2019-2020年高二物理竞赛模拟习题之《波动光学》(含答案)

合集下载

高二物理竞赛(9)几何光学和波动光学.

高二物理竞赛(9)几何光学和波动光学.

高二物理竞赛(9)几何光学和波动光学班级:_____________ 姓名:_________________ 座号:_____________一、一平凸透镜焦距为f,其平面上镀了银,现在其凸面一侧距它2f处,垂直于主轴放置一高为H的物,其下端在透镜的主轴上(如图所示)。

(1)用作图法画出物经镀银透镜所成的像,并标明该像是虚、是实;(2)用计算法求出此像的位置和大小。

二、有一水平放置的平行平面玻璃板H,厚3.0cm,折射率n=1.5。

在其下表面下2.0cm处有一小物S;在玻璃扳上方有一薄凸透镜L,其焦距f=30cm,透镜的主轴与玻璃板面垂直;S位于透镜的主轴上,如图所示。

若透镜上方的观察者顺着主轴方向观察到S的像就在S处,问透镜与玻璃板上表面的距离为多少?三、一束平行光沿薄平凸透镜的主光轴入射,经透镜折射后,会聚于透镜f=48cm处,透镜的折射率n=1.5。

若将此透镜的凸面镀银,物置于平面前12cm处,求最后所成像的位置。

四、图中,三棱镜的顶角α为60°,在三棱镜两侧对称位置上放置焦距均为f=30.0cm的两个完全相同的凸透镜L1和L2。

若在L1的前焦面上距主光轴下方y=14.3cm处放一单色点光源S,已知其像S 与S对该光学系统是左右对称的。

试求该三棱镜的折射率。

五、两个薄透镜L1和L2共轴放置,如图所示。

已知L1的焦距f1=f,L2的焦距f2=-f,两透镜间距离也是f。

小物体位于物面P上,物距u1=3f。

(1)小物体经这两个透镜所成的像在L2的__________边,到L2的距离为_________,是__________倍(虚或实)、____________像(正或倒),放大率为_________________;(2)现在把两透镜位置调换,若还要给定的原物体在原像处成像,两透镜作为整体应沿光轴向____________边移动距离_______________。

这个新的像是____________像(虚或实)、______________像(正或倒),放大率为________________。

2019-2020年高二上学期期末模拟物理试题 含答案

2019-2020年高二上学期期末模拟物理试题 含答案

2019-2020年高二上学期期末模拟物理试题 含答案一、选择题(本题共12小题,每小题4分,共48分。

在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确。

全部选对的得4分,选不 全的得2分,有选错或不答的得0分。

) 1.如图,两圆环AB 置于同一水平面上,其中A 为均匀带电绝缘环,B 为导体环,当A 以如图方向转动时,B 中产生如图方向的感应电流,则( ) A.A 可能带正电且转速变小 B.A 可能带正电且转速增大 C.A 可能带负电且转速变小 D.A 可能带负电且转速增大2.如图所示,虚线a 、b 、c 表示电场中的三个等势面与纸平面的交线,且相邻等势面之间的电势差相等。

实线为一带正电荷粒子仅在电场力作用下通过该区域时的运动轨迹,M 、N 是这条轨迹上的两点,则下面说法中正确的是( ) A.三个等势面中,a 的电势最高B.对于M 、N 两点,带电粒子通过M 点时电势能较大C.对于M 、N 两点,带电粒子通过M 点时动能较大D.带电粒子由M 运动到N 时,加速度增大3.将电荷由静止释放,只在电场力的作用下运动时,下面的说法正确的是( )A.无论是正电荷还是负电荷,总是由低电势点向高电势点运动B.无论是正电荷还是负电荷,总是由高电势点向低电势点运动C.无论是正电荷还是负电荷,总是向电势能变小的方向运动D.无论是正电荷还是负电荷,总是向电势能变大的方向运动 4.如图所示,B 、C 、D 三点都在以点电荷+Q 为圆心,半径为r 的圆弧上,将一试探电荷从A 点分别移到B 、C 、D 各点时,电场力做功是( ) A. B. C. D.5.在如图所示电路中,R 1、R 2、R 3均为可变电阻。

当开关S闭合后,两平行金属板M 、N 间有一带电液滴正好处于静 止状态,为使带电液滴向上做加速运动,可采取的措施是( ) A.增大R 1 B.减小R 2 C.减小R 3 D.增大M 、N 间距6.一直流电动机正常工作时两端的电压为U ,通过的电流为I ,电动机线圈的电阻为r 。

波动光学干涉联上练习题(含答案)

波动光学干涉联上练习题(含答案)


单色平行光垂直照射在薄膜上,经上下两表面反

射的两束光发生干涉,如图所示,若薄膜的厚度为 e, n1 光
且 n1<n2>n3,λ1 为入射光在 n1 中的波长,则两束反
n2
射光的光程差为
(A) 2n2e.
(B) 2n2 e − λ1 / (2n1).
n3
(C) 2n2 e − n1 λ1 / 2. (D) 2n2 e − n2 λ1 / 2.
空气劈尖
平玻璃
工件


25. (本题 3分)(3345)
如图,用单色光垂直照射在观察牛顿环的装置上.当
平凸透镜垂直向上缓慢平移而远离平面玻璃时,可以观察
到这些环状干涉条纹
(A) 向右平移. (C) 向外扩张. (E) 向左平移.
(B) 向中心收缩. (D) 静止不动.
26. (本题 3分)(3507)
选择题共114分本题3分3162在真空中波长为的单色光在折射率为n的透明介质中从a沿某路径传播两点相位差为3则此路径ab的光程为本题3分3163单色平行光垂直照射在薄膜上经上下两表面反射的两束光发生干涉如图所示若薄膜的厚度为e本题3分3165在相同的时间内一束波长为的单色光在空气中和在玻璃中本题3分3611如图s的另一介质板其余部分可看作真空这两条路径的光程差等于本题3分3664如图所示平行单色光垂直照射到薄膜上经上下两表面反射的两束光发生干涉若薄膜的厚度为e并且的媒质中的波长则两束反射光在相遇点的相位差为本题3分3665真空中波长为的单色光在折射率为n的均匀透明媒质中从a一路径传播到b点路径的长度为lab两点光振动相位差记为则本题3分3666如图所示波长为的平行单色光垂直入射在折射率为的薄膜上经上下两个表面反射的两束光发生干涉

波动光学习题参考答案

波动光学习题参考答案

=2400(nm) k=2 l2 =800(nm)
红外光
k=3 l3 =480(nm) k=4 l4 =343(nm)
可见光 紫外光
结束 返回
若透射光干涉增强则反射光干涉相消
由干涉相消条件
2ne
+
l
2
=(k+
1 2
)l
取k=2
l2
=
2ne k
=
2×1.5×0.4×103 2
=600
(nm)
取k=3
两式相减Δ得x到´=:DD´dbDb´
+
d D
(x ´
x )=0
(x´ x )<0
即条纹向下移动,而条纹间距不变
结束 返回
7、 用单色光源S照射双缝,在屏上形
成干涉图样,零级明条纹位于O 点,如图所
示。若将缝光源 S 移至位置S ´,零级明条
纹将发生移动。欲使零级明条纹移回 O 点,
必须在哪个缝处覆盖一薄云母片才有可能?
低),作图表示明条纹;
(2)求明条纹距中心线的距离;
(3)共能看到多少条明条纹;
(4)若将玻璃片B向下
平移,条纹如何移动?
A
d
若玻璃片移动了l /4,
问这时还能看到几条明条纹? B
结束 返回
解:对于边缘处e =0由于有半波损失为暗纹
暗纹条件:
2e
+
l
2
=
(2k+1) 2l
k=0,1,2,...
暗纹最高级数
结束 返回
解:由暗纹条件
2ne
=
(2k+1)
l
2
=(k+
1 2

全国高中物理竞赛波动光学训练题答案

全国高中物理竞赛波动光学训练题答案

【波动光学训练题答案】1、用尖劈空气膜的干涉测微丝的直径。

如图所示,两块平面玻璃一端互相接触,另一端夹着待测的微丝,微丝与接触棱平行,用单色(5893Ǻ)平行光垂直照射在玻璃上,两块玻璃间的空气膜对光产生等厚干涉,测量出28.880mm L =,用显微镜读出30条干涉条纹(亮纹)的间距为 4.295mm x ∆=,求金属微丝的直径。

解:本题中可近似认为折射线垂直于下底面,则光程差 0122d λδ=-第k 级亮纹满足 01022d k λλ-= 第()k m +级亮纹满足 0202()2d k m λλ-=+两式相减得 21022d d m λ-= 故 2102md d d λ∆=-= 而 tan d xα∆=∆ 这样得 0202 5.9410mm 2m Lm L d D L x x xλλ-∆====⨯∆∆∆2、如图(a )所示,在洛埃镜试验中,点光源S 早镜平面上方2mm 处,反射镜位于光源与屏镜正中间,镜长40cm l =,屏到光源的距离1.5m D =,波长为5000 Ǻ。

试求(1)条纹间距;(2)屏幕上干涉条纹的范围; (3)干涉条纹间距数。

解:(1)洛埃镜中,点光源S 和它在平面镜中的像S '构成两相干光源,故在屏幕上形成的条纹间距0.1875(mm)ldλ∆== (2)设干涉区域的下、上端离平面镜与屏交点的距离分别为1y 、2y ,如图(b)所示,由相似三L1y图(b )S屏2yS∙A M B屏图(a )角形知识得1222D l y D l l -=-+, 2222D lly D l -+=- 分别解得 1 1.16(m m )y =, 2 3.46(m m)y = (3)干涉条纹间距数为 2112.25y y n x-==∆3、为了减少从玻璃上表面反射光成分,在玻璃表面上敷一层薄膜,薄膜的折射率小于玻璃的折射率。

在入射光包含波长1700nm λ=和2420nm λ=的情况下,为使这两种波长的反射光被最大限度减弱,在玻璃表面上敷上折射率为43n =的薄膜。

人教版高二物理暑假专练:波动光学 含答案

人教版高二物理暑假专练:波动光学 含答案

人教版高二物理暑假专练:波动光学一、单选题(共28分)1.一束单色光由空气传入水中,该单色光的()A.速度变大B.速度不变C.频率变大D.频率不变【答案】D【解析】【分析】【详解】AB.根据可知单色光由空气传入水中波速变小,故AB错误;CD.光波属于电磁波,其频率与介质无关,单色光从一种介质进入另介质,频率不变,故C错误,D正确。

故选D。

2.雨后太阳光入射到空中的水滴中能形成彩虹。

设水滴是球形的,图中的圆代表水滴过球心的截面,入射光线在过此截面的平面内,出射时分解成各种单色光,这种现象属于()A.光的直线传播B.光的衍射C.光的干涉D.光的色散【答案】D【解析】【分析】【详解】太阳光是各种颜色光的复色光,当太阳光照射水滴时,由于水对不同颜色的光的折射率不同,则偏折程度不同,于是从水滴射出的光的出射方向不同,可分解为各种单色光,这种现象叫光的色散现象。

故选D。

3.红、黄、绿三种单色光以相同的入射角从水中射向空气,若绿光在界面上恰好发生全反射,则下列判断正确的是()A.黄光一定能发生全反射B.红光一定能发生全反射C.黄光在水中的波长比红光在水中的波长长D.这三种单色光相比,红光在水中传播的速率最大【答案】D【解析】【分析】【详解】AB.红、黄、绿三种单色光,红光的折射率最小,绿光的折射率最大,则根据可知,红光的临界角最大,绿光的临界角最小,若绿光在界面上恰好发生全反射,则红光和黄光都不能发生全反射,选项AB错误;C.根据,红光的折射率最小,频率最小,则在水中的波长最长,选项C错误;D.根据,红光的折射率最小,可知在水中传播的速率最大,选项D正确;故选D。

4.如图所示,一束可见光射向半圆形玻璃砖的圆心O,经折射后分为两束单色光a和b,下列判断正确的是()A.玻璃对a光的折射率大于对b光的折射率B.不断增大入射角,b光先发生全反射现象C.在真空中a光的波长大于b光的波长D.遇到障碍物时,a光更容易发生衍射【答案】A【解析】【分析】【详解】A.由图可知玻璃对a光的偏折程度大于b光,所以玻璃对a光的折射率大于对b光的折射率,故A正确;B.根据折射定律可知a光的临界角比b光的小,逐渐增大入射角,a光先达到的临界角,则a光先发生全反射,故B错误;C.在真空中,a、b光传播速度相同,根据由于a光的频率大于对b光的频率,故a光的波长较小,故C错误;D.波长越大,越容易发生衍射,故b光更容易发生衍射,故D错误。

高二物理光的波动性测试题及答案

高二物理光的波动性测试题及答案

高二物理光的波动性测试题及答案The document was prepared on January 2, 2021高二物理同步测试(8)—光的波动性本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,考试用时60分钟.第Ⅰ卷(选择题,共40分)一、选择题(每小题4分,共40分。

在每小题给出的四个选项中,至少有一个选项是正确的,全部选对得4分,对而不全得2分。

)1.表面有油膜的透明玻璃片,当有阳光照射时,可在玻璃片表面和边缘分别看到彩色图样,这两种现象()A.都是色散现象B.前者是干涉现象,后者是色散现象C.都是干涉现象D.前者是色散现象,后者是干涉现象2.下列几种技术中,应用光的干涉原理的是()A.杨氏双缝实验测光波波长B.用分光镜进行光谱分析C.在磨制平面时,检查加工表面平整度D.在医疗中用伦琴射线进行透视3.将两个偏振片紧靠在一起,放在一盏灯的前面,眼睛通过偏振片看到的光很弱。

如果将其中一个偏振片旋转1800,在旋转过程中会观察到()A.灯光逐渐增强,然后又逐渐减弱B.灯光逐渐增强,然后又逐渐减弱到零C.灯光逐渐增强,没有减弱现象D.灯光逐渐增强,再减弱,然后又增强到最亮4.用单色光做杨氏双缝干涉实验时,若把其中一缝遮住,则屏上()A.呈现跟原来完全相同的条纹B.呈现明暗相间的条纹,中央亮条纹较宽较亮C.呈现跟原来相同的条纹,但亮度减半D.没有条纹5.雷达是利用无线电波的回波来探测目标方向和距离的一种装置,雷达的天线犹如喊话筒,能使电脉冲的能量集中向某一方向发射;接收机的作用则与人耳相仿,用以接收雷达发射机所发出电脉冲的回波。

测速雷达主要是利用多普勒效应原理,可由回波的频率改变数值,计算出目标与雷达的相对速度。

以下说法正确的是()A.雷达发射的是不连续的电磁波B.雷达用的是微波波段的无线电波C.目标离雷达天线而去时,反射信号频率将高于发射信号频率D.目标向雷达天线靠近时,反射信号频率将高于发射信号频率6.下列说法正确的是()A.在观察光的衍射实验中,如图所示的明暗相间图样是圆孔的衍射图样B .紫外线的波长比伦琴射线的波长长,有很强的热效应和荧光效应C .电磁波中最容易发生衍射的是γ射线D .当日光灯启动时,旁边的收音机会发出“咯咯”声,这是由于电磁波的干扰造成的7.A 与B 是两束平行的单色,它们从空气射入水中的折射角分别为A r 、B r ,若B A r r ,则( )A .在空气中A 的波长大于B 的波长B .在水中A 的传播速度大于B 的传播速度C .A 的频率大于B 的频率D .在水中A 的波长小于B 的波长8.为了观察到纳米级的微小结构,需要用到分辨率比光学显微镜更高的电子显微镜。

全国高中物理竞赛波动光学专题

全国高中物理竞赛波动光学专题

波动光学【知识点】 一、光的干涉 1、 光波定义 光波是某一波段的电磁波,是电磁量E 和H 的空间的传播. 2、 光的干涉定义 满足一定条件的两束(或多束)光波相遇时,在光波重叠区域内,某些点合光强大于分光强之和,在另一些点合光强小于分光强之和,因而合成光波的光强在空间形成强弱相间的稳定分布,称为光的干涉现象,光波的这种叠加称为相干叠加,合成光波的光强在空间形成强弱相间的稳定分布称为干涉条纹,其中强度极大值的分布称为明条纹,强度极小值的分布称为暗条纹. 3、 相干条件表述 两束光波发生相干的条件是:频率相同,振动方向几乎相同,在相遇点处有恒定的相位差. 4、 光程差与相位差定义 两列光波传播到相遇处的光程之差称为光程差;两列光波传播到相遇处的相位之差称为相位差. 5、 双光束干涉强度公式表述 在满足三个相干条件时,两相干光叠加干涉场中各点的光强为12I I I ϕ=++∆ 式中,相位差122()πϕϕϕδλ∆=--保持恒定,若120I I I ==,则2002(1cos )4cos 2I I I ϕϕ∆=+∆= 6、 杨氏双缝干涉实验实验装置与现象 如图1所示,狭缝光源S 位于对称轴线上,照明相距为a 的两个狭缝1S 和2S ,在距针孔为D 的垂轴平面上观察干涉图样,装置放置在空气(1)n =中,结构满足,,sin tan d D D x θθ≈.在近轴区内,屏幕上的是平行、等间距的明暗相间的直条纹,屏幕上P 点的光程差δ为 21sin xr r d d Dδθ=-≈≈ 相应明暗纹条件是(21)2k x d D k λδλ⎧⎪==⎨+⎪⎩,干涉加强,,干涉减弱, 干涉条纹的位置是0,1,2,(21)2D k dx k D k d λλ⎧⎪⎪==±±⎨⎪+⎪⎩,明纹中心位置,,暗纹中心位置,式中,整数k 称为干涉级数,用以区别不同的条纹. 7、 薄膜干涉实验装置 如图2所示,扩展单色光源照射到薄膜上反射光干涉的情况,光源发出的任一单条光线经薄膜上下两个面反射后,形成两条光线○1、○2,在实验室中可用透镜将它们会聚在焦平面处的屏上进行观察,在膜的上下两个表面反射的两束光线○1和○2的光程差为22λδ=21S S图1图 23n二、光的衍射 1、光的衍射现象定义 一束平行光通过一狭缝K ,在其后的屏幕上将呈现光斑,若狭缝的宽度比波度大得多时,屏幕E 上的光斑和狭缝完全一致,如图3(a )所示,这时可成光沿直线传播的;若缝宽与光波波长可以相比拟时,在屏幕E 上的光斑亮度虽然降低,但光斑范围反而增大,如图3(b )所示的明暗相间的条纹,这就是光的衍射现象,称偏离原来方向传播的光为衍射光.2、惠更斯-菲涅耳原理表述 任何时刻波面上的每一点都可以作为子波的波源,从同一波面上各点发出的子波在空间相遇时,可以相互叠加产生干涉. 3、菲涅耳衍射与夫琅禾费衍射定义 光源到障碍物,或障碍物到屏的距离为有限远,这类衍射称为菲涅尔衍射;光源到障碍物,以及障碍物到屏的距离都是无限远,这时入射光和衍射光均可视为平行光,这类衍射称为夫琅禾费衍射.三、光的偏振 1、光的偏振性定义 光波是电磁波,其电矢量称为光矢量,在垂直于传播方向的平面内,光矢量E 可能具有的振动状态(矢量端点的轨迹),称为光的偏振态.光矢量的振动方向与光传播方向所组成的平面称为振动面. 2、偏振光定义 振动方向具有一定规则的光波,称为偏振光。

2019-2020年高考物理总复习 2.2光的波动性考题演练(含解析)

2019-2020年高考物理总复习 2.2光的波动性考题演练(含解析)

2019-2020年高考物理总复习 2.2光的波动性考题演练(含解析)1. (xx·江苏高考)某同学用单色光进行双缝干涉实验,在屏上观察到甲图所示的条纹,仅改变一个实验条件后,观察到的条纹如乙图所示。

他改变的实验条件可能是()A.减小光源到单缝的距离B.减小双缝之间的距离C.减小双缝到光屏之间的距离D.换用频率更高的单色光源【解析】选B。

根据Δx=λ,其中l是双缝到光屏之间的距离,d是双缝之间的距离,λ是波长,又c=λν,ν是频率,B选项正确。

2.(xx·大纲版全国卷)在双缝干涉实验中,一钠灯发出的波长为589nm的光,在距双缝1.00 m的屏上形成干涉图样。

图样上相邻两明纹中心间距为0.350 cm,则双缝的间距为()A.2.06×10-7mB.2.06×10-4mC.1.68×10-4mD.1.68×10-3m【解题指南】解答本题应明确以下两点:(1)知道决定光的干涉条纹间距的因素,记住其公式Δx=λ。

(2)单位的统一。

【解析】选C。

由Δx=λ可得:d=λ=×589×10-9m=1.68×10-4m,所以选项C正确。

3.(xx·大纲版全国卷)下列现象中,属于光的衍射的是()A.雨后天空出现彩虹B.通过一个狭缝观察日光灯可看到彩色条纹C.海市蜃楼现象D.日光照射在肥皂膜上出现彩色条纹【解题指南】解答本题时应从以下两点进行分析:(1)熟悉常见光现象的形成原因。

(2)知道什么是光的衍射现象。

【解析】选B。

光在传播过程中若遇到尺寸比光的波长大得不多的障碍物时,光会传到障碍物的阴影区并形成明暗变化的光强分布的现象是光的衍射现象,通过一个狭缝观察日光灯看到彩色条纹,就是光的衍射现象,B对;雨后天空出现的彩虹是光的色散现象,是由光的折射形成的,A错;海市蜃楼现象是光的折射现象,C 错;日光照射在肥皂膜上出现的彩色条纹,是光的干涉现象,D错。

高中物理专题练习: 波动光学

高中物理专题练习:    波动光学

高中物理专题练习:波动光学1.由两个不同光源发出的两束白光,在叠加区域中不会产生干涉现象,这是因为A.白光是由很多不同波长的光组成的;B.两个光源发射的光的强度不同;C.这两个光源是相互独立且不相干的光源;D.由两个不同光源发出的光不能有相同的频率。

2.如图所示,在扬氏双缝干涉实验中,如果点是第一级暗纹所在位置,则光程差为A.;B.;C.;D.。

3.光波的衍射没有声波显著,是由于A.光是电磁波;B.光的波长比声波小得多;C.光有颜色;D.光速比声速大。

4.根据惠更斯—菲涅耳原理,若已知光在某时刻的波阵面为S,则S的前方某点P的光强决定于波阵面上所有面积元发出的子波各自传到P点的A.振动振幅之和;B.光强之和;C.振动振幅和的平方;D.振动的相干叠加。

5.光栅常量变小时,下列正确说法是A.衍射条纹间距变大,条纹宽度变大;B.衍射条纹间距变大,条纹宽度变小;C.衍射条纹间距变小,条纹宽度变小;D.衍射条纹间距变小,条纹宽度变大。

6.自然光以布儒斯特角入射到透明介质的表面时,下面正确的陈述为A.反射线和折射线是平行的;B.反射线和入射线是垂直的;C.反射光是光振动垂直于入射面的线偏振光;D.折射光是线偏振光。

7.的黄绿光射入折射率为的玻璃中,则该光在玻璃中的波长为8.在杨氏双缝干涉实验中,如果缩短双缝间的距离,下列陈述正确的是A.相邻明(暗)间距离减小;B.相邻明(暗)纹间距增大;C.相邻明(暗)纹间距不变;D.不能确定相邻明(暗)纹间距的变化情况。

9.牛顿环实验装置是用一平凸透镜置于一平板玻璃上。

今以平行单色光从上向下垂直入射,并从上向下观察,看到有许多明暗相间的同心圆环,这些圆环的特点为A.接触点是暗的,同心圆环是等距离的;B.接触点是明的,同心圆环是不等距离的;C.接触点是明的,同心圆环是等距离的;D.接触点是暗的,同心圆环是不等距离的。

10.观察屏上的单缝夫琅禾费衍射花样,如入射光波长变大时,中央明纹宽度A.变小;B.变大;C.不变;D.由其他情况决定。

大学物理(波动光学)练习(含答案)

大学物理(波动光学)练习(含答案)

大学物理(波动光学)试卷班级:_____________ 姓名:_____________ 学号:_____________日期:__________年_______月_______日成绩:_____________一、选择题(共27分)1.(本题3分)在双缝干涉实验中,两缝间距离为d,双缝与屏幕之间的距离为D (D>>d).波长为λ的平行单色光垂直照射到双缝上.屏幕上干涉条纹中相邻暗纹之间的距离是(A) 2λD / d.(B) λd / D.23456(B) 2 ,5 ,8 ,11......(C) 2 ,4 ,6 ,8 ......(D) 3 ,6 ,9 ,12......[]7.(本题3分)一束光强为I0的自然光垂直穿过两个偏振片,且此两偏振片的偏振化方向成45°角,则穿过两个偏振片后的光强I为(A) 4/0I2.(B) I0 / 4.(C) I0 / 2.(D) 2I0 / 2.[]8.(本题3分)自然光以布儒斯特角由空气入射到一玻璃表面上,反射光是(A) 在入射面内振动的完全线偏振光.(B) 平行于入射面的振动占优势的部分偏振光.(C) 垂直于入射面振动的完全线偏振光.(D) 垂直于入射面的振动占优势的部分偏振光.[]9.(本题3分)自然光以60°的入射角照射到某两介质交界面时,反射光为完全线偏振光,则知折射光为(A) 完全线偏振光且折射角是30°.101112131415f16如图所示的杨氏双缝干涉装置,若用单色自然光照射狭缝S,在屏幕上能看到干涉条纹.若在双缝S1和S2的一侧分别加一同质同厚的偏振片P1、P2,则当P1与P2的偏振化方向相互______________时,在屏幕上仍能看到很清晰的干涉条纹.17.(本题3分)光的干涉和衍射现象反映了光的________性质.光的偏振现象说明光波是_________波.P2P1S1S2S三、计算题(共38分) 18.(本题8分)在牛顿环装置的平凸透镜和平玻璃板之间充以折射率n =1.33的液体(透镜和平玻璃板的折射率都大于1.33 ). 凸透镜曲率半径为300 cm ,用波长λ=650 nm (1 nm=10-9 m)的光垂直照射,求第10个暗环的半径(设凸透镜中心刚好与平板接触,中心暗斑不计入环数). 19.(本题5分)用波长λ=632.8nm(1nm=10-9m)的平行光垂直入射在单缝上,缝后用焦距f=40cm 的凸透镜把衍射光会聚于焦平面上.测得中央明条纹的宽度为 3.4mm ,单缝的宽度是多少? 20.(本题10分)一束平行光垂直入射到某个光栅上,该光束有两种波长的光,λ1=440 nm ,λ2=660 nm(1 nm = 10-9 m).实验发现,两种波长的谱线(不计中央明纹)第二次重合于衍射角ϕ=60°的方向上.求此光栅的光栅常数d . 21.(本题10分)一光束由强度相同的自然光和线偏振光混合而成.此光束垂直入射到几个叠在一起的偏振片上.(1) 欲使最后出射光振动方向垂直于原来入射光中线偏振光的振动方向,并且入射光中两种成分的光的出射光强相等,至少需要几个偏振片?它们的偏振化方向应如何放置? (2) 这种情况下最后出射光强与入射光强的比值是多少? 22.(本题5分)在水(折射率n 1=1.33)和一种玻璃(折射率n 2=1.56的交界面上,自然光从水中射向玻璃,求起偏角i 0.若自然光从玻璃中射向水,再求此时的起偏角0i '. 四、理论推导与证明题(共5分)23.(本题5分)如图所示的双缝干涉装置中,假定两列光波在屏上P 点处的光场随时间t 而变化的表示式各为E 1 = E 0 sin ω t E 2=E 0 sin (ωt+φ) φ表示这两列光波之间的相位差.试证P 点处的合振幅为 ⎪⎭⎫⎝⎛=θλsin πcos d E E m p 式中λ是光波波长,E m 是E p 的最大值.五、回答问题(共5分) 24.(本题5分)在单缝衍射图样中,离中心明条纹越远的明条纹亮度越小,试用半波带法说明.DOPr 1 r 2 θ S S 1 S 2d (D>>d )大学物理(波动光学)试卷解答一、选择题(共27分) D B B D A D B C D二、填空题(共25分) 10.(本题4分)上 2分 (n -1)e 2分 11.(本题3分) 225 3分 12.(本题3分)λ/(2n ) 3分 13.(本题3分)干涉(或答“相干叠加”) 3分 14.(本题3分)30° 3分 15.(本题3分)632.6 或 633 3分 参考解:d sin ϕ =λ --------① l =f ·tg ϕ --------②由②式得 tg ϕ =l / f = 0.1667 / 0.5 = 0.3334sin ϕ = 0.3163λ = d sin ϕ =2.00×0.3163×103 nm = 632.6 nm 16.(本题3分)平行或接近平行 3分 17.(本题3分)波动 1分 横 2分 三、计算题(共38分) 18.(本题8分)解: R 2=r 2+(R - r )2 r 2 = 2Re – e 2略去e 2,则 Rre 22= 2分 暗环: 2ne +21λ=( 2k +1)21λ 2e =λn k(k =0,1,2,…) 3分nRk r λ= k =10 2分r =0.38 cm 1分 19.(本题5分)解:中央明纹宽度 ∆x = 2 x 1 ≈2 f λ/ a 2分 单缝的宽度 a = 2 f λ/∆x = 2×400×6328×10-9 / 3.4 m 2分 = 0.15 mm 1分Re r20.(本题10分)解:由光栅衍射主极大公式得 111sin λϕk d = 222sin λϕk d =212122112132660440sin sin k k k k k k =⨯⨯==λλϕϕ 4分当两谱线重合时有 ϕ1= ϕ2 1分 即69462321===k k ....... 1分 两谱线第二次重合即是4621=k k , k 1=6, k 2=4 2分 由光栅公式可知d sin60°=6λ1 ο60sin 61λ=d =3.05×10-3mm 2分 21.(本题10分)解:设入射光中两种成分的强度都是I 0,总强度为2 I 0.(1) 通过第一个偏振片后,原自然光变为线偏振光,强度为I 0 / 2, 原线偏振光部分强度变为I 0 cos 2θ,其中θ为入射线偏振光振动方向与偏振片偏振化方向P 1的夹角.以上两部分透射光的振动方向都与P 1一致.如果二者相等,则以后不论再穿过几个偏振片,都维持强度相等(如果二者强度不相等,则以后出射强度也不相等).因此,必须有 I 0 / 2=I 0 cos 2 θ,得θ=45︒. 2分为了满足线偏振部分振动方向在出射后“转过”90︒,只要最后一个偏振片偏振化方向与入射线偏振方向夹角为90︒就行了. 2分综上所述,只要两个偏振片就行了(只有一个偏振片不可能将振动方向“转过”90︒). 2分配置如图,E ϖ表示入射光中线偏振部分的振动方向,P 1、P 2分别是第一、第二偏振片的偏振化方向 2分 (2) 出射强度I 2=(1/2)I 0 cos 2 45︒+I 0 cos 4 45︒ =I 0 [(1 / 4)+(1 / 4)]=I 0/2比值 I 2/(2I 0)=1 / 4 2分22.(本题5分)解:光自水中入射到玻璃表面上时,tg i 0=1.56 / 1.33 2分 i 0=49.6° 1分 光自玻璃中入射到水表面上时,tg 0i '=1.33 / 1.56 0i '=40.4° (或 0i '=90°-i =40.4°) 2四、推导与证明题(共5分)23.(本题5分)证:由于 相位差=波长光程差π2 1分所以 ()θλφsin π2d =1分P 点处合成的波振动 E = E 1 +E 2P 1P 245°45°Eϖ⎪⎭⎫ ⎝⎛+=2sin 2cos20φωφt E ⎪⎭⎫ ⎝⎛+=2sin φωt E p 所以合成振幅 2cos20φE E p =3分式中E m = 2E 0是E p 的最大值.五、回答问题(共5分) 24.(本题5分)答:除中央明纹(零级)外,其他明纹的衍射方向对应着奇数个半波带(一级对应三个,二级对应五个…),级数越大,则单缝处的波阵面可以分成的半波带数目越多.其中偶数个半波带的作用两两相消之后,剩下的光振动未相消的一个半波带的面积就越小,由它决定的该明条纹的亮度也就越小. 5分。

波动光学试题-答案版3

波动光学试题-答案版3

波动光学一、概念选择题1. 如图所示,点光源S 置于空气中,S 到P 点的距离为r ,若在S 与P 点之间置一个折射率为n (n >1),长度为l 的介质,此时光由S 传到P 点的光程为( D )(A )r (B )l r - (C )nl r - (D ))1(-+n l r 2. 在相同的时间内,一束波长为λ(A )传播的路程相等,走过的光程相等;(B )传播的路程相等,走过的光程不相等;(C )传播的路程不相等,走过的光程相等;(D )传播的路程不相等,走过的光程不相等。

3. 来自不同光源的两束白光,例如两束手电筒光照射在同一区域内,是不能产生干涉图样的,这是由于( C )(A )白光是由不同波长的光构成的 (B )两光源发出不同强度的光(C )两个光源是独立的,不是相干光源 (D )不同波长,光速不同4. 真空中波长为λ的单色光,在折射率为n 的均匀透明媒质中,从A 点沿某一路径传播到B 点,路径的长度为l , 则A 、B 两点光振动位相差记为∆ϕ, 则( C )(A )当l = 3 λ / 2 ,有∆ϕ = 3 π(B ) 当 l = 3 λ/ (2n ) , 有∆ϕ = 3 n π.(C ) 当 l = 3 λ /(2 n ),有∆ϕ = 3 π(D ) 当 l = 3 n λ/ 2 , 有∆ϕ = 3 n π.5. 用单色光做双缝干涉实验,下述说法中正确的是( A )(A )相邻干涉条纹之间的距离相等(B )中央明条纹最宽,两边明条纹宽度变窄(C )屏与缝之间的距离减小,则屏上条纹宽度变窄(D )在实验装置不变的情况下,红光的条纹间距小于蓝光的条纹间距6. 用单色光垂直照射杨氏双缝时,下列说法正确的是( C )(A )减小缝屏距离,干涉条纹间距不变(B )减小双缝间距,干涉条纹间距变小(C )减小入射光强度, 则条纹间距不变(D )减小入射波长, 则条纹间距不变7. 一束波长为 λ 的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使透射光得到干涉加强,则薄膜最小的厚度为( D )(A )λ / 4 (B )λ / (4 n )(C )λ / 2 (D )λ / (2 n )8. 有两个几何形状完全相同的劈尖:一个由空气中的玻璃形成,一个由玻璃中的空气形成。

2020年高中物理竞赛习题专题十二:《波动光学》(Word版含解析)

2020年高中物理竞赛习题专题十二:《波动光学》(Word版含解析)

【预赛 三一 自招】高中物理竞赛模拟试题之《波 动 光学》1在双缝干涉实验中,若单色光源S 到两缝S 1 、S 2 距离相等,则观察屏上中央明条纹位于图中O 处,现将光源S 向下移动到图中的S ′位置,则( )(A ) 中央明纹向上移动,且条纹间距增大(B ) 中央明纹向上移动,且条纹间距不变(C ) 中央明纹向下移动,且条纹间距增大(D ) 中央明纹向下移动,且条纹间距不变分析与解 由S 发出的光到达S 1 、S 2 的光程相同,它们传到屏上中央O 处,光程差Δ=0,形成明纹.当光源由S 移到S ′时,由S ′到达狭缝S 1 和S 2 的两束光产生了光程差.为了保持原中央明纹处的光程差为0,它会向上移到图中O ′处.使得由S ′沿S 1 、S 2 狭缝传到O ′处的光程差仍为0.而屏上各级条纹位置只是向上平移,因此条纹间距不变.故选(B ).题14-1 图2 如图所示,折射率为n 2 ,厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1 和n 3,且n 1 <n 2 ,n 2 >n 3 ,若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束的光程差是( )()()()()2222222D 2C 22B 2A n e n e n e n e n λλλ---题14-2 图分析与解 由于n 1 <n 2 ,n 2 >n 3 ,因此在上表面的反射光有半波损失,下表面的反射光没有半波损失,故它们的光程差222λ±=∆e n ,这里λ是光在真空中的波长.因此正确答案为(B ).3 如图(a )所示,两个直径有微小差别的彼此平行的滚柱之间的距离为L ,夹在两块平面晶体的中间,形成空气劈形膜,当单色光垂直入射时,产生等厚干涉条纹,如果滚柱之间的距离L 变小,则在L 范围内干涉条纹的( )(A ) 数目减小,间距变大 (B ) 数目减小,间距不变(C ) 数目不变,间距变小 (D ) 数目增加,间距变小题14-3图分析与解 图(a )装置形成的劈尖等效图如图(b )所示.图中 d 为两滚柱的直径差,b 为两相邻明(或暗)条纹间距.因为d 不变,当L 变小时,θ 变大,L ′、b 均变小.由图可得L d b n '==//2sin λθ,因此条纹总数n d b L N λ//2='=,因为d 和λn 不变,所以N 不变.正确答案为(C )4 用平行单色光垂直照射在单缝上时,可观察夫琅禾费衍射.若屏上点P 处为第二级暗纹,则相应的单缝波阵面可分成的半波带数目为( )(A ) 3 个 (B ) 4 个 (C ) 5 个 (D ) 6 个分析与解 根据单缝衍射公式()()(),...2,1 212 22sin =⎪⎪⎩⎪⎪⎨⎧+±±=k λk λk θb 明条纹暗条纹 因此第k 级暗纹对应的单缝处波阵面被分成2k 个半波带,第k 级明纹对应的单缝波阵面被分成2k +1 个半波带.则对应第二级暗纹,单缝处波阵面被分成4个半波带.故选(B ).5 波长λ=550 nm 的单色光垂直入射于光栅常数d =='+b b 1.0 ×10-4 cm 的光栅上,可能观察到的光谱线的最大级次为( )(A ) 4 (B ) 3 (C ) 2 (D ) 1分析与解 由光栅方程(),...1,0dsin =±=k k λθ,可能观察到的最大级次为()82.1/2dsin max =≤λπk即只能看到第1 级明纹,正确答案为(D ).6 三个偏振片P 1 、P 2 与P 3 堆叠在一起,P 1 与P 3的偏振化方向相互垂直,P 2与P 1 的偏振化方向间的夹角为30°,强度为I 0 的自然光入射于偏振片P 1 ,并依次透过偏振片P 1 、P 2与P 3 ,则通过三个偏振片后的光强为( )(A ) 3I 0/16 (B ) 3I 0/8 (C ) 3I 0/32 (D ) 0分析与解 自然光透过偏振片后光强为I 1 =I 0/2.由于P 1 和P 2 的偏振化方向成30°,所以偏振光透过P 2 后光强由马吕斯定律得8/330cos 0o 212I I I ==.而P 2和P 3 的偏振化方向也成60°,则透过P 3 后光强变为32/360cos 0o 223I I I ==.故答案为(C ).7 自然光以60°的入射角照射到两介质交界面时,反射光为完全线偏振光,则折射光为( )(A ) 完全线偏振光,且折射角是30°(B ) 部分偏振光且只是在该光由真空入射到折射率为3的介质时,折射角是30°(C ) 部分偏振光,但须知两种介质的折射率才能确定折射角(D ) 部分偏振光且折射角是30°分析与解 根据布儒斯特定律,当入射角为布儒斯特角时,反射光是线偏振光,相应的折射光为部分偏振光.此时,反射光与折射光垂直.因为入射角为60°,反射角也为60°,所以折射角为30°.故选(D ).8 在双缝干涉实验中,两缝间距为0.30 mm ,用单色光垂直照射双缝,在离缝1.20m 的屏上测得中央明纹一侧第5条暗纹与另一侧第5条暗纹间的距离为22.78 mm .问所用光的波长为多少,是什么颜色的光?分析与解 在双缝干涉中,屏上暗纹位置由()212λ+'=k d d x 决定,式中d ′为双缝到屏的距离,d 为双缝间距.所谓第5条暗纹是指对应k =4 的那一级暗纹.由于条纹对称,该暗纹到中央明纹中心的距离mm 27822.=x ,那么由暗纹公式即可求得波长λ. 此外,因双缝干涉是等间距的,故也可用条纹间距公式λdd x '=∆求入射光波长.应注意两个第 5 条暗纹之间所包含的相邻条纹间隔数为9(不是10,为什么?),故mm 97822.=∆x . 解1 屏上暗纹的位置()212λ+'=k d d x ,把m 102782243-⨯==.,x k 以及d 、d ′值代入,可得λ=632.8 nm ,为红光.解2 屏上相邻暗纹(或明纹)间距'd x d λ∆=,把322.7810m 9x -∆=⨯,以及d 、d ′值代入,可得λ=632.8 nm .9 在双缝干涉实验中,用波长λ=546.1 nm 的单色光照射,双缝与屏的距离d ′=300mm .测得中央明纹两侧的两个第五级明条纹的间距为12.2 mm ,求双缝间的距离.分析 双缝干涉在屏上形成的条纹是上下对称且等间隔的.如果设两明纹间隔为Δx ,则由中央明纹两侧第五级明纹间距x 5 -x -5 =10Δx 可求出Δx .再由公式Δx =d ′λ/d 即可求出双缝间距d .解 根据分析:Δx =(x 5 -x -5)/10 =1.22×10-3 m双缝间距: d =d ′λ/Δx =1.34 ×10-4 m10 一个微波发射器置于岸上,离水面高度为d ,对岸在离水面h 高度处放置一接收器,水面宽度为D ,且,D d D h ,如图所示.发射器向对面发射波长为λ的微波,且λ>d ,求接收器测到极大值时,至少离地多高?分析 由发射器直接发射的微波与经水面反射后的微波相遇可互相干涉,这种干涉与劳埃德镜实验完全相同.形成的干涉结果与缝距为2d ,缝屏间距为D 的双缝干涉相似,如图(b )所示,但要注意的是和劳埃德镜实验一样,由于从水面上反射的光存在半波损失,使得两束光在屏上相遇产生的光程差为2/sin 2λθd +,而不是θd sin 2.题14-10 图解 由分析可知,接收到的信号为极大值时,应满足(),...2,12/sin 2==+k λk λθd ()d k D D D h 412sin tan -=≈≈λθθ 取k =1 时,得d D h 4min λ=. 11 如图所示,将一折射率为1.58的云母片覆盖于杨氏双缝上的一条缝上,使得屏上原中央极大的所在点O 改变为第五级明纹.假定λ=550 nm ,求:(1)条纹如何移动?(2) 云母片的厚度t.题14-11图分析 (1)本题是干涉现象在工程测量中的一个具体应用,它可以用来测量透明介质薄片的微小厚度或折射率.在不加介质片之前,两相干光均在空气中传播,它们到达屏上任一点P 的光程差由其几何路程差决定,对于点O ,光程差Δ=0,故点O 处为中央明纹,其余条纹相对点O 对称分布.而在插入介质片后,虽然两相干光在两介质薄片中的几何路程相同,但光程却不同,对于点O ,Δ≠0,故点O 不再是中央明纹,整个条纹发生平移.原来中央明纹将出现在两束光到达屏上光程差Δ=0的位置.(2) 干涉条纹空间分布的变化完全取决于光程差的变化.因此,对于屏上某点P (明纹或暗纹位置),只要计算出插入介质片前后光程差的变化,即可知道其干涉条纹的变化情况. 插入介质前的光程差Δ1 =r 1 -r 2 =k 1 λ(对应k 1 级明纹),插入介质后的光程差Δ2 =(n -1)d +r 1 -r 2 =k 1 λ(对应k 1 级明纹).光程差的变化量为Δ2 -Δ1 =(n -1)d =(k 2 -k 1 )λ式中(k 2 -k 1 )可以理解为移过点P 的条纹数(本题为5).因此,对于这类问题,求解光程差的变化量是解题的关键.解 由上述分析可知,两介质片插入前后,对于原中央明纹所在点O ,有()λ51212=-=∆-∆d n将有关数据代入可得m 1074.4156-⨯=-=n d λ 12 白光垂直照射到空气中一厚度为380 nm 的肥皂膜上.设肥皂的折射率为1.32.试问该膜的正面呈现什么颜色?分析 这是薄膜干涉问题,求正面呈现的颜色就是在反射光中求因干涉增强光的波长(在可见光范围).解 根据分析对反射光加强,有(),...2,122==+k k ne λλ124-=k ne λ 在可见光范围,k =2 时,nm 8668.=λ(红光)k =3 时,nm 3401.=λ(紫光)故正面呈红紫色.13 利用空气劈尖测细丝直径.如图所示,已知λ=589.3 nm ,L =2.888 ×10-2m ,测得30 条条纹的总宽度为4.259 ×10-3 m ,求细丝直径d .分析 在应用劈尖干涉公式L nb d 2λ= 时,应注意相邻条纹的间距b 是N 条条纹的宽度Δx 除以(N -1).对空气劈尖n =1.解 由分析知,相邻条纹间距1-∆=N x b ,则细丝直径为 ()m 107552125-⨯=∆-==.xn N L nb d λλ题14-13 图14 集成光学中的楔形薄膜耦合器原理如图所示.沉积在玻璃衬底上的是氧化钽(52O Ta )薄膜,其楔形端从A 到B 厚度逐渐减小为零.为测定薄膜的厚度,用波长λ=632.8nm 的He Ne - 激光垂直照射,观察到薄膜楔形端共出现11 条暗纹,且A 处对应一条暗纹,试求氧化钽薄膜的厚度.(52O Ta 对632.8 nm 激光的折射率为2.21)题14-14 图分析 置于玻璃上的薄膜AB 段形成劈尖,求薄膜厚度就是求该劈尖在A 点处的厚度.由于25Ta O 对激光的折射率大于玻璃,故从该劈尖上表面反射的光有半波损失,而下表面没有,因而两反射光光程差为Δ=2ne +λ/2.由反射光暗纹公式2ne k +λ/2 =(2k +1)λ/2,k =0,1,2,3,…,可以求厚度e k .又因为AB 中共有11 条暗纹(因半波损失B 端也为暗纹),则k 取10即得薄膜厚度.解 根据分析,有2ne k +2λ=(2k +1)λ/2 (k =0,1,2,3,…)取k =10,得薄膜厚度e 10 =n210λ=1.4 ×10-6m . 15 折射率为1.60的两块标准平面玻璃板之间形成一个劈形膜(劈尖角θ 很小).用波长λ=600 nm 的单色光垂直入射,产生等厚干涉条纹.假如在劈形膜内充满n =1.40 的液体时的相邻明纹间距比劈形膜内是空气时的间距缩小Δl =0.5 mm ,那么劈尖角θ 应是多少?分析 劈尖干涉中相邻条纹的间距l ≈θλn 2,其中θ 为劈尖角,n 是劈尖内介质折射率.由于前后两次劈形膜内介质不同,因而l 不同.则利用l ≈θλn 2和题给条件可求出θ.解 劈形膜内为空气时,θλ2=空l劈形膜内为液体时,θλn l 2=液则由θλθλn l l l 22-=-=∆液空,得 ()rad 107112114-⨯=∆-=./l n λθ16 如图(a)所示的干涉膨胀仪,已知样品的平均高度为3.0 ×10-2m ,用λ=589.3 nm 的单色光垂直照射.当温度由17 ℃上升至30 ℃时,看到有20 条条纹移过,问样品的热膨胀系数为多少?题14-16 图分析 温度升高ΔT =T 2 -T 1 后,样品因受热膨胀,其高度l 的增加量Δl =lαΔT .由于样品表面上移,使在倾角θ 不变的情况下,样品与平板玻璃间的空气劈的整体厚度减小.根据等厚干涉原理,干涉条纹将整体向棱边平移,则原k 级条纹从a 移至a′处,如图(b )所示,移过某一固定观察点的条纹数目N 与Δl 的关系为2λNl =∆,由上述关系可得出热膨胀系数α.解 由题意知,移动的条纹数N =20,从分析可得 T l N ∆=αλ2则热膨胀系数 5105112-⨯=∆=.Tl Nλα K 1- 17 在利用牛顿环测未知单色光波长的实验中,当用已知波长为589.3 nm 的钠黄光垂直照射时,测得第一和第四暗环的距离为Δr =4.00 ×10-3 m ;当用波长未知的单色光垂直照射时,测得第一和第四暗环的距离为Δr ′=3.85 ×10-3 m ,求该单色光的波长.分析 牛顿环装置产生的干涉暗环半径λkR r =,其中k =0,1,2…,k =0,对应牛顿环中心的暗斑,k =1 和k =4 则对应第一和第四暗环,由它们之间的间距λR r r r =-=∆14,可知λ∝∆r ,据此可按题中的测量方法求出未知波长λ′.解 根据分析有λλ'=∆'∆r r 故未知光波长 λ′=546 nm18 如图所示,折射率n 2 =1.2 的油滴落在n 3 =1.50 的平板玻璃上,形成一上表面近似于球面的油膜,测得油膜中心最高处的高度d m =1.1 μm ,用λ=600 nm 的单色光垂直照射油膜,求(1) 油膜周边是暗环还是明环? (2) 整个油膜可看到几个完整的暗环?题14-18 图分析 本题也是一种牛顿环干涉现象,由于n 1 <n 2 <n 3 ,故油膜上任一点处两反射相干光的光程差Δ=2n 2d .(1) 令d =0,由干涉加强或减弱条件即可判断油膜周边是明环.(2) 由2n 2d =(2k +1)λ/2,且令d =d m 可求得油膜上暗环的最高级次(取整),从而判断油膜上完整暗环的数目.解 (1) 根据分析,由()()(),...2,1,0 212 22=⎪⎩⎪⎨⎧+=k k k d n 暗条纹明条纹λλ 油膜周边处d =0,即Δ=0 符合干涉加强条件,故油膜周边是明环.(2) 油膜上任一暗环处满足()(),...,,/21021222=+==∆k k d n λ令d =d m ,解得k =3.9,可知油膜上暗环的最高级次为3,故油膜上出现的完整暗环共有4 个,即k =0,1,2,3.19 把折射率n =1.40 的薄膜放入迈克耳孙干涉仪的一臂,如果由此产生了7.0 条条纹的移动,求膜厚.设入射光的波长为589 nm .分析 迈克耳孙干涉仪中的干涉现象可以等效为薄膜干涉(两平面镜相互垂直)和劈尖干涉(两平面镜不垂直)两种情况,本题属于后一种情况.在干涉仪一臂中插入介质片后,两束相干光的光程差改变了,相当于在观察者视野内的空气劈尖的厚度改变了,从而引起干涉条纹的移动.解 插入厚度为d 的介质片后,两相干光光程差的改变量为2(n -1)d ,从而引起N 条条纹的移动,根据劈尖干涉加强的条件,有2(n -1)d =Nλ,得 ()m 101545126-⨯=-=.n N d λ 20 如图所示,狭缝的宽度b =0.60 mm ,透镜焦距f =0.40m ,有一与狭缝平行的屏放置在透镜焦平面处.若以波长为600 nm 的单色平行光垂直照射狭缝,则在屏上离点O 为x =1.4 mm 处的点P 看到的是衍射明条纹.试求:(1) 点P 条纹的级数;(2) 从点P 看来对该光波而言,狭缝的波阵面可作半波带的数目.分析 单缝衍射中的明纹条件为()212sin λϕ+±=k b ,在观察点P 位置确定(即衍射角φ确定)以及波长λ确定后,条纹的级数k 也就确定了.而狭缝处的波阵面对明条纹可以划分的半波带数目为(2k +1)条.解 (1) 设透镜到屏的距离为d ,由于d >>b ,对点P 而言,有dx =≈ϕϕtan sin .根据分析中的条纹公式,有 ()212λ+±=k d bx 将b 、d (d ≈f )、x , λ的值代入,可得k =3(2) 由分析可知,半波带数目为7.题14-20 图21 一单色平行光垂直照射于一单缝,若其第三条明纹位置正好和波长为600 nm 的单色光垂直入射时的第二级明纹的位置一样,求前一种单色光的波长.分析 采用比较法来确定波长.对应于同一观察点,两次衍射的光程差相同,由于衍射明纹条件()212sin λϕ+=k b ,故有()()22111212λλ+=+k k ,在两明纹级次和其中一种波长已知的情况下,即可求出另一种未知波长.解 根据分析,将32nm 600122===k k ,,λ代入()()22111212λλ+=+k k ,得()nm 642812121221.=++=k k λλ22 已知单缝宽度b =1.0 ×10-4 m ,透镜焦距f =0.50 m ,用λ1 =400 nm 和λ2 =760 nm 的单色平行光分别垂直照射,求这两种光的第一级明纹离屏中心的距离,以及这两条明纹之间的距离.若用每厘米刻有1000条刻线的光栅代替这个单缝,则这两种单色光的第一级明纹分别距屏中心多远? 这两条明纹之间的距离又是多少?分析 用含有两种不同波长的混合光照射单缝或光栅,每种波长可在屏上独立地产生自己的一组衍射条纹,屏上最终显示出两组衍射条纹的混合图样.因而本题可根据单缝(或光栅)衍射公式分别计算两种波长的k 级条纹的位置x 1和x 2 ,并算出其条纹间距Δx =x 2 -x 1 .通过计算可以发现,使用光栅后,条纹将远离屏中心,条纹间距也变大,这是光栅的特点之一.解 (1) 当光垂直照射单缝时,屏上第k 级明纹的位置()f b k x 212λ+=当λ1 =400 nm 和k =1 时, x 1 =3.0 ×10-3 m当λ2 =760 nm 和k =1 时, x 2 =5.7 ×10-3 m其条纹间距 Δx =x 2 -x 1 =2.7 ×10-3 m(2) 当光垂直照射光栅时,屏上第k 级明纹的位置为f dk x λ=' 而光栅常数 m 10m 1010532--==d 当λ1 =400 nm 和k =1 时, x 1 =2.0 ×10-2 m当λ2 =760 nm 和k =1 时, x 2 =3.8 ×10-2 m其条纹间距 m 1081212-⨯='-'='∆.x x x23 老鹰眼睛的瞳孔直径约为6 mm ,问其最多飞翔多高时可看清地面上身长为5cm 的小鼠? 设光在空气中的波长为600 nm .分析 两物体能否被分辨,取决于两物对光学仪器通光孔(包括鹰眼)的张角θ 和光学仪器的最小分辨角θ0 的关系.当θ≥θ0 时能分辨,其中θ=θ0 为恰能分辨.在本题中D λθ2210.=为一定值,这里D 是鹰的瞳孔直径.而h L /=θ,其中L 为小鼠的身长,h 为老鹰飞翔的高度.恰好看清时θ=θ0.解 由分析可知 L /h =1.22λ/D ,得飞翔高度h =LD /(1.22λ) =409.8 m .24 一束平行光垂直入射到某个光栅上,该光束中包含有两种波长的光:λ1 =440 nm 和λ2 =660 nm .实验发现,两种波长的谱线(不计中央明纹)第二次重合于衍射角φ=60°的方向上,求此光栅的光栅常数.分析 根据光栅衍射方程λϕk d ±=sin ,两种不同波长的谱线,除k =0 中央明纹外,同级明纹在屏上位置是不同的,如果重合,应是它们对应不同级次的明纹在相同衍射角方向上重合.故由d sin φ=k λ1 =k ′λ2 可求解本题.解 由分析可知21sin λλϕk k d '==, 得得 2312///=='λλk k上式表明第一次重合是λ1 的第3 级明纹与λ2 的第2级明纹重合,第二次重合是λ1 的第6 级明纹与λ2 的第4级明纹重合.此时,k =6,k ′=4,φ=60°,则光栅常数μm 05.3m 1005.3/sin 61=⨯==-ϕλk d25 波长为600 nm 的单色光垂直入射在一光栅上,其透光和不透光部分的宽度比为1:3,第二级主极大出现在200sin .=ϕ处.试问(1) 光栅上相邻两缝的间距是多少?(2) 光栅上狭缝的宽度有多大? (3) 在-90°<φ<90°范围内,呈现全部明条纹的级数为哪些.分析 (1) 利用光栅方程()λϕϕk b b d ±='+=sin sin ,即可由题给条件求出光栅常数b b d '+=(即两相邻缝的间距).这里b 和b '是光栅上相邻两缝透光(狭缝)和不透光部分的宽度,在已知两者之比时可求得狭缝的宽度(2) 要求屏上呈现的全部级数,除了要求最大级次k 以外,还必须知道光栅缺级情况.光栅衍射是多缝干涉的结果,也同时可看成是光透过许多平行的单缝衍射的结果.缺级就是按光栅方程计算屏上某些应出现明纹的位置,按各个单缝衍射计算恰是出现暗纹的位置.因此可以利用光栅方程()λϕϕk b b d ='+=sin sin 和单缝衍射暗纹公式'sin b k ϕλ=可以计算屏上缺级的情况,从而求出屏上条纹总数.解 (1)光栅常数 μm 6m 106sin 6=⨯==-ϕk λd (2) 由 ⎪⎩⎪⎨⎧='='+=31μm 6b b b b d 得狭缝的宽度b =1.5 μm .(3) 利用缺级条件()()()⎩⎨⎧±=''=±=='+,...1,0sin ,...1,0sin k k b k k b b λϕλϕ 则(b +b ′)/b =k /k ′=4,则在k =4k ′,即±4, ±8, ±12,…级缺级.又由光栅方程()λϕk b b ±='+sin ,可知屏上呈现条纹最高级次应满足()10='+<λ/b b k ,即k =9,考虑到缺级,实际屏上呈现的级数为:0, ±1, ±2, ±3,±5, ±6, ±7, ±9,共15 条.26 以波长为0.11 nm 的X 射线照射岩盐晶体,实验测得X 射线与晶面夹角为11.5°时获得第一级反射极大.(1) 岩盐晶体原子平面之间的间距d 为多大? (2) 如以另一束待测X 射线照射,测得X 射线与晶面夹角为17.5°时获得第一级反射光极大,求该X 射线的波长.分析 X 射线入射到晶体上时,干涉加强条件为2d sin θ =k λ(k =0,1,2,…)式中d 为晶格常数,即晶体内原子平面之间的间距(如图).解 (1) 由布拉格公式(),...,,210sin 2==k k d λθ第一级反射极大,即k =1.因此,得 nm 276.0sin 211==θλd(2) 同理,由2d sin θ2 =kλ2 ,取k =1,得nm 166.0sin 222==θλd题14-26图27 测得一池静水的表面反射出来的太阳光是线偏振光,求此时太阳处在地平线的多大仰角处? (水的折射率为1.33)题14-27 图分析 设太阳光(自然光)以入射角i 入射到水面,则所求仰角i θ-=2π.当反射光起偏时,根据布儒斯特定律,有120arctann n i i ==(其中n 1 为空气的折射率,n 2 为水的折射率).解 根据以上分析,有 120arctan 2πn n θi i =-== 则 o 129.36arctan 2π=-=n n θ 28 一束光是自然光和线偏振光的混合,当它通过一偏振片时,发现透射光的强度取决于偏振片的取向,其强度可以变化5 倍,求入射光中两种光的强度各占总入射光强度的几分之几.分析 偏振片的旋转,仅对入射的混合光中的线偏振光部分有影响,在偏振片旋转一周的过程中,当偏振光的振动方向平行于偏振片的偏振化方向时,透射光强最大;而相互垂直时,透射光强最小.分别计算最大透射光强I max 和最小透射光强I min ,按题意用相比的方法即能求解.解 设入射混合光强为I ,其中线偏振光强为xI ,自然光强为(1-x )I .按题意旋转偏振片,则有最大透射光强 ()I x x I ⎥⎦⎤⎢⎣⎡+-=121max 最小透射光强 ()I x I ⎥⎦⎤⎢⎣⎡-=121min 按题意5min max =I I /,则有()()x x x -⨯=+-1215121 解得 x =2/3即线偏振光占总入射光强的2/3,自然光占1/3.。

高中物理3-4波动光学专题练习(带详解)

高中物理3-4波动光学专题练习(带详解)

高中物理3-4波动光学专题练习(带详解) 学校:___________姓名:___________班级:___________考号:___________一、多选题1.a、b两束单色光从水中射向空气发生全反射时,a光的临界角大于b光的临界角,下列说法正确的是()A.以相同的入射角从空气斜射入水中,a光的折射角小B.分别通过同一双缝干涉装置,a光形成的相邻亮条纹间距大C.若a光照射某金属表面能发生光电效应,b光也一定能D.通过同一玻璃三棱镜,a光的偏折程度大E.分别通过同一单缝衍射装置,b光形成的中央亮条纹窄2.如图所示分别是a光、b光各自通过同一单缝衍射仪器形成的图样(灰黑色部分表示亮纹,保持缝到屏距离不变),则下列说法正确的是_______。

A.在真空中,单色光a的波长大于单色光b的波长B.在真空中,a光的传播速度小于b光的传播速度C.双缝干涉实验时a光产生的条纹间距比b光的大D.a光和b光由玻璃棱镜进入空气后频率都变大E.光由同一介质射入空气,发生全反射时,a光的临界角比b光大3.下列有关光学现象的说法正确的是________。

A.光从光密介质射入光疏介质,若入射角大于临界角,则一定发生全反射B.光从光密介质射人光疏介质,其频率不变,传播速度变小C.光的干涉,衍射现象证明了光具有波动性D.做双缝干涉实验时,用红光替代紫光,相邻明条纹间距变小E.频率相同、相位差恒定的两列波相遇后能产生稳定的干涉条纹4.如图所示是一玻璃球体,O为球心,cO水平,入射光线ab与cO平行,入射光线ab包含a、b两种单色光,经玻璃球折射后色散为a、b两束单色光.下列说法正确的是()A.a光在玻璃球体内的波长大于b光在玻璃球体内的波长B.上下平移入射光线ab,当入射点恰当时,折射光线a或b光可能在球界面发生全反射C.a光在玻璃球内的传播速度大于b光在玻璃球内的传播速度D.在同一双缝干涉实验中,仅把a光照射换用b光,观察到的条纹间距变大5.下列说法正确的是________。

2019-2020年高二物理竞赛模拟习题之《波动光学》(含答案)

2019-2020年高二物理竞赛模拟习题之《波动光学》(含答案)

3.如图所示,在双缝干涉实验中SS = SS用波长为的光照射双缝S、通过空气后在屏幕E上形成干涉条纹,已知P点处为第三级明条纹,则S、&到P点的光程差为_3_。

若将整个装置放于某种透明液体中,P点为第四级明条纹,则该液体的折射率n i.33。

4.一双缝干涉装置,在空气中观察时干涉条纹间距为条纹的间距将为0.75 mm。

(设水的折射率为4/3)i.Omm若整个装置放在水中,干涉5.如图所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜厚度为e,而且n i 在相遇点的位相差为:n2 n3,i为入射光在折射率为n i的媒质中的波长,则两束反射光【C】(A) 2 3; n ii(B) 4 n〔en i i(C) 4 3 n i i(D)n?e4 —n高中物理竞赛模拟试题《波动光学》一、选择题、填空题1.在相同的时间内,一束波长为的单色光在空气中和在玻璃中:【C】(A)传播的路程相等,走过的光程相等;(B)传播的路程相等,走过的光程不相等;(C)传播的路程不相等,走过的光程相等;(D)传播的路程不相等,走过的光程不相等。

2.如图,如果S、S2是两个相干光源,它们到P点的距离分别为r i、心和,路径SP垂直穿过一块厚度为t i,折射率为n i的介质板,路径SP垂直穿过厚度为t2,折射率为m的另一介质板,其余部分可看作真空,这两条路径的光程差等于:【B】(A) (r2 n2t2) (r i n i t i); (B)[上(血1启][r i (n i 1)t i];(C) (r2 n2t2) (r i n i t i); (D)n2t2 n〔t iJ'选择填空题(5)9.如图所示,平板玻璃和凸透镜构成牛顿环装置,全部浸入n=1.60的液体中,凸透镜可沿OO 移动,用波长 =500 nm 的单色光垂直入射。

从上向下观察,看到中心是一个暗斑,此 时 凸透镜顶 点 距 平板 玻 璃 的 距 离 最 少是 【A 】(A) 78.1 nm ; (B) 74.4 nm ; (C) 156.3 nm ; (D) 148.8 nm ; (E) 010 .在牛顿环装置的平凸透镜和平板玻璃间充以某种透明液体,观测到第 10个明环的直径 由充液前的14.8 cm 变成充液后的12.7 cm ,则这种液体的折射率:n 1.36。

波动光学答案

波动光学答案

形成明纹,先光程差为半的透明薄膜上,透明薄故薄膜的最小厚度h 应第十二章波动光学(一)一.选择题[B ]1.在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是(A) 使屏靠近双缝. (B) 使两缝的间距变小. (C) 把两个缝的宽度稍微调窄. (D) 改用波长较小的单色光源. 参考解答:根据条纹间距公式Ax =2 •,即可判断。

nd[B ]2.在双缝干涉实验中,入射光的波长为 ■,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大2.5 •,则屏上原来的明纹处 (A)仍为明条纹; (B)变为暗条纹;(C)既非明纹也非暗纹;(D)无法确定是明纹,还是暗纹参考解答:光程差变化了 2.5 -,原光程差为半波长的偶数倍波长的奇数倍,故变为暗条纹。

[A ]3.如图所示,波长为■的平行单色光垂直入射在折射 率为n 2的薄膜上,经上下两个表面反射的两束光发生干涉•若薄 膜厚度为e ,而且n i >n 2>出,则两束反射光在相遇点的相位差为(A) 4 二n 2 e / ■.(B) 2 二n 2 e / ■.(C) (4 m2 e / ■. j 亠,. (D) (2 二n 2 e / ■-二 参考解答:此题中无半波损失,故相位差为:…2兀2兀.「二光程差 =2en 24二 n 2e /,。

[B ]4. 一束波长为■的单色光由空气垂直入射到折射率为 膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为(A)人 /4 . (B) / (4 n).(C)九/ 2 .(D)九/ (2n).参考解答:反射光要干涉加强,其光程差应为半波长的偶数倍满足如下关系式:2nh ■ — =1工(要考虑半波损失),由此解得h =,/ (4n)。

2n 3n i[C ]5.若把牛顿环装置(都是用折射率为1.52的玻璃制成的)由空气搬入折射率为1.33的水中,则干涉条纹参考解答:接触点P 的左边两反射光的光程差为'飞《 = 2nh ,接触点P 的右边两反射光的光程差为“ght=2nh 。

高中物理 波动光学( 光的偏振)习题及答案

高中物理 波动光学( 光的偏振)习题及答案

一. 选择题[A ]1. 一束光是自然光和线偏振光的混合光,让它垂直通过一偏振片.若以此入射光束为轴旋转偏振片,测得透射光强度最大值是最小值的5倍,那么入射光束中自然光与线偏振光的光强比值为(A) 1 / 2. (B) 1 / 3. (C) 1 / 4. (D) 1 / 5.提示:[ D ]2. 某种透明媒质对于空气的临界角(指全反射)等于45°,光从空气射向此媒质时的布儒斯特角是(A) 35.3°.(B) 40.9°.(C) 45°. (D) 54.7°. (E) 57.3°.[ ]3. 一束自然光自空气射向一块平板玻璃(如图),设入射角等于布儒斯特角i 0,则在界面2的反射光(A) 是自然光. (B) 是线偏振光且光矢量的振动方向垂直于入射面. (C) 是线偏振光且光矢量的振动方向平行于入射面. (D) 是部分偏振光. 提示:[ ]4. 一束自然光通过两个偏振片,若两偏振片的偏振化方向间夹角由α1转到α2,则转动前后透射光强度之比为2212cos :cos αα提示:二. 填空题1. 如图所示的杨氏双缝干涉装置,若用单色自然光照射狭缝S ,在屏幕上能看到干涉条纹.若在双缝S 1和S 2的一侧分别加一同质同厚的偏振片P 1、P 2,则当P 1与P 2的偏振化方向相互___平行________时,在屏幕上仍能看到很清晰的干涉条纹.提示:要相互平行。

致”,两个偏振片方向为了满足“振动方向一致,相位差恒定。

频率相同,振动方向一件:两束光必须满足相干条为了看到清晰的条纹,2. 要使一束线偏振光通过偏振片之后振动方向转过90°,至少需要让这束光通过_____2_____块理想偏振片.在此情况下,透射光强最大是原来光强的___1/4_____倍 。

提示:如图P 2P 1S 1S 2S3. 在以下五个图中,前四个图表示线偏振光入射于两种介质分界面上,最后一图表示入射光是自然光.n 1、n 2为两种介质的折射率,图中入射角i 0=arctg (n 2/n 1),i ≠i 0.试在图上画出实际存在的折射光线和反射光线,并用点或短线把振动方向表示出来.提示:作图时注意细节。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

)5(选择填空题高中物理竞赛模拟试题《波动光学》一、选择题、填空题1. 在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中:【 C 】(A) 传播的路程相等,走过的光程相等; (B) 传播的路程相等,走过的光程不相等;(C) 传播的路程不相等,走过的光程相等;(D) 传播的路程不相等,走过的光程不相等。

2. 如图,如果S 1、S 2 是两个相干光源,它们到P 点的距离分别为r 1、r 2和,路径S 1P 垂直穿过一块厚度为t 1,折射率为n 1的介质板,路径S 2P 垂直穿过厚度为t 2,折射率为n 2的另一介质板,其余部分可看作真空,这两条路径的光程差等于:【 B 】1122111222111222111222t n t n )D (;)t n r ()t n r ()C (];t )1n (r []t )1n (r [)B ();t n r ()t n r ()A (-----+--++-+3. 如图所示,在双缝干涉实验中SS 1 = SS 2用波长为λ的光照射双缝S 1、S 2,通过空气后在屏幕E 上形成干涉条纹,已知P 点处为第三级明条纹,则S 1、S 2到P 点的光程差为λ3。

若将整个装置放于某种透明液体中,P 点为第四级明条纹,则该液体的折射率33.1n =。

4. 一双缝干涉装置,在空气中观察时干涉条纹间距为1.0mm ,若整个装置放在水中,干涉条纹的间距将为mm 75.0。

(设水的折射率为4/3)5. 如图所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜厚度为e ,而且n n n 123<>,λ1为入射光在折射率为n 1的媒质中的波长,则两束反射光在相遇点的位相差为: 【 C 】)A (112n e n 2λπ; )B ( πλπ+111n e n 4;)C ( πλπ+112n e n 4; )D ( 112n en 4λπ)2(选择填空题)3(选择填空题)7(选择填空题6. 两块平玻璃构成空气劈尖,左边为棱边,用单色平行光垂直入射,若上面的平玻璃慢慢地向上平移,则干涉条纹:【 E 】(A) 向棱边方向平移,条纹间隔变小;(B) 向远离棱的方向平移,条纹间隔不变; (C) 向棱边方向平移,条纹间隔变大; (D) 向远离棱的方向平移,条纹间隔变小; (E) 向棱边方向平移,条纹间隔不变。

7. 如图所示,一光学平板玻璃A 与待测工件B 之间形成空气劈尖,用波长λ=500 nm 的单色光垂直入射。

看到的反射光的干涉条纹如图所示。

有些条纹弯曲部分的顶点恰好与其右边条纹的直线部分相切。

则工件的上表面缺陷是: 【 B 】(A) 不平处为凸起纹,最大高度为500 nm ;(B) 不平处为凸起纹,最大高度为250 nm; (C) 不平处为凹槽,最大深度为500 nm ;(D) 不平处为凹槽,最大深度为250 nm8. 如图所示,用单色光垂直照射在观察牛顿环的装置上,当平凸透镜向上缓慢平移而远离平面玻璃时,可以观察到这些环状干涉条纹:【 B 】(A) 向右平移; (B) 向中心收缩; (C) 向外扩张; (D) 静止不动; (E) 向左平移9. 如图所示,平板玻璃和凸透镜构成牛顿环装置,全部浸入n=1.60的液体中,凸透镜可沿OO’移动,用波长λ=500 nm 的单色光垂直入射。

从上向下观察,看到中心是一个暗斑,此时凸透镜顶点距平板玻璃的距离最少是【 A 】(A) 78.1 nm ; (B) 74.4 nm ; (C) 156.3 nm ; (D) 148.8 nm ; (E) 0 10. 在牛顿环装置的平凸透镜和平板玻璃间充以某种透明液体,观测到第10个明环的直径由充液前的14.8 cm 变成充液后的12.7 cm ,则这种液体的折射率:36.1n =。

)8(选择填空题)9(选择填空题)2(计算题)1(计算题二、计算题11. 在双缝干涉的实验装置中,幕到双缝的距离D 远大于双缝之间的距离d 。

整个双缝装置放在空气中。

对于钠黄光nm 3.589=λ,产生的干涉条纹相邻两明纹的角距离(即相邻两明纹对双缝中心处的张角)为20.0。

(1)对于什么波长的光,这个双缝装置所得相邻两明纹的角距离将比用钠黄光测得的角距离大10%?(2)假想将此整个装置浸入水中(水的折射率n=1.33), 相邻两明纹的角距离有多大?解析:* 第k 级明条纹的位置:λk d Dx k =,Dx tg k k =θ 因为D>>d ,k k tg θθ≈由图中可以得到: 明条纹的角距离k 1k θθθ∆-=+,)x x (D 1k 1k -=+θ∆,dλθ∆=,θ∆λ=d 已知20.0=θ,如果22.0'=θ∆,入射光波长'd 'θ∆λ=,λθ∆θ∆λ''=,nm 2.648'=λ 将此整个装置浸入水中,光在水中的波长:nnm3.589'=λ,nm 1.443'=λ 相邻两明纹的角距离:θ∆λλθ∆''=,020.03.5891.443'⋅=θ∆,015.0'=θ∆12. 在折射率为n=1.68的平板玻璃表面涂一层折射率为n=1.38的MgF 2透明薄膜,可以减少玻璃表面的反射光。

若有波长nm 500=λ的单色光垂直入射,为了尽量减少反射,则MgF 2薄膜的最小厚度应是多少? 解析:* MgF 2透明薄膜上下两个表面反射光在相遇点的光程差:2en 2=δ(上下两个表面的反射光均有半波损失)。

要求反射最小,满足2)1k 2(en 22λ+=MgF 2薄膜的最小厚度:2min n 4e λ=将38.1n 2=和nm 500=λ带入得到:m 10058.9e 8min -⨯=)3(计算题13. 在双缝干涉实验中,单色光源S 0到两缝S 1、S 2的距离分别为l 1、l 2,并且λλ,3l l 21=-为入射光的波长,双缝之间的距离为d ,双缝到屏幕的距离为D ,如图,求:(1) 零级明纹到屏幕中央O 点的距离;(2) 相邻明条纹间的距离。

*解析: 两缝发出的光在相遇点的位相差:λπδϕϕϕ∆22010+-=根据给出的条件:λλπϕϕ322010⋅-=-所以,λπδπϕ∆26+-=明条纹满足:πϕ∆k 2=,πλπδπk 226=+-,λδ)3k (+=明条纹的位置:δd D x =,λ)3k (dDx += 令0k =,得到零级明条纹的位置:λdD3x 0=,零级明条纹在O 点上方。

相邻明条纹间的距离:λ∆dD x =14. 用真空中波长λ=589.3nm 的单色光垂直照射折射率为1.50的劈尖薄膜,产生等厚干涉条纹,测得相邻暗条纹间距cm 15.0l =,那么劈尖角θ应是多少?* 解析:劈尖薄膜干涉中,条纹间距θ∆sin e l k=暗条纹的光程差满足:2)1k 2(21ne 2k λλ+=+,λk ne 2k = 暗条纹的厚度差:n 2e k λ∆=,劈尖角:nl2l e sin k λ∆θ== rad 103.1sin 4-⨯=≈θθ)5(计算题15. 用波长为λ的平行单色光垂直照射图中所示的装置,观察空气薄膜上下表面反射光形成的等厚干涉条纹,试在图中所示的装置下方的方框内画出相应的条纹,只画暗条纹,表示出它们的形状,条数和疏密。

* 解析:劈尖空气薄膜干涉中,暗条纹的光程差满足:2)1k 2(21e 2λλ+=+,λk e 2=B 点干涉级数:λλk 472=⋅,5.3k =即:B 点不是暗条纹。

明条纹的光程差满足:λλk 21e 2=+,λ)21k (e 2-=, 将B 点厚度带入得到:4k =。

说明B 点是第4级明条纹。

暗条纹的形状,条数和疏密如图所示。

16. 在牛顿环装置的平凸透镜和平板玻璃之间充满折射率n=1.33的透明液体(设平凸透镜和平板玻璃的折射率都大于1.33),凸透镜的曲率半径为300cm ,波长λ=650nm 的平行单色光垂直照射到牛顿环装置上,凸透镜的顶部刚好与平玻璃板接触。

求:(1) 从中心向外数第十个明环所在处液体厚度e 10;(2) 第十个明环的半径r 10。

* 解析;在牛顿环干涉实验中明环的光程差满足:λλk 21ne 2=+明环所在处液体的厚度:λn41k 2e -=第十个明环所在处液体厚度:λn41102e 10-⋅=,m 103.2e 610-⨯=由R2r e 2=,可以得到第10 个明环的半径:1010Re 2r =,m 1072.3r 310-⨯=。

相关文档
最新文档