轴向拉伸与压缩
轴向拉伸和压缩
![轴向拉伸和压缩](https://img.taocdn.com/s3/m/f000a022bb1aa8114431b90d6c85ec3a86c28b55.png)
六、强度计算
1.极限应力和许用应力
工作应力 FN
A
极限应力
塑性材料
u
(S
)
p 0.2
脆性材料
u
( bt
)
bc
u n —安全因数 — 许用应力
n
塑性材料的许用应力 脆性材料的许用应力
s
ns
bt
nb
p0.2
ns
bc
nb
轴向拉伸和压缩
2.强度计算
max
FN A
轴向拉伸和压缩
二、杆的内力计算
1.内力的概念
构件所承受的载荷及约束反力统称为外力。构件在外力作用下发生变形,产生构
件内部各部分之间的相互作用力,这种作用力称为内力。
2.截面法
(1)截开 (2)代替 (3)平衡
F5
F1
F2
F5
F1
F2
m F4
m
F3
F4
F3
轴向拉伸和压缩
3.轴力
轴向拉伸或压缩时杆横截面上 F
的内力与杆轴线重合,因此 称为轴力,
F
m F
m
FN
FN
F
Fx 0
FN F 0 FN F
轴向拉伸和压缩
4.轴力图
A
为了表明横截面上的轴力
沿轴线变化的情况,可 F1
按选定的比例尺,以与
杆件轴线平行的坐标轴 表示各横截面的位置,
F1
以垂直于该坐标轴的方 向表示相应的内力值,
F1
这样做出的图形称为轴
根据强度条件,可以解决三类强度计算问题
1、强度校核: 2、设计截面: 3、确定许可载荷:
max
FN A
轴向拉伸和压缩
![轴向拉伸和压缩](https://img.taocdn.com/s3/m/08ca9f3abb68a98271fefa62.png)
第七章轴向拉伸和压缩一、内容提要轴向拉伸与压缩是杆件变形的基本形式之一,是建筑工程中常见的一种变形。
(一)、基本概念1. 内力 由于外力的作用,而在构件相邻两部分之间产生的相互作用力。
这里要注意产生内力的前提条件是构件受到外力的作用。
2. 轴力 轴向拉(压)时,杆件横截面上的内力。
它通过截面形心,与横截面相垂直。
拉力为正,压力为负。
3. 应力 截面上任一点处的分布内力集度称为该点的应力。
与截面相垂直的分量σ称为正应力,与截面相切的分量τ称为切应力。
轴拉(压)杆横截面上只有正应力。
4. 应变 单位尺寸上构件的变形量。
5. 轴向拉(压) 杆件受到与轴线相重合的合外力作用,产生沿着轴线方向的伸长或缩短的变形,称为轴向拉(压)。
6. 极限应力 材料固有的能承受应力的上限,用σ0表示。
7. 许用应力与安全系数 材料正常工作时容许采用的最大应力,称为许用应力。
极限应力与许用应力的比值称为安全系数。
8. 应力集中 由于杆件截面的突然变化而引起局部应力急剧增大的现象,称为应力集中。
(二)、基本计算1. 轴向拉(压)杆的轴力计算求轴力的基本方法是截面法。
用截面法求轴力的三个步骤:截开、代替和平衡。
求出轴力后要能准确地画出杆件的轴力图。
画轴向拉(压)杆的轴力图是本章的重点之一,要特别熟悉这一内容。
2. 轴向拉(压)杆横截面上应力的计算任一截面的应力计算公式 AF N =σ 等直杆的最大应力计算公式 AF max N max =σ 3. 轴向拉(压)杆的变形计算虎克定律 A E l F l N =∆εσE =或 虎克定律的适用范围为弹性范围。
泊松比 εε=μ'4. 轴向拉(压)杆的强度计算强度条件塑性材料:σma x ≤[σ] 脆性材料: σt ma x ≤[σt ]σ c ma x ≤[σc ]强度条件在工程中的三类应用(1)对杆进行强度校核在已知材料、荷载、截面的情况下,判断σma x是否不超过许用值[σ],杆是否能安全工作。
(材料力学)第一章轴向拉伸和压缩
![(材料力学)第一章轴向拉伸和压缩](https://img.taocdn.com/s3/m/1183b980192e45361166f542.png)
24
根据Saint-Venant原理:
25
7. 应力集中(Stress Concentration):
由于截面尺寸急剧变化而引起的局部应力增大的现象。
·应力集中因数
K max m
26
不同性质的材料对应力集中的敏感程度不同
1.脆性材料
σmax 达到强度极限,此位置开裂,所 以脆性材料构件对应力集中很敏感。
轴力图如右图 N
2P + –
3P
BC
PB
PC
N3
C
PC N4
5P
+
P
D PD D PD D PD
x
11
[例2] 图示杆长为L,受轴线方向均布力 q 作用,方向如图,试画
出杆的轴力图。 q
解:x 坐标向右为正,坐标原点在 自由端。
L
取左侧x 段为对象,内力N(x)为:
O x
N – qL
N(x)maxqL
2.塑性材料
应力集中对塑性材料在静载作用下的强度影响不 大,因为σmax 达到屈服极限,应力不再增加,未达 到屈服极限区域可继续承担加大的载荷,应力分布 趋于平均。
在静载荷情况下,不需考虑应力集中的影响;但 在交变应力情况下,必须考虑应力集中对塑性材料 的影响。
况、安全重要性、计算模型等等
16
依强度准则可进行三种强度计算:
①校核强度:
m ax
②设计截面尺寸:
Amin
Nmax
[ ]
③许可载荷:
N ma xA ;
Pf(Ni)
17
[例4] 已知三铰屋架如图,承受竖向均布载荷,载荷的分布 集度为:q =4.2kN/m,屋架中的钢拉杆直径 d =16 mm,许用
轴向拉伸与压缩
![轴向拉伸与压缩](https://img.taocdn.com/s3/m/6b2b88763c1ec5da50e27047.png)
第五章 轴向拉伸与压缩一、轴向拉伸与压缩承受拉伸或压缩杆件的外力(或外力的合力)作用线与杆轴线重合,杆件沿杆轴线方向伸长或缩短,这种变形形式称为轴向拉伸或轴向压缩。
这种杆件称为拉压杆。
二、轴力及轴力图杆件在外力作用下将发生变形,同时杆件内部各部分之间产生相互作用力,此相互作用力称为内力。
对于轴向拉压杆,其内力作用线与轴线重合,此内力称为轴力。
轴力拉为正,压为负。
为了表现轴向拉压杆各横截面上轴力的变化情况,工程上常以轴力图表示杆件轴力沿杆长的变化。
三、横截面上的应力根据圣文南原理,在离杆端一定距离之外,横截面上各点的变形是均匀的,各点的应力也应是均匀的,并垂直于横截面,此即为正应力。
设杆的横截面面积为A,则有AF N =σ 工程计算中设定拉应力为正,压应力为负。
四、强度条件工程中为各种材料规定了设计构件时工作应力的最高限度,称为许用应力,用[σ]表示。
轴向拉伸(压缩)强度条件为[]σσ≤=AF N用强度条件可解决工程中三个方面的强度计算问题,即:(1)强度校核;(2)设计截面;(3)确定许可载荷。
五、斜截面上的应力与横截面成θ角的任一斜截面上,通常有正应力和切应力存在,它们与横截面正应力σ的关系为:⎪⎪⎩⎪⎪⎨⎧=+=θστθσσθθ2sin 2)2cos 1(2 由上式可知,当θ=0°时,正应力最大,即横截面上的正应力是所有截面上正应力中的最大值。
当θ=±45°时,切应力达到极值。
六、拉压变形与胡克定律等值杆受轴向拉力F作用,杆的原长为l ,横截面积为A,变形后杆长由l 变为l +△l ,则杆的轴向伸长为EAFl l =∆ 用内力表示为EAl F l N =∆ 上式为杆件拉伸(压缩)时的胡克定律。
式中的E称为材料的拉伸(压缩)弹性摸量,EA称为抗拉(压)刚度。
用应力与应变表示的胡克定律为σ=Eε在弹性范围内,杆件的横向应变ε‘和轴向应变ε有如下的关系:μεε-='式中的μ称为泊松比。
材料力学 第二章 轴向拉伸和压缩
![材料力学 第二章 轴向拉伸和压缩](https://img.taocdn.com/s3/m/b87d4befac51f01dc281e53a580216fc700a5300.png)
明德行远 交通天下
材料力学
2. 轴力的正负规定 FN 与外法线同向,为正轴力(拉力)
FN
FN F N > 0
FN与外法线反向,为负轴力(压力)
FN
FN
二、轴力图--表明构件不同截面轴力的变化规律
意 ①反映出轴力与截面位置变化关系,较直观; 义 ②确定最大轴力的数值及其所在横截面的位置,
即确定危险截面位置,为强度计算提供依据。
斜截面外法线方向为正,反之为负。
明德行远 交通天下
材料力学
a pa cosa cos2 a
pa
a
pa
sin a
cosa sin a
1
2
sin 2a
讨 论:
当a = 0°时, (a )max (横截面上正应力最大)
当a = 90°时,
( a )min 0
当a
=
±
45°时,| a
|max
2
结果表明,杆件的最大工作应力在BC段,其值为0.75MPa。
明德行远 交通天下
材料力学
二、斜截面上的应力
k
F
F
设有一等直杆受拉力F作用,横截面面积为A。
求:斜截面k-k上的应力。
F
αk
Fα
解:截面法求内力。由平衡方程:
Fa=F
F
则:pa
Fa Aa
Aa:斜截面面积;Fa:斜截面上内力。
由几何关系:
A
材料力学
第二章 轴向拉伸和压缩
明德行远 交通天下
材料力学
主要内容
• §2-1 轴向拉伸与压缩的概念 • §2-2 轴力及轴力图 • §2-3 应力 • §2-4 轴向拉伸或压缩杆件的变形及节点位移 • §2-5 材料拉伸和压缩时的力学性能 • §2-6 轴向拉伸和压缩杆件的强度计算 • §2-7 轴向拉(压)杆的超静定问题
材料力学 第2章轴向拉伸与压缩
![材料力学 第2章轴向拉伸与压缩](https://img.taocdn.com/s3/m/90cf503e25c52cc58ad6be0f.png)
A
FN128.3kN FN220kN
1
(2)计算各杆件的应力。
C
45°
2
B
s AB
FN 1 A1
28.3103
202
M
Pa90MPa
4
F
FN 1
F N 2 45°
y
Bx
s BC
FN 2 A2
21052103MPa89MPa
F
§2.4 材料在拉伸和压缩时的力学性能
22
5 圣维南原理
s FN A
(2-1)
(1)问题的提出
公式(2-1)的适用范围表明:公式不适用于集中力作
用点附近的区域。因为作用点附近横截面上的应力分布是非
均匀的。随着加载方式的不同。这点附近的应力分布方式就
会发生变化。 理论和实践研究表明:
不同的加力方式,只对力作
用点附近区域的应力分布有
显著影响,而在距力作用点
力学性能:指材料从开始受力至断裂的全部过程中,所表 现出的有关变形和破坏的特性和规律。
材料力学性能一般由试验测定,以数据的形式表达。 一、试验条件及试验仪器 1、试验条件:常温(20℃);静载(缓慢地加载);
2、标准试件:常用d=10mm,l=100 mm的试件
d
l
l =10d 或 l = 5d
36
b点是弹性阶段的最高点.
σe—
oa段为直线段,材料满足 胡克定律
sE
sp
E
se sp
s
f ab
Etana s
O
f′h
反映材料抵抗弹
性变形的能力.
40
材料力学第二章-轴向拉伸与压缩
![材料力学第二章-轴向拉伸与压缩](https://img.taocdn.com/s3/m/111037db82d049649b6648d7c1c708a1284a0a31.png)
1
2
P
P
1
2
FN1
3 P
3
P FN2
PP FN3
FN 1 P FN 2 0 FN 3 P
1
2
4、作内力图
P
P
P
3 P
1 FN
P
2
3
P x
[例2] 图示杆旳A、B、C、D点分别作用着大小为5P、8P、 4P、 P 旳力,方向如图,试画出杆旳轴力图。
OA PA
B PB
C PC
D PD
q
u 正应力旳正负号要求:
sx
sx sx
s
x
P
u 对变截面杆, 当截面变化缓慢时,横截面上旳 正应力也近似为均匀分布,可有:
s (x) FN (x)
A( x)
合力作用线必须与杆件轴线重叠;
圣维南原理
若用与外力系静力等 效旳合力替代原力系, 则这种替代对构件内应 力与应变旳影响只限于 原力系作用区域附近很 小旳范围内。 对于杆件,此范围相当 于横向尺寸旳1~1.5倍。
h
解: 1) BD杆内力N
取AC为研究对象,受力分析如图
mA 0 , (FNsinq ) (hctgq) Px 0
FN
Px
hcosq
2) BD杆旳最大应力: s max FN max PL A hAcosq
突变规律: 1、从左边开始,向左旳力产生正旳轴力,轴力图向上突变。 2、从右边开始,向右旳力产生正旳轴力,轴力图向上突变。 3、突变旳数值等于集中力旳大小。
即:离端面不远处,应力分布就成为均匀旳。
§2–3 直杆轴向拉压时斜截面上旳应力
一、斜截面上旳内力
n
第四章轴向拉伸与压缩
![第四章轴向拉伸与压缩](https://img.taocdn.com/s3/m/5641183e6294dd88d1d26b62.png)
4.1 轴向拉伸和压缩的概念
当作用在等截面直杆上的外力(或者外力合力)的 作用线和杆轴重合时,杆件的主要变形是轴向拉伸 或者压缩。
经历轴向拉伸(压缩)的等截面直杆称为拉(压) 杆。
轴向拉压的外力特点:外力的合力作用线与杆的轴线重合。
轴向拉压的变形特点:杆的变形主要是轴向伸缩,伴随横向
O
B
C
4F 3F
D 2F
2A
2A
A
FN 3F
+ A
2F
B
+
+
–
C
D
F
4.3 拉(压)杆的应力
1. 应力的概念:
F
F
(1)问题提出:
F
F
1. 两杆的轴力都为F. 2. 但是经验告诉我们,细杆更容易被拉断。同样材料,
同等内力条件下,横截面积较大的拉杆能承受的 轴向拉力较大。
3. 内力大小不能衡量构件强度的大小。 4. 根据连续性假设,内力是连续分布于整个横截面上的, 一般而言,截面上不同点处分布的内力大小和方向都不 同。
横截面积 A 成反比。即
l Fl A
引入比例常数E,可有
l Fl F
EA
EA
这一关系称为胡克定律。
E 称为杨氏模量,也叫弹性模量。它是材料本身的性质,表征 材料抵抗变形的能力,需要用实验来测定。单位为Pa。
在拉压杆中,有
F FN
l Fl FN l FN
EA EA
EA
※ “EA”称为杆的拉伸(压缩)刚度。对于长度相等,受力也 相等的拉压杆,拉伸(压缩)刚度越大,变形越小。
d
向缩短。若拉杆为圆截面,原始
直径为d,变形后直径为d1,
材料力学轴向拉伸和压缩
![材料力学轴向拉伸和压缩](https://img.taocdn.com/s3/m/b31a0ed3b14e852458fb57ca.png)
F
F
在两端施加一对轴向拉力F。
2.3.2 横截面上的应力
观察现象
F
F
F
F
所有的纵向线伸长都相等, 而横向线保持为直线且与纵 向线垂直。
2.3.2 横截面上的应力
结论
F
F
F
F
(1)各纤维的伸长相同, 所以它们所受的力也相同。
(2)平面假设:变形前原为平面的横截面, 变形后仍保 持为平面且仍垂直于轴线。
2.3.2 横截面上的应力
当等直杆受几个轴向外力作用时, 由轴力图求出最大轴 力FN,max, 进一步可求得杆内的最大正应力为
max
FN,max A
最大轴力所在的截面称为危险截面, 危险截面上的正应 力称为最大工作应力。
例: 图示阶梯形圆截面杆, 同时承受轴向载荷F1与F2作用。试计 算杆的轴力与横截面上的正应力。已知F1= 20 kN, F2= 50 kN杆 件AB段与BC段的直径分别为d1=20 mm与d2=30 mm。
对于均匀连续的可变形固体, 物体内部相邻部分之间相 互作用的内力实际上是一个连续分布的内力系, 而将分 布内力系的合成(力或力偶), 简称为内力。
内力是指由外力作用所引起的、物体内相邻部分之间 分布内力系的合成。
显示拉(压)杆横截面上的内力, 沿m-m假想地把杆件 分成两部分,杆件左右两段在m-m上相互作用的内力是 一个分布力系, 其合力为FN。
FB FN3
轴力图如右图
C
FC C
FC FN4
FN
5F
2F
D
FD D
FD D
FD
F
x
3F
2.3 拉(压)杆内的应力
2.3.1 应力的概念 杆件截面上的分布内力集度称为应力。
工程力学 第二章 轴向拉伸与压缩.
![工程力学 第二章 轴向拉伸与压缩.](https://img.taocdn.com/s3/m/493170095901020206409c1b.png)
2 sin ( 2 cos 1 )ctg 3.9 103 m
B1 B B1 B3 B3 B
B B
B B12 B1 B 2 4.45 10 3 m
[例2-11] 薄壁管壁厚为,求壁厚变化和直径变化D。
解:1)求横截面上的正应力
dx
N ( x) l dx EA( x) l
例[2-4] 图示杆,1段为直径 d1=20mm的圆杆,2 段为边长a=25mm的方杆,3段为直径d3=12mm的圆杆。 已知2段杆内的应力σ 2=-30MPa,E=210GPa,求整个 杆的伸长△L
解: P 2 A2
30 25 18.75KN
N 1l Pl l1 l2 EA 2 EA cos l1 Pl cos 2 EA
[例2-8]求图示结构结点A 的垂直位移和水平位移。
解:
N1 P, N 2 0
Pl l1 , l2 0 EA Pl y l1 EA
N1
N2
Pl x l1ctg ctg EA
F
FN
FN F
F
F
CL2TU2
2.实验现象:
平截面假设
截面变形前后一直保持为平面,两个平行的截面之 间的纤维伸长相同。 3.平面假设:变形前为平面的横截面变形后仍为平面。 4.应力的计算 轴力垂直于横截面,所以其应力也仅仅是正应力。按 胡克定律:变形与力成正比。同一截面上各点变形相 同,其应力必然也相同。 FN (2-1) A 式中: A横截面的面积;FN该截面的轴力。 应力的符号:拉应力为正值应力,压缩应力为负 值应力。
1. 截面法的三个步骤 切: 代: 平:
F F F F
轴向拉伸与压缩的名词解释
![轴向拉伸与压缩的名词解释](https://img.taocdn.com/s3/m/bae25b4e4b7302768e9951e79b89680203d86b08.png)
轴向拉伸与压缩的名词解释引言:轴向拉伸与压缩是物理学领域中常见的概念,用于描述物体在力的作用下的变形情况。
本文将对轴向拉伸与压缩进行详细的解释与探讨。
一、轴向拉伸轴向拉伸是指物体在受到拉力作用下沿着其长度方向发生的变形现象。
当外力作用于物体的两端,并朝外拉伸时,物体会在轴向上发生拉伸。
拉伸的大小可以通过物体的伸长率来衡量,伸长率定义为单位长度的伸长与初始长度之比。
轴向拉伸现象广泛应用于工程领域,例如建筑中的钢筋,拉伸试验中的拉力传感器等。
钢筋在混凝土中起到增强材料的作用,能够抵抗建筑物的拉力。
而拉力传感器则是一种能够测量外力大小的传感器,利用了材料的拉伸特性。
二、轴向压缩轴向压缩是指物体在受到压力作用下沿着其长度方向发生的变形现象。
当外力作用于物体的两端,并朝内压缩时,物体会在轴向上发生压缩。
压缩的大小可以通过物体的压缩率来衡量,压缩率定义为单位长度的压缩与初始长度之比。
轴向压缩现象同样广泛应用于工程领域。
例如,桥梁中的墩柱、压缩试验中的压力传感器等。
墩柱是承受桥梁重力和交通荷载的重要结构部件,压缩试验中的压力传感器则是能够测量外力大小的传感器,利用了材料的压缩特性。
三、轴向拉伸与压缩的应用轴向拉伸与压缩的应用十分丰富,不仅在工程领域中有广泛应用,在其他领域中也有其独特的应用价值。
1. 材料科学:轴向拉伸与压缩是材料性能研究的重要手段。
通过对材料在拉伸和压缩条件下的变形进行测试,可以获得材料的各种力学性能参数,例如抗拉强度、抗压强度等。
这对材料的设计和应用具有重要的指导意义。
2. 生物医学:轴向拉伸与压缩在生物医学研究中具有重要的作用。
例如,在骨骼生物力学研究中,可以通过对骨骼的拉伸和压缩测试,了解骨骼力学特性并分析疾病的发生机制。
3. 电子工程:轴向拉伸与压缩的特性也可以应用于电子工程领域。
例如,电子产品中常使用弹性材料来保护内部电路。
这些材料可以在外力作用下发生轴向拉伸或压缩,起到减缓冲击力的作用。
第四章 轴向拉伸和压缩
![第四章 轴向拉伸和压缩](https://img.taocdn.com/s3/m/7b6111d3f705cc17552709d9.png)
a
F a P pa a a pa sin a cos a sin a sin 2a a a 2 n 反映:通过构件上一点不同截面上应力变化情况。 当a = 0°时, ( a ) max (横截面上存在最大正应力)
a pa cosa cos a
2
n
联立求解得 FNAB=40(KN) FNBC=-40(KN)
2)求各杆正应力。 AB杆:截面面积AAB=254.34(mm2) σ AB=157. 3MPa(拉) BC杆:截面面积ABC=a2=1002mm2 σ BC=3MPa (压)
4.2.3 斜截面上的应力
设有一等直杆受拉力F作用。 求:斜截面m-n上的应力。 解:采用截面法 由平衡方程:FNa=F F F
轴向拉伸:杆的变形是轴向伸长,横向缩短。 轴向压缩:杆的变形是轴向缩短,横向变粗。
4.1.2 内力的概念
物体在受到外力作用而变形时,物体内部各质 点间的相对位置将发生变化。其各质点间相互作用 的力也会发生改变。这种相互作用的力由于物体受 到外力作用而引起的改变量,称为附加内力,通常 简称内力。
意 义 ①反映出轴力与截面位置变化关系,较直观; ②确定出最大轴力的数值 及其所在横截面的位置, FN F + x
即确定危险截面位置,为
强度计算提供依据。
【例4.2】
杆件受力如图4.6(a)所示,试 求杆内的轴力并作出轴力图。
【解】 1)为了运算方便,首先求出支座反力,取
整个杆为研究对象[图4.6(b)],列平衡方程 ∑x=0 一F+6 0+2 0一1 0一3 5=0 F=3 5(kN) 2)求各段杆的轴力。 求AB段轴力: 用1—1截面将杆件在AB段内截开,取左段为研究 对象[图4.6(c)],以FN1表示截面上的轴力,并假设 为拉力,由平衡方程
轴向拉伸和压缩
![轴向拉伸和压缩](https://img.taocdn.com/s3/m/b40497bc102de2bd96058887.png)
§1 轴向拉伸和压缩的概念 §2 内力·截面法·及轴力图 §3 应力·拉(压)杆内的应力 §4 拉(压)杆的变形·胡克定律 §5 拉(压)杆内的应变能 §6 材料在拉伸和压缩时的力学性能 §7 强度条件·安全因数·许用应力 §8 应力集中的概念
§1 轴向拉伸和压缩的概念
工程中有很多构件,例如屋架中的杆,是等直杆,作 用于杆上的外力的合力的作用线与杆的轴线重合。在这种 受力情况下,杆的主要变形形式是轴向伸长或缩短。
思考:为何在F1,F2,F3作用着的B,C,D 截面处轴力图 发生突变?能否认为C 截面上的轴力为 55 kN?
例题2:试作此杆的轴力图。
q
F
F
l
F
解: FR
F
l
2l
l
1
F2 q
1
F 2
3 F
3
F F'=2ql
FR
F
F
FR = F
FR = F FR = F
FR = F
FR = F
1
F2
q
3
Fx
1
绍中编 《材料力学精讲》,p15)。
例题2 试求此正方形 砖柱由于荷载引起的横截 面上的最大工作应力。已 知F = 50 kN。
解:Ⅰ段柱横截面上的正应力
s1
FN1 A1
50103 N (0.24 m) (0.24
m)
0.87106 Pa 0.87 MPa (压应力)
Ⅱ段柱横截面上的正应力
的线应变。
F
s 90
F
t 90
s
t
s0
s0
0
0
s0
E
s s 0 cos2
轴向拉伸与压缩
![轴向拉伸与压缩](https://img.taocdn.com/s3/m/0995c081a48da0116c175f0e7cd184254a351b44.png)
轴向拉伸与压缩的特点:
◆ 受力特点:
◆ 变形特点:
F
F
F
F
承受轴向变形的杆件称为拉杆或压杆。
外力合力的作用线与杆轴线重合
主要是沿轴线方向伸长或缩短
第二节 轴力与轴力图 一、内力与截面法 内力 —— 外力引起的构件内部相连部分之间的相互作用力。 ◆ 内力为作用于整个截面上的连续分布力。今后,内力一般被用来特指截面上的分布内力的合力、或合力偶矩、或向截面形心简化所得到的主矢和主矩。
塑性材料为塑性屈服;脆性材料为脆性断裂
极限应力 ——
材料强度失效时所对应的应力,记作 u ,有
塑性材料(拉压相同)
脆性材料(拉压不同)
2.许用应力与安全因数
材料安全工作所容许承受的最大应力,记 作 [ ],规定
许用应力 ——
02
其中,n 为大于 1 的因数,称为安全因数 。
对于塑性材料,压缩与拉伸的许用应力基本相 同,无需区分;对于脆性材料,压缩与拉伸的许 用应力差异很大,必须严格区分。
(2)计算两杆应力
解得
AB 杆:
(2)计算两杆应力
AB 杆: AC 杆:
拉(压)杆斜截面上的应力 斜截面的方位角 : 以 x 轴为始边,以外法线轴 n 为终边,逆时针转向的 角为正,反之为负 。 斜截面上的全应力
将 p 沿斜截面的法向和切向分解,即得 斜截面上的正应力、切应力分别为 —— 横截面的面积 —— 横截面上的正应力 切应力的正负号规定:围绕所取分离体顺时针转向的切应力为正,反之为负。
[例 2-3] 试作出图示拉压杆的轴力图。
解:省略计算过程,直接作出轴力图如上图所示。
第三节 拉压杆的应力
一、应力的概念 应力是指截面上分布内力的集度 如图 为分布内力在 k 点的集度,称为 k 点的应力
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章轴向拉伸和压缩一、内容提要轴向拉伸与压缩是杆件变形的基本形式之一,是建筑工程中常见的一种变形。
(一)、基本概念1. 内力 由于外力的作用,而在构件相邻两部分之间产生的相互作用力。
这里要注意产生内力的前提条件是构件受到外力的作用。
2. 轴力 轴向拉(压)时,杆件横截面上的内力。
它通过截面形心,与横截面相垂直。
拉力为正,压力为负。
3. 应力 截面上任一点处的分布内力集度称为该点的应力。
与截面相垂直的分量σ称为正应力,与截面相切的分量τ称为切应力。
轴拉(压)杆横截面上只有正应力。
4. 应变 单位尺寸上构件的变形量。
5. 轴向拉(压) 杆件受到与轴线相重合的合外力作用,产生沿着轴线方向的伸长或缩短的变形,称为轴向拉(压)。
6. 极限应力 材料固有的能承受应力的上限,用σ0表示。
7. 许用应力与安全系数 材料正常工作时容许采用的最大应力,称为许用应力。
极限应力与许用应力的比值称为安全系数。
8. 应力集中 由于杆件截面的突然变化而引起局部应力急剧增大的现象,称为应力集中。
(二)、基本计算1. 轴向拉(压)杆的轴力计算求轴力的基本方法是截面法。
用截面法求轴力的三个步骤:截开、代替和平衡。
求出轴力后要能准确地画出杆件的轴力图。
画轴向拉(压)杆的轴力图是本章的重点之一,要特别熟悉这一内容。
2. 轴向拉(压)杆横截面上应力的计算任一截面的应力计算公式 AF N =σ 等直杆的最大应力计算公式 AF max N max =σ 3. 轴向拉(压)杆的变形计算虎克定律 A E l F l N =∆εσE =或 虎克定律的适用范围为弹性范围。
泊松比 εε=μ'4. 轴向拉(压)杆的强度计算强度条件塑性材料: σma x ≤[σ] 脆性材料: σt ma x ≤[σt ] σ c ma x ≤[σc ] 强度条件在工程中的三类应用(1)对杆进行强度校核在已知材料、荷载、截面的情况下,判断σma x是否不超过许用值[σ],杆是否能安全工作。
(2)设计杆的截面在已知材料、荷载的情况下,求截面的面积或有关尺寸。
(3)计算许用荷载在已知材料、截面、荷载作用方式的情况下,计算杆件满足强度要求时荷载的最大值。
再由F N与外荷载F P的关系求出[F P]。
强度计算是本章的重点,要能灵活地运用强度条件解决工程中的三类问题。
(三)、材料的力学性质材料的力学性质是指材料在外力作用下所表现出来的强度和变形方面的特性。
它是通过实验来测定的。
本章仅介绍了在常温、静荷载作用下两类代表性材料(塑性材料——低碳钢,脆性材料——铸铁)的性质。
学习这部分内容时要从应力——应变图入手。
材料的力学性质是解决强度、刚度问题的重要依据。
学习重点是掌握低碳钢的应力——应变图,了解力学性质指标。
二、思考题提示或解答7-1.简述轴向拉(压)杆的受力特点和变形特点。
判断图示杆件中,哪些属于轴向拉伸?哪些属于轴向压缩?各杆自重均不计。
(空12行)思7-1图答:轴拉(压)杆受力特点:作用于杆上外力(或外力的合力)作用线与杆轴线重合变形特点:纵向伸长或缩短a)全段轴向拉伸;b)柱上段轴向压缩,下段可能不是轴向压缩;c)全段轴向压缩;d)BC为二力轴压杆。
7-2.什么是轴力?简述用截面法求轴力的步骤。
答:轴力——与杆轴线相重合的内力。
截面法求轴力的步骤:1)截开:用假想的截面,在要求内力的位置处将杆件截开,把杆件分为两部分。
2)代替:取截开后的任一部分为研究对象,画受力图。
画受力图时,在截开的截面处用该截面上的内力代替另一部分对研究部分的作用。
3)平衡:由于整体杆件原本处于平衡状态,因此被截开后的任一部分也应处于平衡状态。
根据作用在该部分上的力系情况,建立平衡方程,从而可求出截面上的内力。
7-3 正应力的“正”指的是正负的意思,所以正应力恒大于零,这种说法对吗?为什么?答:这种说法不对。
正应力的“正”指的是正交的意思,即垂直于截面。
其本身有正负规定:拉为正,压为负。
7-4 力的可传性原理在研究杆件的变形时是否适用?为什么?答:不适用。
因为应用力的可传性原理会改变杆件各部分的内力及变形。
7-5 什么是危险截面、危险点?对于等截面轴向拉(压)杆而言,轴力最大的截面一定是危险截面,这种说法对吗?.答:危险截面——应力最大的截面;危险点——应力最大的点;破坏往往从危险截面上的危险点开始。
对于等截面轴向拉(压)杆而言,轴力最大的截面一定是危险截面,这种说法正确。
7-6 内力和应力有何区别?有何联系?答:(1)两者概念不同:内力是杆件受到外力后,杆件相连两部分之间的相互作用力;应力是受力杆件截面上某一点处的内力分布集度,提及时必须明确指出杆件、截面和点的位置。
(2) 两者单位不同: 内力——kN 、kN ·m ,同力或力偶的单位;应力——N/m 2或N/mm 2,Pa (帕)或MPa (兆帕)。
(3)两者的关系:整个截面上各点处的应力总和等于该截面上的内力。
在弹性范围内,应力与内力成正比。
7-7 两根材料与横截面面积均相同,受力也相同的轴向拉(压)杆只是横截面形状不同,它们的轴力图是否相同?横截面上的应力是否相同?答:轴力图相同,横截面上的应力也相同。
(并且变形也相同)7-8 低碳钢拉伸时的应力——应变图可分为哪四个阶段?简述每个阶段对应的特征应力极限值或出现的特殊现象;分析图示三种不同材料的应力——应变图,回答:哪种材料的强度高?哪种材料的刚度大?哪种材料的塑性好?(空7行)思7-8图答:低碳钢拉伸时的应力——应变图可分为四个阶段(1)弹性阶段 在此阶段材料的变形是完全弹性的,在此范围内卸载后,试件能恢复原长。
弹性阶段的最高点对应的应力值为弹性极限,用σe 表示。
(2)屈服阶段 进入屈服阶段后,由于材料产生了显著的塑性变形,应力——应变关系已不是线性关系了。
若试件表面光滑,可以看到在试件表面出现了一些与杆轴线大约成45°的倾斜条纹,通常称之为滑移线。
在此阶段应力基本不变但应变显著增加。
屈服阶段对应的特征应力值为屈服极限,用σs 表示。
(3)强化阶段 经过屈服阶段后,材料的内部结构重新得到了调整,材料又恢复了抵抗变形的能力,要使试件继续变形就得继续增加荷载。
强化阶段对应的特征应力极限值为强度极限,用σb 表示。
(4)缩颈阶段 在试件某一段内的横截面面积将开始显著收缩,出现颈缩现象。
16Mn 钢强度高(曲线高);16Mn 钢刚度大(曲线线斜率大);黄铜塑性好(延伸率大)。
7-9 有一低碳钢试件,由实验测得其应变ε= 0.002,已知低碳钢的比例极限σp =200MPa ,弹性模量E = 200G Pa ,问能否由拉(压)虎克定律σ= E ·ε计算其正应力?为什么?答:能否用胡克定律εσ⋅=E 计算正应力,要看这个低碳钢试件是否在弹性阶段。
先计 算出应力达到比例极限时对应的线应变001.01000200200=⨯==E PP σε 而现在测得应变ε=0.002,已超出弹性范围,胡克定律也就不再适用了。
7-10 塑性材料与脆性材料的主要区别是什么?什么是延伸率?塑性材料、脆性材料的延伸率各自在何范围内?延伸率是不是衡量材料塑性大小的唯一指标?答:塑性材料与脆性材料的主要区别是拉伸试验中有无屈服现象。
断裂后的标距长度l 1与原标距长度l 的差值除以原标距长度l 的百分率称为材料的延伸率,用符号δ表示。
δ≥5%为塑性材料,δ<5%为脆性材料。
延伸率不是衡量材料塑性大小的唯一指标。
截面收缩率也是指标之一。
7-11 现有低碳钢和铸铁两种材料,在图示结构中,AB 杆选用铸铁,AC 杆选用低碳钢是否合理?为什么?如何选材才最合理?答:不合理。
对实际结构进行受力分析可知:AB 为二力拉杆,AC 为二力 (空6行12字)压杆。
由此可见,AC 杆应选用铸铁。
思7-11图7-12 一圆截面直杆,受轴向拉力作用,若将其直径变为原来的2倍,其它条件不变。
试问:⑴ 轴力是否改变?⑵ 横截面上的应力是否改变?若有改变,变为原来的多少倍?⑶ 纵向变形是否改变?若有改变,是比原来变大还是变小了?答:(1)轴力不会改变;(2)根据A F N =σ,面积变为4倍后,应力变为原来的四分之一; (3)根据AE lF l N =∆,变形也变为原来的四分之一。
7-13 什么是极限应力?许用应力?安全系数?工作应力?并回答:塑性材料和脆性材料的极限应力各指什么极限?答:极限应力—— 材料能承受的最大应力;许用应力—— 极限应力除以一个大于1的系数后,作为构件最大工作应力所不允 许超过的数值。
安全系数—— 一个大于1的系数,因塑性材料与脆性材料不同而异;工作应力—— 杆件受力后实际应力的最大值。
塑性材料的极限应力指屈服极限;脆性材料的极限应力指强度极限。
7-14 材料经过冷作硬化处理后,其力学性能有何变化?答:材料经过冷作硬化处理后,提高了弹性极限以及屈服极限,在提高承载力的同时 降低了塑性,使材料变脆、变硬,易断裂,再加工困难等。
7-15 分别写出轴向拉(压)杆件用塑性材料和脆性材料时的强度条件,并简述强度条件在工程中的三类应用。
答:塑性材料抗拉、压强度条件AF max N max =σ≤[σ] 脆性材料抗拉强度条件 m ax t σ≤[σt ]脆性材料抗压强度条件 m ax c σ≤[σc ]强度条件在工程中的三类应用,即强度校核、设计截面、确定许用荷载。
7-16 什么是应力集中?答:因杆件截面尺寸的突然变化而引起局部应力急剧增大的现象,称为应力集中。
三、习题解答7-1 求图示各杆指定截面上的轴力。
解a) 1-1截面,截开取左,如图所示。
列平衡方程,可得F N1 = -30 kN2-2截面,截开取右,如图所示。
列平衡方程,可得F N 2= 20 kN(空16行)题解7-1图a 题解7-1图bb) 2-2截面,截开取右,如图所示。
列平衡方程,可得F N 1= -3 F P1-1截面,截开取右,如图所示。
列平衡方程,可得F N 2= - F Pc) 1-1截面,截开取上,如图所示。
列平衡方程,可得F N 1= -60 kN2-2截面,截开取上,如图所示。
列平衡方程,可得F N 2= -260 kN(空12行)题解7-1图c 题解7-1图dd)1-1截面,截开取上,如图所示。
列平衡方程,可得F N 1= 02-2截面,截开取上,如图所示。
列平衡方程,可得F N 2= - F P7-2 画图示各杆的轴力图,并求|F Nma x|。
(各杆均不考虑自重)解a)、b)、c) 各杆轴力图如图所示(空22行)题7-2图由图可知a) | F Nma x | = 50 kNb) | F Nma x | = 18 kNc) | F Nma x | = 250 kNd)图中AB、AC都是二力杆。