2019-2020学年高中数学 3.2三角恒等变换导学案新人教版必修4.doc

合集下载

高中数学3.2简单的三角恒等变换导学案新人教版必修4

高中数学3.2简单的三角恒等变换导学案新人教版必修4

3. 2简单的三角恒等变换(导学案)课前预习学案一、 预习目标:回顾复习两角和与差的正弦、 的三角恒等变换。

二、 预习内容:1、回顾复习以下公式并填空:2、阅看课本 P139---141 例 1、2、3。

三、提出疑惑:课内探究学案一、 学习目标:会用已学公式进行三角函数式的化简、求值和证明,会推导半角公式, 积化和差、和差化积公式(公式不要求记忆) ,进一步提高运用转化、换元、方程等数学思想解决问题的能力。

学习重点:以已有公式为依据,以推导半角公式,积化和差、和差化积公式作为基本训 练,学习三角变换的内容、思路和方法,体会三角变换的特点,提高推理、运算能力。

学习难点:认识三角变换的特点, 并能运用数学思想方法指导变换过程的设计, 不断提高从整体上把握变换过程的能力。

二、 学习过程:探究一:半角公式的推导(例1)请同学们阅看例1,思考以下问题,并进行小组讨论。

1、 2a 与a 有什么关系? a 与a /2有什么关系?进一步体会二倍角公式和半角公式的 应用。

2、 半角公式中的符号如何确定? 3 、二倍角公式和半角公式有什么联系?4、代数变换与三角变换有什么不同?探究二:半角公式的推导(例 2)请同学们阅看例2,思考以下问题,并进行小组讨论。

COS ( a + 3 )=Cos( sin( t an(sin( tan( a + 3 )= a + 3 )=sin2a=ta n2cos2a =a - 3 )= a - 3 )= a - 3 )= a =余弦和正切公式及二倍角公式,预习简单1、两角和与差的正弦、 余弦公式两边有什么特点?它们与例2在结构形式上有什么联系?2 、在例2证明过程中,如果不用(1)的结果,如何证明(2)? 3、在例2证明过程中,体现了什么数学思想方法?探究三:三角函数式的变换(例 3)请同学们阅看例1,思考以下问题,并进行小组讨论。

1、 例3的过程中应用了哪些公式?2、 如何将形如y=asinx+bcosx 的函数转化为形如y=Asin ( w x+ $ )的函数?并求y=as in x+bcosx 的周期,最大值和最小值.课后练习与提高、选择题:1 .已知 cos ( a + 3 ) cos ( a —3)=-,则 cos2 a — Sin 2 卩的值为()3C2.在△ ABC 中,若 sin A sin B =cos 2 ,则△ ABC 是()C. 不等边三角形D.直角三角形V3口3. sin a +sin 3 =—— (cos 3 — cos a ), 且 a €( 0,n 3等于()三、反思、总结、归纳:sin a /2= cos a /2=tansina cos 3 =cos a sin 3 =cos a cos 3 = sin a sin 3 =sin0 +sin $ = sin 0 -sin $ =cos 0 +cos $ =cos0 -cos $ =四、当堂检测:课本 p143 习题3.2 A 组 1、 (3) (7) 2、(1) B 组a /2=A .B .C. D.A. 等边三角形B. 等腰三角形,3^( 0 ,n),贝U a — 3A. — 2 nB.—n c.上 D. 2 n3333二、填空题4. sin20 ° cos70° +sin10° sin50 ° =5.已知a —3 = 2 n,且cos a +cos卩:=1,则cos ( a+ 3 )等于33三、解答题.5 sin — x6.已知f ( X)=—1+ J , x€( 0,n).2 X2 2sin2(1)将f (x)表示成cosx的多项式;(2)求f (x)的最小值.谍后练习琴芳答案;—S选择题m 比E 3, D二、埴空題:4. 1 5. -I4 P三、解答题Sr r 3rsinsin—2 cos —smx * Y5. 解(1) fM =------ 2 ------ L = ----- 2------- =2cos —cos—YoarfooQjMosY——1.”勺.K * . s 222 sin—2511122⑵(r) -2(8Sl+£) 2—芝,且一1 £CCIS.\<L二当匚曲戶一—时!J'(A")取寻眾小值一2.寧EL;! 4F 客。

2019-2020学年高中数学人教A版必修4学案:3.2 简单的三角恒等变换

2019-2020学年高中数学人教A版必修4学案:3.2 简单的三角恒等变换

知识导图学法指导三角恒等变换的基本思路是“变换”,变换的基本方向有两个:一是变换函数名称,可以使用诱导公式、同角三角函数的基本关系、二倍角的余弦公式、半角公式等;二是变换角的形式,可以使用和角公式、倍角公式、半角公式、积化和差、和差化积等.1.半角公式“半角公式”无理半角常戴帽,象限确定帽前号;可写成sin (a +φ)的形式,其中tan φ=,此公式称为辅助角a2+b2a 公式.其中φ可通过tan φ=以及点(a ,b)所在的象限来确定.b a (2)辅助角公式的特殊情况sin α±cos α=sin ;sin α±cos α=2sin ;2(α±π4)3(α±π3)(π)A .sin 15°cos 15°B .cos 2-sin 2π6π6C. D.tan 30°1-tan230°1+cos 60°2解析:选项A 中,原式=sin 30°=;选项B 中,原式=cos =1214π3类型一 三角函数式的化简求值2cos2α-1【解析】 (1)2tan (4-α)sin2(4+α)====1.cos 2α2cos (π4+α)sin (π4+α)×sin2(π4+α)cos 2αsin (π2+2α)cos 2αcos 2α解析:(1)sin ===;8222cos ===.π81+cos π421+2222+22(2)原式=+2=2|cos 4|+2|sin 2(1+2cos24-1)1-(1-2sin24)24|=-2cos 4-2sin 4.2=+(sin 2+cos 2)22(|c os α2|-|s in α2|)(sin 2-cos 2)22(|c os α2|+|s inα2|)因为π<α<,所以<<,所以sin >0>cos .3π2π2α23π4α2α2(sin α+cos α)2(sin α-cos α)2=sin αcos α=sin 2α=右边.所以原式成立.1214方法二 左边==cos 2α·=cos2αtan α21-tan2α2122tanα21-tan2α2,cos(α+β)=-=-=-.∴cos 31-sin2(α+β)1-33α=cos(α+β-β)=cos(α+β)cos β+sin(α+β)sinβ=-×+×=.63(-33)3363223 (1) 利用两角和的余弦公式及降幂公式→将f (x )展开状元随笔合并→利用正弦函数的单调性求函数f (x )的单调递减区间πβαβ+所以sin∈,所以f (x )∈[1,4],所以f (x )在区间(6)[2]上的值域为[1,4].-π6,π3]利用二倍角公式,降幂公式化简函数f(x)=A sin (ωx +φ)+B 的形式,再利用性质求解.3.22α,所以cos α-sin α=-.2答案:C3.设a =cos6°-sin6°,b =2sin13°cos13°,1232c =,则有( )1-cos 50°26.若cos 22°=a ,则sin 11°=________,cos 11°=________.解析:cos 22°=2cos 211°-1=1-2sin 211°,所以cos 11°==.1+cos 22°21+a2sin 11°==.1-cos 22°21-a 2答案:-2三、解答题(每小题10分,共20分)9.化简:.2cos2α-12tan (π4-α)sin2(π4+α)解析:方法一 cos2α-sin2α11.已知sin α+cos α=,则2cos 2-1=( )13(π4-α)A.B.891718C .- D .-8923所以cos 2θ=,所以tan θ===,51+cos 2θ1+53所以==,1-tan θtan θ+11-1313+1122cos2θ-sin θ-1==.2cos2α2cos2α2∵0<α<π,∴0<<,∴cos >0,α2π2α2cos α2cos α。

2019-2020年高中数学 第三章《简单的三角恒等变换》教案 新人教A版必修4

2019-2020年高中数学 第三章《简单的三角恒等变换》教案 新人教A版必修4

2019-2020年高中数学第三章《简单的三角恒等变换》教案新人教A版必修4一、课标要求:本节主要包括利用已有的十一个公式进行简单的恒等变换,以及三角恒等变换在数学中的应用.二、编写意图与特色本节内容都是用例题来展现的.通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.三、教学目标通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.四、教学重点与难点教学重点:引导学生以已有的十一个公式为依据,以推导积化和差、和差化积、半角公式的推导作为基本训练,学习三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点,提高推理、运算能力.教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力.五、学法与教学用具学法:讲授式教学六、教学设想:学习和(差)公式,倍角公式以后,我们就有了进行变换的性工具,从而使三角变换的内容、思路和方法更加丰富,这为我们的推理、运算能力提供了新的平台.下面我们以习题课的形式讲解本节内容.例1、试以表示.解:我们可以通过二倍角和来做此题.因为,可以得到;因为,可以得到.又因为222sin1cos2tan21coscos2ααααα-==+.思考:代数式变换与三角变换有什么不同?代数式变换往往着眼于式子结构形式的变换.对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,这是三角式恒等变换的重要特点. 例2、求证: (1)、()()1sin cos sin sin 2αβαβαβ=++-⎡⎤⎣⎦; (2)、sin sin 2sincos22θϕθϕθϕ+-+=.证明:(1)因为和是我们所学习过的知识,因此我们从等式右边着手.()sin sin cos cos sin αβαβαβ+=+;()sin sin cos cos sin αβαβαβ-=-.两式相加得()()2sin cos sin sin αβαβαβ=++-; 即()()1sin cos sin sin 2αβαβαβ=++-⎡⎤⎣⎦; (2)由(1)得()()sin sin 2sin cos αβαβαβ++-=①;设, 那么.把的值代入①式中得sin sin 2sincos22θϕθϕθϕ+-+=.思考:在例2证明中用到哪些数学思想?例2 证明中用到换元思想,(1)式是积化和差的形式,(2)式是和差化积的形式,在后面的练习当中还有六个关于积化和差、和差化积的公式. 例3、求函数的周期,最大值和最小值. 解:这种形式我们在前面见过,1sin 2sin 2sin 23y x x x x x π⎛⎫⎛⎫=+=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭, 所以,所求的周期,最大值为2,最小值为.点评:例3是三角恒等变换在数学中应用的举例,它使三角函数中对函数的性质研究得到延伸,体现了三角变换在化简三角函数式中的作用.小结:此节虽只安排一到两个课时的时间,但也是非常重要的内容,我们要对变换过程中体现的换元、逆向使用公式等数学思想方法加深认识,学会灵活运用. 作业:2019-2020年高中数学 第三章《简单的线性规划》教案3 新人教A 版必修5授课类型:新授课 【教学目标】1.知识与技能:使学生了解二元一次不等式表示平面区域;了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;了解线性规划问题的图解法,并能应用它解决一些简单的实际问题;2.过程与方法:经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力; 3.情态与价值:培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力。

2019-2020学年度最新高中数学人教A版必修四教学案:3-2简单的三角恒等变换-含答案

2019-2020学年度最新高中数学人教A版必修四教学案:3-2简单的三角恒等变换-含答案

2019-2020学年度最新高中数学人教A 版必修四教学案:3-2简单的三角恒等变换-含答案1.预习教材,问题导入根据以下提纲,预习教材P 139~P 142的内容,回答下列问题. (1)α与α2是什么关系?提示:倍角关系.(2)如何用cos α表示sin 2 α2,cos 2 α2和tan 2 α2?提示:sin 2α2=1-cos α2,cos 2α2=1+cos α2,tan 2α2=1-cos α1+cos α.2.归纳总结,核心必记 (1)半角公式(2)三角恒等变换的特点三角恒等变换常常寻找式子所包含的各个角之间的联系,并以此为依据选择可以联系它们的适当公式.[问题思考](1)能用不含根号的形式用sin α,cos α表示tan α2吗?提示:tan_α2=sin α1+cos α=1-cos αsin α.(2)如何用tan α2表示sin α,cos α及tan α?提示:sin_α=2sin α2·cos α2=2sin α2·cosα2sin 2α2+cos 2α2=2tanα21+tan 2α2._cos_α=cos 2_α2-sin 2_α2=cos 2 α2-sin 2α2cos 2α2+sin 2α2=1-tan 2α21+tan 2 α2.tan_α=sin αcos α=2tanα21-tan 2α2. [课前反思](1)半角公式的有理形式: ;(2)半角公式的无理形式:.讲一讲1.已知sin α=-45,π<α<3π2,求sin α2,cos α2,tan α2的值.[尝试解答] ∵π<α<3π2,sin α=-45,∴cos α=-35,且π2<α2<3π4,∴sin α2=1-cos α2=255, cos α2=- 1+cos α2=-55,tan α2=sin α2cos α2=-2.解决给值求值问题的思路方法已知三角函数式的值,求其他三角函数式的值,一般思路为: (1)先化简已知或所求式子;(2)观察已知条件与所求式子之间的联系(从三角函数名及角入手); (3)将已知条件代入所求式子,化简求值. 练一练1.已知sin α2-cos α2=-15,450°<α<540°,求tan α2的值.解:由题意得⎝ ⎛⎭⎪⎫sin α2-cos α22=15,即1-sin α=15,得sin α=45.∵450°<α<540°, ∴cos α=-35,∴tan α2=1-cos αsin α=1-⎝⎛⎭⎫-3545=2.讲一讲2.化简:(1+sin α+cos α)⎝⎛⎭⎫sin α2-cos α22+2cos α(180°<α<360°).[尝试解答] 原式=⎝⎛⎭⎪⎫2cos 2 α2+2sin α2cos α2⎝ ⎛⎭⎪⎫sin α2-cos α22·2cos 2α2=2cos α2⎝ ⎛⎭⎪⎫cos α2+sin α2⎝ ⎛⎭⎪⎫sin α2-cos α22⎪⎪⎪⎪⎪⎪cos α2=cos α2(-cos α)⎪⎪⎪⎪⎪⎪cos α2.又∵180°<α<360°, ∴90°<α2<180°,∴cos α2<0,∴原式=cos α2·(-cos α)-cosα2=cos α.化简问题中的“三变”(1)变角:三角变换时通常先寻找式子中各角之间的联系,通过拆、凑等手段消除角之间的差异,合理选择联系它们的公式.(2)变名:观察三角函数种类的差异,尽量统一函数的名称,如统一为弦或统一为切. (3)变式:观察式子的结构形式的差异,选择适当的变形途径.如升幂、降幂、配方、开方等.练一练 2.化简:(1)1+sin θ-1-sin θ⎝⎛⎭⎫3π2<θ<2π;(2)sin (2α+β)sin α-2cos(α+β).解:(1)原式=⎪⎪⎪⎪⎪⎪sin θ2+cos θ2-⎪⎪⎪⎪⎪⎪sin θ2-cos θ2,∵3π2<θ<2π,∴3π4<θ2<π, ∴0<sin θ2<22,-1<cos θ2<-22,从而sin θ2+cos θ2<0,sin θ2-cos θ2>0.∴原式=-⎝ ⎛⎭⎪⎫sin θ2+cos θ2-⎝ ⎛⎭⎪⎫sin θ2-cos θ2=-2sin θ2.(2)∵2α+β=α+(α+β),∴原式=sin[(α+β)+α]-2cos (α+β)sin αsin α=sin (α+β)cos α-cos (α+β)sin αsin α=sin[(α+β)-α]sin α=sin βsinα.讲一讲3.(1)若π<α<3π2,证明:1+sin α1+cos α-1-cos α+1-sin α1+cos α+1-cos α=-2cos α2;(2)已知sin α=A sin(α+β),|A |>1,求证:tan(α+β)=sin βcos β-A .[尝试解答] (1)左边=sin 2α2+cos 2α2+2sin α2cosα21+⎝ ⎛⎭⎪⎫2cos 2 α2-1-1-⎝⎛⎭⎪⎫1-2sin 2 α2+sin 2α2+cos 2α2-2sin α2cosα21+⎝ ⎛⎭⎪⎫2cos 2 α2-1+1-⎝⎛⎭⎪⎫1-2sin 2 α2=⎝ ⎛⎭⎪⎫sin α2+cos α222⎝ ⎛⎭⎪⎫⎪⎪⎪⎪cos α2-⎪⎪⎪⎪⎪⎪sin α2+⎝ ⎛⎭⎪⎫sin α2-cos α222⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪cos α2+⎪⎪⎪⎪⎪⎪sin α2因为π<α<3π2,所以π2<α2<3π4,所以sin α2>0>cos α2.所以左边=⎝ ⎛⎭⎪⎫sin α2+cos α222⎝ ⎛⎭⎪⎫-cos α2-sin α2+⎝ ⎛⎭⎪⎫sin α2-cos α222⎝⎛⎭⎪⎫-cos α2+sin α2=-12⎝ ⎛⎭⎪⎫sin α2+cos α2+12⎝ ⎛⎭⎪⎫sin α2-cos α2 =-2cos α2=右边.所以原等式成立.(2)因为sin α=sin[(α+β)-β] =sin(α+β)cos β-cos(α+β)sin β,所以sin α=A sin(α+β)化为sin(α+β)cos β-cos(α+β)·sin β=A sin(α+β), 所以sin(α+β)(cos β-A )=cos(α+β)sin β, 所以tan(α+β)=sin βcos β-A.三角恒等式证明的常用方法(1)执因索果法:证明的形式一般化繁为简; (2)左右归一法:证明左右两边都等于同一个式子;(3)拼凑法:针对题设和结论之间的差异,有针对性地变形,以消除它们之间的差异,简言之,即化异求同;(4)比较法:设法证明“左边-右边=0”或“左边/右边=1”;(5)分析法:从被证明的等式出发,逐步地探求使等式成立的条件,直到已知条件或明显的事实为止,就可以断定原等式成立.练一练3.求证:2sin x cos x(sin x +cos x -1)(sin x -cos x +1)=1+cos x sin x .证明:左边 =2sin x cos x⎝⎛⎭⎫2sin x 2cos x 2-2sin 2 x 2⎝⎛⎭⎫2sin x 2cos x 2+2sin 2 x 2=2sin x cos x4sin 2 x 2⎝⎛⎭⎫cos 2 x 2-sin 2 x 2=sin x2sin 2 x 2=cos x 2sin x 2=2cos 2 x22sin x 2cosx 2=1+cos xsin x=右边. ∴原等式成立.——————————————[课堂归纳·感悟提升]———————————————1.本节课的重点是半角公式,难点是半角公式的应用. 2.要掌握三角恒等变换的三个应用 (1)求值问题,见讲1; (2)化简问题,见讲2; (3)三角恒等式的证明,见讲3. 3.对半角公式的四点认识(1)半角公式的正弦、余弦公式实际上是由二倍角公式变形得到的.(2)半角公式给出了求α2的正弦、余弦、正切的另一种方式,即只需知道cos α的值及相应α的条件,便可求出sin α2,cos α2,tan α2.(3)由于tan α2=sin α1+cos α及tan α2=1-cos αsin α不含被开方数,且不涉及符号问题,所以求解关于tan α2的题目时,使用相对方便,但需要注意该公式成立的条件.(4)涉及函数的升降幂及角的二倍关系的题目,常用sin 2α2=1-cos α2,cos 2 α2=1+cos α2求解.课下能力提升(二十五) [学业水平达标练]题组1 求值问题1.设5π<θ<6π,cos θ2=a ,则sin θ4=( )A. 1+a2B. 1-a2 C .-1+a2D .- 1-a2解析:选D ∵θ4∈⎝ ⎛⎭⎪⎫5π4,6π4,∴sin θ4=-1-cosθ22=- 1-a2. 2.若f (x )=2tan x -2sin 2 x 2-1sin x 2cos x 2,则f ⎝⎛⎭⎫π12的值是( )A .-433B .8C .4 3D .-4 3解析:选B f (x )=2tan x -2sin 2 x 2-sin 2 x 2-cos 2x 212sin x=2tan x +cos x 12sin x =2(tan x +1tan x ).又tan π12=sin π61+cosπ6=13+2, ∴原式=2⎝ ⎛⎭⎪⎫13+2+3+2=8.3.已知cos θ=-35,且180°<θ<270°,求tan θ2.解:法一:∵180°<θ<270°,∴90°<θ2<135°,∴tan θ2<0,∴tan θ2=-1-cos θ1+cos θ=-1-⎝⎛⎭⎫-351+⎝⎛⎭⎫-35=-2. 法二:∵180°<θ<270°,∴sin θ<0, ∴sin θ=-1-cos 2θ=-1-925=-45,∴tan θ2=sin θ1+cos θ=-451+⎝⎛⎭⎫-35=-2.题组2 三角函数式的化简4.化简2+cos 2-sin 21的结果是( ) A .-cos 1 B .cos 1 C.3cos 1 D .-3cos 1 解析:选C 原式=2+1-2sin 21-sin 21=3-3sin 21=3(1-sin 21)=3cos 21=3cos 1.5.化简⎝⎛⎭⎫sin α2+cos α22+2sin 2⎝⎛⎭⎫π4-α2得( )A .2+sin αB .2+2sin ⎝⎛⎭⎫α-π4C .2D .2+2sin ⎝⎛⎭⎫α+π4解析:选C 原式=1+2sin α2cos α2+1-cos[2(π4-α2)]=2+sin α-cos ⎝ ⎛⎭⎪⎫π2-α=2+sin α-sin α=2.题组3 三角恒等式的证明6.求证:sin 2x 2cos x ⎝⎛⎭⎫1+tan x ·tan x 2=tan x . 证明:∵左边=2sin x ·cos x 2cos x ⎝ ⎛⎭⎪⎫1+sin x cos x ·1-cos x sin x =sin x ·⎝⎛⎭⎪⎫1+1-cos x cos x =sin xcos x =tan x =右边, ∴原式成立.7.求证:2sin 4x +34sin 22x +5cos 4x -12(cos 4x +cos 2x )=2(1+cos 2x ).证明:左边=2⎝ ⎛⎭⎪⎫1-cos 2x 22+34sin 22x +5⎝ ⎛⎭⎪⎫1+cos 2x 22-12(cos 4x +cos 2x )=2×1-2cos 2x +cos 22x 4+34sin 22x +5×1+2cos 2x +cos 22x 4-12(2cos 22x -1+cos 2x )=(2×14+54+12)+[2×(-2cos 2x 4)+5×2cos 2x 4-12cos 2x ]+(2×cos 22x 4+5×cos 22x 4-12×2cos 22x )+34sin 22x =94+cos 2x +34cos 22x +34sin 22x=94+cos 2x +34=3+cos 2x =3+(2cos 2x -1) =2(1+cos 2x )=右边. ∴原式成立.[能力提升综合练]1.函数f (x )=cos 2⎝⎛⎭⎫x +π4,x ∈R ,则f (x )( )A .是奇函数B .是偶函数C .既是奇函数,也是偶函数D .既不是奇函数,也不是偶函数解析:选D 由cos 2x =2cos 2x -1,得f (x )=cos 2(x +π4)=1+cos ⎝ ⎛⎭⎪⎫2x +π22=12+12cos ⎝ ⎛⎭⎪⎫2x +π2=12-sin 2x 2, 所以该函数既不是奇函数,也不是偶函数.2.设a =12cos 6°-32sin 6°,b =2tan 13°1+tan 213°,c =1-cos 50°2,则有( ) A .a >b >c B .a <b <cC .a <c <bD .b <c <a解析:选C a =sin 30°cos 6°-cos 30°sin 6°=sin 24°,b =sin 26°,c =sin 25°,∴a <c <b .3.已知关于x 的方程x 2+x cos A cos B -2sin 2 C 2=0的两根之和等于两根之积的一半,则△ABC 一定是( )A .直角三角形B .钝角三角形C .等腰三角形D .等边三角形解析:选C 由一元二次方程根与系数的关系得-cos A cos B =12⎝⎛⎭⎫-2sin 2 C 2, 即cos A cos B =sin 2 C 2=sin 2π-(A +B )2=cos 2A +B 2=12[1+cos(A +B )].得cos(A -B )=1.∴A =B .4.若cos 2θ+cos θ=0,则sin 2θ+sin θ=________.解析:由cos 2θ+cos θ=0得2cos 2θ-1+cos θ=0,所以cos θ=-1或12. 当cos θ=-1时,有sin θ=0; 当cos θ=12时,有sin θ=±32. 于是sin 2θ+sin θ=sin θ(2cos θ+1)=0或3或- 3.答案:0或±35.设α为第四象限角,且sin 3αsin α=135,则tan 2α=________. 解析:sin 3αsin α=sin (2α+α)sin α=(1-2sin 2α)sin α+2cos 2αsin αsin α=2cos 2α+1=135, 所以cos 2α=45, 又α是第四象限角,所以sin 2α=-35,tan 2α=-34. 答案:-346.化简: (1)2sin 8+1+2cos 8+2;(2) 12+12 12+12cos 2α⎝⎛⎭⎫3π2<α<2π. 解:(1)原式=2sin 24+cos 24+2sin 4cos 4+2(2cos 24-1)+2 =2(sin 4+cos 4)2+4cos 24=2|sin 4+cos 4|+2|cos 4|,由于π<4<3π2, ∴sin 4<0,cos 4<0,sin 4+cos 4<0, ∴原式=-2(sin 4+cos 4)-2cos 4=-2sin 4-4cos 4.(2)∵3π2<α<2π,∴3π4<α2<π. 原式=12+12 1+cos 2α2 = 12+12|cos α|= 12+12cos α =1+cos α2= cos 2 α2=-cos α2. 7.设函数f (x )=sin 2ωx +23sin ωx ·cos ωx -cos 2ωx +λ(x ∈R )的图象关于直线x =π对称.其中ω,λ为常数,且ω∈⎝⎛⎭⎫12,1.(1)求函数f (x )的最小正周期;(2)若y =f (x )的图象经过点⎝⎛⎭⎫π4,0,求函数f (x )的值域. 解:(1)因为f (x )=sin 2ωx -cos 2ωx +23sin ωx ·cos ωx +λ =-cos 2ωx +3sin 2ωx +λ=2sin ⎝⎛⎭⎪⎫2ωx -π6+λ . 由直线x =π是y =f (x )图象的一条对称轴,可得sin ⎝⎛⎭⎪⎫2ωπ-π6=±1. 所以2ωπ-π6=k π+π2(k ∈Z ), 即ω=k 2+13(k ∈Z ). 又ω∈⎝⎛⎭⎫12,1,k ∈Z ,所以k =1,故ω=56. 所以f (x )的最小正周期是6π5. (2)由y =f (x )的图象过点⎝ ⎛⎭⎪⎫π4,0,得f ⎝ ⎛⎭⎪⎫π4=0, 即λ=-2sin ⎝ ⎛⎭⎪⎫56×π2-π6=-2sin π4=-2, 即λ=- 2.故f (x )=2sin ⎝ ⎛⎭⎪⎫53x -π6-2, 函数f (x )的值域为[-2-2,2- 2 ].。

2019-2020年高中数学3.2简单的三角恒等变换教案4新人教A版必修4

2019-2020年高中数学3.2简单的三角恒等变换教案4新人教A版必修4

2019-2020年高中数学3.2简单的三角恒等变换教案4新人教A版必修学习目标:1.了解三角恒等变换在数学中的一些应用.2.体会三角恒等变换在化简三角函数式中的应用.教学重点:三角恒等变换在化简三角函数式中的应用.教学难点:形如的函数的变换.教学方法:讲练结合.教具准备:多媒体投影.教学过程:(I)新课引入:师:上节课,我们通过两个具体的实例,了解了三角恒等变换的特点和变换方法. 本节课我们通过两个具体的例子来了解三角恒等变换在数学中的应用.(n)讲授例题:例3求函数的周期,最大值和最小值以及它的单调递增区间.分析:这个函数我们并没有专门进行过研究,但是我们可以通过三角恒等变换先把函数式化简,然后再对它的性质进行研究. 解:略.师:这个例子先通过三角恒等变换化简函数表达式,然后再讨论有关性质的问题.例4如图,已知是半径为1,圆心角为的扇形,是扇形弧上的动点,是扇形的内接矩形•记,求当角取何值时,矩形的面积最大?并求出这个最大面积.分析:要求当角取何值时,矩形的面积最大,可分二步进行:⑴找出与之间的函数关系;⑵有的处的函数关系,求出的最大值.解:略.师:由例3、例4可以看到,通过三角变换,我们把形如转化为形如的函数,从而使问题得到简化,这个过程蕴含了化归的思想.(川)课后练习:课本练习4.(W)课时小结:通过三角恒等变换将形如的函数转换为形如的函数,这是求三角函数式最值及周期的常用方法.(V)课后作业:课本习题3.2 A组5. B组6. 板书设计:教学后记:019-2020年高中数学3.2简单的三角恒等变换教案 5新人教A 版必修4 、教学目标1、 灵活利用公式,通过三角恒等变形,体现三角变换在简化三角函数式中的作用2、 感受以角为自变量在解题过程中的有点,体会三角函数在数学中的应用。

二、 教学重点与难点重点:三角恒等变形的应用。

难点:三角函数模型的建立。

三、 教学过程例1、利用三角公式化简 sin 50 (1 、,3tan10).A , O;3sin10° 2(—cos10* +二 si n10 J解: 原式 =sin 50 (1 ------------- ) □ sin50 - -一cos10° cos10°詔引门50 sin30 cos1° cos30sin10常见的三角变形技巧有① 切割化弦;② “ 1”的变用;③ 统一角度,统一函数,统一形式等等.例2、如图,在一块半径为 R 的半圆形的铁板中截取一个内 接矩形ABCD ,使其一边CD 落在圆的直径上,问应该怎样 截取,能使矩形 ABCD 的面积最大?并求出这个矩形的最 大面积。

(新课程)高中数学《3.2简单的三角恒等变换》导学案 新人教a版必修4

(新课程)高中数学《3.2简单的三角恒等变换》导学案 新人教a版必修4

3.2 简单的三角恒等变换1、会用已学公式进行三角函数式的化简、求值和证明。

2、会推导半角公式,积化和差、和差化积公式(公式不要求记忆)。

3、进一步提高运用转化、换元、方程等数学思想解决问题的能力。

(预习教材P139—P142)复习:Cos(α+β)=Cos(α-β)=sin(α+β)=sin(α-β)=tan(α+β)=tan(α-β)=sin2α=tan2α=cos2α=二、新课导学※探索新知探究一:半角公式的推导请同学们阅看p139例1..思考1、2α与α有什么关系?α与α/2有什么关系?进一步体会二倍角公式和半角公式的应用。

.思考2、半角公式中的符号如何确定?思考3、二倍角公式和半角公式有什么联系?.思考4、代数变换与三角变换有什么不同?变式训练1:求证sin tan 21cos 1cos tan 2sin αααααα=+-=探究二:积化和差、和差化积公式的推导.请同学们阅看p140例2。

.思考 1、两角和与差的正弦、余弦公式两边有什么特点?它们与例2在结构形式上有什么联系?.思考2、在例2证明过程中,如果不用(1)的结果,如何证明(2)?.思考3、在例2证明过程中,体现了什么数学思想方法?点评:在例2证明中用到了换元思想,(1)式是积化和差的形式,(2)式是和差化积的形式.变式训练2:课本p142 2(2)、3(3)探究三:三角函数式的变换。

请同学们阅看p140例3。

.思考1、例3的过程中应用了哪些公式?.思考2、如何将形如y=asinx+bcosx 的函数转化为形如y=Asin(ωx+φ)的函数?并求y=asinx+bcosx 的周期,最大值和最小值.变式3:已知函数x x x x x f 44sin cos sin 2cos )(--=(1)求)(x f 的最小正周期,(2)当]2,0[π∈x 时,求)(x f 的最小值及取得最小值时x 的集合※ 典型例题例1.已知135sin =α,且α在第二象限,求2tan α的值。

2019-2020年高中数学必修四3.2《简单的三角恒等变换》教案1

2019-2020年高中数学必修四3.2《简单的三角恒等变换》教案1

2019-2020年高中数学必修四3.2《简单的三角恒等变换》教案1 一、课标要求:本节主要包括利用已有的十一个公式进行简单的恒等变换,以及三角恒等变换在数学中的应用.二、编写意图与特色本节内容都是用例题来展现的.通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.三、教学目标通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.四、教学重点与难点教学重点:引导学生以已有的十一个公式为依据,以推导积化和差、和差化积、半角公式的推导作为基本训练,学习三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点,提高推理、运算能力.教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力.五、学法与教学用具学法:讲授式教学六、教学设想:学习和(差)公式,倍角公式以后,我们就有了进行变换的性工具,从而使三角变换的内容、思路和方法更加丰富,这为我们的推理、运算能力提供了新的平台.下面我们以习题课的形式讲解本节内容.例1、试以表示.解:我们可以通过二倍角和来做此题.因为,可以得到;因为,可以得到.又因为.思考:代数式变换与三角变换有什么不同?代数式变换往往着眼于式子结构形式的变换.对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,这是三角式恒等变换的重要特点.例2、求证:(1)、()()1sin cos sin sin 2αβαβαβ=++-⎡⎤⎣⎦; (2)、. 证明:(1)因为和是我们所学习过的知识,因此我们从等式右边着手.;.两式相加得; 即()()1sin cos sin sin 2αβαβαβ=++-⎡⎤⎣⎦; (2)由(1)得①;设,那么.把的值代入①式中得.思考:在例2证明中用到哪些数学思想?例2 证明中用到换元思想,(1)式是积化和差的形式,(2)式是和差化积的形式,在后面的练习当中还有六个关于积化和差、和差化积的公式.例3、求函数的周期,最大值和最小值. 解:这种形式我们在前面见过,1sin 2sin 2sin 223y x x x x x π⎛⎫⎛⎫=+=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭, 所以,所求的周期,最大值为2,最小值为.点评:例3是三角恒等变换在数学中应用的举例,它使三角函数中对函数的性质研究得到延伸,体现了三角变换在化简三角函数式中的作用.小结:此节虽只安排一到两个课时的时间,但也是非常重要的内容,我们要对变换过程中体现的换元、逆向使用公式等数学思想方法加深认识,学会灵活运用.作业:《三角恒等变换》复习课(2个课时)一、教学目标进一步掌握三角恒等变换的方法,如何利用正、余弦、正切的和差公式与二倍角公式,对三角函数式进行化简、求值和证明:二、知识与方法:1. 11个三角恒等变换公式中,余弦的差角公式是其它公式的基础,由它出发,用-β代替β、±β代替β、α=β等换元法可以推导出其它公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年高中数学 3.2三角恒等变换导学案新人教版必修4
一、练习反馈
1、(1)要得到的图象向______平移_______。

(2)的图象向右平移_________得到。

2、函数最近的对称轴是___________。

3、函数的图象按向量平移到,的函数解析式为
当为奇函数时,向量可以等于。

4、已知函数f(x)=sin(ωx+ φ)(ω>0,-1≤φ≤1)的图象上的两个相邻的最高点和最低点的距离为2 ,且过点(2,-1),则函数f(x)=______。

5.若函数f(x)=2sin(ωx+φ),x∈R(其中ω>0,|φ|<)的最小正周期是π,且f(0)=,则( )
A.ω=,φ=
B.ω=,φ=
C.ω=2,φ=
D.ω=2,φ=
6.已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)为偶函数,且其图象上相邻的一个最高点
和最低点之间的距离为.
(1)求函数f(x)的解析式;
(2)若sinx+f(x)=,求sinxco sx的值.
7.小明在直角坐标系中,用1 cm代表一个单位长度作出了一条正弦曲线的图象.若他将纵坐标改用2 cm代表一个单位长度,横坐标不变,那么他所作的曲线的函数解析式是什么?若他将横坐标改用2 cm代表一个单位长度,而纵坐标不变,那么他所作的曲线的函数解析式又是什么?
8.求方程lgx=sinx实根的个数.
9.已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<)的图象与x轴的交点中,相
邻两个交点之间的距离为,且图象上一个最低点为M(3,-2).
(1)求f(x)的解析式;
(2)当x∈[1,2]时,求f(x)的值域.
二.公式
三、例题分析
1.若,则等于()(A)(B)(C)(D)
2.函数的最小正周期是
()
(A)(B)(C)(D)
3.函数的最小正周期是。

4.函数在上的值域是。

5.化简= 。

6.已知函数为偶函数,求的值。

7.已知,,,求的值。

8.求关于x的函数()的最大值与最小值。

9.已知函数,求:
(1)的最大值;(2)求的最小值。

四.形如Y=Asin(ωx+φ)的标准形式
例1.已知函数。

(1)在给定的坐标系中,作出函数在区间上的图象
(2)求函数在区间上的最大值和最小值。

2.已知函数f(x)=sin(ωx+φ)-cos(ωx+φ)(0<φ<π, ω>0)为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为。

(1)求f()的值;(2)将函数y=f(x)的图象向右平移个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间。

练习
1、(1)要得到的图象向______平移_______。

(2)的图象向右平移_________得到。

2、函数最近的对称轴是___________。

3、函数的图象按向量平移到,的函数解析式为
当为奇函数时,向量可以等于。

4、已知函数f(x)=sin(ωx+ φ)(ω>0,-1≤φ≤1)的图象上的两个相邻的最高点和最低点的距离为2 ,且过点(2,-1),则函数f(x)=______。

相关文档
最新文档