数字图像处理_旋转与幅度谱(含MATLAB代码)

数字图像处理_旋转与幅度谱(含MATLAB代码)
数字图像处理_旋转与幅度谱(含MATLAB代码)

数字图像处理实验一

15生医

一、实验内容

产生右图所示图像 f1(m,n),其中图像大小为256

×256,中间亮条为128×32,暗处=0,亮处=100。

对其进行FFT:

①同屏显示原图f1(m,n)和FFT(f1)的幅度谱图;

②若令f2(m,n)=(-1)^(m+n)f1(m,n),重复

以上过程,比较二者幅度谱的异同,简述理由;

③若将f2(m,n)顺时针旋转90度得到f3(m,n),试显示FFT(f3)的

幅度谱,并与FFT(f2)的幅度谱进行比较;

④若将f1(m,n) 顺时针旋转90度得到f4(m,n),令f5(m,n) = f1(m,n) + f4(m,n),试显示FFT(f5)的幅度谱,指出其与 FFT(f1)和FFT(f4)的关系;

⑤若令f6(m,n)=f2(m,n)+f3(m,n),试显示FFT(f6)的幅度谱,并指出其与 FFT(f2)和FFT(f3)的关系,比较FFT(f6)和FFT(f5)的幅度谱。

二、运行环境

MATLAB R2014a

三、运行结果及分析

1.同屏显示原图f1(m,n)和FFT(f1)的幅度谱图:

50100150200250

100150200250

50100150200250

100150200250

2.令f2(m,n)=(-1)^(m+n )f1(m,n),对其进行FFT ,比较f2与f1幅度谱的异同,简述理由:

50100150200250

100150200250

50100150200250

100150200250

异同及理由:①空域:f2由于前边乘了系数(-1)^(m+n ),导致灰度值有正有负,而在MATLAB 的imshow 函数中默认把负值变为0(有些情况是取反),所以形成了如左图所示的黑白花纹。②频域:FFT(2)

为FFT(1)中心化后的图像。空域进行乘以(-1)^(m+n )的操作,即相当于频域里的位移,实现频谱的中心化。

3.将f2(m,n)顺时针旋转90度得到f3(m,n),试显示FFT(f3)的幅度谱,并与FFT(f2)的幅度谱进行比较:

50100150200250

100150200250

50100150200250

100150200250

比较:空域图像旋转90度后,频域幅度谱也旋转90度。

4.将f1(m,n) 顺时针旋转90度得到f4(m,n),令f5(m,n) = f1(m,n) + f4(m,n),试显示FFT(f5)的幅度谱,指出其与 FFT(f1)和FFT(f4)

(a)亮块图像f1(m,n)50100150200250100150200250

(b) FFT(f1)幅度谱5010015020025050100150200250

旋转图像f4(m,n)5010015020025050100150200250

50100150200250100150200250

5010015020025050100150200250

5010015020025050100150200250

关系:空域里原图与其旋转90度后的图像进行叠加,在频域里也体现为相应幅度谱的叠加,即FFT(f5)=FFT(f1)+FFT(f4)。

5.令f6(m,n)=f2(m,n)+f3(m,n),试显示FFT(f6)的幅度谱,并指出其与 FFT(f2)和FFT(f3)的关系,比较FFT(f6)和FFT(f5)的幅度谱:

50100150200250100150200250

5010015020025050100150200250

5010015020025050100150200250

50100150200250100150200250

50100150200250100150200250

5010015020025050100150200250

100

150

200

250

50100150200250

关系:空域里原图与其旋转90度后的图像进行叠加,在频域里也体现为相应幅度谱的叠加,即FFT(f6)=FFT(f2)+FFT(f3)。

比较:FFT(6)为FFT(5)中心化后的图像。

四、心得体会

通过MATLAB编程更加熟练了课上的知识点,比如空域旋转频域也旋转,空域叠加频域也满足叠加关系。同时,对MATLAB实现傅里叶变换及其显示的机理也有所掌握,比如后边附的程序中会提到的

Note1-Note5的思考。

Note1:复数取绝对值后才可以二维图示;Note2:为什么这里要划分255个灰度级为什么是在频域里操作(可能的解释:用灰度来表示值的大小,越白值越大);Note3:空域进行此操作频域位移;Note4:双线性插值法;Note5:旋转坐标计算式:256*(1+0)

五、具体程序

(复制于matlab notebook)

% 产生亮块图像 0暗100亮

f1=zeros(256,256);

for m=64:192

for n=112:144

f1(m,n)=100;

end

end

figure(1);

subplot(1,2,1);

imshow(f1);

xlabel('(a)亮块图像f1(m,n)');

axis on;

% 求f1(m,n)的傅里叶变换

FFT_f1=fft2(f1);

% 求f1(m,n)的频谱

FFT_f1=abs(FFT_f1); % Note1:复数取绝对值后才可以二维图示tmax=FFT_f1(1,1);

tmin=FFT_f1(1,1);

for m=1:256

for n=1:256

if tmax

tmax= FFT_f1(m,n);

end

if tmin> FFT_f1(m,n)

tmin= FFT_f1(m,n);

end

end

end

delta=tmax-tmin;

for m=1:256

for n=1:256

FFT_f1(m,n)=255*( FFT_f1(m,n)-tmin)/delta;

end

end

% Note2:为什么这里要划分255个灰度级为什么是在频域里操作(可能的解释:用灰度来表示值的大小,越白值越大)

subplot(1,2,2);

imshow (FFT_f1);

xlabel('(b) f1(m,n)的频谱');

axis on;

50100150200250

100150200250

50100150200250

100150200250

% 频谱中心化 f2=f1;

for m=1:256 for n=1:256

f2(m,n)=(-1)^(m+n)*f1(m,n); % Note3:空域进行此操作频域位移 end end

FFT_f2=fft2(f2); FFT_f2=abs(FFT_f2);

tmax=FFT_f2(1,1); tmin=FFT_f2(1,1); for m=1:256 for n=1:256

if tmax

tmax= FFT_f2(m,n);

end

if tmin> FFT_f2(m,m)

tmin= FFT_f2(m,n);

end

end

end

delta=tmax-tmin;

for m=1:256

for n=1:256

FFT_f2(m,n)=255*( FFT_f2(m,n)-tmin)/delta; end

end

figure(2)

subplot(1,2,1);

imshow(f2);

xlabel('(a)亮块图像f2(m,n)');

axis on;

subplot(1,2,2);

imshow (FFT_f2);

xlabel('(b) f2(m,n)的频谱');

axis on;

50100150200250

100150200250

50100150200250

100150200250

% f2(m,n)旋转90°生成f3(m,n)

f3=imrotate(f2,-90,'bilinear'); % Note4:双线性插值法

FFT_f3=fft2(f3); FFT_f3=abs(FFT_f3);

tmax=FFT_f3(1,1); tmin=FFT_f3(1,1); for m=1:256

for n=1:256 % Note5:旋转坐标计算式:256*(1+0) if tmax

if tmin> FFT_f3(m,n) tmin= FFT_f3(m,n); end end

end

delta=tmax-tmin;

for m=1:256

for n=1:256

FFT_f3(m,n)=255*( FFT_f3(m,n)-tmin)/delta; end

end

figure(3);

subplot(1,2,1);

imshow (FFT_f2);

xlabel('(a) FFT(f2)幅度谱');

axis on;

subplot(1,2,2);

imshow (FFT_f3);

xlabel('(b) FFT(f3)幅度谱');

axis on;

50100150200250

100150200250

50100150200250

100150200250

% 旋转90°与原图叠加的空域频域比较 f4=imrotate(f1,-90,'bilinear'); f5=f1+f4;

FFT_f4=fft2(f4); FFT_f4=abs(FFT_f4); tmax=FFT_f4(1,1); tmin=FFT_f4(1,1); for m=1:256 for n=1:256

if tmax

if tmin>FFT_f4(m,n) tmin=FFT_f4(m,n); end

end

end

delta=tmax-tmin;

for m=1:256

for n=1:256

FFT_f4(m,n)=255*(FFT_f4(m,n)-tmin)/delta; end

end

FFT_f5=fft2(f5);

FFT_f5=abs(FFT_f5);

tmax=FFT_f5(1,1);

tmin=FFT_f5(1,1);

for m=1:256

for n=1:256

if tmax

tmax=FFT_f5(m,n);

end

if tmin>FFT_f5(m,n)

tmin=FFT_f5(m,n);

end

end

end

delta=tmax-tmin;

for m=1:256

for n=1:256

FFT_f5(m,n)=255*(FFT_f5(m,n)-tmin)/delta; end

end

figure(4);

subplot(3,2,1);

imshow (f1);

xlabel('(a)亮块图像f1(m,n)');

axis on;

subplot(3,2,2);

imshow (FFT_f1);

xlabel('(b) FFT(f1)幅度谱');

axis on;

subplot(3,2,3);

imshow (f4);

xlabel('(c)旋转图像f4(m,n)');

axis on;

subplot(3,2,4);

imshow (FFT_f4);

xlabel('(d) FFT(f4)幅度谱');

axis on;

subplot(3,2,5);

imshow (f5);

xlabel('(e)叠加图像f5(m,n)');

axis on;

subplot(3,2,6);

imshow (FFT_f5);

xlabel('(f) FFT(f5)幅度谱'); axis on;

(a)亮块图像f1(m,n)50100150200250100150200250

(b) FFT(f1)幅度谱5010015020025050100150200250

旋转图像f4(m,n)5010015020025050100150200250

50100150200250100150200250

50100150200250100150200250

5010015020025050100150200250

% 旋转90°与原图叠加的空域频域比较(二者均中心化) f6=f2+f3;

FFT_f6=fft2(f6); FFT_f6=abs(FFT_f6); tmax=FFT_f6(1,1); tmin=FFT_f6(1,1); for m=1:256 for n=1:256

if tmax

if tmin>FFT_f6(m,n) tmin=FFT_f6(m,n);

end

end

end

delta=tmax-tmin;

for m=1:256

for n=1:256

FFT_f6(m,n)=255*(FFT_f6(m,n)-tmin)/delta; end

end

figure(5);

subplot(3,2,1);

imshow (f2);

xlabel('(a)亮块图像f2(m,n)');

axis on;

subplot(3,2,2);

imshow (FFT_f2);

xlabel('(b) FFT(f2)幅度谱');

axis on;

subplot(3,2,3);

imshow (f3);

xlabel('(c)旋转图像f3(m,n)');

axis on;

subplot(3,2,4);

imshow (FFT_f3);

xlabel('(d) FFT(f3)幅度谱');

axis on; subplot(3,2,5); imshow (f6);

xlabel('(e)叠加图像f6(m,n)'); axis on; subplot(3,2,6); imshow (FFT_f6);

xlabel('(f) FFT(f6)幅度谱'); axis on;

50100150200250100150200250

5010015020025050100150200250

5010015020025050100150200250

50100150200250100150200250

50100150200250100150200250

5010015020025050100150200250

figure(6); subplot(1,2,1); imshow (FFT_f5);

xlabel('(a) FFT(f5)幅度谱'); axis on; subplot(1,2,2);

imshow (FFT_f6);

xlabel('(b) FFT(f6)幅度谱');

100

150

200

250

50100150200250

非常全非常详细的MATLAB数字图像处理技术

MATLAB数字图像处理 1 概述 BW=dither(I)灰度转成二值图; X=dither(RGB,map)RGB转成灰度图,用户需要提供一个Colormap; [X,map]=gray2ind(I,n)灰度到索引; [X,map]=gray2ind(BW,n)二值图到索引,map可由gray(n)产生。灰度图n默认64,二值图默认2; X=graylice(I,n)灰度图到索引图,门限1/n,2/n,…,(n-1)/n,X=graylice(I,v)给定门限向量v; BW=im2bw(I,level)灰度图I到二值图; BW=im2bw(X,map,level)索引图X到二值图;level是阈值门限,超过像素为1,其余置0,level在[0,1]之间。 BW=im2bw(RGB,level)RGB到二值图; I=ind2gray(X,map)索引图到灰度图; RGB=ind2rgb(X,map)索引图到RGB; I=rgb2gray(RGB)RGB到灰度图。 2 图像运算 2.1 图像的读写 MATLAB支持的图像格式有bmp,gif,ico,jpg,png,cur,pcx,xwd和tif。 读取(imread): [1] A=imread(filename,fmt) [2] [X,map]=imread(filename,fmt) [3] […]=imread(filename) [4] […]=imread(URL,…) 说明:filename是图像文件名,如果不在搜索路径下应是图像的全路径,fmt是图像文件扩展名字符串。前者可读入二值图、灰度图、彩图(主要是RGB);第二个读入索引图,map 为索引图对应的Colormap,即其相关联的颜色映射表,若不是索引图则map为空。URL表示引自Internet URL中的图像。 写入(imwrite): [1] R=imwrite(A,filename,fmt); [2] R=imwrite(X,map,filename,fmt); [3] R=imwrite(…,filename); [4] R=imwrite(…,Param1,V al1,Param2,Val2) 说明:针对第四个,该语句用于指定HDF,JPEG,PBM,PGM,PNG,PPM,TIFF等类型输出文件的不同参数。例如HDF的Quality,Compression,WriteMode;JPEG的BitDepth,Comment:Empty or not,Mode:lossy or lossless,Quality等。 2.2 图像的显示 方法1:使用Image Viewer(图像浏览器),即运用imview函数。 同时显示多帧图像的所有帧,可用到montage函数。

数字图像处理实验程序MATLAB.

实验一 内容(一) (1)彩色图像变灰度图像 A=imread('1.jpg'); B=rgb2gray(A); figure subplot(1,2,1), imshow(A) title('原图') subplot(1,2,2), imshow(B) title('原图灰度图像') (2)彩色图像变索引图像 A=imread('1.jpg'); figure subplot(1,2,1), imshow(A) title('原图') [X,map]=rgb2ind(A,128); subplot(1,2,2), imshow(X,map) title('原图索引图像') (3)彩色图像变二值图像 A=imread('1.jpg'); figure subplot(1,2,1), imshow(A) title('原图') C=im2bw(A,0.2); subplot(1,2,2), imshow(C) title('原图二值图像') (4)灰度图像变索引图像(一) A=imread('1.jpg'); figure B=rgb2gray(A); subplot(1,2,1), imshow(B) title('灰度图像') C=grayslice(B,39); subplot(1,2,2), imshow(C) title('灰度变索引图像')

(5)灰度图像变索引图像(二) A=imread('1.jpg'); figure B=rgb2gray(A); subplot(1,2,1), imshow(B) title('灰度图像') [X,map]=gray2ind(B,63); subplot(1,2,2), imshow(X,map) title('灰度变索引图像') (6)灰度图像变彩色图像 A=imread('1.jpg'); figure B=rgb2gray(A); subplot(1,2,1), imshow(B) title('灰度图像') C=gray2rgb(B,map); subplot(1,2,2), imshow(C) title('灰度变彩色图像') 内容(二) (1)灰度平均值 A=imread('1.jpg'); figure B=rgb2gray(A); subplot(1,2,1), imshow(B) title('灰度图像') B=double(B); [m,n]=size(B); sumg=0.0; for i=1:m; for j=1:n; sumg=sumg+B(i,j); end end avg=sumg/(m*n) % 均值 maxg=max(max(B)) % 区域最大灰度ming=min(min(B)) % 区域最小灰度 (2)彩色平均值

用Matlab进行数字图像处理实验1

实验报告 专业:信息与计算科学班级:07级(1)班指导老师:汪太月老师姓名:刘莲学号:0641210224 实验室:K7-407 实验名称:Matlab图像工具箱的使用时间:2010.6.13 一、实验目的及要求 (一)实验目的 1、掌握MATLAB中常用的图像处理语句; 2、掌握图像的读入,信息查询以及显示; 3、掌握采用不同的模板对图像进行滤波; 4、掌握图像显示的调用格式; (二)实验要求 1、练习MATLAB中常用的图像处理语句; 2、练习图像的读入,信息查询以及显示; 3、练习采用不同的模板对图像进行滤波; 4、练习图像显示的调用格式; 二、实验设备(环境)及要求 1、支持Intel Pentium Ⅲ及其以上CPU,内存256MB以上、硬盘1GB以上容量的微机;软件配有 Windows98/2000/XP操作系统及MATLAB软件; 2、实验过程中,务必分析实验结果,按要求写出实验报告。(建议同时网上提交电子版实验报告: yw6895@https://www.360docs.net/doc/0710276112.html,) 三、实验内容与步骤 1、练习MATLAB中常用的图像处理语句 Matlab中为用户提供了一些特殊的函数,用于从图像格式的文件中读写图像。其中:a、读取图形文件格式的图像需要用imread函数; b、写入一个图形文件格式的图像需要调用imwrite函数; c、获取图形文件格式的图像的信息需要调用imfinfo、ind2rgb函数; d、以Mat文件加载或保存矩阵数据用load、save函数; e、显示加载到Matlab中的图像用image、imagesc. 此外,Matlab工具箱中还提供了图像转化函数,可以对图像类型进行转化,以达到某些图像处理工作的要求。 下面,我们将分别对这些常用的图像处理语句在Matlab中进行练习,并观察其输出结果: (1)在Matlab中读入一个灰度图像,并利用相关函数进行图像处理,并显示结果。 Matlab程序如下: I=imread('lena.bmp'); %读入原图像文件 imshow(I) %图像文件的显示 imwrite(I,'lena1.bmp'); %将原图像重命名为lena1.bmp,并保存图像 figure,imhist(I,225) %显示原图像的直方图,225为指定的灰度级数目 X=grayslice(I,64); %将原图像I均匀量化成64个等级,然后转化成索引色图像X figure,imshow(X,pink(64)) %显示索引色图像,pink(64)产生一个64×3的调色板,色度为粉红运行结果如下: 500 1000 1500 2000 2500 3000 3500 050100150200250 (2)练习图像的读入,信息查询以及显示 Matlab程序如下: load trees image(50,80,X) %显示加载到Matlab中的图像 imwrite(X,map,'trees.tif'); %将图像以tif格式保存 inf=imfinfo('trees.tif') %图像文件信息的查询 BW=im2bw(X,map,0.4); %将索引图像转化成二值图像 figure,imshow(X,map) %显示图像 figure,imshow(BW) 运行结果如下: 50100150200250300350 100 150 200 250 300 %显示从Matlab中加载的图像文件的信息 inf = Filename: 'trees.tif' FileModDate: '18-六月-2010 19:41:48' FileSize: 75764 Format: 'tif' FormatVersion: [] Width: 350 Height: 258 BitDepth: 8 ColorType: 'indexed' FormatSignature: [73 73 42 0] ByteOrder: 'little-endian' NewSubFileType: 0 BitsPerSample: 8 Compression: 'PackBits'

非常全非常详细的MATLAB数字图像处理技术

MATLAB数字图像处理 1 概述 BW=dither(I)灰度转成二值图; X=dither(RGB,map)RGB转成灰度图,用户需要提供一个Colormap; [X,map]=gray2ind(I,n)灰度到索引; [X,map]=gray2ind(BW,n)二值图到索引,map可由gray(n)产生。灰度图n 默认64,二值图默认2; X=graylice(I,n)灰度图到索引图,门限1/n,2/n,…,(n-1)/n,X=graylice(I,v)给定门限向量v; BW=im2bw(I,level)灰度图I到二值图; BW=im2bw(X,map,level)索引图X到二值图;level是阈值门限,超过像素为1,其余置0,level在[0,1]之间。 BW=im2bw(RGB,level)RGB到二值图; I=ind2gray(X,map)索引图到灰度图; RGB=ind2rgb(X,map)索引图到RGB; I=rgb2gray(RGB)RGB到灰度图。 2 图像运算 2.1图像的读写 MATLAB支持的图像格式有bmp,gif,ico,jpg,png,cur,pcx,xwd和tif。 读取(imread): [1]A=imread(filename,fmt) [2] [X,map]=imread(filename,fmt) [3] […]=imread(filename) [4] […]=imread(URL,…) 说明:filename是图像文件名,如果不在搜索路径下应是图像的全路径,fmt是图像文件扩展名字符串。前者可读入二值图、灰度图、彩图(主要是RGB);第二个读入索引图,map 为索引图对应的Colormap,即其相关联的颜色映射表,若不是索引图则map为空。URL表示引自Internet URL中的图像。 写入(imwrite): [1] R=imwrite(A,filename,fmt); [2] R=imwrite(X,map,filename,fmt); [3] R=imwrite(…,filename); [4] R=imwrite(…,Param1,Val1,Param2,Val2) 说明:针对第四个,该语句用于指定HDF,JPEG,PBM,PGM,PNG,PPM,TIFF等类型输出文件的不同参数。例如HDF的Quality,Compression,WriteMode;JPEG的BitDepth,Comment:Emptyor not,Mode:lossy orlossless,Quality等。 2.2 图像的显示 方法1:使用Image Viewer(图像浏览器),即运用imview函数。

用matlab数字图像处理四个实验

数字图像处理 实验指导书

目录 实验一MATLAB数字图像处理初步实验二图像的代数运算 实验三图像增强-空间滤波 实验四图像分割 3

实验一 MATLAB数字图像处理初步 一、实验目的与要求 1.熟悉及掌握在MATLAB中能够处理哪些格式图像。 2.熟练掌握在MATLAB中如何读取图像。 3.掌握如何利用MATLAB来获取图像的大小、颜色、高度、宽度等等相关信息。 4.掌握如何在MATLAB中按照指定要求存储一幅图像的方法。 5.图像间如何转化。 二、实验原理及知识点 1、数字图像的表示和类别 一幅图像可以被定义为一个二维函数f(x,y),其中x和y是空间(平面)坐标,f 在任何坐标处(x,y)处的振幅称为图像在该点的亮度。灰度是用来表示黑白图像亮度的一个术语,而彩色图像是由单个二维图像组合形成的。例如,在RGB彩色系统中,一幅彩色图像是由三幅独立的分量图像(红、绿、蓝)组成的。因此,许多为黑白图像处理开发的技术适用于彩色图像处理,方法是分别处理三副独立的分量图像即可。 图像关于x和y坐标以及振幅连续。要将这样的一幅图像转化为数字形式,就要求数字化坐标和振幅。将坐标值数字化成为取样;将振幅数字化成为量化。采样和量化的过程如图1所示。因此,当f的x、y分量和振幅都是有限且离散的量时,称该图像为数字图像。 作为MATLAB基本数据类型的数值数组本身十分适于表达图像,矩阵的元素和图像的像素之间有着十分自然的对应关系。 图1 图像的采样和量化 根据图像数据矩阵解释方法的不同,MA TLAB把其处理为4类: ?亮度图像(Intensity images)

matlab编程实现二分法,牛顿法,黄金分割法,最速下降matlab程序代码

用二 4224min ()f t t t t =--[,.]t ∈内的极小值点,要求准 1. function [t d]=erfenfa(a,b) k=1; %记录循环次数 while abs(a-b)>0.0005 c=(a+b)/2; C(k)=c; %存储每次循环中点c 的值 if ff(c)<0 a=c; end if ff(c)==0 t1=c; break ; end if ff(c)>0 b=c; end k=k+1; end t=(a+b)/2; %最终符合要求的值 d=f(t); %最优解 C k function y=f(t) y=t^4-2*t^2-4*t; function y=ff(t) y=4*t^3-4*t-4; 运行结果 >> [t d]=erfenfa(1,1.5) C = Columns 1 through 9 1.2500 1.3750 1.3125 1.3438 1.3281 1.3203 1.3242 1.3262 1.3252 Column 10 1.3247 k = 11

t = 1.3250 d = -5.7290 2.黄金分割法 f (x)=x3-2x+1 初始区间[0, 3],收敛精度0.5 function [t,f]=huangjinfenge(a,b) m=1-(sqrt(5)-1)/2; t2=a+m*(b-a) f2=g(t2); t1=a+b-t2 f1=g(t1); while abs(t1-t2)>0.5 if f1 [t,f]=huangjinfenge(0,3) t2 = 1.1459 t1 = 1.8541

(完整版)数字图像处理MATLAB程序【完整版】

第一部分数字图像处理

实验一图像的点运算 实验1.1 直方图 一.实验目的 1.熟悉matlab图像处理工具箱及直方图函数的使用; 2.理解和掌握直方图原理和方法; 二.实验设备 1.PC机一台; 2.软件matlab。 三.程序设计 在matlab环境中,程序首先读取图像,然后调用直方图函数,设置相关参数,再输出处理后的图像。 I=imread('cameraman.tif');%读取图像 subplot(1,2,1),imshow(I) %输出图像 title('原始图像') %在原始图像中加标题 subplot(1,2,2),imhist(I) %输出原图直方图 title('原始图像直方图') %在原图直方图上加标题 四.实验步骤 1. 启动matlab 双击桌面matlab图标启动matlab环境; 2. 在matlab命令窗口中输入相应程序。书写程序时,首先读取图像,一般调用matlab自带的图像, 如:cameraman图像;再调用相应的直方图函数,设置参数;最后输出处理后的图像; 3.浏览源程序并理解含义; 4.运行,观察显示结果; 5.结束运行,退出; 五.实验结果 观察图像matlab环境下的直方图分布。 (a)原始图像 (b)原始图像直方图 六.实验报告要求 1、给出实验原理过程及实现代码; 2、输入一幅灰度图像,给出其灰度直方图结果,并进行灰度直方图分布原理分析。

实验1.2 灰度均衡 一.实验目的 1.熟悉matlab图像处理工具箱中灰度均衡函数的使用; 2.理解和掌握灰度均衡原理和实现方法; 二.实验设备 1.PC机一台; 2.软件matlab; 三.程序设计 在matlab环境中,程序首先读取图像,然后调用灰度均衡函数,设置相关参数,再输出处理后的图像。 I=imread('cameraman.tif');%读取图像 subplot(2,2,1),imshow(I) %输出图像 title('原始图像') %在原始图像中加标题 subplot(2,2,3),imhist(I) %输出原图直方图 title('原始图像直方图') %在原图直方图上加标题 a=histeq(I,256); %直方图均衡化,灰度级为256 subplot(2,2,2),imshow(a) %输出均衡化后图像 title('均衡化后图像') %在均衡化后图像中加标题 subplot(2,2,4),imhist(a) %输出均衡化后直方图 title('均衡化后图像直方图') %在均衡化后直方图上加标题 四.实验步骤 1. 启动matlab 双击桌面matlab图标启动matlab环境; 2. 在matlab命令窗口中输入相应程序。书写程序时,首先读取图像,一般调用matlab自带的图像, 如:cameraman图像;再调用相应的灰度均衡函数,设置参数;最后输出处理后的图像; 3.浏览源程序并理解含义; 4.运行,观察显示结果; 5.结束运行,退出; 五.实验结果 观察matlab环境下图像灰度均衡结果及直方图分布。 (a)原始图像 (b)均衡化后图像

matlab数字图像处理源代码

数字图像去噪典型算法及matlab实现 希望得到大家的指点和帮助 图像去噪是数字图像处理中的重要环节和步骤。去噪效果的好坏直接影响 到后续的图像处理工作如图像分割、边缘检测等。图像信号在产生、传输过程中都可能会受到噪声的污染,一般数字图像系统中的常见噪声主要有:高斯噪声(主要由阻性元器件内部产生)、椒盐噪声(主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生的泊松噪声)等; 目前比较经典的图像去噪算法主要有以下三种: 均值滤波算法:也称线性滤波,主要思想为邻域平均法,即用几个像素灰度 的平均值来代替每个像素的灰度。有效抑制加性噪声,但容易引起图像模糊, 可以对其进行改进,主要避开对景物边缘的平滑处理。 中值滤波:基于排序统计理论的一种能有效抑制噪声的非线性平滑滤波信号处理技术。中值滤波的特点即是首先确定一个以某个像素为中心点的邻域,一般为方形邻域,也可以为圆形、十字形等等,然后将邻域中各像素的灰度值排序,取其中间值作为中心像素灰度的新值,这里领域被称为窗口,当窗口移动时,利用中值滤波可以对图像进行平滑处理。其算法简单,时间复杂度低,但其对点、线和尖顶多的图像不宜采用中值滤波。很容易自适应化。 Wiener维纳滤波:使原始图像和其恢复图像之间的均方误差最小的复原方法,是一种自适应滤波器,根据局部方差来调整滤波器效果。对于去除高斯噪声效果明显。 实验一:均值滤波对高斯噪声的效果 l=imread('C:\Documents and 桌面\1.gif');% 读取图像

J=imnoise(l,'gaussian',0,0.005);% 加入均值为0 ,方差为 0.005 的高斯噪声subplot(2,3,1);imshow(l); title(' 原始图像'); subplot(2,3,2); imshow(J); ti tle('加入高斯噪声之后的图像’); %采用MATLAB 中的函数filter2 对受噪声干扰的图像进行均值滤波 K1=filter2(fspecial('average',3),J)/255; % 模板尺寸为3 K2=filter2(fspecial('average',5),J)/255;% 模板尺寸为5 K3=filter2(fspecial('average',7),J)/255; % 模板尺寸为7 K4= filter2(fspecial('average',9),J)/255; % 模板尺寸为9 subplot(2,3,3);imshow(K1); ti tle(' 改进后的图像1'); subplot(2,3,4); imshow(K2); title(' 改进后的图像2'); subplot(2,3,5);imshow(K3); title(' 改进后的图像3'); subplot(2,3,6);imshow(K4); title(' 改进后的图像4');

0.618法的matlab实现

实验报告 实验题目: 0.618法的MATLAB实现学生姓名: 学号: 实验时间: 2013-5-13

一.实验名称: 0.618法求解单峰函数极小点 二.实验目的及要求: 1. 了解并熟悉0.618法的方法原理, 以及它的MATLAB 实现. 2. 运用0.618法解单峰函数的极小点. 三.实验内容: 1. 0.618法方法原理: 定理: 设f 是区间],[b a 上的单峰函数, ] ,[ ,)2()1(b a x x ∈, 且)2()1(x x <. 如果)()()2()1(x f x f >, 则对每一个],[)1(x a x ∈, 有)()()2(x f x f >; 如果)()()2()1(x f x f ≤, 则对每一个] ,[) 2(b x x ∈, 有)()()1(x f x f ≥. 根据上述定理, 只需选择两个试探点, 就可将包含极小点的区间缩短. 事实上, 必有 如果)()()2()1(x f x f >, 则],[)1(b x x ∈; 如果)()() 2()1(x f x f ≤, 则][)2(x a x ,∈. 0.618 法的基本思想是, 根据上述定理, 通过取试探点使包含极小点的区间(不确定区间)不断缩短, 当区间长度小到一定程度时, 区间上各点的函数值均接近极小值, 因此任意一点都可作为极小点的近似. 0.618 法计算试探点的公式: ). (618.0),(382.0k k k k k k k k a b a a b a -+=-+=μλ 2. 0.618法的算法步骤: ①置初始区间],[11b a 及精度要求0>L , 计算试探点1λ和1μ, 计算函数值)(1λf 和)(1μf . 计算公式是 ).(618.0 ),(382.011111111a b a a b a -+=-+=μλ 令1=k . ②若L a b k k <-, 则停止计算. 否则, 当)()(k k f f μλ>时, 转步骤③; 当)()(k k f f μλ≤时, 转步骤④. ③置k k a λ=+1, k k b b =+1, k k μλ=+1,)(618.01111++++-+=k k k k a b a μ, 计算函数值)(1+k f μ, 转步骤⑤.

MATLAB数字图像处理技术

MATLAB 数字图像处理技术 4 MATLAB 图像增强 4.1 原理、方法及体系结构 三个阶段:图像预处理、特征抽取阶段、识别分析阶段。 目的:改善图像的视觉效果,提高图像成分的清晰度;是图像变得有利于计算机处理。 方法:空间域增强方法、频域增强方法。 体系: 图像增强:空间域、频率域、彩色增强 空间域:像素点处理(图像灰度变换、直方图修正(中值滤波、均值滤波))、领域处理(图像平滑滤波、图像锐化滤波) 频率域:低通滤波、高通滤波、同态滤波 彩色处理:真彩色处理、伪彩色处理(灰度分层法、灰度变换法、频域伪彩色) 4.2 对比度增强 线性变换:(,)[(,)]N n g x y f x y m n M m -= -+-。其中功能是把函数的灰度值(,)f x y 从 范围[m,M]变为[n,N]。 非线性变换:分为对数变换和Gamma 变换。前者表达式为(,)log[(,)1]g x y c f x y =+, 其中c 为常数。后者表达式为r f cr =,r 为CCD 图像传感器或胶片等的入射光的强度,为 常数,灰度与光强成正比,则有1 ()r f g kr k c ==,k 为常数通常为1,1/r 取0.4~0.8。 我们可以用一个函数imadjust 函数来实现: J=imadjust(I); J=imadjust(I,[low_in;high_in],[low_out;high_out]); J=imadjust(I,[low_in;high_in],[low_out;high_out],gamma)。 其中灰度范围用归一化灰度值,范围[0,1]。整个图像的[low_in;high_in]可以用函数stretch 函数来获得。 MATLAB image toolbox5.4还提供一个手动调节的控制面板,调用函数imconstrast 。 4.3 空域变换增强 分为基于像素点和基于模板的两类方法。 像素选择:pixval 和impixel 。用法如下: Pixval(‘on/off ’);pixval ;pixval(fig,option); [C,R,P]=impixel(X,MAP)。 说明:MAP 仅仅当是索引图的时候采用此参数。C 为像素的颜色,R,P 为像素的坐标。Pixval 可以得到更多的像素信息,impixel 可以返回指定像素的颜色值。 强度描述图:improfile ,用以描述图像一条线段或多条线段的强度值。格式:

基于Matlab的数字图像处理系统设计设计

论文(设计)题目: 基于MATLAB的数字图像处理系统设计

基于MATLAB的数字图像处理系统设计 摘要 MATLAB 作为国内外流行的数字计算软件,具有强大的图像处理功能,界面简洁,操作直观,容易上手,而且是图像处理系统的理想开发工具。矚慫润厲钐瘗睞枥庑赖。 笔者阐述了一种基于MATLAB的数字图像处理系统设计,其中包括图像处理领域的大部分算法,运用MATLAB 的图像处理工具箱对算法进行了实现,论述了利用系统进行图像显示、图形表换及图像处理过程,系统支持索引图像、灰度图像、二值图像、RGB 图像等图像类型;支持BMP、GIF、JPEG、TIFF、PNG 等图像文件格式的读,写和显示。聞創沟燴鐺險爱氇谴净。 上述功能均是在MA TLAB 语言的基础上,编写代码实现的。这些功能在日常生活中有很强的应用价值,对于运算量大、过程复杂、速度慢的功能,利用MATLAB 可以既能快速得到数据结果,又能得到比较直观的图示。残骛楼諍锩瀨濟溆塹籟。 关键词:MATLAB 数字图像处理图像处理工具箱图像变换

第一章绪论 1.1 研究目的及意义 图像信息是人类获得外界信息的主要来源,近代科学研究、军事技术、工农业生产、医学、气象及天文学等领域中,人们越来越多地利用图像信息来认识和判断事物,解决实际问题,由此可见图像信息的重要性,数字图像处理技术将会伴随着未来信息领域技术的发展,更加深入到生产和科研活动中,成为人类生产和生活中必不可少的内容。酽锕极額閉镇桧猪訣锥。 MATLAB 软件不断吸收各学科领域权威人士所编写的实用程序,经过多年的逐步发展与不断完善,是近几年来在国内外广泛流行的一种可视化科学计算软件。MATLAB 语言是一种面向科学与工程计算的高级语言,允许用数学形式的语言来编写程序,比Basic、Fortan、C 等高级语言更加接近我们书写计算公式的思维方式,用MATLAB 编写程序犹如在演算纸上排列出公式与求解问题一样。它编写简单、编程效率高并且通俗易懂。彈贸摄尔霁毙攬砖卤庑。 1.2 国内外研究现状 1.2.1 国内研究现状 国内在此领域的研究中具有代表性的是清华大学研制的数字图像处理实验开发系统TDB-IDK 和南京东大互联技术有限公司研制的数字图像采集传输与处理实验软件。謀荞抟箧飆鐸怼类蒋薔。 TDB-IDK 系列产品是一款基于TMS320C6000 DSP 数字信号处理器的高级视频和图像系统,也是一套DSP 的完整的视频、图像解决方案,该系统适合院校、研究所和企业进行视频、图像方面的实验与开发。该软件能够完成图像采集输入程序、图像输出程序、图像基本算法程序。可实现对图像信号的实时分析,图像数据相对DSP独立方便开发人员对图像进行处理,该产品融合DSP 和FPGA/CPLD 两个高端技术,可以根据用户的具体需求合理改动,可以分析黑白和彩色信号,可以完成图形显示功能。厦礴恳蹒骈時盡继價骚。 南京东大互联技术有限公司研制的数字图像采集传输与处理实验软件可实现数字图像的采集、传输与处理。可利用软件及图像采集与传输设备,采集图像并实现点对点的数字图像传输,可以观察理解多种图像处理技术的效果和差别,

数字图像处理 matlab代码

MATLAB实用源代码 图像读取及灰度变换 I=imread('cameraman.tif');%读取图像 subplot(1,2,1),imshow(I) %输出图像 title('原始图像') %在原始图像中加标题 subplot(1,2,2),imhist(I) %输出原图直方图 title('原始图像直方图') %在原图直方图上加标题 图像旋转 I = imread('cameraman.tif'); figure,imshow(I); theta = 30; K = imrotate(I,theta); % Try varying the angle, theta. figure, imshow(K) 边缘检测 I = imread('cameraman.tif'); J1=edge(I,'sobel'); J2=edge(I,'prewitt'); J3=edge(I,'log'); subplot(1,4,1),imshow(I); subplot(1,4,2),imshow(J1); subplot(1,4,3),imshow(J2); subplot(1,4,4),imshow(J3); 1.图像反转 MATLAB 程序实现如下: I=imread('xian.bmp'); J=double(I); J=-J+(256-1); %图像反转线性变换 H=uint8(J); subplot(1,2,1),imshow(I); subplot(1,2,2),imshow(H); 2.灰度线性变换 MATLAB 程序实现如下: I=imread('xian.bmp'); subplot(2,2,1),imshow(I); title('原始图像'); axis([50,250,50,200]); axis on; %显示坐标系 I1=rgb2gray(I); subplot(2,2,2),imshow(I1); title('灰度图像'); axis([50,250,50,200]);

黄金分割法,进退法,原理及流程图

1黄金分割法的优化问题 (1)黄金分割法基本思路: 黄金分割法适用于[a,b]区间上的任何单股函数求极小值问题,对函数除要求“单谷”外不做其他要求,甚至可以不连续。因此,这种方法的适应面非常广。黄金分割法也是建立在区间消去法原理基础上的试探方法,即在搜索区间[a,b]内适当插入两点a1,a2,并计算其函数值。a1,a2将区间分成三段,应用函数的单谷性质,通过函数值大小的比较,删去其中一段,是搜索区间得以缩小。然后再在保留下来的区间上作同样的处理,如此迭代下去,是搜索区间无限缩小,从而得到极小点的数值近似解。 (2)黄金分割法的基本原理 一维搜索是解函数极小值的方法之一,其解法思想为沿某一已知方向求目标函数的极小值点。一维搜索的解法很多,这里主要采用黄金分割法(0.618法)。该方法用不变的区间缩短率0.618代替斐波那契法每次不同的缩短率,从而可以看成是斐波那契法的近似,实现起来比较容易,也易于人们所接受。

黄金分割法是用于一元函数f(x)在给定初始区间[a,b]内搜索极小点α*的一种方法。它是优化计算中的经典算法,以算法简单、收敛速度均匀、效果较好而著称,是许多优化算法的基础,但它只适用于一维区间上的凸函数[6],即只在单峰区间内才能进行一维寻优,其收敛效率较低。其基本原理是:依照“去劣存优”原则、对称原则、以及等比收缩原则来逐步缩小搜索区间[7]。具体步骤是:在区间[a,b]内取点:a1 ,a2 把[a,b]分为三段。如果f(a1)>f(a2),令 a=a1,a1=a2,a2=a+r*(b-a);如果f(a1)

(整理)实验一 MATLAB数字图像处理初步.

实验一 MATLAB数字图像处理初步 一、实验目的与要求 1.熟悉及掌握在MATLAB中能够处理哪些格式图像。 2.熟练掌握在MATLAB中如何读取图像。 3.掌握如何利用MATLAB来获取图像的大小、颜色、高度、宽度等等相关信息。 4.掌握如何在MATLAB中按照指定要求存储一幅图像的方法。 5.图像间如何转化。 6. 了解图像的算术运算在数字图像处理中的初步应用。 7.体会图像算术运算处理的过程和处理前后图像的变化。 二、实验原理及知识点 1、数字图像的表示和类别 一幅图像可以被定义为一个二维函数f(x,y),其中x和y是空间(平面)坐标,f 在任何坐标处(x,y)处的振幅称为图像在该点的亮度。灰度是用来表示黑白图像亮度的一个术语,而彩色图像是由单个二维图像组合形成的。例如,在RGB彩色系统中,一幅彩色图像是由三幅独立的分量图像(红、绿、蓝)组成的。因此,许多为黑白图像处理开发的技术适用于彩色图像处理,方法是分别处理三副独立的分量图像即可。 图像关于x和y坐标以及振幅连续。要将这样的一幅图像转化为数字形式,就要求数字化坐标和振幅。将坐标值数字化成为取样;将振幅数字化成为量化。采样和量化的过程如图1所示。因此,当f的x、y分量和振幅都是有限且离散的量时,称该图像为数字图像。 作为MATLAB基本数据类型的数值数组本身十分适于表达图像,矩阵的元素和图像的像素之间有着十分自然的对应关系。

图1 图像的采样和量化 根据图像数据矩阵解释方法的不同,MA TLAB把其处理为4类: 亮度图像(Intensity images) 二值图像(Binary images) 索引图像(Indexed images) RGB图像(RGB images) (1) 亮度图像 一幅亮度图像是一个数据矩阵,其归一化的取值表示亮度。若亮度图像的像素都是uint8类或uint16类,则它们的整数值范围分别是[0,255]和[0,65536]。若图像是double类,则像素取值就是浮点数。规定双精度型归一化亮度图像的取值范围是[0,1] (2) 二值图像 一幅二值图像是一个取值只有0和1的逻辑数组。而一幅取值只包含0和1的uint8类数组,在MA TLAB中并不认为是二值图像。使用logical函数可以把数值数组转化为二值数组或逻辑数组。创建一个逻辑图像,其语法为: B=logical(A) 其中,B是由0和1构成的数值数组。 要测试一个数组是否为逻辑数组,可以使用函数: islogical(c) 若C是逻辑数组,则该函数返回1;否则,返回0。 (3) 索引图像 索引颜色通常也称为映射颜色,在这种模式下,颜色都是预先定义的,并且可供选用的一组颜色也很有限,索引颜色的图像最多只能显示256种颜色。 一幅索引颜色图像在图像文件里定义,当打开该文件时,构成该图像具体颜色的索引值就被读入程序里,然后根据索引值找到最终的颜色。 (4) RGB图像 一幅RGB图像就是彩色像素的一个M×N×3数组,其中每一个彩色相似点都是在特定空间位置的彩色图像相对应的红、绿、蓝三个分量。按照惯例,形成一幅RGB彩色图像的三个图像常称为红、绿或蓝分量图像。 令fR,fG和fB分别代表三种RGB分量图像。一幅RGB图像就利用cat(级联)操作将这些分量图像组合成彩色图像: rgb_image=cat(3,fR,fG,fB) 在操作中,图像按顺序放置。 2、数据类和图像类型间的转化 表1中列出了MATLAB和IPT为表示像素所支持的各种数据类。表中的前8项称为数值数据类,第9项称为字符类,最后一项称为逻辑数据类。 工具箱中提供了执行必要缩放的函数(见表2)。以在图像类和类型间进行转化。

Matlab数字图像处理技术 最终版

Matlab数字图像处理技术 一、数字图像处理基础 1、图形和图像的区别 图形(矢量图):以几何数学为基础,图形由点、线、圆等图元组成,图形文件仅记录点的坐标和绘图命令。 图像(点阵图):用像素来描述的图,图像文件中记录每个像素的颜色和亮度。 2、四邻域和八邻域: 4-邻域:设像素p(x,y),它有4个水平和垂直相邻的像素:(x-1,y)(x+1,y) (x,y-1)(x,y+1),这4个点组成p的4-邻域。 对角邻域:像素p(x,y)的4个对角临近像素:(x-1,y-1)(x+1,y-1) (x-1,y+1)(x+1,y+1),这4个点组成p的对角邻域。 8-邻域:像素p的4-邻域和对角邻域合起来组成p的8-邻域。 3、彩色模型 (1)RGB模型 8种颜色配比(归一化): (2)HIS模型:H(色度),S(饱和度),(I)亮度。 (3)二值模型:0—黑色,1—白色。 (4)灰度模型:白—黑有256个灰度级来显示图像,0—黑色,255—白色。 (5)几种图像的颜色数: 二值图像:2种像素值 灰度图像:256种灰度级 彩色图像:256 * 256 * 256 = 2^24种 索引彩色: 4、图像处理中常用的输入设备:数码相机、数码摄像机、扫描仪; 图像处理中常用的输出设备:显示器、打印机、绘图仪。 5、图像的存储: 空间分辨率:M * N 幅度分辨率:G = 2^K 存储一幅图像所需位数(bit):b = M * N * K。

二、图像的基本运算 1、图像点运算 F为输入点的灰度值,G为输出点的灰度值, a) b = 0时,a>1,图像对比度增大;00,灰度值上移,亮度增加;b<0,灰度值下移,亮度降低。 c) a = 1,b = 255,图像反相。 Matlab中图像线性变换: Y = imlincomb(a,x,b); %Y=a*X+b 2、图像的加法运算 C(x,y) = A(x,y) + B(x,y) 图像的叠加方法: g(x,y) = a*f(x,y)+ b*h(x,y);a+b = 1 matlab中: A = imread(‘第一幅图’); B = imread(‘第二幅图’); C = 0.5*A + 0.5*B; Imshow(c); 3、减法运算 主要检测同一场景两幅图像之间的变化 G(x,y) = T2(x,y)- T1(x,y) Matlab中: A = imread(‘第一幅图’); B = imread(‘第二幅图’); C = A - B; Imshow(c); 4、乘法运算 用二值图像与原图像做乘法,得到需要的子图像。 Z = X .* Y; 要求X和Y的大小、数组元素相同。 Matlab中: X = imread(‘被点乘的图像’); Y = zeros(M,N); Y (70:120, 120:380) = 1; X = im2double(X); Z = X.*Y;

数字图像处理(MATLAB版)

数字图像处理(MATLAB版) 实验指导书 (试用版) 本实验指导书配合教材和课堂笔记中的例题使用 姚天曙编写 安徽农业大学工学院 2009年4月试行 目录 实验一、数字图像获取和格式转换 2 实验二、图像亮度变换和空间滤波 6 实验三、频域处理7 实验四、图像复原9 实验五、彩色图像处理10 实验六、图像压缩11 实验七、图像分割13 教材与参考文献14 《数字图像处理》实验指导书 实验一、数字图像获取和格式转换 一、实验目的 1掌握使用扫描仪、数码相机、数码摄像级机、电脑摄像头等数字化设备以及计算机获取数字图像的方法; 2修改图像的存储格式;并比较不同压缩格式图像的数据量的大小。 二、实验原理 数字图像获取设备的主要性能指标有x、y方向的分辨率、色彩分辨率(色彩位数)、扫描幅面和接口方式等。各类设备都标明了它的光学分辨率和最大分辨率。分辨率的单位是dpi,dpi是英文Dot Per Inch的缩写,意思是每英寸的像素点数。 扫描仪扫描图像的步骤是:首先将欲扫描的原稿正面朝下铺在扫描仪的玻璃板上,原稿可以是文字稿件或者

图纸照片;然后启动扫描仪驱动程序后,安装在扫描仪内部的可移动光源开始扫描原稿。为了均匀照亮稿件,扫描仪光源为长条形,并沿y方向扫过整个原稿;照射到原稿上的光线经反射后穿过一个很窄的缝隙,形成沿x 方向的光带,又经过一组反光镜,由光学透镜聚焦并进入分光镜,经过棱镜和红绿蓝三色滤色镜得到的RGB三条彩色光带分别照到各自的CCD上,CCD将RGB光带转变为模拟电子信号,此信号又被A/D变换器转变为数字电子信号。至此,反映原稿图像的光信号转变为计算机能够接受的二进制数字电子信号,最后通过串行或者并行等接口送至计算机。扫描仪每扫一行就得到原稿x方向一行的图像信息,随着沿y方向的移动,在计算机内部逐步形成原稿的全图。扫描仪工作原理见图1.1。 图1.1扫描仪的工作原理 在扫描仪的工作过程中,有两个元件起到了关键的作用。一个是CCD,它将光信号转换成为电信号;另一个是A/D变换器,它将模拟电信号变为数字电信号。CCD是Charge Couple Device的缩写,称为电荷耦合器件,它是利用微电子技术制成的表面光电器件,可以实现光电转换功能。CCD在摄像机、数码相机和扫描仪中应用广泛,只不过摄像机中使用的是点阵CCD,即包括x、y两个方向用于摄取平面图像,而扫描仪中使用的是线性CCD,它只有x一个方向,y方向扫描由扫描仪的机械装置来完成。CCD芯片上有许多光敏单元,它们可以将不同的光线转换成不同的电荷,从而形成对应原稿光图像的电荷图像。 数码相机的系统结构(见图1.2)数码相机的许多特殊部件,如图像传感器(CCD或CMOS)、模/数转换器(A/D)、数字信号处理单元(DSP)、图像存储器、液晶显示器(LCD)以及输出控制单元(连接端口)等是传统胶片相机所没有的。 仔细分析一下数码相机的原理方框图,我们不难发现,数码相机的系统工作过程就是把光信号转化为数字信号的过程。数码相机使用CCD电荷耦合器件这种光敏元件代代替胶卷感光成像。光线通过透镜系统和滤色器(滤光器)投射到CCD光敏元件上,CCD元件将其光强和色彩转换为电信号记录到数码相机的存储器中,形成计算机可以处理的数字信号。 数码相机除了光学透镜系统外,其余几乎全由电子电路控制。基本的信号处理过程非常简单。由CCD送来的电信号通过A/D转换器转换为数字信号,然后送入具有信号处理能力的DSP(数字信号处理器)。DSP处理工作量很大,一般都设计成专用的硬件。信号进一步送给离散余弦变换部件DCT进行JPEG压缩,然后通过接口电路记录到位于最后一级的存储器。 图1.2 数码相机原理图 数码摄像机的感光器件也即数码摄像机感光成像的部件,能把光线转变成电荷,通过模数转换器芯片转换成数字信号。目前数码摄像机的核心成像部件有两种:一种是广泛使用的CCD(电荷藕合)元件;另一种是CMOS (互补金属氧化物导体)器件。电荷藕合器件图像传感器CCD(Charge Coupled Device),它使用一种高感光度的半导体材料制成,能把光线转变成电荷,通过模数转换器芯片转换成数字信号,数字信号经过压缩以后由相机内部的闪速存储器或内置硬盘卡保存,因而可以轻而易举地把数据传输给计算机,并借助于计算机的处理手段,根据需要和想像来修改图像。CCD由许多感光单位组成,通常以百万像素为单位。当CCD表面受到光线照射时,每个感光单位会将电荷反映在组件上,所有的感光单位所产生的信号加在一起,就构成了一幅完整的画面。互补性氧化金属半导体CMOS(Complementary Metal-Oxide Semiconductor)和CCD一样同为在数码相机中可记录光线变化的半导体。CMOS的制造技术和一般计算机芯片没什么差别,主要是利用硅和锗这两种元素所做成的半导体,使其在CMOS上共存着带N(带–电)和 P(带+电)级的半导体,这两个互补效应所产生的电流即可被处理芯片纪录和解读成影像。然而,CMOS的缺点就是太容易出现杂点, 这主要是因为早期的设计使CMOS在处理快速变化的影像时,由于电流变化过于频繁而会产生过热的现象。由两种感光器件的工作原理可以看出,CCD的优势在于成像质量好,但是由于制造工艺复杂,只有少数的厂商能够掌握,所以导致制造成本居高不下,特别是大型CCD,价格非常高昂。在相同分辨率下,CMOS价格比CCD便宜,但是CMOS器件产生的图像质量相比CCD来说要低一些。到目前为止,市面上绝大多数的消费级别以及高端数码相机都使用CCD作为感应器;CMOS感应器则作为低端产品应用于一些摄像头上,是否具有CCD感应器变成了人们判断数码相机档次的标准之一。

相关文档
最新文档