC中,,∴△FBD≌△ABC(AAS),∴AB=BF.点评:本题考查了全等三角形的判定和性质,是基础知识要熟练掌握.20.(7分)考点:条形统计图;扇形统计图.专题:图表型.分析:(1)用A的排放量除以所占的百分比计算求出2013年总排放量,然后求出C的排放量,再根据各部分所占的百分比之和为1求出D的百分比,乘以总排放量求出D的排放量,然后补全统计图即可;(2)用A、C的排放量乘以减少的百分比计算即可得解.解答:解:(1)2013年总排放量为:80.6÷37.6%≈214.4万吨,C的排放量为:214.4×24.2%≈51.9万吨,D的百分比为1﹣37.6%﹣35.4%﹣24.2%=2.8%,排放量为214.4×2.8%≈6.0万吨;(2)由题意得,(80.6+51.9)×2%≈2.7万吨,答:陕西省往年年二氧化硫、化学需氧量的排放量供需减少约2.7万吨.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(8分)考点:相似三角形的应用.分析:根据题意求出∠BAD=∠BCE,然后根据两组角对应相等,两三角形相似求出△BAD和△BCE相似,再根据相似三角形对应边成比例列式求解即可.解答:解:由题意得,∠BAD=∠BCE,∵∠ABD=∠CBE=90°,∴△BAD∽△BCE,∴=,即=,解得BD=13.6米.答:河宽BD是13.6米.点评:本题考查了相似三角形的应用,读懂题目信息得到两三角形相等的角并确定出相似三角形是解题的关键,也是本题的难点.22.(8分)考点:一次函数的应用.分析:(1)根据快递的费用=包装费+运费由分段函数就,当0<x≤1和x>1时,可以求出y与x的函数关系式;(2)由(1)的解析式可以得出x=2.5>1代入解析式就可以求出结论.解答:解:(1)由题意,得当0<x≤1时,y=22+6=28;当x>1时y=28+10(x﹣1)=10x+18;∴y=;(2)当x=2.5时,y=10×2.5+18=43.∴这次快寄的费用是43元.点评:本题考查了分段函数的运用,一次函数的解析式的运用,由自变量的值求函数值的运用,解答时求出函数的解析式是关键.23.(8分)考点:列表法与树状图法.分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小英和母亲随机各摸球一次,均摸出白球的情况,再利用概率公式即可求得答案;(2)由(1)得:共有16种等可能的结果,小英和母亲随机各摸球一次,至少有一人摸出黄球的有7种情况,然后利用概率公式求解即可求得答案.解答:解:(1)画树状图得:∵共有16种等可能的结果,小英和母亲随机各摸球一次,均摸出白球的只有1种情况,∴小英和母亲随机各摸球一次,均摸出白球的概率是:;(2)由(1)得:共有16种等可能的结果,小英和母亲随机各摸球一次,至少有一人摸出黄球的有7种情况,∴小英和母亲随机各摸球一次,至少有一人摸出黄球的概率是:.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24.(8分)考点:切线的性质;相似三角形的判定与性质.分析:(1)首先连接OD,由BD是⊙O的切线,AC⊥BD,易证得OD∥AC,继而可证得AD平分∠BAC;(2)由OD∥AC,易证得△BOD∽△BAC,然后由相似三角形的对应边成比例,求得AC的长.解答:(1)证明:连接OD,∵BD是⊙O的切线,∴OD⊥BD,∵AC⊥BD,∴OD∥AC,∴∠2=∠3,∵OA=OD,∴∠1=∠3,∴∠1=∠2,即AD平分∠BAC;(2)解:∵OD∥AC,∴△BOD∽△BAC,∴,∴,解得:AC=.点评:此题考查了切线的性质以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.25.(10分)考点:二次函数图象与几何变换;二次函数的性质;待定系数法求二次函数解析式;平行四边形的性质.分析:(1)直接把A(﹣3,0)和B(0,3)两点代入抛物线y=﹣x2+bx+c,求出b,c的值即可;(2)根据(1)中抛物线的解析式可得出其顶点坐标;(3)根据平行四边形的定义,可知有四种情形符合条件,如解答图所示.需要分类讨论.解答:解:(1)∵抛物线y=﹣x2+bx+c经过A(﹣3,0)和B(0,3)两点,∴,解得,故此抛物线的解析式为:y=﹣x2﹣2x+3;(2)∵由(1)知抛物线的解析式为:y=﹣x2﹣2x+3,∴当x=﹣=﹣=﹣1时,y=4,∴M(﹣1,4).(3)由题意,以点M、N、M′、N′为顶点的平行四边形的边MN的对边只能是M′N′,∴MN∥M′N′且MN=M′N′.∴MN•NN′=16,∴NN′=4.i)当M、N、M′、N′为顶点的平行四边形是▱MNN′M′时,将抛物线C向左或向右平移4个单位可得符合条件的抛物线C′;ii)当M、N、M′、N′为顶点的平行四边形是▱MNM′N′时,将抛物线C先向左或向右平移4个单位,再向下平移8个单位,可得符合条件的抛物线C′.∴上述的四种平移,均可得到符合条件的抛物线C′.点评:本题考查了抛物线的平移变换、平行四边形的性质、待定系数法及二次函数的图象与性质等知识点.第(3)问需要分类讨论,避免漏解.26.(12分)考点:圆的综合题;全等三角形的判定与性质;等边三角形的性质;勾股定理;三角形中位线定理;矩形的性质;正方形的判定与性质;直线与圆的位置关系;特殊角的三角函数值.专题:压轴题;存在型.分析:(1)由于△PAD是等腰三角形,底边不定,需三种情况讨论,运用三角形全等、矩形的性质、勾股定理等知识即可解决问题.(2)以EF为直径作⊙O,易证⊙O与BC相切,从而得到符合条件的点Q唯一,然后通过添加辅助线,借助于正方形、特殊角的三角函数值等知识即可求出BQ长.(3)要满足∠AMB=60°,可构造以AB为边的等边三角形的外接圆,该圆与线段CD的交点就是满足条件的点,然后借助于等边三角形的性质、特殊角的三角函数值等知识,就可算出符合条件的DM长.解答:解:(1)①作AD的垂直平分线交BC于点P,如图①,则PA=PD.∴△PAD是等腰三角形.∵四边形ABCD是矩形,∴AB=DC,∠B=∠C=90°.∵PA=PD,AB=DC,∴Rt△ABP≌Rt△DCP(HL).∴BP=CP.∵BC=4,∴BP=CP=2.②以点D为圆心,AD为半径画弧,交BC于点P′,如图①,.则DA=DP′.∴△P′AD是等腰三角形.∵四边形ABCD是矩形,∴AD=BC,AB=DC,∠C=90°.∵AB=3,BC=4,∴DC=3,DP′=4.∴CP′==.∴BP′=4﹣.③点A为圆心,AD为半径画弧,交BC于点P″,如图①,则AD=AP″.∴△P″AD是等腰三角形.同理可得:BP″=.综上所述:在等腰三角形△ADP中,若PA=PD,则BP=2;若DP=DA,则BP=4﹣;若AP=AD,则BP=.(2)∵E、F分别为边AB、AC的中点,∴EF∥BC,EF=BC.∵BC=12,∴EF=6.以EF为直径作⊙O,过点O作OQ⊥BC,垂足为Q,连接EQ、FQ,如图②.∵AD⊥BC,AD=6,∴EF与BC之间的距离为3.∴OQ=3∴OQ=OE=3.∴⊙O与BC相切,切点为Q.∵EF为⊙O的直径,∴∠EQF=90°.过点E作EG⊥BC,垂足为G,如图②.∵EG⊥BC,OQ⊥BC,∴EG∥OQ.∵EO∥GQ,EG∥OQ,∠EGQ=90°,OE=OQ,∴四边形OEGQ是正方形.∴GQ=EO=3,EG=OQ=3.∵∠B=60°,∠EGB=90°,EG=3,∴BG=.∴BQ=GQ+BG=3+.∴当∠EQF=90°时,BQ的长为3+.(3)在线段CD上存在点M,使∠AMB=60°.理由如下:以AB为边,在AB的右侧作等边三角形ABG,作GP⊥AB,垂足为P,作AK⊥BG,垂足为K.设GP与AK交于点O,以点O为圆心,OA为半径作⊙O,过点O作OH⊥CD,垂足为H,如图③.则⊙O是△ABG的外接圆,∵△ABG是等边三角形,GP⊥AB,∴AP=PB=AB.∵AB=270,∴AP=135.∵ED=285,∴OH=285﹣135=150.∵△ABG是等边三角形,AK⊥BG,∴∠BAK=∠GAK=30°.∴OP=AP•tan30°=135×=45.∴OA=2OP=90.∴OH<OA.∴⊙O与CD相交,设交点为M,连接MA、MB,如图③.∴∠AMB=∠AGB=60°,OM=OA=90..∵OH⊥CD,OH=150,OM=90,∴HM===30.∵AE=400,OP=45,∴DH=400﹣45.若点M在点H的左边,则DM=DH+HM=400﹣45+30.∵400﹣45+30>340,∴DM>CD.∴点M不在线段CD上,应舍去.若点M在点H的右边,则DM=DH﹣HM=400﹣45﹣30.∵400﹣45﹣30<340,∴DM<CD.∴点M在线段CD上.综上所述:在线段CD上存在唯一的点M,使∠AMB=60°, 此时DM的长为(400﹣45﹣30)米.点评:本题考查了垂直平分线的性质、矩形的性质、等边三角形的性质、正方形的判定与性质、直线与圆的位置关系、圆周角定理、三角形的中位线定理、全等三角形的判定与性质、勾股定理、特殊角的三角函数值等知识,考查了操作、探究等能力,综合性非常强.而构造等边三角形及其外接圆是解决本题的关键.。

陕西西安中考真题数学试卷

陕西西安中考真题数学试卷

陕西西安中考真题数学试卷第一部分:选择题(共30小题,每小题2分,共60分)1. 单选题:1. 下面哪个数是无理数?A. 4B. -3C. 2.5D. √52. 若 (x-2)(x+3)=0,则 x 的值是:A. 2B. -2C. 3D. -33. 在直线上,点 A 坐标是 (-5,1),点 B 坐标是 (3,4),则 AB 线段上的点 C 坐标是:A. (8,6)B. (-1,3)C. (1,2)D. (0,0)4. 若 a/b=-6/7,则 a 与 b 的比值是:A. 6:7B. -6:7C. 7:6D. -7:65. 若 2x+3=7,则 x 的值是:A. 2B. 3C. 9D. 2.56. 若 r=5cm,圆的周长是:A. 10πcmB. 5πcmC. 25cmD. 5cm7. 若在ΔABC 中,∠A=90°,AD 是 BC 的中线,那么 AB:AD:AC = ?A. 3:1:2B. 2:1:2C. 1:1:1D. 3:2:18. 若 (2x-1)(3+5x)=-14,则 x 的值是:A. 2B. -2C. 1/2D. -1/29. 若 2x+3y=12,3x+4y=18,则 x 的值是:A. 1B. 3C. 2D. 410. 若 x+3=8,则 x 的值是:A. 5B. 2C. 9D. 1111. 若一边长为 a 的正方形的面积是 a²,则 a 的值是:A. 0B. 1C. 2D. -112. 化简:4(2x-3)-(7x-5)=?A. 6x-7B. 6x-17C. 15x-17D. 15x-713. 若√9=√(4x+5),则 x 的值是:A. 5/4B. 20/9C. -5/4D. -20/914. 若在正方形 ABCD 中,∠ABC=90°,则∠CBD 的度数是:A. 90°B. 45°C. 60°D. 30°15. 若 5x-2(x+3)=4,则 x 的值是:A. -2B. 2/3C. 13/7D. -13/72. 多选题:16. 以下哪个数是正数?A. -3B. 0C. 4.5D. -2/3答案:C17. 以下哪个图形是凸多边形?A. 正方形B. 五边形C. 六边形D. 七边形答案:A、C18. 如果 x+y=7,z=4,那么下面哪个等式正确?A. x+y+z=11B. x+y-z=3C. x-y+z=11D. x-y+z=3答案:A、D19. 以下哪些数是负数?A. -1B. 0C. -2/3D. 2答案:A、C20. 若直线 k 与 x 轴的交点是 (-3,0),与 y 轴的交点是 (0,4),则直线k 的斜率是:A. -1B. 3/4C. 4/3D. 1答案:A、B、C21. 若 (a-b)÷c=a÷c-b÷c,则以下哪个等式成立?A. (2-1)÷3=2÷3-1÷3B. (4-2)÷3=4÷3-2÷3C. (3-4)÷2=3÷2-4÷2D. (1-2)÷4=1÷4-2÷4答案:A、B、C22. 若在ΔABC 中,∠A=90°,DE 是 AB 的中线,那么以下哪个等式成立?A. AB:DE=1:1B. AB:DE=2:1C. AC:DE=2:1D. DE:AC=2:1答案:A、B、D23. 以下哪个数是整数?A. √9B. 1/2C. -πD. 3/4答案:A、C24. 若在平行四边形 ABCD 中,∠ACB=100°,则∠BDA 的度数是:A. 80°B. 100°C. 200°D. 260°答案:C、D25. 若 md=5,nd=7,则 mn 的值是:A. 35B. 12C. 2/7D. 1/12答案:A、C3. 填空题:26. 化简:3(2x-5)-(4x-7)=?答案:-2x-227. 若√16=4,则 16+16-4-4=?答案:2428. 若 3x-2=10,则 x 的值为:?答案:429. 若在正方形 ABCD 中,∠ABC=90°,则∠CDA 的度数为:?答案:90°30. 若 5(x+2)=35,则 x 的值为:?答案:5第二部分:填空题(共10小题,每小题4分,共40分)31. 若一个三角形的三个角分别是35°、55°、90°,则该三角形属于__________。

2024年陕西省中考数学试卷及答案

2024年陕西省中考数学试卷及答案

2024年陕西省中考数学真题试卷一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.-3的倒数是()A.13-B.13C.3-D.32.如图,将半圆绕直径所在的虚线旋转一周,得到的立体图形是()3.如图,//AB DC ,//,145O BC DE B ∠=,则D ∠的度数为()第3题图A.25oB.35oC.45oD.55o4.不等式2(1)6x -≥的解集是()A.2x B.2x ≥ C.4x D.4x ≥5.如图,在ABC ∆中,90,BAC AD ︒∠=是BC 边上的高,E 是DC 的中点,,连接AE ,则图中的直角三角形有()第5题图A.2个B.3个C.4个D.5个6.一个正比例函数的图象经过点(2,)A m 和点(,6)B n -,若点A 于点B 关于原点对称,则这个正比例函数的表达式为()A.3y x= B.3y x=- C.13y x= D.13y x=-7.如图,正方形CEFG 的顶点G 在正方形ABCD 的边CD 上AF 与DC 交于点H ,若6,2,AB CE ==则DH 的长为()第7题图A.2B.3C.52D.838.已知一个二次函数2y ax bx c =++的自变量x 与函数y 的几组对应值如下表()x 4-2-035 y24-8-03-15-A.图象的开口向上B.当0x >时,y 的值随x 的值增大而增大C.图象经过第二、三、四象限D.图象的对称轴是直线1x =第二部分(非选择题共96分)二、填空题(共5小题,每小题3分,计15分)9.分解因式:2a ab -=______.10.小华探究“幻方”时,提出了一个问题:如图,将0,-2,-1,1,2这五个数分别填在五个小正方形内,使横向三个数之和与纵向三个数之和相等,则填入中间位置的小正方形内的数可以是___________.(写出一个符合题意的数即可)第10题图第11题图第13题图11.如图,BC 是O 的弦,连接,,OB OC A ∠是 BC所对的圆周角,则A ∠与OBC ∠的和的度数是_________.12.已知点1(2,)A y -和点2(,)B m y 均在反比例函数5y x=-的图象上,若01m <<,则12_____0y y +.13.如图,在ABC ∆中,,AB AC E =是边AB 上一点,连接CE ,在BC 右侧作//BF C ,且BF AE =,连接CF .若13,10AC BC ==,则四边形EBFC 的面积为___________.三、解答题(共13小题,计81分.解答题应写出过程)14.(本题满分5分)计算:0(7)(2)3--+-⨯.15.(本题满分5分)先化简,再求值:2()(2),x y x x y ++-其中1,2x y ==-解方程:22111xx x +=--17.(本题满分5分)如图,已知直线l 和l 外一点A ,请用尺规作图法,求作一个等腰直角ABC ∆,使得顶点B 和顶点C 都在直线l 上.(作出符合题意的一个等腰直角三角形即可,保留作图痕迹,不写作法)18.(本题满分5分)如图,四边形ABCD 是矩形,点E 和点F 在边BC 上,且BE CF =.求证:AF DE =.19.(本题满分5分)一个不透明的袋子中共装有五个小球,其中3个红球,1个白球,1个黄球.这些小球除颜色外都相同.将袋中小球摇匀,从中随机摸出一个小球记色后放回,记作随机摸球一次.(1)随机摸球10次,其中摸出黄球3次,则这10次摸球摸出黄球的频率是________.(2)随机摸球2次,画树状图或列表的方法,求这两次摸出的小球都是红球的概率星期天,妈妈做饭,小峰和爸爸进行一次家庭卫生大扫除.根据这次大扫除的任务量,若小峰单独完成,需4h;爸爸单独完成,需2h.当天,小峰先单独打扫了一段时间后,去参加篮球训练,接着由爸爸单独完成剩余的打扫任务.小峰和爸爸这次一共打扫了3h,求这次小峰打扫了多长时间.21.(本题满分6分)如图所示,一座小山顶的水平观景台的海拔高度为1600m,小明想利用这个观景台测量对面山顶C 点处的海拔高度,他在该观景台上选定了一点A ,在点A 处测得C 点的仰角CAE ∠42︒=,再在AE 上选一点B ,在点B 处测得C 点的仰角45a ︒=,10AB =m.求山顶C 点处的海拔高度.(小明身高忽略不计,参考数据:420.67,420.74,420.90o o o sin cos tan ≈≈≈)我国新能源汽车快速健康发展,续航里程不断提升,王师傅驾驶一辆纯电动汽车从A 市前往B市,他驾车从A市一高速公路入口驶入时,该车的剩余电量是80kw·h,行驶了240km后,从B市一高速公路出口驶出,已知该车在高速公路上行驶的过程中,剩余电量y(kw·h)与行驶路程x(km)之间的关系如图所示(1)求y与x之间的关系式;(2)已知这辆车的“满电量”为100kW·h,求王师傅驾车从B市这一高速公路出口驶出时,该车的剩余电量占“满电量”的百分之多少.23.(本题满分7分)水资源问题是全球关注的热点,节约用水已成为全民共识.某校课外兴趣小组想了解居民家庭用水情况,他们从一小区随机抽取了30户家庭,收集了这30户家庭去年7月份的用水量,并对这30个数据进行整理,绘制了如下统计图表:根据以上信息,解答下列问:(1)这30个数据的中位数落在组(填组别);(2)求这30户家庭去年7月份的总用水量;(3)该小区有1000户家庭,若每户家庭今年7月份的用水量都比去年7月份各自家庭的用水量节约10%,请估计这1000户家庭今年7月份的总用水量比去年7月份的总用水量节约多少m³?24.(本题满分8分)如图,直线l 与O 相切于点A ,AB 是O 的直径,点C ,D 在l 上,且位于点A 两侧连接,BC BD ,分別与O 交于点,E F ,连接,EF AF .(1)求证:BAF CDB ∠=∠.(2)若O 的半径6,9,12r AD AC ===,求EF 的长.一条河上横跨着一座宏伟壮观的悬索桥.桥梁的缆索1L 与缆索2L 均呈抛物线型,桥塔AO 与桥塔BC 均垂直于桥面,如图所示,以O 为原点,以直线'FF 为x 轴,以桥塔AO 所在直线为y 轴,建立平面直角坐标系.已知:缆索1L 所在抛物线与缆索2L 所在抛物线关于y 轴对称,桥塔AO 与桥塔BC 之间的距离100OC m =,17AO BC m ==,缆索1L 的最低点P 到$FF$的距离2PD m =(桥塔的粗细忽略不计)(1)求缆索1L 所在抛物线的函数表达式.(2)点E 在缆索2L 上,EF FF '⊥,且 2.6EF m =,FO OD <,求FO 的长.问题提出(1)如图1,在ABC ∆中,15,30AB C ︒=∠=,作ABC ∆的外接圆.O 则 ACB 的长为______.(结果保留π)问题解决(2)如图2所示,道路AB 的一侧是湿地.某生态研究所在湿地上建有观测点,,D E C ,线段,AD AC 和BC 为观测步道,其中点A 和点B 为观测步道出入口,已知点E 在AC 上,且,60,120,1200AE EC DAB ABC AB m ︒︒=∠=∠==,,900AD BC m ==,现要在湿地上修建一个新观测点P ,使60.DPC ︒∠=再在线段AB 上选一个新的步道出入口点F ,并修通三条新步道,,PF PD PC ,使新步道PF 经过观测点E ,并将五边形ABCPD 的面积平分请问:是否存在满足要求的点P 和点F ?若存在,求此时PF 的长;若不存在,请说明理由.(点,,,,A B C P D 在同一平面内,道路AB 与观测步道的宽、观测点及出人口的大小均忽略不计,结果保留根号)2024年陕西中考数学真题试卷参考答案一、选择题.题号12345678答案ACBDCABD二、填空题题号910111213答案()a ab -0或2或2-90o<60三解答题.14.2-15.222,6x y +16.3x =-是原分式方程的解.17.(1)在l 上取点,P Q 分别以,P Q 为圆心,,PA QA 为半径画圆,得另一交点D .连接AD 交l 于B ,则AB l ⊥.(2)以B 为圆心,BA 为半径画圆,交l 于C ,则ABC ∆即为所求.18.略19.(1)310(2)92520.2小时1121.1690米22.(1)1805y x =-+(2)32%23.(1)B (2)3255m (3)3850m 24.(1)略(2)422525.(1)23(50)2500y x =-+或233175005y x x =-+(2)40米26.(1)25π(2)米。

2024年陕西省中考数学试题(解析版)

2024年陕西省中考数学试题(解析版)

2024年陕西省初中学业水平考试数 学 试 卷注意事项:1.本试卷分为第一部分(选择题)和第二部分(非选择题),全卷共8页,总分120分,考试时间120分钟2.领到试卷和答题卡后,请用0.5毫米黑色墨水签字笔,分别在试卷和答题卡上填写姓名和准考证号,同时用2B 铅笔在答题卡上填涂对应的试卷类型信息点(A 或B )3.请在答题卡上各题的指定区域内作答,否则作答无效4.作图时,先用铅笔作图,再用规定签字笔描黑5.考试结束,本试卷和答题卡一并交回第一部分(选择题 共24分)一、选择题(共8小题,每小题3分,计24分,每小题只有一个选项是符合题意的) 1. 3−倒数是( )A. 3B. 13C. 13−D. 3−【答案】C【解析】【分析】由互为倒数的两数之积为1,即可求解. 【详解】解:∵1313 −×−=, ∴3−的倒数是13−. 故选C2. 如图,将半圆绕直径所在的虚线旋转一周,得到的立体图形是( )A. B. C. D.【答案】C【解析】【分析】本题主要考查了点、线、面、体问题.根据旋转体的特征判断即可.的【详解】解:将一个半圆绕它的直径所在的直线旋转一周得到的几何体是球,故选:C .3. 如图,AB DC ∥,BC DE ∥,145B ∠=°,则D ∠的度数为( )A. 25°B. 35°C. 45°D. 55°【答案】B【解析】 【分析】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.先根据“两直线平行,同旁内角互补”,得到35C ∠=°,再根据“两直线平行,内错角相等”,即可得到答案.【详解】AB DC ∥,180B C∠+∠=°∴, 145B ∠=°,18035C B ∴∠=°−∠=°,∥ BC DE ,35D C ∴∠=∠=°.故选B .4. 不等式()216x −≥的解集是( )A. 2x ≤B. 2x ≥C. 4x ≤D. 4x ≥【答案】D【解析】【分析】本题主要考查解一元一次不等式.通过去括号,移项,合并同类项,未知数系数化为1,即可求解.【详解】解:()216x −≥,去括号得:226x −≥,移项合并得:28x ≥,解得:4x ≥,故选:D .5. 如图,在ABC 中,90BAC ∠=°,AD 是BC 边上的高,E 是DC 的中点,连接AE ,则图中的直角三角形有( )A. 2个B. 3个C. 4个D. 5个【答案】C【解析】 【分析】本题主要考查直角三角形的概念.根据直角三角形的概念可以直接判断.【详解】解:由图得ABD △,ABC ,ADC △,ADE 为直角三角形,共有4个直角三角形.故选:C .6. 一个正比例函数图象经过点()2,A m 和点(),6B n −,若点A 与点B 关于原点对称,则这个正比例函数的表达式为 ( )A. 3y x =B. 3y x =−C. 13y x =D. 13y x =− 【答案】A【解析】【分析】本题考查正比例函数的图象,坐标与中心对称,根据关于原点对称的两个点的横纵坐标均互为相反数,求出,A B 的坐标,进而利用待定系数法求出函数表达式即可.【详解】解:∵点A 与点B 关于原点对称,∴6,2m n ==−,∴()2,6A ,()2,6B −−, 设正比例函数的解析式为:()0y kx k =≠,把()2,6A 代入,得:3k =, ∴3y x =;故选A .7. 如图,正方形CEFG 的顶点G 在正方形ABCD 的边CD 上,AF 与DC 交于点H ,若6AB =,2CE =,则DH 的长为( )的A. 2B. 3C. 52D. 83【答案】B【解析】 【分析】本题考查了相似三角形的判定和性质,正方形的性质.证明ADH FGH ∽△△,利用相似三角形的性质列式计算即可求解.【详解】解:∵正方形ABCD ,6AB =,∴6AB AD CD ===,∵正方形CEFG ,2CE =,∴2CE GF CG ===,∴4DG CD CG =−=,由题意得AD GF ∥,∴ADH FGH ∽△△, ∴AD DH GF GH=,即624DH DH =−, 解得3DH =,故选:B .8. 已知一个二次函数2y ax bx c ++的自变量x 与函数y 的几组对应值如下表, x …4− 2− 0 3 5 …y … 24− 8− 0 3− 15− …则下列关于这个二次函数的结论正确的是( )A. 图象的开口向上B. 当0x >时,y 的值随x 的值增大而增大C. 图象经过第二、三、四象限D. 图象对称轴是直线1x =【答案】D【解析】【分析】本题考查了待定系数法求二次函数解析式,二次函数的性质.先利用待定系数法求得二次函数解析式,再根据二次函数的性质逐一判断即可. 的【详解】解:由题意得4280933a b c c a b c −+=− = ++=− ,解得102a c b =− = =,∴二次函数的解析式为()22211y x x x =−+=−−+,∵10a =−<,∴图象的开口向下,故选项A 不符合题意;图象的对称轴是直线1x =,故选项D 符合题意;当01x <<时,y 的值随x 的值增大而增大,当1x >时,y 的值随x 的值增大而减小,故选项B 不符合题意;∵顶点坐标为()1,1且经过原点,图象的开口向下,∴图象经过第一、三、四象限,故选项C 不符合题意;故选:D . 第二部分(非选择题 共96分)二、填空题(共5小题,每小题3分,计15分)9. 分解因式:2a ab −=_______________.【答案】a (a ﹣b ).【解析】【详解】解:2a ab −=a (a ﹣b ). 故答案为a (a ﹣b ).【点睛】本题考查因式分解-提公因式法.10. 小华探究“幻方”时,提出了一个问题:如图,将0,2−,1−,1,2这五个数分别填在五个小正方形内,使横向三个数之和与纵向三个数之和相等,则填入中间位置的小正方形内的数可以是________.(写出一个符合题意的数即可)【答案】0【解析】【分析】本题考查有理数的运算,根据横向三个数之和与纵向三个数之和相等,进行填写即可得出结果.【详解】解:由题意,填写如下:()()10102020++−=++−=,,满足题意;故答案为:0.11. 如图,BC 是O 的弦,连接OB ,OC ,A ∠是 BC所对的圆周角,则A ∠与OBC ∠的和的度数是________.【答案】90°##90度【解析】【分析】本题考查了圆周角定理,等腰三角形的性质,三角形内角和定理,熟练掌握圆周角定理是解题的关键.根据圆周角定理可得2BOC A ∠=∠,结合三角形内角和定理,可证明2180A OBC OCB ∠+∠+∠=°,再根据等腰三角形的性质可知OBC OCB ∠=∠,由此即得答案.【详解】A ∠是 BC所对的圆周角,BOC ∠是 BC 所对的圆心角, 2BOC A ∴∠=∠,180BOC OBC OCB ∠+∠+∠=° ,2180A OBC OCB ∴∠+∠+∠=°,OB OC = ,OBC OCB ∴∠=∠,2180A OBC OBC ∴∠+∠+∠=°,22180A OBC ∴∠+∠=°,90A OBC ∴∠+∠=°.故答案为:90°.12. 已知点()12,A y −和点()2,B m y 均在反比例函数5y x=−的图象上,若01m <<,则12y y +________0. 【答案】<##小于【解析】【分析】本题主要考查了反比例函数的性质,先求出152y =,25y m =−,再根据01m <<,得出25y <−,最后求出120y y +<即可.【详解】解:∵点()12,A y −和点()2,B m y 均在反比例函数5y x =−的图象上, ∴152y =,25y m=−, ∵01m <<,∴25y <−,∴120y y +<.故答案为:<.13. 如图,在ABC 中,AB AC =,E 是边AB 上一点,连接CE ,在BC 右侧作BF AC ∥,且BF AE =,连接CF .若13AC =,10BC =,则四边形EBFC 的面积为________.【答案】60【解析】【分析】本题考查等边对等角,平行线的性质,角平分线的性质,勾股定理:过点C 作C M A B ⊥,CN BF ⊥,根据等边对等角结合平行线的性质,推出ABC CBF ∠=∠,进而得到CM CN =,得到CBF ACE S S = ,进而得到四边形EBFC 的面积等于ABC S ,设AM x =,勾股定理求出CM 的长,再利用面积公式求出ABC 的面积即可.【详解】解:∵AB AC =,∴A ABC CB =∠∠,∵BF AC ∥,∴ACB CBF ∠=∠,∴ABC CBF ∠=∠,∴BC 平分ABF ∠,过点C 作C M A B ⊥,CN BF ⊥,则:CM CN =, ∵11,22ACE CBF S AE CM S BF CN =⋅=⋅ ,且BF AE =, ∴CBF ACE S S = ,∴四边形EBFC 面积CBF CBE ACE CBE CBA S S S S S =+=+= ,∵13AC =,∴13AB =,设AM x =,则:13BM x =−,由勾股定理,得:22222CM AC AM BC BM =−=−,∴()2222131013x x −=−−, 解:11913x =,∴12013CM =, ∴1602CBA S AC CM ⋅ , ∴四边形EBFC 的面积为60.故答案为:60.三、解答题(共13小题,计81分。

2013-2020年陕西省中考数学试题汇编(含参考答案与解析)

2013-2020年陕西省中考数学试题汇编(含参考答案与解析)

【中考数学真题精析汇编】2013—2020年陕西省中考数学试题汇编(含参考答案与解析)1、2013年陕西省中考数学试题及参考答案与解析 (2)2、2014年陕西省中考数学试题及参考答案与解析 (23)3、2015年陕西省中考数学试题及参考答案与解析 (47)4、2016年陕西省中考数学试题及参考答案与解析 (68)5、2017年陕西省中考数学试题及参考答案与解析 (93)6、2018年陕西省中考数学试题及参考答案与解析 (117)7、2019年陕西省中考数学试题及参考答案与解析 (140)8、2020年陕西省中考数学试题及参考答案与解析 (162)2013年陕西省中考数学试题及参考答案与解析一、选择题(本大题共10小题,每小题3分,共30分) 1.下列四个数中最小的数是( ) A .﹣2 B .0C .13- D .52.如图,下面的几何体是由一个圆柱和一个长方体组成的,则它的俯视图是( )A .B .C .D .3.如图,AB ∥CD ,∠CED=90°,∠AEC=35°,则∠D 的大小为( )A .65°B .55°C .45°D .35°4.不等式组12123x x ⎧-⎪⎨⎪-⎩><的解集为( ) A .x >12B .x <﹣1C .﹣1<x <12 D .x >12- 5.我省某市五月份第二周连续七天的空气质量指数分别为:111、96、47、68、70、77、105,则这七天空气质量指数的平均数是( ) A .71.8 B .77C .82D .95.76.如果一个正比例函数的图象经过不同象限的两点A (2,m ),B (n ,3),那么一定有( ) A .m >0,n >0 B .m >0,n <0 C .m <0,n >0 D .m <0,n <07.如图,在四边形ABCD 中,AB=AD ,CB=CD ,若连接AC 、BD 相交于点O ,则图中全等三角形共有( )A.1对B.2对C.3对D.4对8.根据表中一次函数的自变量x与函数y的对应值,可得p的值为()x ﹣2 0 1y 3 p 0A.1 B.﹣1 C.3 D.﹣39.如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、DN.若四边形MBND是菱形,则AMMD等于()A.38B.23C.35D.4510.已知两点A(﹣5,y1),B(3,y2)均在抛物线y=ax2+bx+c(a≠0)上,点C(x0,y0)是该抛物线的顶点.若y1>y2≥y0,则x0的取值范围是()A.x0>﹣5 B.x0>﹣1 C.﹣5<x0<﹣1 D.﹣2<x0<3二、填空题(本大题共6小题,每小题3分,共18分)11.计算:(﹣2)3+1)0=.12.一元二次方程x2﹣3x=0的根是.13.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.A、在平面直角坐标系中,线段AB的两个端点的坐标分别为A(﹣2,1)、B(1,3),将线段AB 通过平移后得到线段A′B′,若点A的对应点为A′(3,2),则点B的对应点B′的坐标是.B、比较大小:“>”,“=”或“<”)14.如图,四边形ABCD的对角线AC,BD相交于点O,且BD平分AC.若BD=8,AC=6,∠BOC=120°,则四边形ABCD的面积为.(结果保留根号)15.如果一个正比例函数的图象与反比例函数6y x=的图象交于A (x 1,y 1),B (x 2,y 2)两点,那么(x 2﹣x 1)(y 2﹣y 1)的值为 .16.如图,AB 是⊙O 的一条弦,点C 是⊙O 上一动点,且∠ACB=30°,点E 、F 分别是AC 、BC 的中点,直线EF 与⊙O 交于G 、H 两点.若⊙O 的半径为7,则GE+FH 的最大值为 .三、解答题(本大题共9小题,共72分) 17.(5分)解分式方程:22142xx x +=--. 18.(6分)如图,∠AOB=90°,OA=OB ,直线l 经过点O ,分别过A 、B 两点作AC ⊥l 交l 于点C ,BD ⊥l 交l 于点D . 求证:AC=OD .19.(7分)我省教育厅下发了《在全省中小学幼儿园广泛开展节约教育的通知》,通知中要求各学校全面持续开展“光盘行动”.某市教育局督导组为了调查学生对“节约教育”内容的了解程度(程度分为:“A ﹣﹣了解很多”、“B ﹣﹣了解较多”,“C ﹣﹣了解较少”,“D ﹣﹣不了解”),对本市一所中学的学生进行了抽样调查.我们将这次调查的结果绘制了以下两幅统计图.根据以上信息,解答下列问题: (1)本次抽样调查了多少名学生?(2)补全两幅统计图;(3)若该中学共有1800名学生,请你估计这所中学的所有学生中,对“节约教育”内容“了解较多”的有多少名?20.(8分)一天晚上,李明和张龙利用灯光下的影子长来测量一路灯CD的高度.如图,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m).21.(8分)“五一节”期间,申老师一家自驾游去了离家170千米的某地,下面是他们离家的距离y (千米)与汽车行驶时间x(小时)之间的函数图象.(1)求他们出发半小时时,离家多少千米?(2)求出AB段图象的函数表达式;(3)他们出发2小时时,离目的地还有多少千米?22.(8分)甲、乙两人用手指玩游戏,规则如下:①每次游戏时,两人同时随机地各伸出一根手指;②两人伸出的手指中,大拇指只胜食指、食指只胜中指、中指只胜无名指、无名指只胜小拇指、小拇指只胜大拇指,否则不分胜负.依据上述规则,当甲、乙两人同时随机地各伸出一根手指时,(1)求甲伸出小拇指取胜的概率;(2)求乙取胜的概率.23.(8分)如图,直线l与⊙O相切于点D,过圆心O作EF∥l交⊙O于E、F两点,点A是⊙O 上一点,连接AE、AF,并分别延长交直线l于B、C两点.(1)求证:∠ABC+∠ACB=90°;(2)当⊙O的半径R=5,BD=12时,求tan∠ACB的值.24.(10分)在平面直角坐标系中,一个二次函数的图象经过点A(1,0)、B(3,0)两点.(1)写出这个二次函数图象的对称轴;(2)设这个二次函数图象的顶点为D,与y轴交于点C,它的对称轴与x轴交于点E,连接AC、DE和DB,当△AOC与△DEB相似时,求这个二次函数的表达式.[提示:如果一个二次函数的图象与x轴的交点为A(x1,0)、B(x2,0),那么它的表达式可表示为y=a(x﹣x1)(x﹣x2)].25.(12分)问题探究:(1)请在图①中作出两条直线,使它们将圆面四等分;(2)如图②,M是正方形ABCD内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M)使它们将正方形ABCD的面积四等分,并说明理由.问题解决:(3)如图③,在四边形ABCD中,AB∥CD,AB+CD=BC,点P是AD的中点,如果AB=a,CD=b,且b>a,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD的面积分成相等的两部分?如若存在,求出BQ的长;若不存在,说明理由.参考答案与解析一、选择题(本大题共10小题,每小题3分,共30分)1.下列四个数中最小的数是()A.﹣2 B.0 C.13-D.5【知识考点】有理数大小比较.【思路分析】根据有理数的大小比较方法,找出最小的数即可.【解题过程】解:∵﹣2<13-<0<5,∴四个数中最小的数是﹣2;故选A.【总结归纳】此题考查了有理数的大小比较,用到的知识点是负数<0<正数,两个负数,绝对值大的反而小,是一道基础题.2.如图,下面的几何体是由一个圆柱和一个长方体组成的,则它的俯视图是()A. B. C. D.【知识考点】简单组合体的三视图.【思路分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解题过程】解:从上面看所得到的图形是一个长方形,中间有一个没有圆心的圆,与长方形的两边相切.故选:D.【总结归纳】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.如图,AB∥CD,∠CED=90°,∠AEC=35°,则∠D的大小为()A.65°B.55°C.45°D.35°【知识考点】平行线的性质.【思路分析】根据平角等于180°求出∠BED,再根据两直线平行,内错角相等解答.【解题过程】解:∵∠CED=90°,∠AEC=35°,∴∠BED=180°﹣∠CED﹣∠AEC=180°﹣90°﹣35°=55°,∵AB∥CD,∴∠D=∠BED=55°.故选B.【总结归纳】本题考查了平行线的性质,平角的定义,是基础题,熟记性质是解题的关键.4.不等式组12123xx⎧-⎪⎨⎪-⎩><的解集为()A.x>12B.x<﹣1 C.﹣1<x<12D.x>12-【知识考点】解一元一次不等式组.【思路分析】分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集即可.【解题过程】解:12123xx⎧-⎪⎨⎪-⎩>①<②,由①得:x>12,由②得:x>﹣1,不等式组的解集为:x>12,故选:A.【总结归纳】此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.5.我省某市五月份第二周连续七天的空气质量指数分别为:111、96、47、68、70、77、105,则这七天空气质量指数的平均数是()A.71.8 B.77 C.82 D.95.7【知识考点】算术平均数.【思路分析】根据平均数的计算公式列出算式,再进行计算即可.【解题过程】解:根据题意得:(111+96+47+68+70+77+105)÷7=82;故选C.【总结归纳】此题考查了算术平均数,用到的知识点是平均数的计算公式,关键是根据公式列出算式.6.如果一个正比例函数的图象经过不同象限的两点A(2,m),B(n,3),那么一定有()A.m>0,n>0 B.m>0,n<0 C.m<0,n>0 D.m<0,n<0【知识考点】正比例函数的性质.【思路分析】根据正比例函数图象所在象限,可判断出m、n的正负.【解题过程】解:A、m>0,n>0,A、B两点在同一象限,故A错误;B、m>0,n<0,A、B两点不在同一个正比例函数,故B错误;C、m<0,n>0,A、B两点不在同一个正比例函数,故C错误;D、m<0,n<0,A、B两点在同一个正比例函数的不同象限,故D正确.故选:D.【总结归纳】此题主要考查了正比例函数的性质,关键是掌握正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.7.如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.1对B.2对C.3对D.4对【知识考点】全等三角形的判定.【思路分析】首先证明△ABC≌△ADC,根据全等三角形的性质可得∠BAC=∠DAC,∠BCA=∠DCA,再证明△ABO≌△ADO,△BOC≌△DOC.【解题过程】解:∵在△ABC和△ADC中,AB AD BC DC AC AC=⎧⎪=⎨⎪=⎩,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC,∠BCA=∠DCA,∵在△ABO和△ADO中,AB ADBAO DAO AO AO=⎧⎪∠=∠⎨⎪=⎩,∴△ABO≌△ADO(SAS),∵在△BOC和△DOC中,BC DCBCO DCO CO CO=⎧⎪∠=∠⎨⎪=⎩,∴△BOC≌△DOC(SAS),故选:C.【总结归纳】考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.根据表中一次函数的自变量x与函数y的对应值,可得p的值为()x ﹣2 0 1y 3 p 0A.1 B.﹣1 C.3 D.﹣3【知识考点】一次函数图象上点的坐标特征.【思路分析】设一次函数的解析式为y=kx+b(k≠0),再把x=﹣2,y=3;x=1时,y=0代入即可得出k、b的值,故可得出一次函数的解析式,再把x=0代入即可求出p的值.【解题过程】解:一次函数的解析式为y=kx+b(k≠0),∵x=﹣2时y=3;x=1时y=0,∴23k bk b-+=⎧⎨+=⎩,解得11kb=-⎧⎨=⎩,∴一次函数的解析式为y=﹣x+1,∴当x=0时,y=1,即p=1.故选A.【总结归纳】本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.9.如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、DN.若四边形MBND是菱形,则AMMD等于()A.38B.23C.35D.45【知识考点】勾股定理;菱形的性质;矩形的性质.【思路分析】首先由菱形的四条边都相等与矩形的四个角是直角,即可得到直角△ABM中三边的关系.【解题过程】解:∵四边形MBND是菱形,∴MD=MB.∵四边形ABCD是矩形,∴∠A=90°.设AB=x ,AM=y ,则MB=2x ﹣y ,(x 、y 均为正数). 在Rt △ABM 中,AB 2+AM 2=BM 2,即x 2+y 2=(2x ﹣y )2, 解得43x y =, ∴MD=MB=2x ﹣y=53y , ∴3553AM y MD y ==, 故选:C .【总结归纳】此题考查了菱形与矩形的性质,以及直角三角形中的勾股定理.解此题的关键是注意数形结合思想与方程思想的应用.10.已知两点A (﹣5,y 1),B (3,y 2)均在抛物线y=ax 2+bx+c (a≠0)上,点C (x 0,y 0)是该抛物线的顶点.若y 1>y 2≥y 0,则x 0的取值范围是( ) A .x 0>﹣5 B .x 0>﹣1C .﹣5<x 0<﹣1D .﹣2<x 0<3【知识考点】二次函数图象上点的坐标特征.【思路分析】先判断出抛物线开口方向上,进而求出对称轴即可求解. 【解题过程】解:∵点C (x 0,y 0)是抛物线的顶点,y 1>y 2≥y 0, ∴抛物线有最小值,函数图象开口向上, ∴a >0;∴25a ﹣5b+c >9a+3b+c ,∴2ba <1, ∴2b a->﹣1,∴x 0>﹣1∴x 0的取值范围是x 0>﹣1. 故选:B .【总结归纳】本题考查了二次函数图象上点坐标特征,主要利用了二次函数的增减性与对称性,根据顶点的纵坐标最小确定出抛物线开口方向上是解题的关键. 二、填空题(本大题共6小题,每小题3分,共18分) 11.计算:(﹣2)3+1)0= . 【知识考点】实数的运算;零指数幂.【思路分析】先分别根据有理数乘方的法则及0指数幂的计算法则计算出各数,再根据实数混合运算的法则进行计算即可.【解题过程】解:原式=﹣8+1=﹣7. 故答案为:﹣7.【总结归纳】本题考查的是实数的运算,熟知有理数乘方的法则及0指数幂的计算法则是解答此题的关键.12.一元二次方程x2﹣3x=0的根是.【知识考点】解一元二次方程-因式分解法.【思路分析】首先利用提取公因式法分解因式,由此即可求出方程的解.【解题过程】解:x2﹣3x=0,x(x﹣3)=0,∴x1=0,x2=3.故答案为:x1=0,x2=3.【总结归纳】此题主要考查了因式分解法解一元二次方程,解题的关键会进行因式分解.13.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.A、在平面直角坐标系中,线段AB的两个端点的坐标分别为A(﹣2,1)、B(1,3),将线段AB 通过平移后得到线段A′B′,若点A的对应点为A′(3,2),则点B的对应点B′的坐标是.B、比较大小:“>”,“=”或“<”)【知识考点】坐标与图形变化-平移;实数大小比较.【思路分析】(1)比较A(﹣2,1)与A′(3,2)的横坐标、纵坐标,可知平移后横坐标加5,纵坐标加1,由于点A、B平移规律相同,坐标变化也相同,即可得B′的坐标;(2)8cos31°很接近【解题过程】解:(1)由于图形平移过程中,对应点的平移规律相同,由点A到点A′可知,点的横坐标加5,纵坐标加1,故点B′的坐标为(1+5,3+1),即(6,4);(2)∵8cos31°≈∴故答案为:(6,4);>.【总结归纳】本题考查图形的平移变换,关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移变换是中考的常考点.比较对应点的坐标变化,寻找变化规律,并把变化规律运用到其它对应点上,同时考查了实数的大小比较.14.如图,四边形ABCD的对角线AC,BD相交于点O,且BD平分AC.若BD=8,AC=6,∠BOC=120°,则四边形ABCD的面积为.(结果保留根号)【知识考点】解直角三角形.【思路分析】如图,过点A 作AE ⊥BD 于点E ,过点C 作CF ⊥BD 于点F .则通过解直角△AEO和直角△CFO 求得ABCD 的面积. 【解题过程】解:如图,过点A 作AE ⊥BD 于点E ,过点C 作CF ⊥BD 于点F .∵BD 平分AC ,AC=6, ∴AO=CO=3. ∵∠BOC=120°, ∴∠AOE=60°,∴AE=AO•sin60°=2.同理求得∴S 四边形ABCD =S △ABD +S △CBD =12BD ×AE+12BD ×CF=1282⨯=,故答案是:【总结归纳】本题考查了解直角三角形,三角形的面积的计算.求图中相关线段的长度时,也可以根据勾股定理进行解答.15.如果一个正比例函数的图象与反比例函数6y x=的图象交于A (x 1,y 1),B (x 2,y 2)两点,那么(x 2﹣x 1)(y 2﹣y 1)的值为 . 【知识考点】反比例函数与一次函数的交点问题. 【思路分析】正比例函数与反比例函数6y x=的两交点坐标关于原点对称,依此可得x 1=﹣x 2,y 1=﹣y 2,将(x 2﹣x 1)(y 2﹣y 1)展开,依此关系即可求解. 【解题过程】解:∵正比例函数的图象与反比例函数6y x=的图象交于A (x 1,y 1),B (x 2,y 2)两点,关于原点对称,依此可得x 1=﹣x 2,y 1=﹣y 2,∴(x 2﹣x 1)(y 2﹣y 1)=x 2y 2﹣x 2y 1﹣x 1y 2+x 1y 1=x 2y 2+x 2y 2+x 1y 1+x 1y 1=6×4=24. 故答案为:24.【总结归纳】考查了反比例函数与正比例函数的交点问题,正比例函数与反比例函数的两交点坐标关于原点对称.16.如图,AB 是⊙O 的一条弦,点C 是⊙O 上一动点,且∠ACB=30°,点E 、F 分别是AC 、BC 的中点,直线EF 与⊙O 交于G 、H 两点.若⊙O 的半径为7,则GE+FH 的最大值为 .【知识考点】圆周角定理;三角形中位线定理.【思路分析】由点E 、F 分别是AC 、BC 的中点,根据三角形中位线定理得出EF=12AB=3.5为定值,则GE+FH=GH ﹣EF=GH ﹣3.5,所以当GH 取最大值时,GE+FH 有最大值.而直径是圆中最长的弦,故当GH 为⊙O 的直径时,GE+FH 有最大值14﹣3.5=10.5. 【解题过程】解:当GH 为⊙O 的直径时,GE+FH 有最大值. 当GH 为直径时,E 点与O 点重合, ∴AC 也是直径,AC=14. ∵∠ABC 是直径上的圆周角, ∴∠ABC=90°, ∵∠C=30°, ∴AB=12AC=7. ∵点E 、F 分别为AC 、BC 的中点, ∴EF=12AB=3.5, ∴GE+FH=GH ﹣EF=14﹣3.5=10.5. 故答案为:10.5.【总结归纳】本题结合动点考查了圆周角定理,三角形中位线定理,有一定难度.确定GH 的位置是解题的关键.三、解答题(本大题共9小题,共72分) 17.(5分)解分式方程:22142xx x +=--. 【知识考点】解分式方程.【思路分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解题过程】解:去分母得:2+x (x+2)=x 2﹣4, 解得:x=﹣3,经检验x=﹣3是分式方程的解.【总结归纳】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18.(6分)如图,∠AOB=90°,OA=OB ,直线l 经过点O ,分别过A 、B 两点作AC ⊥l 交l 于点C ,BD ⊥l 交l 于点D . 求证:AC=OD .【知识考点】全等三角形的判定与性质.【思路分析】根据同角的余角相等求出∠A=∠BOD ,然后利用“角角边”证明△AOC 和△OBD 全等,根据全等三角形对应边相等证明即可. 【解题过程】证明:∵∠AOB=90°, ∴∠AOC+∠BOD=90°, ∵AC ⊥l ,BD ⊥l , ∴∠ACO=∠BDO=90°, ∴∠A+∠AOC=90°, ∴∠A=∠BOD ,在△AOC 和△OBD 中,90A BODACO BDO OA OB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△AOC ≌△OBD (AAS ), ∴AC=OD .【总结归纳】本题考查了全等三角形的判定与性质,同角的余角相等的性质,利用三角形全等证明边相等是常用的方法之一,要熟练掌握并灵活运用.19.(7分)我省教育厅下发了《在全省中小学幼儿园广泛开展节约教育的通知》,通知中要求各学校全面持续开展“光盘行动”.某市教育局督导组为了调查学生对“节约教育”内容的了解程度(程度分为:“A ﹣﹣了解很多”、“B ﹣﹣了解较多”,“C ﹣﹣了解较少”,“D ﹣﹣不了解”),对本市一所中学的学生进行了抽样调查.我们将这次调查的结果绘制了以下两幅统计图.根据以上信息,解答下列问题:(1)本次抽样调查了多少名学生?(2)补全两幅统计图;(3)若该中学共有1800名学生,请你估计这所中学的所有学生中,对“节约教育”内容“了解较多”的有多少名?【知识考点】条形统计图;用样本估计总体;扇形统计图.【思路分析】(1)由等级A的人数除以所占的百分比,即可求出调查的学生人数;(2)根据总人数减去A、C、D等级的人数求出等级B的人数,补全条形统计图;由C的人数除以总人数求出C的百分比,进而求出D的百分比,补全扇形统计图即可;(3)由1800乘以B的百分比,即可求出对“节约教育”内容“了解较多”的人数.【解题过程】解:(1)抽样调查的学生人数为36÷30%=120(名);(2)B的人数为120×45%=54(名),C的百分比为24120×100%=20%,D的百分比为6120×100%=5%;补全统计图,如图所示:(3)对“节约教育”内容“了解较多”的有1800×45%=810(名).【总结归纳】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.20.(8分)一天晚上,李明和张龙利用灯光下的影子长来测量一路灯CD的高度.如图,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m).【知识考点】相似三角形的应用.【思路分析】根据AM⊥EC,CD⊥EC,BN⊥EC,EA=MA得到MA∥CD∥BN,从而得到△ABN∽△ACD,利用相似三角形对应边的比相等列出比例式求解即可.【解题过程】解:设CD长为x米,∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA∴MA∥CD∥BN∴EC=CD=x∴△ABN∽△ACD,∴BN ABCD AC=,即1.75 1.251.75x x=-,解得:x=6.125≈6.1.经检验,x=6.125是原方程的解,∴路灯高CD约为6.1米.【总结归纳】本题考查了相似三角形的应用,解题的关键是根据已知条件得到平行线,从而证得相似三角形.21.(8分)“五一节”期间,申老师一家自驾游去了离家170千米的某地,下面是他们离家的距离y (千米)与汽车行驶时间x(小时)之间的函数图象.(1)求他们出发半小时时,离家多少千米?(2)求出AB段图象的函数表达式;(3)他们出发2小时时,离目的地还有多少千米?【知识考点】一次函数的应用.【思路分析】(1)先运用待定系数法求出OA的解析式,再将x=0.5代入,求出y的值即可;(2)设AB段图象的函数表达式为y=k′x+b,将A、B两点的坐标代入,运用待定系数法即可求解;(3)先将x=2代入AB段图象的函数表达式,求出对应的y值,再用170减去y即可求解.【解题过程】解:(1)设OA段图象的函数表达式为y=kx.∵当x=1.5时,y=90,∴1.5k=90,∴k=60.∴y=60x(0≤x≤1.5),∴当x=0.5时,y=60×0.5=30.故他们出发半小时时,离家30千米;(2)设AB段图象的函数表达式为y=k′x+b.∵A(1.5,90),B(2.5,170)在AB上,∴1.5902.5170k bk b'+=⎧⎨'+=⎩,解得8030 kb'=⎧⎨=-⎩,∴y=80x﹣30(1.5≤x≤2.5);(3)∵当x=2时,y=80×2﹣30=130,∴170﹣130=40.故他们出发2小时,离目的地还有40千米.【总结归纳】本题考查了一次函数的应用及一次函数解析式的确定,解题的关键是通过仔细观察图象,从中整理出解题时所需的相关信息,本题较简单.22.(8分)甲、乙两人用手指玩游戏,规则如下:①每次游戏时,两人同时随机地各伸出一根手指;②两人伸出的手指中,大拇指只胜食指、食指只胜中指、中指只胜无名指、无名指只胜小拇指、小拇指只胜大拇指,否则不分胜负.依据上述规则,当甲、乙两人同时随机地各伸出一根手指时,(1)求甲伸出小拇指取胜的概率;(2)求乙取胜的概率.【知识考点】列表法与树状图法.【思路分析】(1)直接求出甲伸出小拇指取胜的概率;(2)首先根据题意画出表格,由表格求得所有等可能的结果,即可得出乙取胜的概率;【解题过程】解;(1)甲伸出小拇指的可能一共有5种,甲伸出小拇指取胜只有一种可能,故P(甲伸出小拇指获胜)=15;(2)设A,B,C,D,E分别表示大拇指、食指、中指、无名指、小拇指,列表如下:甲乙A B C D EA AA AB AC AD AEB BA BB BC BD BEC CA CB CC CD CED DA DB DC DD DEE EA EB EC ED EE由表格可知,共有25种等可能的结果,乙取胜有5种可能,故P(乙获胜)51 255 ==.【总结归纳】此题考查的是用列表法或树状图法求概率.注意树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.23.(8分)如图,直线l与⊙O相切于点D,过圆心O作EF∥l交⊙O于E、F两点,点A是⊙O 上一点,连接AE、AF,并分别延长交直线l于B、C两点.(1)求证:∠ABC+∠ACB=90°;(2)当⊙O的半径R=5,BD=12时,求tan∠ACB的值.【知识考点】切线的性质;正方形的判定与性质;圆周角定理;解直角三角形.【思路分析】(1)由题意可知EF是圆的直径,所以∠EAF=90°,即∠ABC+∠ACB=90°;(2)连接OD,则OD⊥BD,过E作EH⊥BC于H,则四边形EODH是正方形,易求tan∠BEH=75 BHEH=,再证明∠ACB=∠BEH即可.【解题过程】(1)证明:∵EF是圆的直径,∴∠EAF=90°,∴∠ABC+∠ACB=90°;(2)解:连接OD,则OD⊥BD,过E作EH⊥BC于H,∴EH∥OD,又∵EO∥HD,∴四边形OEHD是矩形,又∵OE=OD,∴四边形EODH是正方形,∴EH=HD=OD=5,又∵BD=12,∴BH=7,在Rt△BEH中,tan∠BEH=75 BHEH,∵∠ABC+∠BEH=90°,∠ABC+∠ACB=90°,∴∠ACB=∠BEH,∴tan∠ACB=75.【总结归纳】本题考查了圆周角定理、正方形的判定和性质、切线的性质以及锐角三角函数值,题目的综合性很强,难度中等.24.(10分)在平面直角坐标系中,一个二次函数的图象经过点A(1,0)、B(3,0)两点.(1)写出这个二次函数图象的对称轴;(2)设这个二次函数图象的顶点为D,与y轴交于点C,它的对称轴与x轴交于点E,连接AC、DE和DB,当△AOC与△DEB相似时,求这个二次函数的表达式.[提示:如果一个二次函数的图象与x轴的交点为A(x1,0)、B(x2,0),那么它的表达式可表示为y=a(x﹣x1)(x﹣x2)].【知识考点】二次函数综合题.【思路分析】(1)根据二次函数对称性得出对称轴即可;(2)首先求出C ,D 点坐标,进而得出CO 的长,利用当△AOC 与△DEB 相似时,根据①假设∠OCA=∠EBD ,②假设∠OCA=∠EDB ,分别求出即可.【解题过程】解;(1)∵二次函数的图象经过点A (1,0)、B (3,0)两点, ∴二次函数图象的对称轴为直线x=2;(2)设二次函数的表达式为:y=a (x ﹣1)(x ﹣3)(a≠0), 当x=0时,y=3a ,当x=2时,y=﹣a ,∴点C 坐标为:(0,3a ),顶点D 坐标为:(2,﹣a ), ∴OC=|3a|,又∵A (1,0),E (2,0), ∴AO=1,EB=1,DE=|﹣a|=|a|, 当△AOC 与△DEB 相似时, ①假设∠OCA=∠EBD , 可得AO OCDE EB=,即1|3|||1a a =,∴a =a =,②假设∠OCA=∠EDB ,可得AO OCBE ED=, ∴1|3|1||a a =,此方程无解,综上所述,所得二次函数的表达式为:2y x x =+2y x x =+【总结归纳】此题主要考查了二次函数的综合应用以及相似三角形的判定与性质等知识,注意分类讨论思想的应用是解题关键. 25.(12分)问题探究:(1)请在图①中作出两条直线,使它们将圆面四等分;(2)如图②,M 是正方形ABCD 内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M )使它们将正方形ABCD 的面积四等分,并说明理由. 问题解决:(3)如图③,在四边形ABCD中,AB∥CD,AB+CD=BC,点P是AD的中点,如果AB=a,CD=b,且b>a,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD的面积分成相等的两部分?如若存在,求出BQ的长;若不存在,说明理由.【知识考点】四边形综合题.【思路分析】(1)画出互相垂直的两直径即可;(2)连接AC、BD交于O,作直线OM,分别交AD于P,交BC于Q,过O作EF⊥OM交DC于F,交AB于E,则直线EF、OM将正方形的面积四等份,根据三角形的面积公式和正方形的性质求出即可;(3)当BQ=CD=b时,PQ将四边形ABCD的面积二等份,连接BP并延长交CD的延长线于点E,证△ABP≌△DEP求出BP=EP,连接CP,求出S△BPC=S△EPC,作PF⊥CD,PG⊥BC,由BC=AB+CD=DE+CD=CE,求出S△BPC﹣S△CQP+S△ABP=S△CPE﹣S△DEP+S△CQP,即可得出S四边形ABQP=S四即可.边形CDPQ【解题过程】解:(1)如图1所示,(2)连接AC、BD交于O,作直线OM,分别交AD于P,交BC于Q,过O作EF⊥OM交DC于F,交AB于E,则直线EF、OM将正方形的面积四等份,理由是:∵点O是正方形ABCD的对称中心,∴AP=CQ,EB=DF,在△AOP和△EOB中∵∠AOP=90°﹣∠AOE,∠BOE=90°﹣∠AOE,∴∠AOP=∠BOE,∵OA=OB,∠OAP=∠EBO=45°,∴△AOP≌△EOB,∴AP=BE=DF=CQ,设O到正方形ABCD一边的距离是d,则12(AP+AE )d=12(BE+BQ )d=12(CQ+CF )d=12(PD+DF )d , ∴S 四边形AEOP =S 四边形BEOQ =S 四边形CQOF =S 四边形DPOF , 直线EF 、OM 将正方形ABCD 面积四等份;(3)存在,当BQ=CD=b 时,PQ 将四边形ABCD 的面积二等份, 理由是:如图③,连接BP 并延长交CD 的延长线于点E , ∵AB ∥CD , ∴∠A=∠EDP ,∵在△ABP 和△DEP 中,A EDP AP DPAPB DPE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABP ≌△DEP (ASA ), ∴BP=EP , 连接CP ,∵△BPC 的边BP 和△EPC 的边EP 上的高相等, 又∵BP=EP , ∴S △BPC =S △EPC ,作PF ⊥CD ,PG ⊥BC ,则BC=AB+CD=DE+CD=CE , 由三角形面积公式得:PF=PG ,在CB 上截取CQ=DE=AB=a ,则S △CQP =S △DEP =S △ABP ∴S △BPC ﹣S △CQP +S △ABP =S △CPE ﹣S △DEP +S △CQP 即:S 四边形ABQP =S 四边形CDPQ , ∵BC=AB+CD=a+b , ∴BQ=b ,∴当BQ=b 时,直线PQ 将四边形ABCD 的面积分成相等的两部分.【总结归纳】本题考查了正方形性质,菱形性质,三角形的面积等知识点的应用,主要考查学生综合运用性质进行推理的能力,注意:等底等高的三角形的面积相等.2014年陕西省中考数学试题及参考答案一、选择题(本大题共10小题,每小题3分,共30分) 1.4的算术平方根是( )A .﹣2B .2C .12- D .12。

往年西安中考数学试卷真题

往年西安中考数学试卷真题

往年西安中考数学试卷真题一、选择题1. 下列四个数中,哪个是一个有理数?A. √2B. πC. eD. -0.32. 20除以2.5的商是:A. 4B. 5C. 6D. 83. 一个蓄水池的容量是5.25立方米,已经存储了3.75立方米水,还能再存储多少立方米的水?A. 1.25B. 1.50C. 1.75D. 2.004. 一块矩形地板的长是14米,宽是3.5米,其面积是多少?A. 38.5B. 45C. 49D. 525. 把一个半径为6cm的圆形纸片剪成一个扇形,各地用途如图所示。

若a=60°,那么阴影部分的面积是:(图示)A. 24πB. 12πC. 6πD. 3π二、填空题1. 如果(-2)×a=-20,则a的值是__。

2. 1350米=_____千米。

3. 一个矩形和一个正方形具有相同的周长,其中矩形的长是5cm,宽是2cm,则正方形的边长是___cm。

4. 把一个圆的半径扩大为原来的3倍,则扩大后的周长是原来的___倍。

5. 60÷(0.2×0.4)=_____。

三、解答题1. 用因式分解法求解下列方程:3x^2-12x=0。

2. 一张卡片的长是7cm,宽是3cm。

现在要从卡片的四个角各剪去相同的面积,使得剩下的部分面积三角形的面积等于2cm²,请问应该从每个角剪去多少面积?3. 有一个矩形的长是原来的3倍,宽是原来的2倍,面积是原来的多少倍?4. 一块长方形铁片,长度是1.5m,宽度是0.5m,现在要将其分割成若干个相等的小正方形铁片,每个小正方形铁片的边长是多长?5. 简述勾股定理的原理并给出一个例子。

以上是往年西安中考数学试卷的部分真题,希望对你的学习和备考有所帮助。

通过解答这些题目,可以加深对数学知识点的理解和运用,并进行针对性的复习和训练。

祝你取得优异的成绩!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013陕西中考数学试题及解析
一、选择题(每小题只有一个正确答案) 1.下列四个数中最小的数是( ) A .2- B .0 C .3
1
-
D .5 2.如图,下面的几何体是由一个圆柱和一个长方体组成的,则它的俯视图是( )
3.如图,AB ∥CD ,∠CED=90°,∠AEC=35°,则∠D 的大小( ) A .65° B .55° C .45° D .35°
4.不等式组⎪⎩⎪⎨⎧
<->-3
210
2
1x x 的解集为( ) A .21>
x B .1-<x C .211<<-x D .2
1->x 5.我省某市五月份第二周连续七天的空气质量指数分别为:111,96,47,68,70,77,105,
则这七天空气质量指数的平均数是( )A .71.8 B .77 C .82 D .95.7 6.如果一个正比例函数的图象经过不同..象限的两点A (2,m ),B (n ,3),那么一定有( ) A .m>0,n>0B .m>0,n<0 C .m<0,n>0 D .m<0,n<0 7.如图,在四边形ABCD 中,对角线AB=AD ,CB=CD , 若连接A .对B .2对 C .3对D .4对
8.根据下表中一次函数的自变量x 与函数y 的对应值,可得p 的值为( )
x
-2
1
y 3 p 0
A .1
B .-1
C .3
D .-3
9.如图,在矩形ABCD 中,AD=2AB ,点M 、N 分别在边AD 、BC 是,连接BM 、DN ,若四边形MBND 是菱形,则
MD
AM
等于 ( )A .83 B .32 C .53 D .5
4
B
C
D
A
M
N B
D
O
10.已知两点),3(),,5(21y B y A -均在抛物线)0(2≠++=a c bc ax y 上,点),(00y x C 是该抛物线的顶点,若021y y y ≥>,则0x 的取值范围是( )
A .50->x
B .10->x
C .150-<<-x
D .320<<-x
第Ⅱ卷(非选择题 共90分)
二、填空题(共6小题,每小题3分,计18分) 11.计算:=-+-03)13()2(.
12.一元二次方程032
=-x x 的根是. 13.请从以下两个小题中任选一个....
作答,若多选,则按所选的第一题计分. A .在平面直角坐标第中,线段AB 的两个端点的坐标分别为)3,1(),1,2(B A -,将线段AB 经过平移后得到线段//B A ,若点A 的对应点为)2,3(/A ,则点B 的对应点/
B 的坐标是.B .比较大小:ο
31
cos 835(填“>”,“=”,“<”).
14.如图,四边形ABCD 的对角线AC 、BD 相交于点O ,且BD 平分AC ,若BD=8,AC=6,∠BOC=120°,则四边形ABCD 的面积为.(结果保留根号)15.如果一个正比例函数的图象与一个反比例函数x
y 6
=
的图象交),(),,(2211y x B y x A ,那么))((1212y y x x --值为.
16.如图,AB 是⊙O 的一条弦,点C 是⊙O 上一动点, 且∠ACB=30°,点E 、F 分别是AC 、BC 的中点, 直线EF 与⊙O 交于G 、H 两点,若⊙O 的半径为7, 则GE+FH 的最大值为.
三、解答题(共9小题,计72分.解答应写过程) 17.(本题满分5分) 解分式方程:
12
422
=-+-x x
x . 18.(本题满分6分)
如图,∠AOB=90°,OA=0B ,直线经过点O,分别过A 、B 两点作AC ⊥交于点C ,BD ⊥交于点D. 求证:AD=OD.
19.(本题满分7分)
我省教育厅下发了《在全省中小学幼儿园广泛开展节约教育的通知》,通知中要求各学校全面持续开展“光盘行动”.某市教育局督导检查组为了调查学生对“节约教育”内容的了解程度(程度分为:“A-了解很多”,“B-了解较多”,“C-了解较少”,“D-不了解”),对本市一所中学的学生进行了抽样调查,我们将这次调查的结果绘制了以下两幅统计图.根据以上信息,解答下列问题:(1)本次抽样调查了多少名学生? (2)补全两幅统计图;
(3)若该中学共有1800名学生,请你估计这所中学的所有学生中,对“节约教育”内容“了
解较多”的有多少名?
20.(本题满分8分)
一天晚上,李明和张龙利用灯光下的影子来测量一路灯D 的高度,如图,当李明走到点A 处时,张龙测得李明直立身高AM 与其影子长AE 正好相等,接着李明沿AC 方向继续向前走,走到点B 处时,李明直立时身高BN 的影子恰好是线段AB ,并测得AB=1.25m 。

已知李明直立时的身高为1.75m ,求路灯的高CD 的长.(结果精确到0.1m )
10 20 30 40
50
60 被调查学生对“节约教育”内容了解程度的统计图
第21题图
21.(本题满分8分)
“五一节“期间,申老师一家自驾游去了离家170千米的某地,下面是分们离家的距离y (千米)与汽车行驶时间x (小时)之间的函数图象。

(1) 求他们出发半小时时,离家多少千米? (2) 求出AB 段图象的函数表达式
(3) 他们出发2小时时,离目的地还有多少千米?;
22.(本题满分8分)
甲、乙两人用手指玩游戏,规则如下:i)每次游戏时,两人同时随机地各伸出一根手指;ii)两人伸出的手指中,大拇指只胜食指,食指只胜中指,中指只胜无名指,无名指只胜小拇指,小拇指只胜大拇指,否则不分胜负,依据上述规则,当甲、乙两人同时随机地各伸出一根手指时,(1)求甲伸出小拇指取胜的概率; (2)求乙取胜的概率.
23.(本题满分8分)
如图,直线与⊙O 相切于点D ,过圆心O 作EF ∥交⊙O 于E 、F 两点,点A 是⊙O 上一点,连接AE ,AF ,并分别延长交直线于B 、C 两点;(1)求证:∠ABC+∠ACB=90°;
(2)若⊙O 的半径5 R ,BD=12,求tan ∠ACB 的值.
A
B 第23题图 D C
24.(本题满分10分)
在平面直角坐标系中,一个二次函灵敏的图象经过点A (1,0)、B (3,0)两点. (1)写出这个二次函数的对称轴;
(2)设这个二次函数的顶点为D ,与y 轴交于点C , 它的对称轴与x 轴交于点E ,连接AD 、DE 和DB ,
当△AOC 与△DEB 相似时,求这个二次函数的表达式。

25.(本题满分12分)
问题探究
(1)请在图①中作出两条直线,使它们将圆面四等分;
(2)如图②,M 是正方形ABCD 内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M ),使它们将正方形ABCD 的面积四等分,并说明理由.问题解决 (3)如图③,在四边形ABCD 中,AB ∥CD ,AB+CD=BC ,点P 是AD 的中点,如果AB=a ,CD=b ,且a b ,那么在边BC 上是否存在一点Q ,使PQ 所在直线将四边形ABCD 的面积分成相等的两部分?若存在,求出BQ 的长;若不存在,说明理由.(第24题图)
图①
图②
B
图③
A
C
D
P
(第25题图)。

相关文档
最新文档