运筹学基础及应用第五版 胡运权绪论汇总

合集下载

《运筹学教程》胡云权-第五版-运筹学复习

《运筹学教程》胡云权-第五版-运筹学复习

x6
10
[2]
-5
1
0
-1
1
5
3M+2
3-4M
2M-5
0
-M
0
-z
-M
x4
2
0
[7/2 ]
1/2
1
1/2
-1/2
4/7
2
x1
5
1
-5/2
1/2
0
-1/2
1/2
-
0
7M/2+8
M/2-6
0
M/2+1
-3M/2-1
-z
3
x2
4/7
0
1
1/7
2/7
1/7
-1/7
2
x1
45/7
1
0
6/7
5/7
-1/7
1/7
✓ 右端项非负
解的重要概念
可行解(或可行点):满足所有约束条件的向量 x ( x1 , x 2 , x n )
可行域:所有的可行解的全体
D { x Ax b, x 0}
最优解:在可行域中目标函数值最大(或最小)的可行解,最优解的全体
称为最优解集合
O {x D c x c y, y D }
0
x3
0
x4
0
x5

9
4
3
4
5
[ 10 ]
1
0
0
0
1
0
0
0
1
90
40
30
7
12
0
0
0
1
90
bi
360

运筹学基础及应用第五版 胡运权第四章

运筹学基础及应用第五版 胡运权第四章
在分配问题中,利用不同资源完成不同计划活动的效
率通常用表格形式表示为效率表,表格中数字组成效率 矩阵。
例2. 有一份说明书,要分别翻译成英、日、德、俄 四种文字,交甲、乙、丙、丁四个人去完成。因各人专长 不同,使这四个人分别完成四项任务总的时间为最小。效 率表如下:
效率矩阵用[aij] 表示,为
2 10 9 7
这样松弛问题 L0 变为了求解下述两个问题:
L1 : m ax z 3 x1 2 x2 L2 : m ax z 3 x1 2 x2
2 x1 3 x2 14
x1 x2
0.5 x2 2
4 .5
x1 , x 2 0
2 x1 3 x2 14
x1 x2
0.5 3
x2
4 .5
③矩阵中所有零元素或被划去,或打上括号,但打括 号的零元素少于 m ,这时转入第四步。
第四步:按定理 1 进行如下变换
1. 从矩阵未被直线覆盖的数字中找出一个最小的 k ;
2. 对矩阵中的每行,当该行有直线覆盖时,令 ui= 0, 无直线覆盖的,令 ui= k ;
3. 对矩阵中有直线覆盖的列,令 vj= -k,对无直线覆 盖的列,令 vj= 0 ;
现在还没有任何整数解,可以令(0,0)作为初始整
数解,因此有 z =0 。
(3)分枝
将线性规划问题 L0分为两枝。 在 L0的最优解中,任选一个非整数变量,如 x2=2.5 ; 因 x2 的最优整数解只可能是 x2≤2 或 x2≥3 ,故在 L0中分 别增加约束条件: L0加上约束条件 x2≤2 ,记为 L1; L0加 上约束条件 x2≥3 ,记为 L2 。这样,将分解成两个子问题 L1 和 L2(即两枝)。
x1
,

运筹学基础及应用第五版 胡运权34015电子教案

运筹学基础及应用第五版 胡运权34015电子教案

例:要离最小的方案。
A
5 S
5 B
5
D
T
C
E
4
即求图中的最小部分树
2、求法
方法一: 避圈法 将图中所有的点分V为V两部分, V——最小部分树中的点的集合 V——非最小部分树中的点的集合
⑴ 任取一点vi,令vi∈V,其他点在V中 ⑵ 在V与V相连的边中取一条最短的边(vi,vj), 加粗(vi,vj),令vj∈V ,并在V中去掉vj ⑶ 重复⑵ ,至所有的点均在V之内。

ABCDE F






















解:构造一个六阶图如下: 点:表示运动项目。
边:若两个项目之间有同一名运动员报名参加, 则对应的两个点之间连一条边。
A
F
B
E
C
D
为满足题目要求,应 该选择不相邻的点来 安排比赛的顺序:
A—C—B—F—E—D
或D—E—F—B—C—A
§6.2 树图和图的最小部分树
e4
e5
e6 e7
v3
v4
例如:e6= [v2,v3]
特别的,若边e的两个端点重合,则称e为环。
若两个端点之间多于一条边,则称为多重边。 简单图:无环、无多重边的图。
e7 v4
e3
v1 e8
v5
e5
e6 e2
e1
v3
e4
v2
4、点v的次(或度,degree)
与点v关联的边的条数,记为dG(v)或d(v)。 • 悬挂点 次为1的点,如 v5

运筹学胡运权第五版课件

运筹学胡运权第五版课件
运筹学胡运权第五 版课件大纲
单击此处添加副标题
汇报人:
目录
添加目录项标题 运筹学基础知识 整数规划 图论与网络优化
课件概览 线性规划 动态规划
01
添加章节标题
02
课件概览
课件简介
课程名称:运筹学胡运权第五版课件 课程内容:包括线性规划、非线性规划、整数规划、动态规划、图与网络优化等 课程目标:帮助学生掌握运筹学的基本理论和方法提高分析和解决问题的能力 课程特点:理论与实践相结合注重案例分析和实际问题的解决
最小生成树问题:在无向图中寻找最小生 成树
最大流问题:在流网络中寻找最大流
最小费用流问题:在流网络中寻找最小费 用流
网络可靠性问题:评估网络可靠性提高网 络稳定性
网络优化算法:如Dijkstr算法、Floyd算 法、Kruskl算法等
网络优化算法
最短路径算 法:Dijkstr
算法、 Floyd算法

图论与网络优化应用案例
物流网络优化:通过图论方 法优化物流网络降低物流成 本
社交网络优化:通过图论方 法优化社交网络提高社交网
络的稳定性和可靠性
交通网络优化:通过图论方 法优化交通网络提高交通效 率
电力网络优化:通过图论方 法优化电力网络提高电力系
统的稳定性和可靠性
感谢观看
汇报人:
课件结构
• 运筹学概述 • 线性规划 • 非线性规划 • 动态规划 • 随机规划 • 决策分析 • 网络规划 • 排队论 • 库存论 • 博弈论 • 运筹学应用案例 • 运筹学发展前景 • 运筹学与其他学科的关系 • 运筹学学习方法与技巧
课件特点
内容全面:涵盖了运筹学的基本概念、理论和方法 结构清晰:按照章节进行划分便于理解和掌握 实例丰富:提供了大量的实例和案例便于理解和应用 习题丰富:提供了大量的习题和练习便于巩固和提高

运筹学基础及应用第五版 胡运权第三章

运筹学基础及应用第五版 胡运权第三章

例3
设有三个化肥厂供应四个地区的农用化肥,假
定等量的化肥在这些地区使用效果相同,已知各化肥厂 年产量,各地区年需要量及从各化肥厂到各地区单位化 肥的运价表如下,试决定使总的运费最节省的化肥调拨 方案。
解:这是一个产销不平衡的运输问题,总产量为
160万t,四个地区最低需求为110万t ,最高需求为无限。 当其它地区都是满足最低需求时,第Ⅳ地区每年最多能 分配到60万t ,这样最高需求就是210万t,大于产量。 为建立产销平衡表,在表中增加一假想化肥厂D , 其年产量为50万t 。并把各地区的最低需求和额外需求 区分开来,建立产销平衡表。
例1
现在把问题概括一下,在线性规划中我们研究这样 一类运输问题:有某种物资需要调运,这种物资的计量
单位可以是重量、包装单位或其他。已知有m个地点可以
供应该种物资(以后通称产地,用 i 1,, m 表示),有 n个地点需要该种物资(以后通称销地,用 j 1,, n 表示),又知这m个产地的可供量(以后通称产量)为 (可通写为 a i ),n个销地的需要量(以后 a1 , a2 ,, am
第三章 运输问题
§1.运输问题的典例和数学模型
§ 2.表上作业法
§ 3.产销不平衡的运输问题及其应用
§1.运输问题的典例和数学模型
某食品公司经销主要产品之一是糖果,它下面 设有三个加工厂,每天的糖果生产量分别为: A1 7t , A3 9t。该公司把这些糖果分别运往四个地区 A2 4t , 的门市部销售,各地区每天的销售量: B1 3t , B2 6t, B4 6t 。已知从每个加工厂到各销售门市部每 B3 5t, 吨糖果的运价如下表: 单位:元/t
产 销 平 衡 表
当一个产地的产量不能运往某一个销地的时候,认为 运价为M(表示任意大正数)。额外需求部分的销量,由于 是否满足都可以,所以假想厂运往这些销地的运价定为 0。

第四章 整数规划整数规划数学模型运筹学基础及其应用胡运权第五版

第四章 整数规划整数规划数学模型运筹学基础及其应用胡运权第五版

§4.1 整数规划数学模型 Mathematical Model of IP
Ch4 Integer Programming
2012年12月31日星期一 Page 3 of 15
【例4.1 】某人有一背包可以装10公斤重、0.025m3的物品。他准备 用来装甲、乙两种物品,每件物品的重量、体积和价值如表5-1所 示。问两种物品各装多少件,所装物品的总价值最大? 表4—1 重量 体积 价值 物品 (公斤/每件) (m3/每件) (元/每件)
甲 乙
1.2 0.8
0.002 0.0025
4 3
【解】设甲、乙两种物品各装x1、x2件,则数学模型为: max Z 4 x1 3 x 2
1.2 x1 0.8 x 2 10 2 x1 2.5 x 2 25 x , x 0, 且均取整数 1 2
(4.1)
Ch4 Integer Programming
2012年12月31日星期一 Page 7 of 15
(1) 由于所装物品不变,式(8.1)约束左边不变,整数规划数学 max Z 4 x1 3x 2 模型为 1.2 x1 0.8 x 2 10 y1+12 y 2 2 x1 2.5 x 2 25y1 20 y 2 y1 y 2 1 xi 0, 且取整数, yi 0或1 i 1,2 (2) 由于不同载体所装物品不一样,数学模型为
j 1,2,3 x j My j x1 x 2 x3 2000 x1 600, x 2 800, x3 1200 x j 0, y j 1或0,j 1,2,3
式中 x j My j是一个特殊的约束条件,显然当xj>0时,yj=1, 当xj =0时,为使Z极小化,只有yj=0才有意义。 用QSB软件求解得到:X=(0,800,1200),Y=(0,1,1), Z=8100.

(完整版)运筹学胡运权第五版课件(第1章)

(完整版)运筹学胡运权第五版课件(第1章)
四运筹学研究的基本特点?系统的整体优化?多学科的配合?模型方法的应用五五运筹学研究的基本步骤运筹学研究的基本步骤?分析与表述问题?建立数学模型?对问题求解?对模型和模型导出的解进行检验?建立对解的有效控制?方案的实施第一章线性规划及单纯形法linearprogrammingandsimplexmethodggp11一般线性规划问题的数学模型11问题的提出例1用一块边长为a的正方形铁皮做一个无盖长方体容器应如何裁剪可使做成的容器的容积最大
(3)L.P. 的顶点与基可行解一一对应。
§1.3 单纯形法(Simplex Method)原理
3-1 预备知识:凸集与顶点
(1)凸集:对于集合C中任意两点连线段上的点,若全在C内, 则称集合C为凸集。
直观特征:图形从内部向外部凸出。
凸集
非凸集
(2)顶点:凸集中不在任意两点的连线段内部的点。
X1
转化为
(2)若约束条件为不等式,
则依次引入松弛变量或剩余变量(统称为松弛变量),
转化为等式约束条件。
约束为≥不等式,减去松弛变量,化为等式约束条件;
多 退
约束为≤不等式,加上松弛变量,化为等式约束条件。
少 补
注意:松弛变量在目标函数中系数全为0。
例:max z=2 x1+3 x2
2 x1+2 x2 12
s.t.
4x1
16
5 x2 15
x10, x2 0
标准化
max z 2x1 3x2 0x3 0x4 0x5
2x1 2x2 x3
12
s.t.
4
x1
5 x2
x4 16 x5 15
x1, x2 , x3, x4 , x5 0
(3)若决策变量xj≤0,则令

运筹学基础及应用第五版 胡运权资料

运筹学基础及应用第五版 胡运权资料
约束方程 i: =
对偶问题(原问题) 约束右端项 目标函数系数 约束条件系数向量 AT 约束条件个数
min
约束方程 j : =
变量 y i : yi 0 y i 无约束 yi0
2.3 对偶问题的基本性质
Max z = CX
Min w = Y b
s t . AX b
s t . YA C
X0
X1 0 , X2 0
2.资源最低售价模型
设第i种资源收购价格为yi,( i=1, 2, 3, 4,) 则有 min w= 12y1 + 8y2 + 16y3 +12 y4
s.t 2y1 + y2 + 4y3 +0 y4 2
2y1 +2y2 + 0y3 +4 y4 3 yi 0, (i=1, 2, 3, 4 )
s.t AX b X 0
min w’’ = -CX s.t -AX -b X0
min w = Y b
s.t YA C Y0 例2
max w’ = -Y b
s.t -YA -C Y0
对偶模型其它结构关系
(2)若模型为
max z = C X
s.t AX b
变形
X 0
min w=Y ´(-b)
Y0
(1) 弱对偶性:
若 X0——原问题可行解,Y0——对偶问题可行解 则 CX0 Y0b
证明: ∵ Y0 0, AX0 b, ∴ Y0 AX0 Y0 b,
而 Y0 A C , ∴ Y0AX0 CX0 ,
∴ CX0 Y0 AX0 Y0 b
(2)最优性:
若 X0——原问题可行解,Y0——对偶问题可行解,且 CX0 = Y0b

运筹学基础及应用第五版 胡运权

运筹学基础及应用第五版 胡运权
第八章 动态规划
8.1 多阶段决策问题 8.2 最优化原理与动态规划的数学模型 8.3 离散确定性动态规划模型的求解 8.4 离散随机性动态规划模型的求解
8.5 一般数学规划模型的动态规划 解法
1
学习要点:
理解动态规划基本概念、最优化 原理和基本方程,逆序法和顺序解法,学 习应用动态规划解决多阶段决策问题。
34
最优化原理Optimization Principl
作为整个过程的最优策略具有这样的性质: • 无论过去的状态和决策如何,对先前决策
所形成的状态而言,余下的诸决策必构成 最优策略。
B M A
若M是从A到B的最优路线上的一点,则从 M到B的路线也是最优的。
35
动态规划的基本方程
(最优化原理的应用)
重点 :掌握动态规划模型结构、 逆序法算法原理、资源分配、设备更新、 生产与存贮等问题。
2
第一节 多阶段的决策 问题
3
动态规划(Dynamic Programming)
R. Bellman50年代执教于普林斯顿和斯坦福大学, 后进入兰德(Rand)研究所。1957年发表“Dynamic Programming”一书,标识动态规划的正式诞生。
3
3
C3
3
f(C3)=6
f(D1)=3
D1
3
f(E)=0
E
D2 4
f(D2)=4
状态 最优决策 状态
决A策 (状态A,B3)
B3
最优决策
状态
最优决策
状态
最优
21
f(B1)=11
f(A)=11
A
B1 7 5 6
2 f(B2)=7 3
5
B2 2

《运筹学教程》胡云权 第五版 运筹学--6对策论--矩阵对策

《运筹学教程》胡云权 第五版 运筹学--6对策论--矩阵对策

13
矩阵对策的纯策略
4、矩阵对策的鞍点与解 多鞍点与无鞍点对策 例: 设有一矩阵对策如下,求它的解。
6 5 6 5
A 1 4 2 1 8 5 7 5
0 2 6
2
局势(α1, β2),(α1, β4),(α3, 均构成鞍点,此对策有多个解。
β2)(α3,
β4) 14
矩阵对策的纯策略
5、矩阵对策纯策略的性质
作业
P385 习题 • 12.2 • 12.3 • 12.4
16
矩阵对策的混合策略
1、混合策略
对于 G {S1, S2; A}
局中人Ⅰ有把握的赢得至少为 v1
max i
min j
aij
局中人Ⅱ有把握的支付至多为 v2
min max
j
i
aij
一般为 v1 v2 ,特别地当 v1 v2 时,则称对策 G 在
yS
* 2
xS1*
20
矩阵对策的混合策略
5、最优混合策略
定义 4:设 G* {S1*, S2*; E} 是矩阵对策 G {S1, S2; A}的混合扩充。
如果
maxmin E(x,
xS1* yS2*
y)
m in m ax E ( x,
yS2* xS1*
y)
,其值为 VG
,则称
VG 为
对策 G* 的值,相应的混合局势 (x*, y*) 称为在混合策略意义下的
44
22
23
对策的值(局中人
I
的赢得期望值)VG
9 2

矩阵对策的解法
24
图解法
仅适用于赢得矩阵为2×n或m×2阶的矩阵对策问题。

(完整版)运筹学胡运权第五版课件(第1章)

(完整版)运筹学胡运权第五版课件(第1章)

s.t.
4x1
16
5 x2 15
x10, x2 0
标准化
max z 2x1 3x2 0x3 0x4 0x5
2x1 2x2 x3
12
s.t.
4
x1
5 x2
x4 16 x5 15
x1, x2 , x3, x4 , x5 0
(3)若决策变量xj≤0,则令
x
j
xj

x
j
0

am1x1+am2x2+…+amnxn≤(=,≥) bm
x1 , x2, …, xn≥0
(3)其他形式: 连加形式
1-3 线性规划问题的标准形式
1、标准形式

2、条件
目标函数求极大值 约束条件全是等式(线性方程组) 决策变量全非负 右端常数全非负
3、标准化方法
(1)若目标函数求极小值,即
则令 z z
即求目标函数在若干约束条件下的最值。
3、规划问题数学模型的三要素
(1)决策变量:决策者为实现规划目标采取的方案、措施, 是问题中要确定的未知量。用x1,x2,…,xn表示。
(2)目标函数:问题要达到的目标要求,表示为决策变量的 函数。用 z=f(x1,x2,…,xn)表示。 (3)约束条件:决策变量取值时受到的各种可用资源的限制, 表示为含决策变量的等式或不等式。
运筹学
( Operations Research )
绪论
一、古代朴素的运筹学思想
例如:田忌赛马
二、运筹学的起源
国外 英文原名 Operations Research 简称“O.R.” 直译为:运用研究或作业研究 正式出现于1938年7月英国一份关于防空作战 系统运行的研究报告中

运筹学基础及应用-第1章-线性规划及单纯形法(胡运权版)

运筹学基础及应用-第1章-线性规划及单纯形法(胡运权版)
约束方程的系数矩阵为25矩阵ra222阶子矩阵有10个其中基矩阵只有99个即???????????????????510226103524max53214321321?jxxxxxxxxxxxxzj?????????10261001115a?????????????????????????????????????????????????????????????????100112010211160106112611110050101561015987654321bbbbbbbbb线性规划问题的求解方法一般有两种方法图解法单纯形法两个变量直角坐标三个变量立体坐标适用于任意变量但必需将一般形式变成标准形式下面我们分析一下简单的情况只有两个决策变量的线性规划问题这时可以通过图解的方法来求解
1.一般线性规划问题的数学模型
例1.7 将下列线性规划问题化为标准形式
m in Z 2 x1 x2 3 x3 5 x1 x2 x3 7 x1 x2 4 x3 2 3 x1 x2 2 x3 5 x1 , x2 0, x3 无约束
4x1 ≤ 16 4x2 ≤ 12 x1 ≥ 0 , x2 ≥ 0
1 2
1.一般线性规划问题的数学模型
2. 线性规划的数学模型由三个要素构成
怎样辨别一个模型是线性规划模型?
其特征是:
(1)问题的目标函数是多个决策变量的线性函数, 通常是求最大值或最小值;
(2)问题的约束条件是一组多个决策变量的线性不 等式或等式。
1.一般线性规划问题的数学模型
3. 建模条件 (1) 优化条件:问题所要达到的目标能用线型函数描述,且 能够用极值 (max 或 min)来表示; (2) 限定条件:达到目标受到一定的限制,且这些限制能够 用决策变量的 线性等式或线性不等式表示; (3) 选择条件:有多种可选择的方案供决策者选择,以便 找出最优方案。

运筹学-绪论-胡运权

运筹学-绪论-胡运权
一、基本特征是 1、系统的整体观念。运筹学用系统的观点来分析一个组 织(或系统),它着眼于整个系统而不是一个局部,通过 协调各组成部分之间的关系和利害冲突,使整个系统达到 最优状态。 2、多学科的综合。是数学、管理、计算机科学等交叉学 科,运筹学研究是一种综合性的研究,它涉及问题的方方 面面,应用多学科的知识,因此,要由一个各方面的专家 组成的小组来完成。 3、模型方法的应用。建立模型是运筹学方法精髓。
12
u 阿波罗登月计划(1958-1969年) u战 略核武器杀伤力模型 u 南朝鲜应用系统工程方法制定第一个五年计
划并成功实施(1967-1971年) u墨西哥与世界银行合作制定改造农业计划取 得显著效益(1970-1974年) u海湾战争中的作战模拟(1990年8月)
13
第二节 运筹学的基本特征与基本方法
5
3、都江堰水利工程
战国时期川西太守李冰父子主持修建。 其目标是:利用岷江上游的水资源灌溉川西 平原,追求经济效益还有防洪与航运。其总 体构思是运筹学系统思想的杰出运用。都江 堰由三大工程及120多项配套工程组成: a.“鱼嘴”岷江分水工程:将岷江水有控 制地引入内江;b.“飞沙堰”分洪排沙工 程:将泥沙排入外江;c.“宝瓶口”引水 工程:除沙后的江水引入水网干道。
15
第三节 运筹学主要分支简介
w规划论:线性规划、非线性规划、整数规划、 目标规划、动态规划、运输问题 w图论与网络分析 w存储论 w排队论 w决策论 w对,早在1939年苏联的康托洛
维奇(H.B.Kahtopob )和美国的希奇柯克(F.L.Hitchcock)等人 就在生产组织管理和制定交通运输方案方面首先研究和应用线性规 划方法。1947年旦茨格等人提出了求解线性规划问题的单纯形方法, 为线性规划的理论与计算奠定了基础,特别是电子计算机的出现和 日益完善,更使规划论得到迅速的发展,可用电子计算机来处理成 千上万个约束条件和变量的大规模线性规划问题,从解决技术问题 的最优化,到工业、农业、商业、交通运输业以及决策分析部门都 可以发挥作用。从范围来看,小到一个班组的计划安排,大至整个 部门,以至国民经济计划的最优化方案分析,它都有用武之地,具 有适应性强,应用面广,计算技术比较简便的特点。非线性规划的 基础性工作则是在1951年由库恩(H.W.Kuhn)和达克 (A.W.Tucker)等人完成的,到了70年代,数学规划无论是在理论 上和方法上,还是在应用的深度和广度上都得到了进一步的发展

动态规划运筹学基础及其应用胡运权第五版

动态规划运筹学基础及其应用胡运权第五版
k阶段状态变量sk的值,则该段的决策变量uk 一经确定,第k+1段的状态变量sk+1的值也就 完全确定,即有sk+1=Tk(sk ,uk)
3.动态规划方法的基本步骤
5.根据题意,正确地构造出目标与变量 的函数关系——目标函数,目标函数应满足 下列性质:
(1)可分性,即对于所有k后部子过程, 其目标函数仅取决于状态sk及其以后的决策 uk ,uk+1,┈,un,就是说它是定义在全过程和
3 万元
40 万吨 43 万吨 45 万吨
4 万元
51 万吨 55 万吨 58 万吨
求对三个项目的最优投资分配,使 总投资效益最大。
资源分配问题
1. 阶段k:每投资一个项目作为一个阶
段;
2. 状态变量xk:投资第k个项目前的资金
数;
3. 决策变量dk:第k个项目的投资; 4. 决策允许集合:0≤dk≤xk 5. 状态转移方程:xk+1=xk-dk 6. 阶段指标:vk(xk ,dk)见表中所示;
f2 (x2 )
d
2
min
D2 ( x2
){v2
(
x2
,
d
2
)
f3 (x3 )}
从 f3(x3)到 f2(x2)的递推过程用表格表
示如下:
求最短路径
x2 D2(x2)
B1C1 B1 B1C2
B1C3 B2C1 B2 B2C2 B2C3 B3C1 B3 B3C2 B3C3
x3 v2(x2,d2) v2(x2,d2)+f3(x3) f2(x2) 最优决策 d2*
A B2 C1 D1 E
23
资源分配问题
资源分配问题
例5.6: 有资金4万元,投资A、B、C三

运筹学基础及应用运输问题胡运权

运筹学基础及应用运输问题胡运权

x12

c21
c22
A2
x21
x22

Bn c1n
x1n c2n
x2n
产量 a1 a2

Am 销量



cm
cm
1
2

xm1
xm2
b1
b1



cmn
xmn
am
bn
1.运输规划问题的典例和数学模型 运输问题的求解思路
基本可行解

是否最优解
结束

换基
2.表上作业法
计算步骤: (1) 找出初始调运方案。即在(m×n)产销平衡表上给出 m+n-1个数字格。(最小元素法、西北角法或伏格尔法)
运筹学基础及应用
Operations Research

第三章




运输问题






Transportation Problem

1 运输规划问题的典例和数学模型 2 表上作业法 3 运输问题的应用
CONTENTS


1.运输规划问题的典例和数学模型
例B33,.1各某产公地司的从产两量个、产各地销A地1、的A销2将量物和品各运产往地三运个往销各地销B地1每, B件2, 物品的运费如下表所示,问:应如何调运可使总运输费用最 小?
步骤
描述
方法
第一步 求初始基行可行解(初始调运方案)
最小元素法、西 北角法、 伏格尔法
第二步
求检验数并判断是否得到最优解当非基变量的检验
数σi j全都非负(求min)时得到最优解,若存在检 验数σi j <0,说明还没有达到最优,转第三步。

运筹学基础及应用第五版胡运权第一章

运筹学基础及应用第五版胡运权第一章
问题的提出 某企业计划生产Ⅰ、Ⅱ两种产品。这两种产品都要分别在A、B、C、D四种不同设备上加工。生产每件产品Ⅰ需占用各设备分别为2、1、4、0h,生产每件产品Ⅱ,需占用各设备分别为2、2、0、4h。已知各设备计划期内用于生产这两种产品的能力分别为12、8、16、12h,又知每生产一件产品Ⅰ企业能获得2元利润,每生产一件产品Ⅱ企业能获得3元利润,问企业应安排生产两种产品各多少件,使总的利润收入为最大。
xi 0
aij
aLj
xL 0
i
∴ P1 , P2,······,PL-1, PL+1,······ Pm, Pj 线性无关。
∴ X1 也为基本可行解。
四、最优性检验和解的判别

,其中 随基的改变而改变
X1 = (x1 0- a1j ,x2 0- a2j ,···,xm 0- amj ,0,···,,···,0)T
必要性:X非基本可行解 X非凸集顶点 不失一般性,设X=(x1,x2,······,xm,0,0,······,0)T,为非基本可行解, ∵ X为可行解,
证:等价于 X非基本可行解X非凸集顶点
又 X是非基本可行解, ∴ P1,P2,······,Pm线性相关,即有 1P1+2P2+······+mPm=0, 其中1,2,······,m不全为0,两端同乘≠0,得 1P1+2P2+······+mPm=0,······(2)
∵ >0, 1->0 ,当xj=0, 必有yj=zj=0

pjyj =
j=1
n
pjyj=b ······(1)
j=1
r
pjzj =
j=1
n
pjzj=b ······(2)

运筹学基础及应用第五版 胡运权第五章

运筹学基础及应用第五版 胡运权第五章
d - —— 未达到目标的差值,称为负偏差变量。 因实际决策值不可能既超过目标值又低于目标值,故 最终结果中恒有 d + · d - =0 (即两者至少有一个为0)。 目标规划中,一般有多个目标值,每个目标值都相应 有一对偏差变量 。
2. 绝对约束和目标约束
绝对约束是指必须严格满足的等式约束或不等式
k 1 l 1 kl l kl
K
L

l

前述问题的目标规划模型可以写为:
min z p d p2 d d p d
, 2 x1 x 2 11 x x d d 2 1 1 0, 1 x1 2 x 2 d 2 d 2 10, 8 x1 10x 2 d 3 d 3 56, x1 , x 2 , d i , d i 0 , i 1, 2 , 3。
1 1

2
2

3 3
s.t.
§2.目标规划的图解分析法
对于只有两个决策变量的线性目标规划的数学模型, 可以用图解法来分析求解。传统的线性规划一般只是寻求 一个点,在这个点上得到单目标的最优值,目标规划一般 是寻求一个区域,这个区域提供了相互矛盾的目标集的折 衷方案。
步骤1 建立直角坐标 系,令各偏差变量为0,作 出所有的约束直线 。满足 所有绝对约束条件的区域, 用阴影标出。
相邻行,只要在起上方即可)。
§4.求解目标规划的层次算法
求解目标规划是从高优先级到低优先级逐层优化的, 求解目标规划的层次算法就是根据这样的思想构造的。
层次算法步骤:
第一步: 对目标函数中的 P1 层次进行优化,建立第 一层次的线性规划模型 LP1 并求解。 LP1的目标函数为

第二章 对偶理论对偶单纯形法运筹学基础及其应用胡运权第五版

第二章 对偶理论对偶单纯形法运筹学基础及其应用胡运权第五版
cj zj cs z s (c j z j ) (c s z s ) 0, 即 a rs a rs a rj a rj
最终目的就是在经过一次迭代以后,任然保持对偶 可行,即所有的检验系数非正。
§2.3 对偶单纯形法 The Dual Simplex Method
Ch2 Dual Problem
Page 5 of 9
【例2.10】用对偶单纯形法求解
min z 2 x1 3 x2 4 x3 x1 2 x2 x3 3 2 x1 x2 3 x3 4 x , x , x 0 1 2 3
【解】先将约束不等式化为等式,再两边同乘以(-1), 同时转化为求最大,得到
c1 cm
x1 xm
b1 1 0 bm 0 1
j cj zj
0 0 m1
n
§2.3 对偶单纯形法 The Dual Simplex Method
Ch2 Dual Problem
Page 3 of 9
(1)将线性规划的约束化为等式,求出一组基本解,因 为对偶问题可行,即全部检验数 λj≤0(max)或λj≥0(min),当基本解可行时,则达到最优 解;若基本解不可行,即有某个基变量的解bi<0,则进行 换基计算; (2)先确定出基变量。 bi=min bi | bi 0,行对应的变量xl l i 出基; (3)再选进基变量。求最小比值
Ch2 Dual Problem
Page 6 of 9
表2-4
XB b x1 x4 -3 -1 x5 -4 -2 检验数 0 -2 比值 1 x4 -1 0 x1 2 1 检验数 4 0 比值 — x2 0.4 0 x1 2.2 1 检验数 5.6 0 最优解: x2=0.4 x1=2.2 x2 -2 1 -3 — -2.5 -0.5 -4 1.6 1 0 0 x3 x4 -1 1 -3 0 -4 0 1.3333 — 0.5 1 1.5 0 -1 0 — — -0.2 -0.4 1.4 -0.2 -1.8 -1.6 Max z = -5.6 x5 0 1 0 — -0.5 -0.5 -1 2 0.2 -0.4 -0.2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§0.3 运筹学的主要内容
规划理论 线性规划 运输问题 动态规划
图与网络理论 排队论 存储论 决策论 对策论
非线性规划 整数规划 目标规划
§0.4 运筹学方法解决问题的思路
☆ 提出问题:从实际问题中提出需运作、决策的 问题。
☆ 建立模型:抽象归纳形成表达式。 ☆ 求解:运用运筹学方法求出问题的解。
我国朴素的运筹学思想:田忌赛马、丁渭修皇宫 1938年英国最早出现了军事运筹学,命名为“Operational
Research”,1942年,美国从事这方面工作的科学家命其名为 “Operations Research”这个名字一直延用至今。
§0.1 运筹学简述
美国运筹学的早期著名工作之一是研究深水炸弹起爆深度问 题。当飞机发现潜艇后,飞机何时投掷炸弹及炸弹的引爆引 度是多少?运筹学工作者对大量统计数字进行认真分析后, 提出如下决策:1.仅当潜艇浮出水面或刚下沉时,方投掷深 水炸弹。2.炸弹的起爆深度为离水面25英尺(这是当时深水 炸弹所容许的最浅起爆点)。空军采用上述决策后,所击沉 潜艇成倍增加,从而为反法西斯战争的胜利做出了贡献,为 运筹学增添了荣誉。
1957年,我国将O.R.正式译为“运筹学”
§0.2 运筹学的发展
战后运筹学的活动扩展到工业和政府部门,发展大致可分为 三个阶段:
1. 1945年到50年代初——创建时期 人数少,范围小,出版物学会寥寥无几。
1948年,英国 “运筹学俱乐部”,美国麻省理工 介绍该课 程;1950年,英国伯明翰大学正式开设课程,第一本《运筹 学季刊》在英国创刊; 1952年美国喀斯工业大学设运筹学 硕士和博士学位; 美国运筹学会成立
运筹学
(O.R.)
§0.1 运筹学简述
运筹学(Operations Research)是系统工程的最重要的理论 基础之一,在美国有人把运筹学称之为管理科学 (Management Science)。运筹学所研究的问题,可简单地归 结为一句话:“依照给定条件和目标,从众多方案中选择最 佳方案”,故有人称之为最优化技术。
§0.1 运筹学简述
运筹学是研究从众多方案(甚至无限多个方案)中选佳的优化技术,那 么在当代计算机技术迅速发展的今天,这种优化技术是否会丧失其重要 性?事实正相反,新型计算机的出现,恰为运筹学的应用开辟了新天地。
假设有70艘油轮向70个港口运货,已知每艘油轮驶向每个港口的费用, 油轮公司需制订出最优运输方案。采用全枚举法(穷举法)需计算方案 数为70!(大于10100 );IBM公司当时生产的大计算机1秒种大约可算出 109(即10亿)个方案。若要逐个算出全部方案,则需调用占有空间为 1050个地球一样大的IBM公司生产的众多大计算机同时计算几百亿年以 上。而在这种大机器上用线性规划的单纯形法计算只需几秒钟(这是整 数规划问题)。
§0.2 运筹学的发展
2. 20世纪50年代初期到50年代末期——成长时期 电子计算机技术的迅速发展促进运筹学的推广; 美国的约半数的大公司经营管理中融入运筹学; 大批的国家成立运筹学会,各种运筹学刊物相继问世 ; 1957年,牛津大学,第一次国际运筹学会议 1959年,国际 结果分析与调整:分析解是否合理,如果需要,修 改模型后在求解。
☆ 实施:按获取的方案组织实施。
可见,将运筹学与计算机科学及其它科学结合应用,将会产生更好的效 果。
§0.1 运筹学简述
《史记-高祖本纪》记载: 夫运筹策帷帐之中,决胜於千里之外,吾不如子房。 镇国家,抚百姓,给馈饷,不绝粮道,吾不如萧何。 连百万之军,战必胜,攻必取,吾不如韩信。 此三者,皆人杰也,吾能用之,此吾所以取天下也。
3. 20世纪60年代后——迅速发展和开始普及时期 运筹学进一步细分为各个分支; 更多团队,更多期刊,更多书籍,更多学校开设课程; 开始研究一些大的复杂系统,如城市交通、环境污染、国民 经济计划
§0.2 运筹学的发展
我国的运筹学发展: 1956年 第一个运筹学小组于中国科学院力学研究所成立 1958年 成立运筹学研究室 1960年 山东济南召开全国应用运筹学经验交流会 1962年和1978年 先后在北京和成都召开全国运筹学专业学 术会议 1980年4月 中国运筹学会 正式成立
相关文档
最新文档