第八章直线与圆的方程练习卷
直线与圆的方程 检测卷含答案
直线与圆的方程检测卷一、选择题(本题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.点在直线上,则直线的倾斜角为A.B.C.D.【答案】C2.已知直线l:在轴和轴上的截距相等,则的值是A.1 B.-1C.2或1 D.-2或1【答案】C【解析】当时,直线方程为,显然不符合题意,当时,令时,得到直线在轴上的截距是,令时,得到直线在轴上的截距为,根据题意得,解得或,故选C.【名师点睛】本题主要考查了直线方程的应用及直线在坐标轴上的截距的应用,其中正确理解直线在坐标轴的截距的概念,利用直线方程求得直线的截距是解答的关键,着重考查了推理与运算能力,以及分类讨论的数学思想.3.直线截圆所得弦的长度为4,则实数的值是A.-5 B.-4C.-6 D.【答案】A【名师点睛】本题主要考查了直线与圆的位置关系以及弦长公式的应用,其中根据圆的方程,求得圆心坐标和半径,合理利用圆的弦长公式列出方程求解是解答的关键,着重考查了推理与运算能力.4.若3π2π2α<<, A .第一象限 B .第二象限 C .第三象限D .第四象限【答案】B【解析】令0x =,得sin 0y α=<,令0y =,得cos 0x α=>,直线过()()0,sin cos ,0αα,两点,因而直线不过第二象限.本题选择B 选项.5.已知直线()()1:424240l m x m y m --++-=与()()2:1210l m x m y -+++=,则“2m =-”是“12l l ∥”的 A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件【答案】B【解析】2m =-时,可得12:680,:310,l x l x --=-+=所以12l l ∥;12l l ∥时,可得()()()()422410m m m m -+++-=,解得2m =或2m =-,2m ∴=-是12l l ∥的充分不必要条件,故选B.6.若圆C 与y 轴相切于点()0,1P ,与x 轴的正半轴交于,A B 两点,且2AB =,则圆C 的标准方程是A .(()2212x y +++= B .()(2212x y +++=C .(()2212x y +-=D .()(2212x y -+=【答案】C【解析】设AB 中点为D ,则1AD CD ==,∴)1r AC C==,故选C .7.若直线过点,斜率为1,圆上恰有3个点到的距离为1,则的值为 A . B .C .D .【答案】D【名师点睛】本题主要考查了直线与圆的位置关系的应用,解答是要注意直线与圆的位置关系的合理应用,同时注意数形结合法在直线与圆问题的中应用,着重考查了分析问题和解答问题的能力,属于基础题.8.若过点()0,1A -的直线l 与圆()2234x y +-=的圆心的距离记为d ,则d 的取值范围为A .[]0,4B .[]0,3 C .[]0,2D .[]0,1【答案】A【解析】由已知,点()0,1A -在圆()2234x y +-=外,当直线l 经过圆心()0,3时,圆心到直线l 的距离最小为0,圆心到点()0,1A -的距离,是圆心到直线l 的最大距离,此时4d ==,故选A.9.两圆222240x y ax a +++-=和2224140x y by b +--+=恰有三条公切线,若a ∈R ,b ∈R ,且0ab ≠,则2211a b+的最小值为 A .49 B .109C .1D .3【答案】C【名师点睛】解答本题的关键是准确理解题设中恰有三条切线这一信息,并进一步等价转化为“在2249a b +=,即224199a b +=的前提下,求2211a b +的最小值问题”.求解时充分借助题设条件,巧妙地将2249a b +=化为224199a b +=,再运用基本不等式从而使得问题的求解过程简捷、巧妙. 10.直线2(0)x y m m +=>与圆O :225x y +=交于A ,B 两点,若||2||OA OB AB +>,则实数m 的取值范围是 A .(,2)B .(2,)C .(,5)D .(2,)【答案】B【解析】设AB 中点为D ,则OD AB ⊥,∵2OA OB AB +>2x y m +=(0m >)与22:5O x y += 交于不同的两点A B 、,∴25OD < B.二、填空题(本题共4小题,每小题5分,共20分)11.求经过圆的圆心,且与直线平行的直线的一般式方程为________________. 【答案】【名师点睛】本题主要考查了直线的位置关系的应用,以及圆的标准方程的应用,其中解答中根据两直线的位置关系,合理设出方程是解答的关键,着重考查了推理与运算能力.12.已知直线:20l x y +-=和圆22:12120C x y x y m +--+=相切,则m 的值为___________.【答案】22【解析】由题设知圆的圆心坐标与半径分别为()6,6,C r =,则圆心()6,6C 到直线20x y +-=的距离d ===,解之得22m =,应填22.13.如果圆()()228x a y a -+-=上总存在到原点的距离为的点,则实数的取值范围是__________.【答案】[3,1][1,3]-- 【解析】圆心到原点的距离为,圆()()228x a y a -+-=上总存在到原点的距离为的点,则3a ≤≤≤≤,则或.14.设直线1y kx =+与圆2220x y x my ++-=相交于,A B 两点,若点,A B 关于直线:0l x y +=对称,则AB =__________.【解析】因为点,A B 关于直线:0l x y +=对称,所以直线1y kx =+的斜率1k =,即1y x =+,圆心(−1,2m)在直线:0l x y +=上,所以2m =.所以圆心为(−1,1),圆心到直线1y x =+的距离为2d =,【名师点睛】(1)圆上两点关于直线对称,则直线过圆心;(2)两点关于直线对称,两点所在的直线与该直线垂直,且两点的中点在该直线上.三、解答题(本大题共2小题,共20分.解答应写出文字说明、证明过程或演算步骤) 15.已知直线:43100l x y ++=,半径为2的圆与相切,圆心在轴上且在直线的上方.(1)求圆的标准方程;(2)过点的直线与圆交于两点(在轴上方),问在轴正半轴上是否存在点,使得轴平分?若存在,请求出点的坐标;若不存在,请说明理由.【答案】(1)224x y +=;(2)当点N 的坐标为()4,0时,能使得ANM BNM ∠=∠成立.【解析】(1)设圆心()5,0()2C a a >-,则4102055a a a +=⇒==-或(舍去).所以圆C 的标准方程为224x y +=.16.斜率为的直线与抛物线交于两点,且的中点恰好在直线上.(1)求的值; (2)直线与圆交于两点,若,求直线的方程.【答案】(1)1;(2)【解析】(1)设直线l 的方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2),由22y kx m x y=+⎧⎨=⎩得,x 2-2kx -2m =0, ∆=4k 2+8m >0,x 1+x 2=2k ,x 1x 2=-2m ,因为AB 的中点在x =1上,所以x1+x2=2.即2k=2,所以k=1.。
直线与圆的方程练习题
直线与圆的方程练习题直线与圆是解析几何中的基本概念,掌握它们的方程及其应用是解题的关键。
下面将以几道习题为例,来进行练习。
1. 已知直线L过点A(3,4),斜率为2,求直线L的方程。
解析:由题目可知,直线L经过点A(3,4),斜率为2。
我们可以运用直线的点斜式来求解。
直线的点斜式方程为:y - y₁ = m(x - x₁)其中m为直线的斜率,(x₁, y₁)为直线上的已知点。
代入已知条件,得到直线L的方程为:y - 4 = 2(x - 3)化简得:y - 4 = 2x - 6最终方程为:y = 2x - 22. 已知圆O的圆心为(2,3),半径为5,求圆O的方程。
解析:圆的方程可以通过圆心和半径来确定。
我们可以利用圆的标准方程来求解。
圆的标准方程为:(x - a)² + (y - b)² = r²其中(a,b)为圆心的坐标,r为圆的半径。
代入已知条件,得到圆O的方程为:(x - 2)² + (y - 3)² = 5²化简得:(x - 2)² + (y - 3)² = 25最终方程为:x² - 4x + y² - 6y + 5 = 03. 已知直线L的方程为2x - 3y + 7 = 0,圆O的方程为x² + y² - 6x + 4y + 3 = 0,求直线L与圆O的交点坐标。
解析:直线与圆的交点坐标可以通过联立直线与圆的方程求解。
我们可以通过消元法来求解。
将直线L的方程转化为一般形式:2x - 3y = -7代入圆O的方程,得到联立方程组:x² + y² - 6x + 4y + 3 = 02x - 3y = -7通过联立方程组,我们可以求得直线L与圆O的交点坐标。
首先,将直线L的方程中的x表示为y的函数:x = (3y - 7) / 2将x代入圆O的方程中,得到二次方程:(3y - 7)² / 4 + y² - 6(3y - 7)/2 + 4y + 3 = 0化简得:(9y² - 42y + 49 + 4y² - 12y - 42 + 16y + 12) / 4 + y² - 6(3y - 7)/2 + 4y + 3 = 0整理得:13y² - 36y + 30 = 0通过求解二次方程,我们可以得到y的值,再带入x = (3y - 7) / 2,即可求得直线L与圆O的交点坐标。
第八章直线和圆的方程
4.直线ax+(1-a)y=3与直线(a-1)x+(2a+3)y=2垂直,则a的值为()
A. 或0 B.-3或1 C.-3 D.1
5.过点(0,1)且与直线y=2x+3平行的直线方程为()
A.x+2y-2=0 B.x-2y+2=0 C.2x-y+1=0 D.2x-y-1=0
6.已知点A(-3,4),M(1,-3),则点A关于点M的中心对称点的坐标是()
11.已知直线l:y=2x-1,圆C:x +y =4,直线与圆的位置关系是()
A.相离B.相切C.相交且不过圆心D.相交且过圆心
12.已知圆x +y +ax+by-6=0的圆心在点(3,4)则圆的半径为()
A. B. C.5 D.
13.圆x +y =1上的点到直线3x+4y-25=0的距离的最小值是()
A.6 B.4 C.5 D.1
14.直线方程为Ax+By+C=0,当A>0,B>0,C>0时,此直线必经过()
A.第一、二、三象限B.第二、三、四象限
C.第一、二、四象限D.第一、三、四象限
15.与两坐标轴距离相等的点的轨迹方程是()
A.x+y=0 B.x-y=0 CБайду номын сангаасx -y =0 D.y=
二、填空题
A. 或 B. 或
C. 或 D. 或
7.已知点P(1,-4),Q(3,2),那么以PQ为直径的圆的方程为()
A.(x-2) +( ) =20 B.( ) +( ) =20
C.( ) +( ) =10 D.( ) +( ) =10
中职数学基础模块下册第八章直线和圆的方程单元测试卷含参考答案
中职数学基础模块下册第八章直线和圆的方程单元测试卷含参考答案一、选择题:(每题3分,共30分)1.已知点M(2,-3)、N(-4,5),则线段MN 的中点坐标是( )A .(3,-4)B .(-3,4)C .(1,-1) D.(-1,1)2.直线过点A( -1,3)、B(2,-2),则直线的斜率为( )A .-53B .-35C . -1 D. 13.下列点在直线2x-3y-6=0上的是( )A.(2,-1)B. (0,2)C. (3,0)D.(6,-2)4.已知点A(2,5),B(-1,1),则|AB |=( )A .5B .4 C. 3 D .175.直线x+y+1=0的倾斜角为( )A. 45º B ,90º C .135º D .180º6.直线2x+3y+6=0在y 轴上的截距为( ).A .3B .2C .-3D .-27.经过点P(-2,3),倾斜角为45º的直线方程为( )A. x+y+5=0B.x-y+5=0C .x-y-5=0 D. x+y-5=08.如果两条不重合直线1l 、2l 的斜率都不存在,那么( )A .1l 与2l 重合B .1l 与2l 相交C .1l //2l D.无法判定9.已知直线y= -2x-5与直线y=ax-4垂直,则a =( )A .-2B . -21C .2D .2110.下列直线与3x-2y+5=0垂直的是( );A . 2x-3y-4=0B .2x+3y-4=0 C.3x+2y-7=0 D .6x-4y+8=011.直线2x-y+4=0与直线x-y+5=0的交点坐标为( ).A .(1,6)B .(-1,6)C .(2,-3)D .(2,3)12.点(5,7)到直线4x-3y-1=0的距离等于( )A .52B .252C .58 D .8 13.已知圆的一般方程为0422=-+y y x ,则圆心坐标与半径分别是( )A. (0,2), r=2 B .(0,2), r=4C .(0,-2), r=2D .(0,-2), r=414.直线x+y=2与圆222=+y x 的位置关系是( )A.相交 B .相切 C .相离 D .不确定15.点A(l ,3),B (-5,1),则以线段AB 为直径的圆的标准方程是( )A .10)2()2(22=-++y xB .10)2()2(22=-++y xC. 10)3()1(22=-+-y x D .10)3()1(22=-+-y x16.若点P(2,m)到直线3x-4y+2=0的距离为4,则m 的值为( )A. m=-3 B . m=7 C . m=-3或m=7 D . m=3或m=7二、填空题17.平行于x 轴的直线的倾斜角为 ;18.平行于y 轴的直线的倾斜角为 ;19.倾斜角为60º的直线的斜率为 ;20.若点(2,-3)在直线mx-y+5 =0上,则m= ;21.过点(5,2),斜率为3的直线方程为:22.在y 轴上的截距为5,且斜率为4的直线方程为:23.将y-4=31(x —6)化为直线的一般式方程为:24.过点(-1,2)且平行于x 轴的直线方程为25.过点(O ,-3)且平行于直线2x+3y-4=0的直线方程是26.两条平行直线3x+4y-2=0和3x+4y+3=0的距离是27.已知直线1l :mx+2y-1=0与直线2l :x-y-l=0互相垂直,则m= ;28.圆心在点(0,2)且与直线x-2y+9 =0相切的圆的方程为29.圆086422=++-+y x y x 的圆心坐标为 ,半径为 。
中职数学:第八章 直线与圆的方程测试题(含答案)
中职数学:第八章直线与圆的方程测试题(含答案)第八章直线与圆的方程测试题班级。
姓名。
得分:选择题(共10题,每题10分)1、点(2,1)到直线4x-3y-1=0的距离等于(B)A、2/5.B、4/5.C、2.D、32、直线与x-y+3=0与圆(x-1)^2+(y-1)^2=1的位置关系是(C)A、相交。
B、相切。
C、相离。
D、无法判断3、求过三点O(0,0),M1 (1,1),M2(4,2)的圆的方程(A)A、x^2+y^2-8x+6y=。
B、x^2+y^2+8x+6y=。
C、(x-4)^2+(y-3)^2=25.D、(x+4)^2+(y+3)^2=254、已知直线l经过点M(2,-1),且与直线2x+y-1=0垂直,求直线l的方程(C)A、x-2y+4=0.B、2x-y-4=0.C、x-2y-4=0.D、2x-y+4=05、求经过点P(-2,4)、Q (0,2),并且圆心在x+y=0上的圆的方程(A)A、(x+2)^2+(y-2)^2=4.B、(x-2)^2+(y-2)^2=4.C、(x+2)^2+(y+2)^2=4.D、(x-2)^2+(y+2)^2=46、设圆过点(2,-1),又圆心在直线2x+y=0上,且与直线x-y-1=0相切,求该圆的方程(B)A、(x-1)^2+(y-2)^2=2或(x-9)^2+(y-18)^2=338.B、(x-1)^2+(y+2)^2=2或(x-9)^2+(y+18)^2=338.C、(x-2)^2+(y-1)^2=12或(x-18)^2+(y-9)^2=36.D、(x-1)^2+(y+2)^2=12或(x-9)^2+(y+18)^2=367、求以C(2,1)为圆心,且与直线2x+5y=0相切的圆的方程(C)A、(x-2)^2+(y-1)^2=1/29.B、(x+2)^2+(y+1)^2=1/29.C、(x-2)^2+(y-1)^2=81/29.D、(x+2)^2+(y+1)^2=81/298、设圆的圆心坐标为C(-1,2),半径r=5,弦AB的中点坐标为M(0,-1),求该弦的长度(D)A、√10.B、√15.C、2√10.D、2√159、求圆(x-3)^2+y^2=1关于点p(1,2)对称的圆的方程(B)A、(x-3)^2+(y-2)^2=1.B、(x+1)^2+(y-4)^2=1.C、(x+3)^2+(y+2)^2=1.D、(x-1)^2+(y+4)^2=1给定三角形ABC的三个顶点坐标A(4,5)。
直线与圆的方程测试卷(含答案)
直线与圆的方程测试卷(含答案) 单元检测(七) 直线和圆的方程一、选择题 (本大题共 12 小题,每小题 5 分,共 60 分)1.若直线 x+ay-a=0 与直线 ax-(2a-3)y-1=0 垂直,则 a 的值为()A。
2B。
-3 或 1C。
2 或 1D。
解析:当 a=0 时,显然两直线垂直;a≠0 时,则 -1/a=2a-3,解得 a=2.故选 C。
2.集合M={(x,y)|y=1-x^2,x、y∈R},N={(x,y)|x=1,y∈R},则M∩N 等于()A。
{(1,0)}B。
{y|0≤y≤1}C。
{1,0}D。
1/a解析:y=1-x^2 表示单位圆的上半圆,x=1 与之有且仅有一个公共点 (1,0)。
答案:A3.菱形 ABCD 的相对顶点为 A(1,-2),C(-2,-3),则对角线BD 所在直线的方程是…()A。
3x+y+4=0B。
3x+y-4=0C。
3x-y+1=0D。
3x-y-1=0解析:由菱形的几何性质,知直线 BD 为线段 AC 的垂直平分线,AC 中点O(-1/2,-5/2),斜率k=2/3,在BD 上,k=-3,代入点斜式即得所求。
答案:A4.若直线 3x+y=1 经过点M(cosα,sinα),则……()A。
a^2+b^2≤1B。
a^2+b^2≥1C。
a^2+b^2≤1/2D。
a^2+b^2≥1/2解析:直线 3x+y=1 经过点M(cosα,sinα),我们知道点 M在单位圆上,此问题可转化为直线 x/a+y/b=1 和圆 x^2+y^2=1有公共点,圆心坐标为 (0,0),由点到直线的距离公式,有|a/b-cosα/sinα|=|1/b|,即a^2+b^2≤1.答案:A5.当圆 x^2+y^2+2x+ky+k^2=0 的面积最大时,圆心坐标是()A。
(0,-1)B。
(-1,0)C。
(1,-1)D。
(-1,1)解析:将圆的方程化为标准形式(x+1)^2+(y-1)^2=4-k^2/4,由于圆心坐标为 (-1,1),故圆心到直线 y=1 的距离最大,即k=0,此时 r^2=4,面积最大。
《直线和圆的方程》练习与答案
《直线和圆的方程》练习与答案一、单项选择题1.若过两点A (4,y ),B (2,-3)的直线的倾斜角为45°,则y 等于()A.-32B.32C.-1D.1答案C解析由已知,得y +34-2=tan 45°=1.故y =-1.2.直线2x +y +1=0与直线x -y +2=0的交点在()A.第一象限B.第二象限C.第三象限D.第四象限答案B解析x +y +1=0,-y +2=0,=-1,=1.∴交点(-1,1)在第二象限.3.已知直线l 经过第二、四象限,则直线l 的倾斜角α的取值范围是()A.0°≤α<90°B.90°≤α<180°C.90°<α<180°D.0°<α<180°答案C解析直线倾斜角α的取值范围是0°≤α<180°,又直线l 经过第二、四象限,所以直线l 的倾斜角α的取值范围是90°<α<180°.4.设点A 在x 轴上,点B 在y 轴上,AB 的中点是P (2,-1),则|AB |等于()A.5B.42C.25D.210答案C解析设A (x ,0),B (0,y ),由中点公式得x =4,y =-2,则由两点间的距离公式得|AB |=42+-22=20=2 5.5.已知直线2x +my -1=0与直线3x -2y +n =0垂直,垂足为(2,p ),则p +m +n 的值为()A.-6B.6C.4D.10答案A解析因为直线2x +my -1=0与直线3x -2y +n =0垂直,所以2×3+(-2)m =0,解得m =3,又垂足为(2,p ),p-1=0,p+n=0,=-1,=-8,则p+m+n=-1+3+(-8)=-6.6.设P,Q分别是3x+4y-10=0与6x+8y+5=0上的任意一点,则|PQ|的最小值为() A.3B.6C.95D.52答案D解析两条直线的方程分别为3x+4y-10=0与6x+8y+5=0,因为36=48≠-105,直线6x+8y+5=0可化为3x+4y+52=0,所以两平行线的距离即为|PQ|的最小值即d=|-10-52|32+42=52.二、多项选择题7.下列说法正确的是()A.直线x-y-2=0与两坐标轴围成的三角形的面积是2B.点(0,2)关于直线y=x+1的对称点为(1,1)C.过(x1,y1),(x2,y2)两点的直线方程为y-y1y2-y1=x-x1x2-x1D.经过点(1,1)且在x轴和y轴上截距都相等的直线方程为x+y-2=0答案AB解析A选项,直线在横、纵坐标轴上的截距分别为2,-2,所以围成三角形的面积是2,故正确;By=x+1上,且(0,2),(1,1)连线的斜率为-1,故正确;C选项,需要条件y2≠y1,x2≠x1,故错误;D选项,还有一条截距都为0的直线y=x,故错误.8.已知直线l:3x-y+1=0,则下列结论正确的是()A.直线l的倾斜角是π6B.若直线m:x-3y+1=0,则l⊥mC.点(3,0)到直线l的距离是2D.过(23,2)与直线l 平行的直线方程是3x -y -4=0答案CD解析对于A,直线l :3x -y +1=0的斜率k =tan θ=3,故直线l 的倾斜角是π3,故A 错误;对于B,直线l 的斜率k =3,直线m :x -3y +1=0的斜率k ′=33,kk ′=1≠-1,故直线l 与直线m 不垂直,故B 错误;对于C,点(3,0)到直线l 的距离d =|3×3-0+1|32+-12=2,故C 正确;对于D,过(23,2)与直线l 平行的直线方程是y -2=3(x -23),整理得3x -y -4=0,故D 正确.三、填空题9.已知点A (1,2),B (2,1),则线段AB 的长为________,过A ,B 两点直线的倾斜角为________.答案23π4解析根据两点之间的距离公式,得线段AB 的长为1-22+2-12=2,根据斜率公式,得过A ,B 两点直线的斜率为k AB =2-11-2=-1,又因为直线的倾斜角的范围为[0,π),所以过A ,B 两点直线的倾斜角为3π4.10.已知直线l 1经过点A (0,-1)和点-4a ,1l 2经过点M (1,1)和点N (0,-2).若l 1与l 2没有公共点,则实数a 的值为________.答案-6解析直线l 2经过点M (1,1)和点N (0,-2),∴2l k =1+21-0=3,∵直线l 1经过点A (0,-1)和点-4a ,1∴1l k =2-4a=-a 2,∵l 1与l 2没有公共点,则l 1∥l 2,∴-a2=3,解得a =-6.11.已知点O (0,0),A (4,0),B (0,4).若从点P (1,0)射出的光线经直线AB 反射后过点Q (-2,0),则反射光线所在直线的方程为____________;若从点M (m ,0),m ∈(0,4)射出的光线经直线AB 反射,再经直线OB 反射后回到点M ,则光线所经过的路程是________.(结果用m 表示)答案x -2y +2=02m 2+32解析设点P (1,0)关于直线AB 的对称点为P ′(x 0,y 0),直线AB :x +y -4=0,-1=-1,+y 0+02-4=0,解得x 0=4,y 0=3,故P ′(4,3),又Q (-2,0),∴直线P ′Q :y -0=3-04--2(x +2),即反射光线所在直线方程为x -2y +2=0.设点M (m ,0),m ∈(0,4)关于y 轴的对称点为P ″(-m ,0),关于直线AB 的对称点为P(x 1,y 1),-1=-1,+y 1+02-4=0,解得x 1=4,y 1=4-m ,故P (4,4-m ).故|P ″P|=4+m2+4-m2=2m 2+32.12.若动点A (x 1,y 1),B (x 2,y 2)分别在直线l 1:2x +y -7=0和l 2:2x +y -5=0上移动,则AB 的中点到原点的距离的最小值为________.答案655解析设AB 的中点坐标为(x ,y ),因为A (x 1,y 1),B(x 2,y 2),=x 1+x 22,=y 1+y 22,又A (x 1,y 1),B (x 2,y 2)分别在直线l 1:2x +y -7=0和l 2:2x +y -5=0上移动,x1+y1-7=0,x2+y2-5=0,两式相加得2(x1+x2)+(y1+y2)-12=0,所以4x+2y-12=0,即2x+y-6=0,即为AB中点所在直线方程,因此原点到直线2x+y-6=0的距离,即为AB的中点到原点的距离的最小值,由点到直线的距离公式,可得距离的最小值为|-6|4+1=655.四、解答题13.已知四边形ABCD的顶点A(m,n),B(5,-1),C(4,2),D(2,2),求m和n的值,使四边形ABCD为直角梯形.解(1)如图,当∠A=∠D=90°时,∵四边形ABCD为直角梯形,∴AB∥DC且AD⊥AB.∵kDC=0,∴m=2,n=-1.(2)如图,当∠A=∠B=90°时,∵四边形ABCD为直角梯形,∴AD∥BC,且AB⊥BC,∴kAD=kBC,kAB·kBC=-1.=2--14-5,·2--14-5=-1,解得m=165,n=-85.综上所述,m =2,n =-1或m =165,n =-85.14.已知直线l 过点(1,2),且在两坐标轴上的截距相等.(1)求直线l 的方程;(2)当直线l 的截距不为0时,求A (3,4)关于直线l 的对称点.解(1)当直线l 在两坐标轴上的截距相等且不为零时,可设直线l 的方程为x +y +b =0,将点(1,2)代入直线l 的方程,得1+2+b =0,解得b =-3,此时直线l 的方程为x +y -3=0;当直线l 过原点时,可设直线l 的方程为y =kx ,将点(1,2)代入直线l 的方程,得k =2,此时直线l 的方程为y =2x ,即2x -y =0.综上所述,直线l 的方程为x +y -3=0或2x -y =0.(2)当直线l 的截距不为0时,直线l 的方程为x +y -3=0,设点A 关于直线l 的对称点B 的坐标为(a ,b ),则线段AB 的中点为M 在直线l 上,则a +32+b +42-3=0,整理得a +b +1=0,又直线AB ⊥l ,且直线l 的斜率为-1,所以直线AB 的斜率为k AB =b -4a -3=1,整理得b =a +1,+b +1=0,=a +1,=-1,=0,因此,点A (3,4)关于直线l 的对称点为(-1,0).15.已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0.求:(1)顶点C 的坐标;(2)直线BC 的方程.解(1)因为AC 边上的高BH 所在直线方程为x -2y -5=0,所以k AC =-2,又因为点A (5,1),所以AC 边所在直线方程为2x +y -11=0.又因为AB 边上的中线CM 所在直线方程为2x -y -5=0,x +y -11=0,x -y -5=0,=4,=3,所以C (4,3).(2)设B (m ,n ),则AB 的中点MCM 上,所以2×5+m 2-1+n2-5=0,即2m -n -1=0.又点B (m ,n )在高BH 所在直线上,所以m -2n -5=0.-2n -5=0,m -n -1=0,=-1,=-3.所以B (-1,-3).所以直线BC 的方程为y +33+3=x +14+1,即6x -5y -9=0.。
专题08 直线和圆的方程(解答题)(11月)(人教A版2021)(原卷版)
专题08 直线和圆的方程(解答题)1.直角坐标系xOy 中,点A 坐标为()2,0-,点B 坐标为()4,3,点C 坐标为()1,3-,且()AM t AB t R =∈.(1)若CM AB ⊥,求t 的值;(2)当01t ≤≤时,求直线CM 的斜率k 的取值范围.2.已知ABC 的顶点()5,1A ,边AB 上的中线CM 所在直线方程为250x y --=,边AC 上的高BH 所在直线方程为250x y --=,(1)求顶点C 的坐标;(2)求ABC 的面积.3.如图所示,在平面直角坐标系中,已知矩形ABCD 的长为3,宽为2,边,AB AD 分别在x 轴、y 轴的正半轴上,点A 与坐标原点重合.将矩形折叠,使点A 落在线段DC 上,已知折痕所在直线的斜率为12-.(1)求折痕所在的直线方程;(2)若点P 为BC 的中点,求PEF 的面积.4.已知圆C 过点(4,2)A ,()1,3B ,它与x 轴的交点为()1,0x ,()2,0x ,与y 轴的交点为()10y ,,()20,y ,且12126x x y y +++=.(1)求圆C 的标准方程;(2)若(3,9)A --,直线:20l x y ++=,从点A 发出的一条光线经直线l 反射后与圆C 有交点,求反射光线所在的直线的斜率的取值范围.5.已知圆O 圆心为坐标原点,半径为43,直线l :)4y x =+交x 轴负半轴于A 点,交y 轴正半轴于B 点(1)求BAO ∠(2)设圆O 与x 轴的两交点是1F ,2F ,若从1F 发出的光线经l 上的点M 反射后过点2F ,求光线从1F 射出经反射到2F 经过的路程;(3)点P 是x 轴负半轴上一点,从点P 发出的光线经l 反射后与圆O 相切.若光线从射出经反射到相切经过的路程最短,求点P 的坐标.6.一条光线从点()6,4P 射出,与x 轴相交于点()2,0Q ,经x 轴反射后与y 轴交于点H . (1)求反射光线QH 所在直线的方程;(2)求P 点关于直线QH 的对称点P'的坐标.7.已知直线l :()120kx y k k R -++=∈.(1)证明:直线l 过定点;(2)若直线l 不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,O 为坐标原点,设AOB ∆的面积为S ,求S 的最小值及此时直线l 的方程.8.已知直线1:3470l x y +-=与2:3480l x y ++=.(1)若()11,A x y 、()22,B x y 两点分别在直线1l 、2l 上运动,求AB 的中点D 到原点的最短距离;(2)若()2,3M ,直线l 过点M ,且被直线1l 、2l 截得的线段长为l 的方程. 9.已知圆22:(3)(4)4C x y -+-=.(1)若直线l 过点(2,3)A 且被圆C 截得的弦长为l 的方程;(2)若直线l 过点(1,0)B 与圆C 相交于P ,Q 两点,求CPQ ∆的面积的最大值,并求此时直线l 的方程.10.(1)已知直线l 过点()3,4P -,若直线l 在两坐标轴上的截距之和为12,求直线l 的一般式方程;(2)已知直线l 过点()3,2P 且与x 轴,y 轴的正半轴相交于A ,B 两点,求ABO 面积最小值及这时直线l 的一般式方程;(3)已知直线l 经过点()2,2P -,且与第一象限的平分线(0)y x x =≥,y 轴(原点除外)分别交于A ,B 两点,直线l ,射线(0)y x x =≥,y 轴围成的三角形OAB 的面积为12,则符合要求的直线共有几条,请说明理由.11.设集合L ={|l 直线l 与直线3y x =相交,且以交点的横坐标为斜率}.(1)是否存在直线0l 使0l L ∈,且0l 过点()1,5,若存在,请写出0l 的方程;若不存在,请说明理由;(3)设(0,)a ∈+∞,点()3,P a -与集合L 中的直线的距离最小值为()f a ,求()f a 的解析式.12.已知直线:20l x y --=和点(1,1),(1,1)A B -,(1)直线l 上是否存在点C ,使得ABC 为直角三角形,若存在,请求出C 点的坐标;若不存在,请说明理由;(2)在直线l 上找一点P ,使得APB ∠最大,求出P 点的坐标.13.已知过点(,)P m n 的直线l 与直线:240l x y '++=垂直.(1) 若12m =,且点P 在函数11y x=-的图象上,求直线l 的一般式方程;14.已知直线1:21l y x =-,2:1l y x =-+的交点为P ,求(1)过点P 且与直线32y x =-+平行的直线l 的方程;(2)以点P 为圆心,且与直线3410x y ++=相交所得弦长为125的圆的方程. 15.(1)一条直线经过()2,3A -,并且它的斜率是直线y x =斜率的2倍,求这条直线方程; (2)求经过两条直线280x y +-=和210x y -+=交点,且平行于直线4370x y --=的直线方程.16.求圆心在直线30x y -=上,与x 轴相切,被直线0x y -=截得的弦长的圆的方程.17.(1)求圆221:10C x y +=的切线方程,使得它经过点(2M (2)圆()()222:122C x y ++-=的切线在x y 、轴上截距相等,求切线方程 18.已知圆心在直线270x y --=上的圆C 与y 交于两点()04A -,,()02B -, (1)求圆C 的标准方程(2)求圆C 上的点到直线210x y --=距离的最大值和最小值19.求圆221:10100C x y x y +--=与圆2226240C x y x y +-+-=:的公共弦长.20.已知圆22:414450C x y x y +--+=.(1)求圆的圆心C 的坐标和半径长;(2)若直线7:2l y x =与圆C 相交于A B 、两点,求AB 的长; 21.已知圆1C 与y 轴相切于点()03,,圆心在经过点()2,1与点()2,3--的直线l 上 (1)求圆1C 的方程;(2)若圆1C 与圆2C :226350x y x y +--+=相交于M 、N 两点,求两圆的公共弦MN的长.22.已知圆1C 过点1)-,且圆心在直线1y =,圆222:420C x y x y +-+=.(1)求圆1C 的标准方程;(2)求圆1C 与圆2C 的公共弦长;23.已知圆C 的圆心在x 轴上,且经过点1,0,()(,2)1A B -.(1)求圆C 的标准方程;(2)过点(0,2)P 的直线l 与圆C 相交于,M N 两点,且||MN =l 的方程. 24.已知点(2,)P a (0a >)在圆C :22(1)2x y -+=上.(1)求P 点的坐标;(2)求过P 点的圆C 的切线方程.25.已知直线1l ,2l 的方程分别为20x y -=,230x y -+=,且1l ,2l 的交点为P . (1)求P 点坐标;(2)若直线l 过点P ,且与x ,y 轴正半轴围成的三角形面积为92,求直线l 的方程. 26.圆C 经过点()2,1A -,和直线1x y +=相切,且圆心在直线2y x =-上.(1)求圆C 的方程;(2)圆内有一点52,2B ⎛⎫- ⎪⎝⎭,求以该点为中点的弦所在的直线的方程. 27.ABC 中,(0,1)A ,AB 边上的高线方程为240x y +-=,AC 边上的中线方程为230x y +-=,求,,AB BC AC 边所在的直线方程.28.根据下列条件求直线方程:(1)已知直线过点(2,2)P -且与两坐标轴所围成的三角形的面积为1;(2)已知直线过两直线3210x y -+=和340x y ++=的交点,且垂直于直线340x y ++=.29.已知直线1:0l x y -=,2:230l x y +-=,3:240l ax y -+=.(1)若点P 在1l 上,且到直线2l 的距离为,求点P 的坐标;(2)若2l //3l ,求2l 与3l 的距离.30.如图,在ABC 中,(5,2)A -,(7,4)B ,且AC 边的中点M 在y 轴上,BC 的中点N 在x 轴上.(1)求点C 的坐标;(2)求ABC 的面积.31.已知点(5,1)A 关于x 轴的对称点为B ,关于原点的对称点为C .(1)求ABC 中过AB ,BC 边上中点的直线方程;(2)求AC 边上高线所在的直线方程.32.已知直线1:10l ax y a +++=与22(:1)30l x a y +-+=.(1)当0a =时,求直线1l 与2l 的交点坐标;(2)若12l l ,求a 的值.33.已知直线l 的方程为210x y -+=.(1)求过点()3,2A ,且与直线l 垂直的直线1l 方程;(2)求过l 与1l 的交点B ,且倾斜角是直线l 的一半的直线2l 的方程.34.已知点(1,2),(1,4),(5,2)A B C -,求ABC ∆的边AB 上的中线所在的直线方程.35.已知ABC ∆的顶点坐标为(1,5)A -,(2,1)B --,(4,3)C .(1)求AB 边上的高线所在的直线方程;(2)求ABC ∆的面积.36.已知直线()():20l m n x m n y m n ++++-=及点()4,5P(1)证明直线l 过某定点,并求该定点的坐标(2)当点P 到直线l 的距离最大时,求直线l 的方程37.如图所示,在平行四边形OABC 中,点(1,3),(3,0)C A .(1)求直线AB 的方程;(2)过点C 作CD AB ⊥于点D ,求直线CD 的方程.38.求适合下列条件的直线方程:(1)已知()2,3A -,()3,2B -,求线段AB 的垂直平分线的方程;(2)求经过点()2,3A -并且在两个坐标轴上的截距相等的直线方程.39.已知ABC ∆的顶点()3,1A ,AB 边上的中线CM 所在直线方程为210x y --=,B ∠的角平分线BN 所在直线方程为20x y -=.(1)求顶点B 的坐标;(2)求直线BC 的方程.40.已知点(3,2)A ,直线l :210x y ++=.(1)求直线l 关于点A 对称的直线方程;(2)求直线l 与两坐标轴围成的三角形的重心坐标. 41.已知两个定点()0,4A ,()0,1B ,动点P 满足2PA PB =,设动点P 的轨迹为曲线E ,直线l :4y kx =-.(1)求曲线E 的轨迹方程;(2)若l 与曲线E 交于不同的C 、D 两点,且120COD ∠=︒(O 为坐标原点),求直线l 的斜率;42.已知圆C 经过点()31A ,和点()20B -,,且圆心C 在直线24y x =-上. (1)求圆C 的方程;(2)过点()14D -,的直线l 被圆C 截得的弦长为6,求直线l 的方程. 43.已知圆C : ()2215x y +-=,直线:10.l mx y m -+-=(1)求证:对m R ∈,直线l 与圆C 总有两个不同的交点;(2)设直线l 与圆C 交于,A B 两点,若AB l 的方程.44.某高速公路隧道内设双行线公路,其截面由一段圆弧和一个长方形的三边构成(如图所示).已知隧道总宽度AD 为,行车道总宽度BC 为,侧墙面高EA ,FD 为2m ,弧顶高MN 为5m .(1)建立适当的直角坐标系,求圆弧所在的圆的方程.(2)为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上的高度之差至少要有0.5m .请计算车辆通过隧道的限制高度是多少.45.已知圆1C 过点),()1,1-,且圆心在直线1y =上,圆222:420C x y x y +-+=. (1)求圆1C 的标准方程;(2)求圆1C 与圆2C 的公共弦长;(3)求过两圆的交点且圆心在直线241x y +=上的圆的方程.46.已知直线240x y +-=与圆224:20(0)C x y mx y m m+--=>相交于点M N 、,且||||OM ON =(O 为坐标原点).(1)求圆C 的标准方程;(2)若(0,2)A ,点P Q 、分别是直线20x y ++=和圆C 上的动点,求||||PA PQ +的最小值及求得最小值时的点P 的坐标.47.在平面直角坐标系xOy 中,已知圆C 的方程为2230x y x y +-+=,点()1,1P 是圆C 上一点.(1)若M ,N 为圆C 上两点,若四边形MONP 的对角线MN 的方程为20x y m ++=,求四边形MONP 面积的最大值;(2)过点P 作两条相异直线分别与圆C 相交于A ,B 两点,若直线PA ,PB 的斜率分别为1k ,2k ,且120k k +=,试判断直线AB 的斜率是否为定值,并说明理由.48.已知坐标平面上两个定点()0,4A ,()0,0O ,动点(),M x y 满足:3MA OM =. (1)求点M 的轨迹方程,并说明轨迹是什么图形;(2)记(1)中的轨迹为C ,过点1,12N ⎛⎫-⎪⎝⎭的直线l 被C所截得的线段的长为直线l 的方程.49.如图,圆22():21M x y -+=,点(1,)P t -为直线:1l x =-上一动点,过点P 引圆M 的两条切线,切点分别为,A B .(1)若1t =,求两条切线所在的直线方程;(2)求直线AB 的方程,并写出直线AB 所经过的定点的坐标;(3)若两条切线,PA PB 与y 轴分别交于S T 、两点,求ST 的最小值.50.已知动圆过定点(0,2)A ,且在x 轴上截得的弦长为4.(1)求动圆圆心M 的轨迹方程C ;(2)设不与x 轴垂直的直线l 与轨迹C 交手不同两点()11,P x y ,()22,Q x y .若12112+=x x ,求证:直线l 过定点.51.如图,已知圆22:(4)4M x y +-=,直线l 的方程为20x y -=,点P 是直线l 上一动点,过点P 作圆的切线PA 、PB ,切点为A 、B .(1)当P 的横坐标为165时,求APB ∠的大小; (2)求证:经过A 、P 、M 三点的圆N 必过定点,并求出所有定点的坐标.52.圆C :22(3)1x y +-=,点(,0)P t 为x 轴上一动点,过点P 引圆C 的两条切线,切点分别为M ,N .(1)若1t =,求切线和直线MN 的方程;(2)若两条切线PM ,PN 与直线1y =分别交于A ,B 两点,求ABC 面积的最小值.53.已知两个定点A (0,4),B (0,1),动点P 满足|P A |=2|PB |,设动点P 的轨迹为曲线E ,直线l :y =kx ﹣4.(1)求曲线E 的轨迹方程;(2)若l 与曲线E 交于不同的C 、D 两点,且120COD ∠=︒(O 为坐标原点),求直线l 的斜率;(3)若k =1,Q 是直线l 上的动点,过Q 作曲线E 的两条切线QM 、QN ,切点为M 、N ,探究:直线MN 是否过定点,若存在定点请写出坐标,若不存在则说明理由.54.已知ABC 的顶点()45A AB -,,边上的中线CM 所在直线方程为450x y AC --=,边上的高BH 所在直线方程为410x y --=,求:(1)顶点C 的坐标;(2)直线BC 的方程.55.已知三角形的三个顶点()2,0A -,()4,4B -,()0,2C .(1)求线段BC 的垂直平分线所在直线方程;(2)求过AB 边上的高所在的直线方程;56.已知直线l 过点P (2,3)且与定直线l 0:y =2x 在第一象限内交于点A ,与x 轴正半轴交于点B ,记AOB 的面积为S (O 为坐标原点),点B (a ,0).(1)求实数a 的取值范围;(2)求当S 取得最小值时,直线l 的方程.57.在平面直角坐标系xOy 中,已知点,,P B C 坐标分别为0,12,(),(),0(0,2),E 为线段BC 上一点,直线EP 与x 轴负半轴交于点A ,直线BP 与AC 交于点D .(1)当E 点坐标为13,22⎛⎫ ⎪⎝⎭时,求直线OD 的方程; (2)求BOE △与ABE △面积之和S 的最小值.58.已知()()221340m x m y m -++++=.(1)m 为何值时,点Q (3,4)到直线距离最大,最大值为多少;(2)若直线分别与x 轴,y 轴的负半轴交于AB 两点,求三角形AOB 面积的最小值及此时直线的方程.59.已知ABC 的三边所在直线的方程分别是43100AB l x y -+=:,2BC l y =:,345CA l x y -=:.(1)求与AB 边平行的中位线方程;(2)求AB 边上的高所在直线的方程.60.已知ABC 的三个顶点为()4,0A ,()0,2B ,()2,6C .(1)求AC 边上的高BD 所在直线的方程;(2)求ABC 的外接圆的方程.61.已知直线l 经过点()2,3P -.(1)若原点到直线l 的距离为2,求直线l 的方程;(2)若直线l 被两条相交直线220x y --=和30x y ++=所截得的线段恰被点P 平分,求直线l 的方程.62.直线l 1过点A (0,1), l 2过点B (5,0), l 1∥l 2且l 1与l 2的距离为5,求直线l 1与l 2的一般式方程.63.已知ABC ∆的三个顶点(4,6)A -,(4,0)B -,(1,4)C -,求:(1)AC 边上的高BD 所在直线的方程;(2)BC 的垂直平分线EF 所在直线的方程;(3)AB 边的中线的方程.64.已知圆C :()()221+11x y --= (1)求过点A ()24,且与圆C 相切的直线方程.(2)若(),P x y 为圆C 上的任意一点,求()()2223x y +++的取值范围. 65.已知ABC 中,顶点()4,5A ,点B 在直线:220l x y -+=上,点C 在x 轴上,求ABC 周长的最小值.66.已知ABC ∆的三个顶点(),A m n 、()2,1B 、()2,3C -.(1)求BC 边所在直线的方程;(2)BC 边上中线AD 的方程为2360x y -+=,且7ABC S ∆=,求点A 的坐标. 67.已知圆22:(4)1M x y +-=,直线:20l x y -=,点P 在直线l 上,过点P 作圆M 的切线PA 、PB ,切点为A 、B .(1)若60APB ∠=,求P 点坐标;(2)若点P 的坐标为(1,2),过P 作直线与圆M 交于C 、D 两点,当CD =线CD 的方程;(3)求证:经过A 、P 、M 三点的圆与圆M 的公共弦必过定点,并求出定点的坐标. 68.已知直线l 经过点(6,4)P ,斜率为k(1)若l 的纵截距是横截距的两倍,求直线l 的方程;(2)若1k =-,一条光线从点(6,0)M 出发,遇到直线l 反射,反射光线遇到y 轴再次反射回点M ,求光线所经过的路程.69.已知圆22:1O x y +=,圆()()221:231O x y -+-=过1O 作圆O 的切线,切点为T (T 在第二象限).(1)求1OO T ∠的正弦值;(2)已知点(),P a b ,过P 点分别作两圆切线,若切线长相等,求,a b 关系;70.圆C :22(3)1x y +-=,点(,0)P t 为x 轴上一动点,过点P 引圆C 的两条切线,切点分别为M ,N .(1)若1t =,求切线方程;(2)若两条切线PM ,PN 与直线1y =分别交于A ,B 两点,求ABC 面积的最小值.71.已知圆C 轨迹方程为()22225x y -+=(1)设点31,2M ⎛⎫- ⎪⎝⎭,过点M 作直线l 与圆C 交于A ,B 两点,若8AB =,求直线l 的方程;(2)设P 是直线60x y ++=上的点,过P 点作圆C 的切线PA ,PB ,切点为A ,B .求证:经过A ,P ,C 三点的圆必过定点,并求出所有定点的坐标.。
直线与圆的方程测试题
直线与圆的方程测试题1. 的倾斜角为2.一直线的倾斜角α的正弦等于35, 此直线的斜率k = 3.若1(23)(32)2A B C m ⎛⎫-- ⎪⎝⎭,,,,,三点共线,则m 的值为( ) A.12 B.12- C.2- D.2 4.已知三点,2A a ,5,1B ,C 4,2a 在同一直线上,a 的值为5.斜率k 的变化范围是⎡-⎣,则其倾斜角的变化范围是 ( D ) A ,43k k ππππ⎡⎤-++⎢⎥⎣⎦ B ,43ππ⎡⎤-⎢⎥⎣⎦ C 3,34ππ⎡⎤--⎢⎥⎣⎦ D 30,,34πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭6.已知点)0,1()01(B A 和,-. 若直线b x y +-=2与线段AB 相交,则b 的取值范围是_____________.7.已知点)3,2(-A 、)2,3(--B 直线l 过点)1,1(P ,且与线段AB 相交,则直线l 的斜率 的取值k 范围是 ( )A 、34k ≥或4k ≤-B 、34k ≥或14k ≤-C 、434≤≤-kD 、443≤≤k 8.过点()2,A m -和(),4B m 的直线与直线210x y +-=平行,则m 的值为( )A 0B 8-C 2D 109.12m =”是“直线()2310m x my +++=与直线 ()()2230m x m y -++-=相互垂直” 的 ( )A 充分必要条件B 充分而不必要条件C 必要而不充分条件D 既不充分也不必要条件10.直线的倾斜角为060,直线2l 垂直于直线1l ,则直线2l 的斜率是( )A B C D -11.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距为31,则m ,n 的值分别为 ( )A.4和3B.-4和3C.- 4和-3D.4和-312.已知直线1:(2)(1)10l a x a y ++--=与直线2:(1)(23)20l a x a y -+++=垂直,求a 的值.13.已知点()1,2A ,()3,1B ,则线段AB 的垂直平分线的方程是( )A .524=+y xB .524=-y xC .52=+y xD .52=-y x14.圆2211x y 的圆心到直线33y x 的距离是 ( )A 12B 2C 1D 15.若直线34120xy 与两坐标轴交点为A,B,则以线段AB 为直径的圆的方程是 ( )A 22430xy x y B 22430x y x y C 224340x y x y D 224380x y x y16.过原点且圆2220x y x )A y xB y =C y xD y x = 17.圆心在直线270x y --=上的圆C 与y 轴交于两点()0,4A -,()0,2B -则圆C 的方程为18.12340670l x y l x y +-=++=两平行线,2之间距离为 19.求过点5,2A,且在x 轴y 轴上截距相等的直线方程 . 20.2220x y ax ay a ++-+=表示圆,则a 的取值范围21.22310x y x y ++--=的圆心坐标 ,半径22..直线240x y ++=截226210x y x y +-++=所得弦长为23.圆2220x y x +-=与圆2240x y y ++=的位置关系为24.在坐标平面内,与点()1,2A 距离为1,且与点()3,1B 距离为2的直线共有( )A .1条B .2条C .3条D .4条25.过点2,1的直线中,被22240xy x y 截得最长弦所在的直线方程为 ( )A 350x yB 370x yC 330x yD 310x y 26.圆0422=-+x y x 在点)3,1(P 处的切线方程为 ( )A .023=-+y xB .043=-+y xC .043=+-y xD .023=+-y x27.已知圆的方程为22(1)(1)1x y -+-=,P 点坐标为(23),,求圆过P 点的切线方程.28.圆C 与圆1)1(22=+-y x 关于直线x y -=对称,则圆C 的方程为( B )A .1)1(22=++y xB .122=+y xC .1)1(22=++y xD .1)1(22=-+y x 29.圆2268240x y x y +-++=关于直线0y =对称的圆的方程是( )A 22(3)(4)1x y ++-=B 22(4)(3)1x y -++=C 22(4)(3)1x y ++-=D 22(3)(4)1x y -+-=30.直线l 经过点P(3,2)且与x 轴y 轴的正半轴分别交与A,B 两点, ABO ∆的面积为12,直线l 的方程 .31.圆224120x y y +--=上的动点Q ,定点()8,0A ,线段AQ 的中点轨迹方程 32.不论m 为何值,直线()():1215l m x m y m -+-=-恒过一个定点,此点的坐标 .33.已知圆:2246120x y x y +--+=,(1)求过点(3,5)A 的圆的切线方程;(2)点(,)P x y 为圆上任意一点,求y x的最值。
中职数学第八章直线和圆的方程小测(2018级)+参考答案
2019-2020学年第一学期2018级中职数学第八章《直线和圆的方程》测试卷(时间:90分钟,总分:100分)班级: 姓名: 座号:二、填空题:(3′×5=15′) 1.直线132y x =+,则该直线的斜率k = ; 2.已知点(2,0)A 和点(0,6)B ,则线段AB 的中点坐标为 ; 3. 如果直线670x y m -+=过原点,则m = ;4. 已知直线12:20,:210,l kx y l x y --=+-=若12l l ⊥,则k = ;5. A(1,0), B(4,4) , 求AB 的距离为 .三、解答题:(40′,每题8分)1.已知直线l 经过点(,0)A a 和(3,1)B ,问a 为何值时,直线l 的倾斜角 (1)是锐角?(2)是钝角?(3)是直角?2.如图,已知圆C 的一般方程是222440x y x y +--+=. (1)求该圆的圆心坐标和直径;(2)该圆的过原点的切线方程.3. 已知直线1l :30x y ++=, 2l :10x y -+=,且A 为直线1l 与2l 的交点 (1)求交点A 的坐标;(2)求过点A ,并且倾斜角为3π的直线方程.4.如图,直线与两坐标轴的交点为A (2,0),B (0,2).(1)求该直线的方程;(2)求以A 为圆心,以线段AB 为半径的圆的方程.5. 如图,直线3y x m =-+与y 轴交于点(0,4)A(1)求m 的值;(2)求以A 为圆心,且过原点的圆的方程.一、 选择题:(3′×15=45′)1.已知两点(1,0),(3,3)A B ,则直线AB 的斜率为( ) A23 B 32C 2D 3 2.已知直线l 过点(0,1),且与直线l ':y x =平行,则l 的方程为( ) 1010A x y B x y --=+-= C 10x y -+= D 10x y ++=3.若直线1l :2y x =与直线2l :y ax b =+平行,则实数a 等于( ) A 1 B 2 C -2 D 4 4.经过点(1,2),且倾斜角为4π的直线方程为( ) A 10xy B 10xyC 10xy D 10xy5.过点(1,5)A ,且平行于直线250x y +-=的直线方程为( ) A 270xyB 210xy C 210xy D 270x y6.若第一象限的点(2,)A m 到直线3420x y -+=的距离为4,则m 的值为( ) A 3m =- B 7m = C 37m m =-=或 D 37m m ==或7.圆22410200x y x y ++-+=的圆心在第几象限( )A 第一象限B 第二象限C 第三象限D 第四象限 8. 340x y +=与圆22(2)(1)4x y -+-=的位置关系( )A 相离B 相切C 相交且过圆心D 相交但不过圆心 9.过圆225x y +=上一点(1,2)A ,并与该圆相切的直线方程为( )A 250x y ++=B 250x y +-=C 250x y ++=D 250x y +-= 10.半径为2,且与x 轴相切于原点的圆的方程为( )A 22(2)4x y -+=B 22(2)4x y ++=C 22(2)4x y ++=或22(2)4x y +-=D 22(2)2x y -+=或22(2)2x y ++= 11. 已知直线过点(0,2),斜率为4- ,则直线方程是()A. 420x y --=B. 420x y +-=C. 420x y ++=D.420x y -+= 12.过点A(2,3)、B(1,0)的直线方程是( )A 330x y --=B 330x y +-=C 330x y --=D 330x y +-=13.如图所示,直线l 经过( )A 第一、二、三象限B 第一、二、四象限C 第一、三、四象限D 第二、三、四象限14.直线1:10l y -=与直线2:20l x y +-=的交点坐标是( ) A (1,1) B (1,2) C (2,1) D (2,2)15. 已知直线12:250:4270l x y l x y --=-+=与,则12l l 与的位置关系是 ( ) . A 重合 . B 平行 . C 相交且垂直 . D 相交不垂直参考答案二、填空题:(3′×5=15′) 1.12; 2.(1,3); 3. 0; 4. 2; 6. 5.三、解答题:(40′,每题8分)1.(1)3a > (2)3a < (3)3a = 2.(1)(1,2),2d =; (2)340x y -=和0x =.3.(1)(2,1)--; (210y --+=.4.(1)20x y +-=; (2)22(2)8x y -+=.5.(1)4m =; (2)22(4)16x y +-=.。
(完整版)直线与圆综合练习题含答案
直线与圆的方程训练题一、选择题:1.直线1x =的倾斜角和斜率分别是( )A .B .C . ,不存在D . ,不存在 2.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( ) A .1=+b aB .1=-b aC .0=+b aD .0=-b a3.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x 4.已知点(1,2),(3,1)A B ,则线段AB 的垂直平分线的方程是( ) A .524=+y x B .524=-y x C .52=+y x D .52=-y x 5.直线cos sin 0x y a θθ++=与sin cos 0x y b θθ-+=的位置关系是( )A .平行B .垂直C .斜交D .与的值有关 6.两直线330x y +-=与610x my ++=平行,则它们之间的距离为( )A .4 BCD7.如果直线l 沿x 轴负方向平移3个单位再沿y 轴正方向平移1个单位后,又回到原来的位置,那么直线l 的斜率是( )A .-13B .3-C .13D .38.直线l 与两直线1y =和70x y --=分别交于,A B 两点,若线段AB 的中点为(1,1)M -,则直线l 的斜率为( )A .23 B .32 C .32- D . 23-9.若动点P 到点(1,1)F 和直线340x y +-=的距离相等,则点P 的轨迹方程为( ) A .360x y +-= B .320x y -+= C .320x y +-= D .320x y -+=10.若 为 圆的弦AB 的中点,则直线AB 的方程是( )A. 03=--y xB. 032=-+y xC. 01=-+y x D . 052=--y x11.圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( ) A .2 B .21+ C .221+D .221+ 12.在坐标平面内,与点(1,2)A 距离为1,且与点(3,1)B 距离为2的直线共有( )0135,1-045,10900180,,a b θ(2,1)P -22(1)25x y -+=A .1条B .2条C .3条D .4条 13.圆0422=-+x y x 在点)3,1(P 处的切线方程为( )A .023=-+y xB .043=-+y xC .043=+-y xD .023=+-y x14.直线032=--y x 与圆9)3()2(22=++-y x 交于,E F 两点,则∆EOF (O 是原点)的面积为( ) A.23 B.43C.52 D.55615.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆C 的方程为( )A .03222=--+x y x B .0422=++x y xC .03222=-++x y xD .0422=-+x y x16.若过定点)0,1(-M 且斜率为k 的直线与圆05422=-++y x x 在第一象限内的部分有交点,则k 的取值范围是( )A. 50<<k B. 05<<-k C. 130<<k D. 50<<k 17.圆:06422=+-+y x y x 和圆:0622=-+x y x 交于,A B 两点,则AB 的垂直平分线的方程是( ) A.30x y ++= B .250x y --= C .390x y --= D .4370x y -+=18.入射光线在直线1:23l x y -=上,经过x 轴反射到直线2l 上,再经过y 轴反射到直线3l 上,若点P是1l 上某一点,则点P 到3l 的距离为( )A .6 B .3 C D 二、填空题:19.已知直线,32:1+=x y l 若2l 与1l 关于y 轴对称,则2l 的方程为__________; 若3l 与1l 关于x 轴对称,则3l 的方程为_________; 若4l 与1l 关于x y =对称,则4l 的方程为___________;20.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________.21.直线l 过原点且平分ABCD 的面积,若平行四边形的两个顶点为(1,4),(5,0)B D ,则直线l 的方程为________________。
(完整版)职高数学第八章直线和圆的方程及答案
第8章直线和圆的方程练习8.1 两点间的距离与线段中点的坐标1.根据下列条件,求线段P 1P 2的长度:(1)P 1(0,-2)、P 2(3,0) (2)P 1(-3,1)、P 2(2,4)(3)P 1(4,-2)、P 2(1,2) (4)P 1(5,-2)、P 2(-1,6)2.已知A(2,3)、B (x ,1),且|AB 求x 的值。
3.根据下列条件,求线段P 1P 2中点的坐标:(1)P 1(2,-1)、P 2(3,4) (2)P 1(0,-3)、P 2(5,0)(3)P 1(3,2.5)、P 2(4,1.5) (4)P 1(6,1)、P 2(3,3)4.根据下列条件,求线段P 1P 2中点的坐标:(1)P 1(3,-1)、P 2(3,5) (2)P 1(-3,0)、P 2(5,0)(3)P 1(3,3.5)、P 2(4,2.5) (4)P 1(5,1)、P 2(5,3)参考答案:2.-1或53.(1) 53(,)22;(2) 53(,)22-;(3) 7(,2)2; (4) 9(,2)24. (1) (3,2);(2) (1,0);(3) (3.5,3); (4) (5,2)练习8.2.1 直线的倾斜角与斜率1.选择题(1)没有斜率的直线一定是( )A.过原点的直线B.垂直于y 轴的直线C.垂直于x 轴的直线D.垂直于坐标轴的直线(2)若直线l 的斜率为-1,则直线l 的倾斜角为( )A. 90︒B. 0︒C. 45︒D. 135︒2已知直线的倾斜角,写出直线的斜率:(1)30,____k α=︒= (2)45,____k α=︒=(3)120,____k α=︒= (4)150,____k α=︒=参考答案:1.(1)C (2)D2.(1;(2) 1 ;(3) 练习8.2.2 直线的点斜式方程与斜截式方程写出下列直线的点斜式方程(1)经过点A (2,5),斜率是4;(2)经过点B (2,3),倾斜角为45︒;(3)经过点C (-1,1),与x 轴平行;(4)经过点D (1,1),与x 轴垂直。
直线与圆的方程单元测试卷含答案
直线与圆的方程单元测试卷一。
选择题1.方程x 2+y 2+2ax-by+c=0表示圆心为C (2,2),半径为2的圆,则a 、b 、c 的值 依次为( B )(A )2、4、4; (B )-2、4、4; (C )2、-4、4; (D )2、-4、-4 2.点4)()()1,1(22=++-a y a x 在圆的内部,则a 的取值范围是( A )(A) 11<<-a (B) 10<<a (C) 11>-<a a 或 (D)1±=a3.自点 1)3()2()4,1(22=-+--y x A 作圆的切线,则切线长为( B )(A)5 (B) 3 (C)10 (D) 54.已知M (-2,0), N (2,0), 则以MN 为斜边的直角三角形直角顶点P 的轨迹方程是( D )(A) 222=+y x (B) 422=+y x (C) )2(222±≠=+x y x (D) )2(422±≠=+x y x 5. 若圆22(1)20x y x y λλλ++-++=的圆心在直线12x =左边区域,则λ的取值范围是( C ) A.(0+)∞,B.()1+∞, C.1(0)(1)5⋃+,,∞D.R6. .对于圆()2211x y +-=上任意一点(,)P x y ,不等式0x y m ++≥恒成立,则m 的取值范围是BA .(21+)-∞,B .)21+⎡-∞⎣, C .(1+)-∞, D .[)1+-∞,7.如下图,在同一直角坐标系中表示直线y =ax 与y =x +a ,正确的是(C )8.一束光线从点(1,1)A -出发,经x 轴反射到圆22:(2)(3)1C x y -+-=上的最短路径是( A )A .4B .5C .321-D .269.直线0323=-+y x 截圆x 2+y 2=4得的劣弧所对的圆心角是 ( C )A 、6π B 、4π C 、3π D 、2π 10.对任意的a ∈[]-1,1,函数f (x )=x 2+(a -4)x +4-2a 的值总大于0,则x 的取值范围为( )A .(1,3)B .(-∞,1)∪(3,+∞)C .(-∞,1)D .(3,+∞)解析 y =φ(a )=(x -2)a +(x 2-4x +4), x =2时,y =0,所以x ≠2.只需⎩⎨⎧φ-1>0,φ1>0.答案 B11.设a >0,b >0,若3是3a 与3b 的等比中项,则1a +1b的最小值为( )A .8B .4C .1D.14解析 ∵a >0,b >0,3a ·3b =3,∴a +b =1,∴1a +1b =a +b a +a +b b =1+b a +ab +1≥2+2 b a ·ab=4. 答案 B(12)已知实数,x y 满足221x y +=,则()()11xy xy -+有( )(A )最小值21和最大值1 (B )最小值43和最大值1 (C )最小值21和最大值43(D )最小值1,无最大值二、填空题13.在平面直角坐标系xoy 中,已知圆224x y +=上有且仅有四个点到直线1250x y c -+=的距离为1,则实数c 的取值范围是 (13,13)- .14.圆:06422=+-+y x y x 和圆:0622=-+x y x 交于,A B 两点,则AB 的垂直平分线的方程是 390x y --=15.已知点A(4,1),B(0,4),在直线L :y=3x-1上找一点P ,求使|PA|-|PB|最大时P 的坐标是 (2,5)16函数21()x x f x x++=的值域为 .三.解答题17.求与x 轴切于点)0,5(,并且在y 轴上截得弦长为10的圆的方程.17.答案:50)25()5(22=±+-y x .18.已知圆4)4()3(:22=-+-y x C 和直线034:=+--k y kx l (1)求证:不论k 取什么值,直线和圆总相交;(2)求k 取何值时,圆被直线截得的弦最短,并求最短弦的长. 18.解:(1)证明:由直线l 的方程可得,)4(3-=-x k y ,则直线l 恒通过点)3,4(,把)3,4(代入圆C 的方程,得42)43()34(22<=-+-,所以点)3,4( 在圆的内部,又因为直线l 恒过点)3,4(, 所以直线l 与圆C 总相交. (2)设圆心到直线l 的距离为d ,则 5|1|43|3443|22+=++--=k k k d 又设弦长为L ,则222)2(r d L =+,即25)1(4)2(22+-=k L .∴当1-=k 时, 44)2(min min 2=⇒=L L所以圆被直线截得最短的弦长为4.19(本小题满分12分)已知直线l 过点)1,4(C , (Ⅰ)若直线l 过点D ()1,4,求直线l 的方程;(Ⅱ)若直线l 在两坐标轴上截距相等,求直线l 的方程.19 解:(Ⅰ)50.xy(Ⅱ)若直线l 过原点,设其方程为:kx y =,又直线l 过点)1,4(C ,即40x y -=.若直线l 不过原点,设其方程为:, 直线l 过点)1,4(C , 直线l 的方程为05=-+y x ; 综上,l 的方程为04=-y x 或05=-+y x . 20.(本小题满分12分)已知不等式210x x m --+>. (Ⅰ)当3m =时解此不等式;(Ⅱ)若对于任意的实数x ,此不等式210x x m --+>恒成立,求实数m 的取值范围. 20.(Ⅰ)(,1)(2,)-∞-+∞;(Ⅱ) 3(,)4-∞.21.设圆C 满足:①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长之比为3:1;③圆心到直线:20l x y -=C 的方程. 21解.设圆心为(,)a b ,半径为r ,由条件①:221r a =+,由条件②:222r b =,从而有:2221b a -=.|2|15a b =⇒-=,解方程组2221|2|1b a a b ⎧-=⎨-=⎩可得:11a b =⎧⎨=⎩或11a b =-⎧⎨=-⎩,所以2222r b ==.故所求圆的方程是22(1)(1)2x y -+-=或22(1)(1)2x y +++=.22.已知过点()3,3M --的直线l 与圆224210x y y ++-=相交于,A B 两点,(1)若弦AB 的长为l 的方程; (2)设弦AB 的中点为P ,求动点P 的轨迹方程.22解:(1)若直线l 的斜率不存在,则l 的方程为3x =-,此时有24120y y +-=,弦()||||268A B AB y y =-=--=,所以不合题意.故设直线l 的方程为()33y k x +=+,即330kx y k -+-=.将圆的方程写成标准式得()22225x y ++=,所以圆心()0,2-,半径5r =. 圆心()0,2-到直线l 的距离d =,因为弦心距、半径、弦长的一半构成直角三角形,所以()22231251k k -+=+,即()230k +=,所以3k =-.所求直线l 的方程为3120x y ++=.(2)设(),P x y ,圆心()10,2O -,连接1O P ,则1O P ⊥AB .当0x ≠且3x ≠-时,11O P ABk k ⋅=-,又(3)(3)AB MP y k k x --==--,则有()()()23103y y x x ----⋅=----,化简得22355222x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭......(1)当0x =或3x =-时,P 点的坐标为()()()()0,2,0,3,3,2,3,3------都是方程(1)的解,所以弦AB 中点P 的轨迹方程为22355222x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭.。
(完整版)直线与圆练习题(带答案解析)
..直线方程、直线与圆练习1.如果两条直线l 1:260ax y ++=与l 2:(1)30x a y +-+=平行,那么a 等 A .1 B .-1 C .2 D .23【答案】B 【解析】试题分析:两条直线平行需满足12211221A B A B A C A C =⎧⎨≠⎩即122112211A B A B a AC A C =⎧⇒=-⎨≠⎩,故选择B考点:两条直线位置关系2. 已知点A (1,1),B (3,3),则线段AB 的垂直平分线的方程是 A .4y x =-+ B .y x = C .4y x =+ D .y x =- 【答案】A 【解析】试题分析:由题意可得:AB 中点C 坐标为()2,2,且31131AB k -==-,所以线段AB 的垂直平分线的斜率为-1,所以直线方程为:()244y x y x -=--⇒=-+,故选择A考点:求直线方程3.如图,定圆半径为a ,圆心为(,)b c ,则直线0ax by c ++=与直线10x y +-=的交点在A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D 【解析】试题分析:由图形可知0b a c >>>,由010ax by c x y ++=⎧⎨+-=⎩得0b c x b a a c y b a +⎧=>⎪⎪-⎨--⎪=<⎪-⎩所以交点在第四象限考点:圆的方程及直线的交点4.若点(,0)k 与(,0)b 的中点为(1,0)-,则直线y kx b =+必定经过点 A .(1,2)- B .(1,2) C .(1,2)- D .(1,2)-- 【答案】A 【解析】试卷第2页,总48页试题分析:由中点坐标公式可得2k b +=-,所以直线y kx b =+化为()212y kx k k x y =--∴-=+,令10,201,2x y x y -=+=∴==-,定点(1,2)-考点:1.中点坐标公式;2.直线方程5.过点(1,3)P -且平行于直线032=+-y x 的直线方程为( ) A .012=-+y x B .052=-+y x C .052=-+y x D .072=+-y x【答案】D 【解析】试题分析:设直线方程:02=+-c y x ,将点(1,3)P -代入方程,06-1-=+c ,解得7=c ,所以方程是072=+-y x ,故选D . 考点:直线方程 6.设(),P x y 是曲线2cos :sin x C y θθ=-+⎧⎨=⎩(θ为参数,02θπ≤<)上任意一点,则y x 的取值范围是()A .3,3⎡⎤-⎣⎦B .(),33,⎤⎡-∞-⋃+∞⎦⎣C .33,33⎡⎤-⎢⎥⎣⎦ D .33,,33⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢ ⎪⎝⎦⎣⎭【答案】C 【解析】试题分析:曲线2cos :sin x C y θθ=-+⎧⎨=⎩(θ为参数,02θπ≤<)的普通方程为:()()2221,,x y P x y ++=是曲线()22:21C x y ++=上任意一点,则yx 的几何意义就是圆上的点与坐标原点连线的斜率, 如图:33,33y x ⎡⎤∈-⎢⎥⎣⎦.故选C .考点:1.直线与圆的位置关系;2.直线的斜率;3.圆的参数方程.7.设点(1,0)A ,(2,1)B ,如果直线1ax by +=与线段AB 有一个公共点,那么22a b +..(A )最小值为15 (B )最小值为55 (C )最大值为15 (D )最大值为55【答案】A【解析】试题分析:直线ax+by=1与线段AB 有一个公共点,则点A(1,0)B(2,1)应分布在直线ax+by-1=0两侧,将(1,0)与(2,1)代入,则(a-1)(2a+b-1)≤0,以a 为横坐标,b 为纵坐标画出区域如下图:则原点到区域内点的最近距离为OA ,即原点到直线2a+b-1=0的距离,OA=55,22a b +表示原点到区域内点的距离的平方,∴22a b +的最小值为15,故选A.考点:线性规划.8.点()11-,到直线10x y -+=的距离是( ). A .21 B .23 C .22D .223【答案】D【解析】试题分析:根据点到直线的距离公式,()221(1)132211d --+==+-,故选D 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章 直线与圆的方程练习卷
一、考纲要求
1.掌握两点间距离公式及中点坐标公式,会求两点间的距离和中点坐标;能根据已知点的坐标,利用中点坐标公式求解相关问题。
2.了解倾斜角的概念及范围,了解斜率的定义,会根据定义求特殊倾斜角的直线的斜率。
3.掌握过两点的直线的斜率公式,会求过两点的直线的斜率。
4.掌握直线的点斜式方程和斜截式方程,能根据已知条件,求简单的直线方程。
5.理解截距的概念,会根据直线的方程求出直线的截距。
6.了解直线的一般方程,会由直线的一般式方程求出直线的斜率和在y 轴上的截距。
7.理解两条相交直线的方程和交点的关系,会求两条相交直线的交点坐标。
8.掌握两条直线平行、垂直的条件,会判断两条直线是否平行或垂直;会求过一已知点且与一已知直线平行或垂直的直线方程。
9.了解点到直线的距离公式。
10.掌握圆的标准方程,已知圆心坐标及半径,会求圆的标准方程;已知圆的标准方程,会求圆心坐标及半径。
11.理解圆的一般方程;已知圆的一般方程,会求出圆心坐标和半径。
12.了解直线和圆的三种位置关系;会判断直线与圆的位置关系。
13.了解圆的切线方程,会求过圆上一点圆的切线方程。
二、专项训练
1.点()1,2M 与点()1,5-N 的距离为:
2.在平面内,一条直线倾斜角的范围是:
3. 直线x=3的倾斜角是:
4.已知 A (-5,2),B (0,-3)则直线AB 斜率为:
5. 经过点(1,2)且倾斜角为450的直线方程为:
6. 直线062=+-y x 与两坐标轴围成的三角形面积为:
7.过点(2,1)A ,且与直线0102=-+y x 垂直的直线l 的方程为:
8. 圆心为(-1,4),半径为5的圆的方程为:
9.已知A (7,4),B (3,2),则线段AB 的中点坐标是
10.直线013=++y x 的倾斜角为 ___
11.经过点(1,3),(5,11)的直线方程为_____________________
12.直线1+=kx y 经过(2,-9),则k =____________________
13.直线06=-+y mx 与直线0632=--y x 平行,则m =___ ___
14.原点到直线0834=+-y x 的距离为____________
15.已知圆的方程为04222=+-+y x y x ,则圆心坐标为__________,半径为____
16.已知直线l 经过点(1,-3),且它的倾斜角是直线13
3+=
x y 的倾斜角的2倍,求直线l 的方程。
17.已知直线l 与直线210x y --=平行, 且直线l 过点(1,5)--
(1) 求直线l 的方程; (2) 求直线l 在y 轴上的截距.
18.已知直线043=++k y x 与圆222440x y x y ++--=,问k 为何值时,直线与圆相交、相切、相离?。