中考二次函数压轴题PPT课件

合集下载

中考二次函数压轴题PPT

中考二次函数压轴题PPT

∴ 点 F 到 AC 的距离为 9 × = , 4
又∵ AC=
=3 ,
∴ △ ACE 的最大面积=×3 × = ,此时 E 点坐标为( 5 ,﹣ 3 ).
24
9
7、(2013•曲靖压轴题)如图,在平面直角坐标系 xOy 中,直线 y=x+4 与坐标轴分别交 于 A、B 两点,过 A、B 两点的抛物线为 y=﹣x2+bx+c.点 D 为线段 AB 上一动点,过 点 D 作 CD⊥x 轴于点 C,交抛物线于点 E. (1)求抛物线的解析式. (2)当 DE=4 时,求四边形 CAEB 的面积. (3)连接 BE,是否存在点 D,使得△ DBE 和△ DAC 相似?若存在,求此点 D 坐标; 若不存在,说明理由.
解得

所以,直线 AC 的解析式为 y=x﹣1,
∵ y=x2﹣4x+3=(x﹣2)2﹣1,
∴ 抛物线的对称轴为直线 x=2,
当 x=2 时,y=2﹣1=1,
∴ 抛物线对称轴上存在点 D(2,1),使△ BCD 的周长最小;
8
(3)如图,设过点 E 与直线 AC 平行线的直线为 y=x+m,联立, 消掉 y 得,x2﹣5x+3﹣m=0, △ =(﹣5)2﹣4×1×(3﹣m)=0,
7
解:(1)∵ 抛物线 y=ax2+bx+3 经过点 A(1,0),点 C(4,3),

,解得

所以,抛物线的解析式为 y=x2﹣4x+3;
(2)∵ 点 A、B 关于对称轴对称, ∴ 点 D 为 AC 与对称轴的交点时△ BCD 的周长最小, 设直线 AC 的解析式为 y=kx+b(k≠0),则,
S 四边形 CAEB=S△ ACE+S 梯形 OCEB﹣S△ BCO= ×2×6+ (6+4)×2﹣ ×2×4=12.

中考复习§二次函数PPT优秀课件

中考复习§二次函数PPT优秀课件

,对称轴为
;
(2)求抛物线的表达式及m,n的值;
(3)请在图中画出所求的抛物线.设点P为抛物线上的动点,OP的中点为P',描出相应的点P',再把相应的点
P'用平滑的曲线连接起来,猜想该曲线是哪种曲线;
(4)设直线y=m(m>-2)与抛物线及(3)中的点P'所在曲线都有两个交点,交点从左到右依次为A1,A2,A3,A4,请
A.0 B.-1 C.- 1 D.- 1
2
4
答案 D 依题意得,该二次函数图象的对称轴为y轴. ∴-(a+2)=0,解得a=-2. ∴方程可化为-4x2+1=0,设方程两根分别为x1,x2,
∴x1·x2=-1 ,故选D.
4
解题关键 明确该抛物线的对称轴为y轴是解题关键.
2.(2020贵州贵阳,10,3分)已知二次函数y=ax2+bx+c的图象经过(-3,0)与(1,0)两点,关于x的方程ax2+bx+c+m =0(m>0)有两个根,其中一个根是3,则关于x的方程ax2+bx+c+n=0(0<n<m)有两个整数根,这两个整数根是
A.ab<0 B.一元二次方程ax2+bx+c=0的正实数根在2和3之间 C.a= m 2
3
D.点P1(t,y1),P2(t+1,y2)在抛物线上,当实数t> 1 时,y1<y2
3
答案
D
∵抛物线的开口向上,∴a>0,根据对称轴在y轴右侧可知-
b 2a
>0,∴b<0,所以ab<0,A选项结论正
确;根据题图可知,一元二次方程ax2+bx+c=0的负实数根在-1和0之间,根据图象的对称性可知,一元二次

中考二次函数压轴题解题通法PPT课件

中考二次函数压轴题解题通法PPT课件

6
方程总有固定根问题
• 可以通过解方程的方法求出该固定根
已知关于的方程(mx2 3(m 1)x 2m 3 0 为实数),
求证:无论为何值,方程总有一个固定的根。
解:当 m 0 时, x 1
x1
当 m 0 时,
2
3 m
、x2
1
m3
2
0
,x
3m
1
2m

综上所述无论:m 为何值,方程总有一个固
19
2、“平行于y轴的动线段长度的最大值”的问题
2020/3/23
20
3、求一个已知点关于一条已知直线的对称点的坐标 问题Leabharlann 2020/3/2321
4、“抛物线上是否存在一点,使之到定直线的距离 最大”的问题
2020/3/23
22
5.常数问题
2020/3/23
23
6.“在定直线(常为抛物线的对称轴,或x轴或y轴或其它的定 直线)上是否存在一点,使之到两定点的距离之和最小”的 问题
2020/3/23
2
两点间的距离公式
AB yA yB 2 xA xB 2
2020/3/23
3
中点坐标
• 线段的中点的坐标为:
xA xB ,yA yB 2 2
2020/3/23
4
一元二次方程有整数根问题
解题步骤如下:① 用和参数的其他要求确定
参数的取值范围 ② 解方程,求出方程的根
2020/3/23
28
10、“定四边形面积的求解”问题
• 有两种常见解决的方案: • 方案(一):连接一条对角线,分成两个三角形面积之和; • 方案(二):过不在x轴或y轴上的四边形的一个顶点,向

中考数学专题《二次函数》复习课件(共18张PPT)

中考数学专题《二次函数》复习课件(共18张PPT)
(3)抛物线与y轴的交点坐标是(0,c) c决定抛物线与y轴的交点位置
(4)b2-4ac>0,抛物线与x轴有两个公共点 b2-4ac=0,抛物线与x轴有一个公共点 b2-4ac<0,抛物线与x轴没有公共点
基础训练
• 如图,是y=ax2+bx+c的图像, 则a___<___0 b___<___0 c___>__0 , b2-4ac___>__0 a+b+c_ <__0 4a-2b+c__>__0 2a-b__=__0
桥面
-5 0 5
x/m
抛物线顶点的纵坐标是
⑴钢缆的最低点到桥面的距离是__1_米__;
两条抛物线顶点间的距离是
⑵两条钢缆最低点之间的距离是__4_0_米_;
关于y轴对称的抛物线是
(3)右边的抛物线解析式是y_=__0_._0_2_2_5__(_x_-2__0_)__2.+1
高屋建瓴
——函数与几何的综合题
高屋建瓴
——求解析式
5、已知一条抛物线的对称轴是直线x=1,它 与x轴相交于A、B两点(点A在点B的左边)且线 段AB的长是4,它还与过点C(1,-2)的直线有 一个交点是点D(2,-3),求抛物线的解析式
模式识别: 顶点式
若这条抛物线有P点,使 S△ABP=12,求点P的坐标
高屋建瓴 ——实际应用
y
AO C
P Bx
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月5日星期六2022/3/52022/3/52022/3/5 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/52022/3/52022/3/53/5/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/52022/3/5March 5, 2022 •4、享受阅读快乐,提高生活质量。2022/3/52022/3/52022/3/52022/3/5

初三二次函数ppt课件ppt课件

初三二次函数ppt课件ppt课件
轴是$x = - \frac{b}{2,利用描点法可以 绘制出二次函数的图像。
与x轴交点
当$\Delta > 0$时,二次函数的 图像与x轴有两个交点;当
$\Delta = 0$时,二次函数的图 像与x轴只有一个交点;当
$\Delta < 0$时,二次函数的图 像与x轴没有交点。
理解二次函数的基本 概念和图像表示。
能够运用二次函数解 决实际问题。
掌握二次函数的性质 ,包括开口方向、顶 点坐标和对称轴。
课程计划
通过PPT演示,引导学生了解 二次函数的概念和图像表示。
通过例题讲解,帮助学生掌握 二次函数的性质和应用。
组织课堂练习和讨论,加深学 生对二次函数的理解和应用能 力。
二次函数的表达式
01
02
03
表达式
二次函数的表达式为$y = ax^{2} + bx + c$,其中 $a \neq 0$。
各项的意义
$a$是二次项系数,$b$ 是一次项系数,$c$是常 数项。
如何确定表达式
通过已知条件,利用待定 系数法可以确定二次函数 的表达式。
二次函数的图像
图像特点
二次函数的图像是一个抛物线, 其顶点坐标是$( - \frac{b}{2a}, \frac{4ac - b^{2}}{4a})$,对称
06
参考资料
初三二次函数ppt课件
初三二次函数的概念
介绍二次函数的基本定义、表达式和 图像特征。
初三二次函数的图像和性质
详细描述了如何绘制二次函数的图像 ,并分析了图像的开口方向、顶点坐 标、对称轴和增减性等性质。
初三二次函数的实际应用
通过实例和练习题,展示了二次函数 在解决实际问题中的应用,如最值问 题、行程问题等。

中考二次函数复习课件【优质PPT】

中考二次函数复习课件【优质PPT】

x=2,y最大值=3
练习 根据下列条件,求二次函数的解析式。
(1)、图象经过(-1,3), (1,3) , (2,6) 三点;
(2)、图象的顶点(2,3), 且经过点(3,1) ;
(3)、图象经过(0,0), (12,0) ,且最高点
的纵坐标是3 。
顶点(6,3)
解法一设解析式为y=a(x-0)(x-12)
令y=1.4,则-0.2x2+3.2=1.4
B x解得x=-3或x=3 ∴M(-3,1.4),N(3,1.4) ∴MN=6 20 答:横向活动范围是6米。
练习、已知二次函数y=ax2-5x+c的图象如图。
(1)、当x为何值时,y随x的增大而增大; (2)、当x为何值时,y<0。 (3)、求它的解析式和顶点坐标y ;
(3)、图象经过(0,0), (12,0) ,且最高点 的纵坐标是3 。
2021/10/10
14
5一.待般定式系数y法=a求x解2+b析x式+c (a≠0) 顶点式 y=a(x-h)2+k (a≠0)
交点式 y=a(x-x1)(x-x2) (a≠0)
6–
3–
-2 -1
12
练习 根据下列条件,求二次函数的解析式。
二次函数的图象是一条 对称轴平行于 y 轴.
抛物线
,它是 轴
对称图形,其
2021/10/10
2
y 3.二次函数的图象及性质y
0
x
0
x
抛物线 顶点坐标 对称轴 开口方向
y=ax2+bx+c(a>0)
b 2a
,
4acb2 4a
直线x b
2a

2020年中考数学二模复习之二次函数中考压轴题(26张PPT)【精美版】

2020年中考数学二模复习之二次函数中考压轴题(26张PPT)【精美版】

利 用 铅 垂 线 求 面 积
2020年中考数学二模复习之二次函数 中考压 轴题(2 6张PPT )【精 美版】
四.逐问突破(2)→铅垂线
2020年中考数学二模复习之二次函数 中考压 轴题(2 6张PPT )【精 美版】
“类铅垂线”问题
利 用 铅 垂 线 求 面 积
2020年中考数学二模复习之二次函数 中考压 轴题(2 6张PPT )【精 美版】
本题不直接考察,而是利用铅垂线与已知直线的“几何关联”来求解 2.16-17连续考察平行四边形存在性,18年等腰三角形存在性,19年再次 考察“平行四边形存在性”的可能大,而且平行四边形难度也较大,正符合 “150分”下难度提升的大形势
2020年中考数学二模复习之二次函数 中考压 轴题(2 6张PPT )【精 美版】
2020年中考数学二模复习之二次函数 中考压 轴题(2 6张PPT )【精 美版】
四.逐问突破(3)→存在性
直接探讨“等腰三角形存在性”
等 腰 三 角 形
2020年中考数学二模复习之二次函数 中考压 轴题(2 6张PPT )【精 美版】
2020年中考数学二模复习之二次函数 中考压 轴题(2 6张PPT )【精 美版】
2020年中考数学二模复习之二次函数 中考压 轴题(2 6张PPT )【精 美版】
四.逐问突破(3)→存在性
利用“平行四边形”性质求解
平 行 四 边 形
2020年中考数学二模复习之二次函数 中考压 轴题(2 6张PPT )【精 美版】
2020年中考数学二模复习之二次函数 中考压 轴题(2 6张PPT )【精 美版】
四.逐问突破(3)→存在性
利用“等腰三角形”求点
等 腰 三 角 形
2020年中考数学二模复习之二次函数 中考压 轴题(2 6张PPT )【精 美版】

中考专题《求二次函数的解析式》复习课件(共11张PPT)

中考专题《求二次函数的解析式》复习课件(共11张PPT)
求二次函数的解析式
y
y ax 2 bx c 一般式
顶点式
交点式
o
x
杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人 梯顶端椅子B处,其身体(看成一点)的路线是抛物线
y=-3x2+3x+1的一部分,如图。 5
(1)求演员弹跳离地面的最大高度; (2)已知人梯高BC=3.4米,在一次表演中,人梯到 起跳点A的水平距离是4米,问这次表演是否成功?请 说明理由。
BB
AA
CC
一般式:y ax 2 bx c
例1 求经过有三点 A(-2,-3),B(1,0), C(2,5)的二次函数的解 析式.
分析 :已知一般三点,用 待定系数法设为一般式求 其解析式.
y
·5 ·C
·
·
·
·
··
-3 –2
–·1 o·

1
·
2
x
· A · ·-3
顶点式:ya(xh)2k
例4 已知抛物线的顶点为 A(-1,-4),又知它与x 轴 的两个交点B、C间的距离 为4,求其解析式。
分析:先求出B、C两点 的坐标,然后选用顶点 式或交点式求解。
y
·5
·
·
·
C
··
-3 –2
·
–·1 o·

1
·
2
x
·
· ·-3
A -4
如图,在直角坐标系中,以点 A ( 3 , 0 )为圆心,以 2 3 为半径的圆与x轴相交于点B、C,与y轴相交于点D、
E. 若抛物线 y 1 x2 bxc经过C、B两点,求抛 3
物线的解析式,并判断点D是否在该抛物线上. y
E
B OA D

初三二次函数ppt课件ppt课件ppt课件

初三二次函数ppt课件ppt课件ppt课件

03
二次函数的图像变换
平移变换
总结词
平移变换是指二次函数的图像在平面坐标系 中沿x轴或y轴方向进行移动。
详细描述
平移变换包括沿x轴方向的左移和右移,以 及沿y轴方向的上移和下移。对于一般形式 的二次函数y=ax^2+bx+c,当b≠0时,图 像为抛物线。当b>0时,图像向右平移b/2a个单位;当b<0时,图像向左平移 |b|/2a个单位。
总结词
顶点式二次函数解析式是y=a(xh)^2+k,其中(h,k)为函数的顶点。
详细描述
顶点式二次函数解析式表示的是一个 开口向上或向下的抛物线,其顶点为 (h,k)。该形式简化了函数的对称轴和 顶点,便于分析函数的性质。
交点式二次函数解析式
总结词
交点式二次函数解析式是y=a(x-x1)(x-x2),其中x1、x2为函数与x轴的交点。
02
二次函数的解析式
一般二次函数解析式
总结词
一般二次函数解析式是y=ax^2+bx+c,其中a、b、c为常数 ,且a≠0。
详细描述
一般二次函数解析式是二次函数的基本形式,它可以表示任 意二次函数。其中a控制函数的开口方向和开口大小,b控制 函数的对称轴,c为函数与y轴的交点。
顶点式二次函数解析式
值的变化。
04
二次函数的实际应用
最大利润问题
总结词
通过建立二次函数模型,解决最大利润问题。
详细描述
在生产和经营过程中,常常需要寻求最大利润。通过将实际问题转化为数学模型,利用二次函数求导 数的方法,可以找到获得最大利润的条件和对应的最大利润值。
抛物线形拱桥问题
总结词
利用二次函数解析式表示抛物线形拱桥的形 状,进而解决相关问题。

【全文】中考数学专题《二次函数》复习课件(共54张PPT)

【全文】中考数学专题《二次函数》复习课件(共54张PPT)
即: y=-2x2+4x
例2:某工厂大门是一抛物线水泥建筑物,如图所示,大门底部 宽AB=4m,顶点C离地面高度为4.4m,现有一辆满载货物的汽 车欲通过大门,货物顶部距地面2.8m,装货宽度为2.4米,请判 断这辆车能够顺利通过大门?(请用三种不同的方法解决)
y=ax²
y x
(-2,-4.4)
(2,-4.4)
y
o
x
6.二次函数y=ax2+bx+c中,如果a>0,b<0,c<0,
那么这个二次函数图象的顶点必在第 四象限
y 先根据题目的要求画出函数的草图,再根据 图象以及性质确定结果(数形结合的思想)
x
7.已知二次函数的图像如图所示,下列结论: ⑴a+b+c=0 ⑵a-b+c﹥0 ⑶abc ﹥0 ⑷b=2a 其中正确的结论的个数是( ) A 1个 B 2个 C 3个 D 4个 D
写出满足此条件的抛物线的解析式.
解:抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同
a=1或-1 又顶点在直线x=1上,且顶点到x轴的距离为5,
解:∵二次函数的最大值是2 ∴抛物线的顶点纵坐标为2 又∵抛物线的顶点在直线y=x+1上 ∴当y=2时,x=1 ∴顶点坐标为( 1 , 2) ∴设二次函数的解析式为y=a(x-1)2+2 又∵图象经过点(3,-6) ∴-6=a (3-1)2+2 ∴a=-2 ∴二次函数的解析式为y=-2(x-1)2+2
练习: 1、二次函数y=ax2+bx+c(a≠0)的图象如图
B 所示,则a、b、c的符号为( )
A、a<0,b>0,c>0 B、a<0,b>0,c<0 C、a<0,b<0,c>0 D、a<0,b<0,c<0

中考专题复习 二次函数压轴题PPT

中考专题复习 二次函数压轴题PPT

1 a b
中考┃ 代数计算题
a-3 例 3 [2014· 凉山州] 先化简,再求值: 2 ÷(a+2- 3a -6a 5 ),其中 a2+3a-1=0. a-2
【例题分层探究】 (1)分式运算中的除法一般转化为什么运算? (2)必须知道未知字母的值时才能进行化简求值吗?
(1)在分式运算中的除法一般转化为乘法运算. (2)在进行化简时,若化去一些字母,可在已知其他字 母值的情况下求值;若能将条件中的关于字母的代数式整 体代入, 也可在不求未知字母的值的情况下直接代入求值.
1 3a(a+3) 1 = . 3(a2+3a) 1 当 a2+3a-1=0,即 a2+3a=1 时,原式= . 3
中考┃ 代数计算题
(2011•泸州)计算: 计算:
探究三
泸州中考 代数的计算题
1.(2011年) 计算: 2.(2012年) 3.(2013年) 计算:
1 2 4.(2014年) 计算: 12 4sin 60 ( 2) ( ) 2
【解题方法点析】 在进行分式的化简求值时,有时可以不用求出未知字 母的值,而直接用整体代入的方法求得.
0
泸州中考┃ 代数计算题

探究三

泸州中考 代数的计算题
其中:
1.(2015年先化简,再求值) :
2.(2016年) : 3.(2016年先化简,再求值) :
其中:a= 4.(2016年化简) :
泸州中考┃ 代数计算题
代数的计算和化解题方法总结:
【解题方法点析】 熟记特殊锐角三角函数值,理解并掌握一个数的绝对值、 整数指数幂、 算术平方根的求法是解答实数与三角函数计算题 的关键.在计算过程中,先按照运算顺序进行分割,然后同时 计算可简化计算过程.

数学中考二次函数的应用 (共16张PPT)

数学中考二次函数的应用 (共16张PPT)

1.将一条长为20 cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个 25 正方形,则这两个正方形面积之和的最小值是 或12.5 cm2. 2
2.某商店购进一种单价为40元的篮球,如果以单价50元售 出,那么每月可售出500个,据销售经验,售价每提高1
元,销售量相应减少10个.
(1)假设销售单价提高x元,那么销售每个篮球所获得的利 x+10 元,这种篮球每月的销售量是 50010x 个(用 润是_______
中考复习 二次函数的应用
x=3 1. 二次函数y=2(x-3)2+5的对称轴是 , 顶点坐标是 (3,5) .当x= 3 时,y的最 小 值 是 5 . x=-4 2. 二次函数y=-3(x+4)2-1的对称轴是 , 大 顶点坐标是 (-4,-1) .当x= -4 时,函数有最___ 值,是 -1 . x=2 3.二次函数y=2x2-8x+9的对称轴是 ,顶 点坐标是 (2,1) .当x= 2 时,函数有最 小 值,是 1 . _____
2Hale Waihona Puke S 可以看出,这个函数的图 象是一条抛物线的一部分, 这条抛物线的顶点是函数 图象的最高点,也就是说, 当L取顶点的横坐标时, 这个函数有最大值.
当l b 30 15时 2a 2 (1)
20 0 10 0O
5 10 15 20 25 30
l
4ac b 2 302 S有最大值 225. 4a 4 (1)
4.某男排队员站在发球区发球,排球向正前方行进,行进高 1 1 10 y x x 度 y(m)与水平距离x(m)之间的函数解析式是 15 3 3 。 求:①已知排球场地长18米,排球能否出界? ②当排球走过的水平距离是多少时,排球距离地面最高? ③已知排球网距离发球点9米,网高2.43米,排球是否能打 过网?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程标题 二次函数综合题
.
1
二次函数压轴题设想
Ø第(1)问是求直线或抛物线的解析式 Ø第(2)(3)问是抛物线与几何结合 的问题
常见形式有以下类型
.
2
抛物线与几何结合常见形式:
①四点构成的四边形是平行四边形
四点构成的四 ②四点构成的四边形是菱形
边形
③四点构成的四边形是正方形
④四点构成的四边形是矩形
,解得:

故直线 AC 解析式为 y=﹣ x+3,
与抛物线解析式联立解得:


则点 D 坐标为(1, ); .
5
(3)存在,分两种情况考虑: ①当点 M 在 x 轴上方时,如答图 1 所示: 四边形 ADMN 为平行四边形,DM∥ AN,DM=AN, 由对称性得到 M(3, ),即 DM=2,故 AN=2,
S 四边形 CAEB=S△ ACE+S 梯形 OCEB﹣S△ BCO= ×2×6.+ (6+4)×2﹣ ×2×4=12.
.
7
解:(1)∵ 抛物线 y=ax2+bx+3 经过点 A(1,0),点 C(4,3),

,解得

所以,抛物线的解析式为 y=x2﹣4x+3;
(2)∵ 点 A、B 关于对称轴对称, ∴ 点 D 为 AC 与对称轴的交点时△ BCD 的周长最小, 设直线 AC 的解析式为 y=kx+b(k≠0),则,
∴ xN=xM﹣3=﹣ ﹣1 或 ﹣1, ∴ N3(﹣ ﹣1,0),N4( ﹣1,0). . 综上所述,满足条件的点 N 有四个:N1(2,0),N2(6,0),N3(﹣
﹣1,0),N4(
6
﹣1,0).
5、(2013•新疆压轴题)如图,已知抛物线 y=ax2+bx+3 与 x 轴交于 A、B 两 点,过点 A 的直线 l 与抛物线交于点 C,其中 A 点的坐标是(1,0),C 点 坐标是(4,3). (1)求抛物线的解析式; (2)在(1)中抛物线的对称轴上是否存在点 D,使△ BCD 的周长最小?若 存在,求出点 D 的坐标,若不存在,请说明理由; (3)若点 E 是(1)中抛物线上的一个动点,且位于直线 AC 的下方,试求 △ ACE 的最大面积及 E 点的坐标.
.
4
解:(1)设抛物线顶点为 E,根据题意 OA=4,OC=3,得:E(2,3), 设抛物线解析式为 y=a(x﹣2)2+3,
将 A(4,0)坐标代入得:0=4a+3,即 a= 3 , 4
则抛物线解析式为 y= 3 (x﹣2)2+3= 3 x2+3x;
Hale Waihona Puke 44(2)设直线 AC 解析式为 y=kx+b(k≠0),则
∴ N1(2,0),N2(6,0); ②当点 M 在 x 轴下方时,如答图 2 所示:
过点 D 作 DQ⊥x 轴于点 Q,过点 M 作 MP⊥x 轴于点 P,可得△ ADQ≌ △ NMP, ∴ MP=DQ= ,NP=AQ=3,
将 yM=﹣ 代入抛物线解析式得:﹣ =﹣ x2+3x,
解得:xM=2﹣ 或 xM=2+ ,
.
10
解:(1)在直线解析式 y=x+4 中,令 x=0,得 y=4;令 y=0,得 x=﹣4, ∴ A(﹣4,0),B(0,4). ∵ 点 A(﹣4,0),B(0,4)在抛物线 y=﹣x2+bx+c 上,


解得:b=﹣3,c=4, ∴ 抛物线的解析式为:y=﹣x2﹣3x+4.
(2)设点 C 坐标为(m,0)(m<0),则 OC=﹣m,AC=4+m. ∵ OA=OB=4,∴ ∠ BAC=45°, ∴ △ ACD 为等腰直角三角形,∴ CD=AC=4+m, ∴ CE=CD+DE=4+m+4=8+m, ∴ 点 E 坐标为(m,8+m). ∵ 点 E 在抛物线 y=﹣x2﹣3x+4 上, ∴ 8+m=﹣m2﹣3m+4,解得 m=﹣2. ∴ C(﹣2,0),AC=OC=2,CE=6,
⑧求四边形的面积或最大面积
⑤以某三点构成的三角形与某个三角形 相似
三点构成的三 ⑥某三点构成等腰三角形 角形 ⑥某三点构成直角三角形
⑦某三角形的面积或最大面积
⑨两线段的和最小 两线段的和
⑩三角形的周长最小
直线与圆的位 置关系
⑾过某三点的圆与某条直线的位置关系
.
求点的坐标 或最大面积
证明
3
2、(2013•昆明压轴题)如图,矩形 OABC 在平面直角坐标系 xOy 中,点 A 在 x 轴的正半轴上,点 C 在 y 轴的正半轴上,OA=4,OC=3,若抛物线的顶点在 BC 边上,且抛物线经过 O,A 两点,直线 AC 交抛物线于点 D. (1)求抛物线的解析式; (2)求点 D 的坐标; (3)若点 M 在抛物线上,点 N 在 x 轴上,是否存在以 A,D,M,N 为顶点 的四边形是平行四边形?若存在,求出点 N 的坐标;若不存在,请说明理 由.
解得

所以,直线 AC 的解析式为 y=x﹣1,
∵ y=x2﹣4x+3=(x﹣2)2﹣1,
∴ 抛物线的对称轴为直线 x=2,
当 x=2 时,y=2﹣1=1,
∴ 抛物线对称轴上存在点 D(2,1),使. △ BCD 的周长最小;
8
(3)如图,设过点 E 与直线 AC 平行线的直线为 y=x+m,联立, 消掉 y 得,x2﹣5x+3﹣m=0, △ =(﹣5)2﹣4×1×(3﹣m)=0,
∴ 点 F 到 AC 的距离为 9 × = , 4
又∵ AC=
=3 ,
∴ △ ACE 的最大面积=×3 × = ,此时 E 点坐标为( 5 ,﹣ 3 ).
.
24
9
7、(2013•曲靖压轴题)如图,在平面直角坐标系 xOy 中,直线 y=x+4 与坐标轴分别交 于 A、B 两点,过 A、B 两点的抛物线为 y=﹣x2+bx+c.点 D 为线段 AB 上一动点,过 点 D 作 CD⊥x 轴于点 C,交抛物线于点 E. (1)求抛物线的解析式. (2)当 DE=4 时,求四边形 CAEB 的面积. (3)连接 BE,是否存在点 D,使得△ DBE 和△ DAC 相似?若存在,求此点 D 坐标; 若不存在,说明理由.
即 m=﹣ 时,点 E 到 AC 的距离最大,△ ACE 的面积最大,此时 x= 5 ,y=﹣ 3 ,
2
4
∴ 点 E 的坐标为( 5 ,﹣ 3 ), 24
设过点 E 的直线与 x 轴交点为 F,则 F( ,0),∴ AF= ﹣1= 9 , 4
∵ 直线 AC 的解析式为 y=x﹣1,
∴ ∠ CAB=45°,
相关文档
最新文档