万向传动轴设计说明书

合集下载

万向传动装置课程设计说明书

万向传动装置课程设计说明书

汽车设计课程设计说明书设计题目:东风DNZ1080G万向传动装置的设计姓名任伟学院交通学院专业汽车设计与运用班级1101学号2011281指导教师孙宏图、王昕彦2014年09月05日目录1 前言 (2)2 万向传动装置设计 (3)2.1 万向传动装置的结构方案设计 (3)2.1.1 主要参数的选择 (3)2.1.2 总体设计方案 (3)(1)传动轴管的选择 (4)(2)伸缩花键的选择 (4)(3)万向节分析 (5)(4)中间支承结构分析与设计 (5)2.2 万向节的设计与强度校核 (6)2.2.1 万向节结构与尺寸设计 (6)(1)基本构造与基本原理 (6)(2)确定十字轴尺寸 (6)(3)滚针轴承的设计与校核 (6)2.2.2 十字轴万向节强度校核 (6)2.3 万向传动轴设计及强度校核 (7)2.3.1 万向节传动轴结构与尺寸设计 (7)2.3.2 万向节传动轴强度校核 (7)3参考文献 (10)前言本次课程设计的任务是对一汽解放CA1130PK2L2进行万向传动轴的设计、研究。

在指导老师的细心指导下,通过对汽车万向传动装置的了解,进一步进行万向传动轴的设计。

通过实际的市场调查和客观的实际观察,全面了解万向传动轴的结构,充分了解到万向传动装置的工作原理与意义,及其在汽车行驶中的重要作用。

在汽车的正常工作中,是一个必不缺少的部件,也是一个不可替代的关键部件。

对于万向传动轴的研究,有很大的发展空间,具有相当大的研究意义。

在充分与指导老师讨论、研究后,故选此课题进行设计任务时,分析了万向传动装置类型的,根据题目所要求的原始数据要求,确定了所选用万向传动轴的种类。

在初定各个部件的相关尺寸后,根据要求进行了校核,确定了所设计部件的尺和参数,并选择了零部件的材料本文介绍了一汽解放CA1130PK2L2 型货车的万向传动装置的结构和工作原理,及相关参数的确定。

全文的中心内容共分为三章:第一章为一汽解放CA1130PK2L2汽车原始数据及设计要求;第二章十字轴的结构特点及基本特点和设计要求;第三章为万向传动轴结构方案的分析及设计;在原始数据确定的前提下,设计所要完成的任务有:查找、收集相关资料,进一步确定万向传动装置的基本尺寸的选取、材料选择和传动过程中的接触应力等工作,其中传动过程中零件内部的接触应力最为关键,在此文中着重做到了应力校核这一步。

第四章 万向传动轴设计

第四章 万向传动轴设计

第四章 万向传动轴设计


概述 万向节结构方案分析 万向传动的运动和受力分析 万向节的设计计算 传动轴结构分析与设计 中间支承结构分析和受力分析
第一节 概 述
1、组成:万向节、中间支承、传动轴 2、功用:在相交且相对位置常变化的两转 轴间传递动力 3、应用场合: • 变速器与驱动桥间 • 变速器与分动器间 • 转向驱动桥中的主减速器与转向驱动轮之间 • 转向系统中的转向柱和转向器之间
准等速万向节——双联式 双联式万向节
定义:传动轴缩至最小的双万向节等速传动装置
结构: 见(图)
优点:允许较大的轴间夹角、结构简单、制造方
便、工作可靠,具有准等速性
准等速万向节——双联式
准等速万向节——双联式
优点:允许两轴间的夹角较大(一般可达50°,偏心十字轴双 联式万向节可达60°),轴承密封性好,效率高,工作可靠, 制造方便。
十字轴万向节轴向定位方式
弹 性 盖 板 式 瓦盖固定式 塑料 环定 位式 外卡式 内卡式
普通盖板式
定位方式 特点 零件数 结构 质量 拆装 工作 制造工艺 十字轴轴向窜动

盖板式 普通型 多 复杂 大 方便 可靠 简单 有 没有 弹性
卡环式 外卡式 少 简单 小 方便 可靠 简单 很小 内卡式 少 简单 小 方便 可靠 简单 很小
万向节的应用
(1) 变速器与驱动桥之间 (2) 多轴驱动的汽车的分动器与驱 动桥之间或驱动桥与驱动桥之间 (3)发动机与变速器之间(由于车架 的变形造成轴线间相互位置变化的 两传动部件) (4)采用独立悬架的汽车差速器之 间 (5)转向驱动车桥的差速器与车轮 之间 (6) 汽车的动力输出装置和转向操 纵机构中
cos

万向传动轴设计说明书

万向传动轴设计说明书

word 格式 整理版学习参考汽车设计课程设计说明书设计题目: 上海大众-桑塔纳志俊万向传动轴设计2014年11月28日目录1前言2设计说明书2.1原始数据2.2设计要求3万向传动轴设计3.1万向节结构方案的分析与选择3.1.1十字轴式万向节3.1.2准等速万向节3.2万向节传动的运动和受力分析3.2.1单十字轴万向节传动3.2.2双十字轴万向节传动3.2.3多十字轴万向节传动4 万向节的设计与计算4.1 万向传动轴的计算载荷4.2传动轴载荷计算4.3计算过程5 万向传动轴的结构分析与设计计算5.1 传动轴设计6 法兰盘设计前言万向传动轴在汽车上应用比较广泛。

发动机前置后轮或全轮驱动汽车行驶时,由于悬架不断变形,变速器或分动器的输出轴与驱动桥输入轴轴线之间的相对位置经常变化,因而普遍采用可伸缩的十字轴万向传动轴。

本设计注重实际应用,考虑整车的总体布置,改进了设计方法,力求整车结构及性能更为合理。

传动轴是由轴管、万向节、伸缩花键等组成。

伸缩套能自动调节变速器与驱动桥之间距离的变化;万向节是保证变速器输出轴与驱动桥输入轴两轴线夹角发生变化时实现两轴的动力传输;万向节由十字轴、十字轴承和凸缘叉等组成。

传动轴的布置直接影响十字轴万向节、主减速器的使用寿命,对汽车的振动噪声也有很大影响。

在传动轴的设计中,主要考虑传动轴的临界转速,计算传动轴的花键轴和轴管的尺寸,并校核其扭转强度和临界转速,确定出合适的安全系数,合理优化轴与轴之间的角度。

2 设计说明书2.1 原始数据最大总质量:1210kg发动机的最大输出扭矩:Tmax=140N·m(n=3800r/min);轴距:2656mm;前轮胎选取:195/60 R14 、后轮胎规格:195/60 R14长*宽*高(mm):4687*1700*1450前轮距(mm);1414后轮距(mm):1422最大马力(pa):952.2 设计要求1.查阅资料、调查研究、制定设计原则2.根据给定的设计参数(发动机最大力矩和使用工况)及总布置图,选择万向传动轴的结构型式及主要特性参数,设计出一套完整的万向传动轴,设计过程中要进行必要的计算与校核。

汽车万向传动轴设计技术毕业设计说明书

汽车万向传动轴设计技术毕业设计说明书

目录1.1 汽车万向传动轴的发展与现状 (2)1.2 万向传动轴设计技术综述 (2)2 万向传动轴结构方案确定 (4)2.1 设计已知参数 (4)2.2 万向传动轴设计思路 (6)2.3 结构方案的确定 (6)3 万向传动轴运动分析 (9)4 万向传动轴设计 (10)4.1 传动载荷计算 (10)4.2 十字轴万向节设计 (12)4.3滚针轴承设计 (13)4.4传动轴初步设计 (14)4.5 花键轴设计 (15)4.6 万向节凸缘叉连接螺栓设计 (16)4.7 万向节凸缘叉叉处断面校核 (17)5基于UG的万向传动轴三维模型构建 (18)5.1万向节凸缘叉作图方法及三维图 (18)5.2万向节十字轴总成作图方法及三维图 (21)5.3 内花键轴管与万向节叉总成作图方法及三维图 (25)5.4 花键、轴管与万向节叉总成作图方法及三维图 (2624)5.5万向传动轴总装装配方法及三维图 (27)6 万向传动装置总成的技术要求、材料及使用保养 (29)6.1普通万向传动轴总成的主要技术要求 (29)6.2万向传动轴的使用材料 (29)6.3 传动轴的使用与保养 (30)7 结论 (31)总结体会 (32)谢辞 (33)附录1外文文献翻译 (34)附录2模拟申请万向传动轴专利书 (48)【参考文献】 (52)1引言1.1 汽车万向传动轴的发展与现状万向传动装置的出现要追溯到1352年,用于教堂时钟中的万向节传动轴。

1663年英国物理学家虎克制造了一个铰接传动装置,后来被人们叫做虎克万向节,也就是十字轴式万向节,但这种万向节在单个传递动力时有不等速性。

1683年双联式虎克万向节诞生,消除了单个虎克万向节传递的不等速性,并于1901年用于汽车转向轮。

上世纪初,虎克万向节和传动轴已在机械工程和汽车工业中起到了极其重要的作用。

1908年第一个球式万向节诞生,1926年凸块式等速万向节出现,开始用于独立悬架的前轮驱动轿车和四轮驱动的军用车的前轮转向节。

汽车万向传动轴的共35页word资料

汽车万向传动轴的共35页word资料

目录1.1 汽车万向传动轴的发展与现状 (2)1.2 万向传动轴设计技术综述 (2)2 万向传动轴结构方案确定 (3)2.1 设计已知参数 (3)2.2 万向传动轴设计思路 (6)2.3 结构方案的确定 (6)3 万向传动轴运动分析................................ 错误!未定义书签。

4 万向传动轴设计 (9)4.1 传动载荷计算 (9)4.2 十字轴万向节设计 (11)4.3滚针轴承设计 (12)4.4传动轴初步设计 (13)4.5 花键轴设计 (14)4.6 万向节凸缘叉连接螺栓设计 (15)4.7 万向节凸缘叉叉处断面校核 (15)5基于UG的万向传动轴三维模型构建 (16)5.1万向节凸缘叉作图方法及三维图 (16)5.2万向节十字轴总成作图方法及三维图 (17)5.3 内花键轴管与万向节叉总成作图方法及三维图 (25)5.4 花键、轴管与万向节叉总成作图方法及三维图 (2618)5.5万向传动轴总装装配方法及三维图 (27)6 万向传动装置总成的技术要求、材料及使用保养 (29)6.1普通万向传动轴总成的主要技术要求 (29)6.2万向传动轴的使用材料 (29)6.3 传动轴的使用与保养 (30)7 结论 (31)总结体会 (32)谢辞 (33)附录1外文文献翻译 (34)附录2模拟申请万向传动轴专利书 (48)【参考文献】 (52)1引言1.1 汽车万向传动轴的发展与现状万向传动装置的出现要追溯到1352年,用于教堂时钟中的万向节传动轴。

1663年英国物理学家虎克制造了一个铰接传动装置,后来被人们叫做虎克万向节,也就是十字轴式万向节,但这种万向节在单个传递动力时有不等速性。

1683年双联式虎克万向节诞生,消除了单个虎克万向节传递的不等速性,并于1901年用于汽车转向轮。

上世纪初,虎克万向节和传动轴已在机械工程和汽车工业中起到了极其重要的作用。

1908年第一个球式万向节诞生,1926年凸块式等速万向节出现,开始用于独立悬架的前轮驱动轿车和四轮驱动的军用车的前轮转向节。

0.75吨级商用车万向传动轴设计说明书

0.75吨级商用车万向传动轴设计说明书

课程设计说明书学生姓名:学号:学院(系):机械系专业:车辆工程题目:0.75吨级商用车万向传动轴设计起迄日期:2020年12月14日~2020年12月31日课程设计地点:指导教师:系主任:目录1绪论 (1)1.1选题的目的和意义 (1)1.2国内外研究现状、发展趋势 (2)1.3研究内容及方法 (3)1.3.1传动轴方案的选择及主要参数的确定 (3)1.3.2万向节类型的选择 (3)1.3.3十字轴式万向节的结构分析 (4)1.3.4万向节总成主要参数的确定与校核 (4)1.3.5中间支承的设计与校核 (4)2传动轴总成的设计 (5)2.1万向传动轴总体概述 (5)2.2传动布置型式的选择 (6)2.3结构方案选择 (6)2.4计算传动轴载荷 (6)2.5 传动轴强度校核 (6)2.6 传动轴转速校核及安全系数 (7)3万向节总成的设计 (9)3.1万向节类型的选择 (10)3.2十字轴式万向节的结构分析 (11)3.3 十字轴万向节设计 (12)参考文献 (13)1 绪论1.1选题的目的和意义随着汽车工业的迅猛发展,车型的多样化、个性化已经成为发展趋势,对汽车节能、舒适与轻量化的要求越来越高。

而传动轴及万向节的设计装配不良将产生振动和噪声,增添未能估算在内的符加动载荷,还可能导致传动系不能正常运转和早期破坏,万向传动轴是汽车传动系的重要组成部件之一[1]。

传动轴选用与设计的合理与否直接影响传动系的传动性能。

选用、设计不当会给传动系增添不必要的和设计未能估算在内的附加负荷,可能导致传动系不能正常运转,因此该总成设计是汽车设计中重要的环节之一。

1.2国内外研究现状、发展趋势传动轴普遍采用具有较高的强度的薄钢板卷焊而成的空心轴,超重型货车的传动轴则直接采用无缝钢管制成。

近年来由于对汽车低能耗,低成本的要求越来越高,汽车必须轻量化,汽车变得更易产生振动和噪声。

因此对传动系重要组成部分万向节振动特性必须进行分析[2]。

万向传动轴设计

万向传动轴设计

弹性橡胶中间支撑
摆臂式中间支撑
第四章 万向传动轴设计
第一节 概述
万向传动轴设计的基本要求 可靠传递转矩 尽可能等速传动 传动效率高、使用寿命长
万向传动分类
第二节 万向节结构方案分析
不等速 准等速 等速
十字轴万向节结构
由主动叉、从动叉、十字轴、滚针轴承 及轴向定位件、橡胶密封件等组成。
十字轴万向节结构
十字轴式万向节结构
多万向节传动设计准则
当量夹角 实现等速传动的条件 为零
第四节 万向节设计
万向节计算载荷
传动轴设计
保证有足够的配合长度 足够的强度和足够高的临界转速 不平衡量小
第六节 中间支承结构分析与设计
在长轴距汽车上,为提高传动轴临界转 速,减小万向轴夹角,以及布置上的需 要,常将传动轴分段。 在轿车中,有时为了提高传动系的弯曲 刚度,改善传动系弯曲振动特性,减少 噪声,而将传动轴分成两段。
滚针轴承及油封结构
球叉式等速万向节
球笼式等速万向节
球笼式等速万向节
伸缩型球笼式万向节
第三节 万向传动的运动和受力分析
单十字轴万向节传动 主动轴转速与从动轴转速的关系 转速不均匀系数 主动轴转矩与从动轴转矩的关系
பைடு நூலகம் 十字轴万向节运动示意图
十字轴万向节的力偶矩
双十字万向节的附加弯矩
三万向节传动示意图

汽车设计万向传动轴设计

汽车设计万向传动轴设计

(a) 具有球面对中机构的挠性万向节 (b) 具有轴向变形的挠性万向节
中北大学 机电工程学院 车辆与动力工程系
《汽车设计》 第四章 万向传动轴设计
§ 4-2 万向节结构方案分析
四、挠性万向节
六角环形橡胶圈
所用橡胶的 力学特性: 抗拉强度 相对收缩率 肖氏硬度 挤压应力 切变模量G 工作温度 。。。
万向节(Universal Joint)的功用 万向节传动用于不同轴线的
两轴间或在工作过程中相对位置 不断变化的两轴间的动力传递 (转矩和旋转运动)。
中北大学 机电工程学院 车辆与动力工程系
《汽车设计》 第四章 万向传动轴设计
§4.1 万向传动概述
二、万向传动轴设计应满足的基本要求
(1)保证所连接的两轴相对位置在预定范围内 变动时,能可靠的传递动力 (2)保证所连接的两轴尽可能等速旋转。 (3)由于万向节夹角而产生的附加载荷、振动 和噪声应在允许范围内 (4)传动效率高,使用寿命长 (5)结构简单,容易维修。
《汽车设计》 第四章 万向传动轴设计
§4.1 万向传动概述
一、万向传动轴的组成与功用 二、万向传动轴设计应满足的基本要求 三、万向传动轴的应用 四、万向节的分类
中北大学 机电工程学院 车辆与动力工程系
《汽车设计》 第四章 万向传动轴设计
§4.1 万向传动概述
一、万向传动轴的组成
汽车上的万向传动轴主要由万向节、传动轴(轴 管及伸缩花键)组成,对长轴距汽车,还加装有 支撑装置。
用途:多用于军用越野转向驱动桥
中北大学 机电工程学院 车辆与动力工程系
《汽车设计》 第四章 万向传动轴设计
§ 4-2 万向节结构方案分析
二、准等速万向节 2. 凸块式万向节

万向传动轴说明书

万向传动轴说明书

万向传动轴设计说明书商用汽车万向传动轴设计摘要万向传动轴在汽车上应用比较广泛。

发动机前置后轮或全轮驱动汽车行驶时,由于悬架不断变形,变速器或分动器的输出轴与驱动桥输入轴轴线之间的相对位置经常变化,因而普遍采用可伸缩的十字轴万向传动轴。

本设计注重实际应用,考虑整车的总体布置,改进了设计方法,力求整车结构及性能更为合理。

传动轴是由轴管、万向节、伸缩花键等组成。

伸缩套能自动调节变速器与驱动桥之间距离的变化;万向节是保证变速器输出轴与驱动桥输入轴两轴线夹角发生变化时实现两轴的动力传输;万向节由十字轴、十字轴承和凸缘叉等组成。

传动轴的布置直接影响十字轴万向节、主减速器的使用寿命,对汽车的振动噪声也有很大影响。

在传动轴的设计中,主要考虑传动轴的临界转速,计算传动轴的花键轴和轴管的尺寸,并校核其扭转强度和临界转速,确定出合适的安全系数,合理优化轴与轴之间的角度。

关键字:万向传动轴、伸缩花键、十字轴万向节、临界转速、扭转强度目录一、概述 (04)二、货车原始数据及设计要求 (05)三、万向节结构方案的分析与选择 (06)四、万向传动的运动和受力分析 (08)五、万向节的设计计算 (11)六、传动轴结构分析与设计计算 (17)七、法兰盘的设计 (19)八、参考文献 (20)一、概述汽车上的万向传动轴一般是由万向节、轴管及其伸缩花键等组成。

主要是用于在工作过程中相对位置不断变化的两根轴间传递转矩和旋转运动。

在动机前置后轮驱动的汽车上,由于工作时悬架变形,驱动桥主减速器输入轴与变速器输出轴间经常有相对运动,普遍采用万向节传动(图1—1a、b)。

当驱动桥与变速器之间相距较远,使得传动轴的长度超过1.5m时,为提高传动轴的临界速度以及总布置上的考虑,常将传动轴断开成两段,万向节用三个。

此时,必须在中间传动轴上加设中间支承。

在转向驱动桥中,由于驱动桥又是转向轮,左右半轴间的夹角随行驶需要而变,这是多采用球叉式和球笼式等速万向节传动(图1—1c)。

轻型商用车传动轴及万向节设计设计说明书

轻型商用车传动轴及万向节设计设计说明书

本科学生毕业设计轻型商用车传动轴及万向节设计The Graduation Design for Bachelor's Degree Design of Light Commercial Vehicle Transmission Shaft and Cardan Joint摘要汽车的万向传动轴是由传动轴、万向节两个主要部件联接而成,在长轴距的车辆中还要加装中间支承。

万向传动轴主要用于工作过程中相对位置不断改变的两根轴间传递转矩和旋转运动。

在本世纪初万向节与传动轴的发明与使用,在汽车工业的发展中起到了极其重要的作用。

随着汽车工业的发展,现代汽车对万向节与传动轴的效率、强度、耐久性和噪声等性能方面的设计及计算校核要求也越来越严格。

本毕业设计将依据现有生产企业在生产车型(CA1041)的万向传动装置作为设计原型。

在给定整车主要技术参数以及发动机、变速器等主要总成安装位置确定的条件下,对整车结构进行了分析,确定了传动轴布置方案,采用两轴三万向节带中间支承的布置形式。

在确定了传动方案后,对传动轴、万向节总成、中间支承总成进行设计,使该总成能够在正常使用的情况及规定的使用寿命内不发生失效。

关键字:传动轴;万向节;中间支承;设计;校核ABSTRACTThe universal drive shaft of automotive is composed of transmission shaft and cardin joint. The main function of the universal drive shaft is to transmitting torque and rotation movement between two shafts whose relative position is variation in the working process. At the beginning of this century the transmission shaft and cardin joint play an important role in the development of automobile industry. As the development of automobile industry, the automobile demand that the design and verification of transmission shaft and cardin join stricter in the efficiency, intension, durability and noise performance. This graduation design chooses existing production business enterprise of basis is producing the car type(CA1041) of ten thousand to spread to move to equip the conduct and actions design prototype. Under the conditions of the main technical parameters of the given vehicle, installation location of engine, transmission and other major assembly are determined , the structure of the vehicle is analysised, the transmission shaft layout program is determined. Two shaft-three cardin joints is adapted.After determining the transmission options, the right drive shaft and universal joint assembly, intermediate bearing assembly is designed, so that the assembly can be used in normal situations and the life within no failure.Keywords:Transmission shaft;Cardin joint;Middle supporting;Design ;Verification目录摘要 (I)Abstract ................................................................................................I I 第1章绪论 (1)1.1选题的目的和意义 (1)1.2国内外研究现状、发展趋势 (1)1.3研究内容及方法 (2)1.3.1传动轴方案的选择及主要参数的确定 (2)1.3.2 万向节类型的选择 (2)1.3.3十字轴式万向节的结构分析 (2)1.3.4万向节总成主要参数的确定与校核 (3)1.3.5中间支承的设计与校核 (3)第2章传动轴总成的设计 (5)2.1万向传动轴总体概述 (5)2.2传动布置型式的选择 (5)2.3传动轴断面尺寸的确定与强度校核 (6)2.3.1传动轴的运动分析 (6)2.3.2 传动轴断面尺寸的计算与校核 (9)2.4主传动轴滑动花键的设计 (11)2.5 中间传动轴花键的设计··········································错误!未定义书签。

万向传动轴设计说明书

万向传动轴设计说明书

万向传动轴设计说明书⽬录(⼀)万向传动轴设计1.1 概述 (02)1.1 结构⽅案选择 (03)1.2 计算传动轴载荷 (04)1.3 ⼗字轴万向节设计 (05)1.4 传动轴强度校核 (07)1.5 传动轴转速校核及安全系数 (07)1.6 参考⽂献 (09)概述万向传动轴⼀般是由万向节、传动轴和中间⽀承组成。

主要⽤于在⼯作过程中相对位置不断改变的两根轴间传递转矩和旋转运动。

万向传动轴设计应满⾜如下基本要求:1.保证所连接的两根轴相对位置在预计范围内变动时,能可靠地传递动⼒。

2.保证所连接两轴尽可能等速运转。

3.由于万向节夹⾓⽽产⽣的附加载荷、振动和噪声应在允许范围内。

4.传动效率⾼,使⽤寿命长,结构简单,制造⽅便,维修容易等。

变速器或分动器输出轴与驱动桥输⼊轴之间普遍采⽤⼗字轴万向传动轴。

在转向驱动桥中,多采⽤等速万向传动轴。

当后驱动桥为独⽴的弹性,采⽤万向传动轴。

1.传动轴与⼗字轴万向节设计要求1.1 结构⽅案选择⼗字轴万向节结构简单,强度⾼,耐久性好,传动效率⾼,⽣产成本低,但所连接的两轴夹⾓不宜太⼤。

当夹⾓增加时,万向节中的滚针轴承寿命将下降。

普通的⼗字轴式万向节主要由主动叉,从动叉,⼗字轴,滚针轴承及轴向定位件和橡胶封件等组成。

1. 组成:由主动叉、从动叉、⼗字轴、滚针轴承、轴向定位件和橡胶密封件组成2. 特点:结构简单、强度⾼、耐久性好、传动效率⾼、成本低,但夹⾓不宜过⼤。

3.轴向定位⽅式:盖板式卡环式⽡盖固定式塑料环定位式4. 润滑与密封:双刃⼝复合油封多刃⼝油封1.2 计算传动轴载荷由于发动机前置后驱,根据表4-1,位置采⽤:⽤于转向驱动桥中①按发动机最⼤转矩和⼀档传动⽐来确定T se1=k d T emax ki1i f i0η/nT ss1= G1 m’1υr r/ 2i mηm发动机最⼤转矩T emax=186Nm驱动桥数n=1,发动机到万向传动轴之间的传动效率η=0.89,液⼒变矩器变矩系数k={(k0 -1)/2}+1=1,满载状态下⼀个转向驱动桥上的静载荷G1=50%m a g=0.5*1747*9.8=8530.9N,满载状态下⼀个驱动桥上的静载荷G2=65%m a g=0.65*1747*9.8=11128.39N,发动机最⼤加速度的前轴转移系数m’1=0.8发动机最⼤加速度的后轴转移系数m’2=1.3,轮胎与路⾯间的附着系数υ=0.85,车轮滚动半径r r=0.35,i=3.6变速器⼀挡传动⽐1i=1分动器传动⽐f主减速器从动齿轮到车轮之间传动⽐i m=0.55,主减速器主动齿轮到车轮之间传动效率ηm=η发动机η离合器=0.98x0.96=0.94因为0.195 m a g/T emax>16,f j=0,所以猛接离合器所产⽣的动载系数k d=1,主减速⽐i 0=3.763所以:T se2=k d T emax ki 1i f i 0η/n =1*285.0*763.3*1*6.3*1*186*1=1070.875N T ss2= G 1 m ’1υr r / 2i m ηm =94.0*4545.0*235.0*85.0*8.0*9.8530=2376.180N ∵T 1=min{ T se2, T ss2} ∴T 1= T se2=1070.875N1.3 ⼗字轴万向节设计①设作⽤于⼗字轴轴颈中点的⼒为F ,则F= T 1/2rcos α=-4cos *10*50*2875.10703=10734.895N②⼗字轴轴颈根部的弯曲应⼒σw 和切应⼒τ应满⾜σw =32d 1Fs π(d 14-d 42)≤[σw ] τ=4F π(d 21-d 22)≤[τ]式中,取⼗字轴轴颈直径d 1=38.2mm ,⼗字轴油道孔直径d 2=10mm ,合⼒F 作⽤线到轴颈根部的距离s=14mm ,[σw ]为弯曲应⼒的许⽤值,为250-350Mpa ,[τ]为切应⼒的许⽤值,为80-120 Mpa∴σw =32d 1Fs π(d 14-d 42)=]4)^10*10(4)^10*2.38[(10*14*895.10734*10*2.38*23333-----π =1.72 Mpa<[σw ]τ=4F π(d 21-d 22) = ])10*10()10*2.38[(895.10734*42323---π =9.58 Mpa<[τ]故⼗字轴轴颈根部的弯曲应⼒和切应⼒满⾜校核条件③⼗字轴滚针的接触应⼒应满⾜σj =272(1d 1+1d 0)F n L b≤[σj ] 式中,取滚针直径d 0=3mm ,滚针⼯作长度L b =27mm ,在合⼒F 作⽤下⼀个滚针所受的最⼤载荷F n =4.6F iZ=44*1895.10734*6.4=1122.284,当滚针和⼗字轴轴颈表⾯硬度在58HRC 以上时,许⽤接触应⼒[σj ]为3000-3200 Mpa ∴σj =272b n L F d d )11(01+=2723331027284.1122])103(1)102.38(1[---+? =1.051Mpa<[σj ]故⼗字轴滚针轴承的接触应⼒校核满⾜④万向节叉与⼗字轴组成连接⽀承,在⼒F 作⽤下产⽣⽀承反⼒,在与⼗字轴轴孔中⼼线成45°的截⾯处,万向节叉承受弯曲和扭转载荷,其弯曲应⼒σw 和扭应⼒τb 应满⾜σw =Fe/W ≤[σw ]τb =Fa/W t ≤[τb ]式中,取a=40mm,e=80mm,b=35mm,h=70mm,查表4-3,取k=0.246,W=bh 2/6,W t =khb 2, 弯曲应⼒的许⽤值[σw ]为50-80Mpa ,扭应⼒的许⽤值[τb ]为80-160Mpa∴σw =Fe/W=6)1070(10351080895.107342333--- =30.045 Mpa< [σw ]τb =Fa/W t =2333)1035(1070246.01040895.10734--- =20.356Mpa<[τb ]故万向节叉承受弯曲和扭转载荷校核满⾜要求⑤⼗字轴万向节的传动效率与两轴的轴间夹⾓α,⼗字轴的⽀承结构和材料,加⼯和装配精度以及润滑条件等有关。

汽车设计五(万向传动轴设计)

汽车设计五(万向传动轴设计)

速度有关系式
,这样有
T2
1 sin 2 cos2 1 cos
T1
(4-3)
显然,当
最小时,从动轴上的转矩为最大
;当
最大时,从动轴上的转矩为最小
值与最小值之间每一转变化两次。
。T1与
第十页,共十八页。
一定时,T2在其最大
附加(fùjiā)弯曲力偶矩的分析
具有夹角 的十字轴万向节,仅在主动轴驱
动(qū dònɡ)转矩和从动轴反转矩的作用下是不能 平衡的。从万向节叉与十字轴之间的约束关系分析
第三页,共十八页。
第二节 万向节结构方案(fāng àn)分析
万向节分为刚性万向节和挠性万向节。
刚性万向节可分为不等速万向节(如十字轴式)、准等速万向节(如双联式、凸块 式、三销轴式等)和等速万向节(如球叉式、球笼式等)。
不等速万向节是指万向节连接的两轴夹角大于零时,输出(shūchū)轴和 输入轴之间以变化的瞬时角速度比传递运动的万向节。
第九页,共十八页。
第三节 万向传动的运动(yùndòng)和受力分析
一、单十字轴万向节传动
当十字轴万向节的主动轴与从动轴存在一定夹角α时, 主动轴的角速度 与从动轴的角速度 之间存在如下的关系
2 cos 由于cos 是周期为2 的周期1函数sin,2 所c以os2 1
(4-1) 也为同周期的周期函数。当
第四章
万向传动轴设计(shèjì)
第一页,共十八页。
第四章 万向传动轴设计(shèjì)
• 第一节 概述

第二节 万向节结构方案(fāng àn)分析
• 第三节 万向传动的运动和受力分析
• 第四节 传动轴结构分析与设计
第二页,共十八页。

传动轴设计说明书

传动轴设计说明书

新员工帮带机制摘要所谓机械加工工艺规程,是指规定产品或零部件机械加工工艺过程和操作方法等的工艺文件。

生产规模的大小、工艺水平的高低以及解决各种工艺问题的方法和手段都要通过机械加工工艺规程来体现。

因此,机械加工工艺规程的设计是一项十分重要而又非常严肃的工作。

制订机械加工工艺规程的原则是:在一定的生产条件下,在保证持量和生产进度的前提下,能获得最好的经济效益。

制订工艺规程时,应注意以下三方面的问题:1、技术上的先进性;2、经济上的合理性;3、有良的劳动条件,避免环境污染。

目录第一节传动轴(批量为200件)机械加工工艺规程设计一、传动轴的用途新员工帮带机制二、传动轴的技术要求三、审查传动轴的工艺性四、确定传动轴的生产类型第二节确定毛坯、绘制毛坯简图一、选择毛坯二、确定毛坯的尺寸公差和机械加工余量三、绘制传动轴锻造毛坯简图第三节拟定传动轴工艺路线一、定位基准的选择二、表面加工方法的确定三、加工阶段的划分四、工序的集中与分散五、工序顺序的安排六、确定工艺路线第四节机床设备及工艺装备的选用一、机床设备的选用二、工艺装备的选用第五节加工余量、工序尺寸和公差的确定一、G轴外圆面φ40的确定二、E轴外圆面φ30的确定三、M轴外圆面φ35的确定四、F轴右边部分外圆面φ30的确定五、F轴左边部分外圆面φ30的确定六、N轴外圆面φ25的确定七、M20x1.5螺纹的加工第六节切削用量、时间定额的计算一、切削用量的计算二、时间定额的计算第七节心得体会第八节参考文献第九节附录第一节传动轴(批量为200件)机械加工工艺规程设计一、传动轴的用途传动轴在各种机械或传动系统中广泛使用,用来传递动力。

在传力过程中主要承受交变扭转负荷或有冲击,因此该零件应具有足够的强度、刚度和韧性,以适应其工作条件。

该零件的主要工作表面为E、M、F、N 四个阶梯轴的外圆表面,它们的精度和表面粗糙度要求很高,在设计工艺规程时应重点予以保证。

二、传动轴的技术要求表1 传动轴零件技术要求表加工表面尺寸及偏差/mm 公差及精度等级表面粗糙度Ra/μm形位公差/mm传动轴两端面215无无无M轴肩左端面32无无无N轴肩右端面20无无无F轴肩右端面58无无无P面65无0.8Q面104无0.8G轴外圆面φ40无无无F轴外圆面左部(有配合要求)φ30±0.0065IT60.8无F轴外圆面右部(无配合要求)-0.02φ30 -0.072IT90.8无N轴外圆面0φ25 -0.013IT60.8无M轴外圆面φ35±0.008IT60.8E轴外圆面φ30±0.0065IT60.8无M轴外圆面上键槽侧面 -0.01510 -0.085IT10 3.2无N轴外圆面上键槽侧面 -0.0158 -0.065IT9 3.2无要求很高的精度等级和表面粗糙度。

传动轴设计手册

传动轴设计手册
计算传动轴的临界转速。
传动轴临界转速公式:
nk=1.2×108
nmax<0.7 nk
nmax= n·i5
nk传动轴临界转速
nmax传动轴最大输入转速
n发动机最高转速
i5变速箱五档速比
nmax传动轴最大输入转速,可由发动机的最高转速及变速箱的速比计算得出,及由整车的设计转速反推出,取两者中的较大者。若该单传动轴的临界转速不能满足设计要求,可通过使用双节传动轴,或将轴管壁厚减薄(必须在该轴管满足设计扭矩的前提下),以使用传动轴的临界转速满足使用要求。
rk车轮的滚动半径
ψ车轮与地面的附着系数
io主减速器速比
b按发动机最大扭矩计算传动轴的额定负荷公式:
Mψmax=M·ik1·ip/n
M发动机最大扭矩
ik1变速器一档速比
ip分动器低档速比
n使用分动器时的驱动轴数
按《汽车传动轴总成台架试验方法》中贯定选取以上二者较小值为额定负荷。考虑到出现最大附着力时的工况是紧急制动工况此时的载荷转移系数为μ因此实际可利用最大附着力矩:
Mψmaxo=Mmax·μ
传动轴的试验扭矩:
由汽车设计丛书《传动轴和万向节》中得知:一般总成的检查扭矩为设计扭矩的1.5-2.0倍。传动轴设计中轴管与万向节的设计扭矩也应选取1.5-2.0倍的计算扭矩,以满足整车使用中的冲击载荷。
轴管扭转应力公式:
τ=<[τ] =120N/ mm2
D轴管直径;
d轴管内径;
传动轴设计
1概述
在汽车传动轴系或其它系统中,为了实现一些轴线相交或相对置经常变化的转轴之间的动力传递,必须采用万向传动装置。万向传动装置一般由万向节和传动轴组成,当距离较远时,还需要中间支承。在汽车行业中把连接发动机与前、后轴的万向传动装置简称传动轴。传动轴设计应能满足所要传递的扭矩与转速。现轻型载货汽车多采用不等速万向节传动轴。

课程设计说明书--万向传动轴设计

课程设计说明书--万向传动轴设计

万向传动轴设计1.车型及其相关参数1.1车型图片设计所选车型为:一汽解放赛龙中卡(CA1145PK2L2AEA80)1.2车型参数:驱动形式4*2 轴距4920m车身长度8.45m 车身宽度 2.5m车身高度 2.56m 最高车速93km/h 轮胎规格8.25-16 发动机最大输出功率103kw整车质量 5.8吨发动机最大转矩450N·m 最大总质量13.8吨最大扭矩转速1400发动机额定转速2500rpm 档数6档变速器最大输出扭矩610N·m 一档传动比 6.515后桥允许载荷8950Kg 六档传动比0.813刚性万向节安徽工程大学万向节------课程设计说明书挠性万不等速万向节准等速万向节等速万向节向节十字轴式双联式凸块式三销轴式球面滚轮式圆弧槽滚刀式球叉式直槽滚道式伸缩型球笼式Birfield型Rzeppa型图 2.1万向节的分类在方案选择时,我们考虑到它是用于变速器与驱动桥之间,并且在满足万向传动轴设计基本要求后,我们选择了十字轴万向节。

其结构如下图所示,注油嘴套筒滚针轴承座注油孔油道图 2.2十字轴结构图因为这种万向节结构简单紧凑,强度高,耐久性好,传动效率高,生产成本低,能使不在同轴线或轴线角较大,轴向移动较大的两轴等角速连续回转,与可伸缩的传动轴搭配在一起,构成的十字轴万向传动轴被广泛采用。

十字轴万向传动可分为单十字轴和双十字轴两种。

单十字轴万向节传动,传动轴被封闭在一套管中,套管将牵引力或制动力从驱动桥传至车架或车身。

但其结构笨重,增加了非悬挂部分的重量。

而且,由于这种结构中只用了一个十字轴万向节传动,因此不能保证主减速器主动轴与变速器第二轴的转速恒等,引起了工作不均匀性,这种万向节应用很少。

目前应用最广泛的是双十字轴万向节。

双十字轴万向节直接用两个简单十字轴万向节和一根传动轴连接。

另外双十字轴万向节的重量轻,对载重汽车而言通常只占 1.0~1.4%。

所以我们选了双十字轴万向节。

传动轴设计说明书

传动轴设计说明书
212基本参数的选择与计算22万向传动轴设计思路23结构方案的确定231万向节结构方案的确定232传动轴结构方案确定1341传动载荷计算13411按发动机最大转矩和一挡传动比来计算13412按驱动轮打滑来计算1342十字轴万向节设计14421初选十字轴万向节尺寸14422十字轴轴颈作用力合力f的计算15423十字轴轴颈部的弯曲应力15424十字轴轴颈部的切应力1643滚针轴承设计16广西大学专业课程设计说明书431滚针轴承初选尺寸16432一个滚针所受的最大载荷17433滚针轴承的接触应力1744传动轴初步设计17441传动轴初选尺寸17442传动轴临界转速18443传动轴强度校核1845花键轴设计19451花键轴初选尺寸19452花键齿侧挤压应力20453花键轴杆部扭转应力2046万向节凸缘叉连接螺栓设计2147万向节凸缘叉叉处断面校核21471弯曲应力22472扭转应力2451中间支承的结构分析与选择2661普通万向传动轴总成的主要技术要求2662万向传动轴的使用材料2663传动轴的使用与保养27小结28参考文献29致谢30广西大学专业课程设计说明书绪论11汽车万向传动轴的发展与现状万向传动装置的出现要追溯到1352年用于教堂时钟中的万向节传动轴
IV
广西大学专业课程设计说明书
4.3.1 滚针轴承初选尺寸 .................................. 16 4.3.2 一个滚针所受的最大载荷 ............................ 17 4.3.3 滚针轴承的接触应力 ................................ 17 4.4 传动轴初步设计 .......................................... 17 4.4.1 传动轴初选尺寸 .................................... 17 4.4.2 传动轴临界转速 .................................... 18 4.4.3 传动轴强度校核 .................................... 18 4.5 花键轴设计 ............................................. 19 4.5.1 花键轴初选尺寸 .................................... 19 4.5.2 花键齿侧挤压应力 .................................. 20 4.5.3 花键轴杆部扭转应力 ................................ 20 4.6 万向节凸缘叉连接螺栓设计 ............................... 21 4.7 万向节凸缘叉叉处断面校核 ............................... 21 4.7.1 弯曲应力 .......................................... 22 4.7.2 扭转应力 .......................................... 22 5 中间支承的设计 ............................................... 24 5.1 中间支承的结构分析与选择 ................................ 24 6 万向传动装置总成的技术要求、材料及使用保养 ................... 26 6.1 普通万向传动轴总成的主要技术要求 ........................ 26 6.2 万向传动轴的使用材料 ................................... 26 6.3 传动轴的使用与保养 ..................................... 27 小结 ........................................................... 28 参考文献 ....................................................... 29 致谢 ........................................................... 30

汽车设计——第四章 万向传动轴设计

汽车设计——第四章 万向传动轴设计
一、万向传动轴的计算载荷 二、十字轴万向节设计 1.十字轴轴颈根部的弯曲、剪切应力 2. 滚针轴承 3. 万向节叉 4. 十字轴万向节传动效率与材料
第五节 传动轴设计
传动轴设计时的主要考虑因素: 花键的轴向阻力 实心轴与空心轴 传动轴管的制作 传动轴的长度和夹角及变化范围 临界转速 轴管扭转强度
2.双万向节传动(普通十字轴式万向节) 1)等速传动条件 与传动轴相连的两个万向节叉布置在同 一平面内。 两万向节与传动轴的夹角相等 2)附பைடு நூலகம்弯矩的作用
第三节 万向节传动的运动分析
3.多万向节传动(普通十字轴式万向节) 当量夹角 角加速度幅值 多万向节传动计算
另一种方法
第四节 万向节的设计计算
能可靠而稳定地传递动力。 保证所连接的两轴尽可能等速旋转。 由万向节传动引起的振动、噪音以及附加载
荷在允许范围内。 传动效率高,使用寿命长。 结构简单、制造方便、维修容易。 4.万向节分类
第二节 万向节结构方案分析
1.十字轴式万向节
2.准等速万向节 双联式万向节 凸块式万向节 三销轴式万向节 球面滚轮式万向节
传动轴花键轴扭转应力 传动轴花键齿侧挤压应力
第六节 中 间 支 承
在长轴距汽车上,常常将传动轴分段(两段或三段), 目的主要是缩短每一段的长度,提高刚度,从而 提高传动轴的临界转速。在乘用车中,有时为了 提高传动系的弯曲刚度、改善传动系弯曲振动特 性,减少噪音,也将传动轴分成两段。当传动轴 分段时,需要加中间支承。
第二节 万向节结构方案分析
3.等速万向节 球叉式万向节 球笼式万向节 Rzeppa型等速万向节 Birfield型球笼等速万向节 伸缩型球笼万向节 4.挠性万向节
第三节 万向节传动的运动分析
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录(一)万向传动轴设计1.1 概述 (02)1.1 结构方案选择 (03)1.2 计算传动轴载荷 (04)1.3 十字轴万向节设计 (05)1.4 传动轴强度校核 (07)1.5 传动轴转速校核及安全系数 (07)1.6 参考文献 (09)概述万向传动轴一般是由万向节、传动轴和中间支承组成。

主要用于在工作过程中相对位置不断改变的两根轴间传递转矩和旋转运动。

万向传动轴设计应满足如下基本要求:1.保证所连接的两根轴相对位置在预计范围内变动时,能可靠地传递动力。

2.保证所连接两轴尽可能等速运转。

3.由于万向节夹角而产生的附加载荷、振动和噪声应在允许范围内。

4.传动效率高,使用寿命长,结构简单,制造方便,维修容易等。

变速器或分动器输出轴与驱动桥输入轴之间普遍采用十字轴万向传动轴。

在转向驱动桥中,多采用等速万向传动轴。

当后驱动桥为独立的弹性,采用万向传动轴。

1.传动轴与十字轴万向节设计要求1.1 结构方案选择十字轴万向节结构简单,强度高,耐久性好,传动效率高,生产成本低,但所连接的两轴夹角不宜太大。

当夹角增加时,万向节中的滚针轴承寿命将下降。

普通的十字轴式万向节主要由主动叉,从动叉,十字轴,滚针轴承及轴向定位件和橡胶封件等组成。

1. 组成:由主动叉、从动叉、十字轴、滚针轴承、轴向定位件和橡胶密封件组成2. 特点:结构简单、强度高、耐久性好、传动效率高、成本低,但夹角不宜过大。

3.轴向定位方式:盖板式卡环式瓦盖固定式塑料环定位式4. 润滑与密封:双刃口复合油封多刃口油封1.2 计算传动轴载荷由于发动机前置后驱,根据表4-1,位置采用:用于转向驱动桥中①按发动机最大转矩和一档传动比来确定T se1=k d T emax ki1i f i0η/nT ss1= G1 m’1υr r/ 2i mηm发动机最大转矩T emax=186Nm驱动桥数n=1,发动机到万向传动轴之间的传动效率η=0.89,液力变矩器变矩系数k={(k0 -1)/2}+1=1,满载状态下一个转向驱动桥上的静载荷G1=50%m a g=0.5*1747*9.8=8530.9N,满载状态下一个驱动桥上的静载荷G2=65%m a g=0.65*1747*9.8=11128.39N,发动机最大加速度的前轴转移系数m’1=0.8发动机最大加速度的后轴转移系数m’2=1.3,轮胎与路面间的附着系数υ=0.85,车轮滚动半径r r=0.35,i=3.6变速器一挡传动比1i=1分动器传动比f主减速器从动齿轮到车轮之间传动比i m=0.55,主减速器主动齿轮到车轮之间传动效率ηm=η发动机η离合器=0.98x0.96=0.94因为0.195 m a g/T emax>16,f j=0,所以猛接离合器所产生的动载系数k d=1,主减速比i 0=3.763所以:T se2=k d T emax ki 1i f i 0η/n =1*285.0*763.3*1*6.3*1*186*1=1070.875N T ss2= G 1 m ’1υr r / 2i m ηm =94.0*4545.0*235.0*85.0*8.0*9.8530=2376.180N ∵T 1=min{ T se2, T ss2} ∴T 1= T se2=1070.875N1.3 十字轴万向节设计① 设作用于十字轴轴颈中点的力为F ,则F= T 1/2rcos α=︒-4cos *10*50*2875.10703=10734.895N② 十字轴轴颈根部的弯曲应力σw 和切应力τ应满足σw =32d 1Fs π(d 14-d 42)≤[σw ] τ=4F π(d 21-d 22)≤[τ]式中,取十字轴轴颈直径d 1=38.2mm ,十字轴油道孔直径d 2=10mm ,合力F 作用线到轴颈根部的距离s=14mm ,[σw ]为弯曲应力的许用值,为250-350Mpa ,[τ]为切应力的许用值,为80-120 Mpa∴σw =32d 1Fs π(d 14-d 42)=]4)^10*10(4)^10*2.38[(10*14*895.10734*10*2.38*23333-----π =1.72 Mpa<[σw ]τ=4F π(d 21-d 22) = ])10*10()10*2.38[(895.10734*42323---π =9.58 Mpa<[τ]故十字轴轴颈根部的弯曲应力和切应力满足校核条件③ 十字轴滚针的接触应力应满足σj =272(1d 1+1d 0)F n L b≤[σj ] 式中,取滚针直径d 0=3mm ,滚针工作长度L b =27mm ,在合力F 作用下一个滚针所受的最大载荷F n =4.6F iZ=44*1895.10734*6.4=1122.284,当滚针和十字轴轴颈表面硬度在58HRC 以上时,许用接触应力[σj ]为3000-3200 Mpa∴σj =272b n L F d d )11(01+=2723331027284.1122])103(1)102.38(1[---⨯⨯⨯+⨯ =1.051Mpa<[σj ]故十字轴滚针轴承的接触应力校核满足④ 万向节叉与十字轴组成连接支承,在力F 作用下产生支承反力,在与十字轴轴孔中心线成45°的截面处,万向节叉承受弯曲和扭转载荷,其弯曲应力σw 和扭应力τb 应满足σw =Fe/W ≤[σw ]τb =Fa/W t ≤[τb ]式中,取a=40mm,e=80mm,b=35mm,h=70mm,查表4-3,取k=0.246,W=bh 2/6,W t =khb 2, 弯曲应力的许用值[σw ]为50-80Mpa ,扭应力的许用值[τb ]为80-160Mpa∴σw =Fe/W=6)1070(10351080895.107342333---⨯⨯⨯⨯⨯ =30.045 Mpa< [σw ]τb =Fa/W t =2333)1035(1070246.01040895.10734---⨯⨯⨯⨯⨯⨯ =20.356Mpa<[τb ]故万向节叉承受弯曲和扭转载荷校核满足要求⑤ 十字轴万向节的传动效率与两轴的轴间夹角α,十字轴的支承结构和材料,加工和装配精度以及润滑条件等有关。

当α≤25°时,可按下式计算(取α=15°)η0=1-f (d 1r )2tan απ=1-0.07(502.38)π︒15tan =99.54% 1.4传动轴强度校核按扭转强度条件τT =T/W T ≈))(1(2.0955000043c c c D d D n P -≤[τT ]式中,τT 为扭转切应力,取轴的转速n=4500r/min ,轴传递的功率P=65kw ,D c =60mm ,d c =81mm 分别为传动轴的外内直径,根据机械设计表15-3得[τT ]为15-25 Mpa∴τT =))6052(1(602.0450065955000043-⨯=7.266 Mpa<[τT ]故传动轴的强度符合要求1.5 传动轴转速校核及安全系数①传动轴的临界转速为n k =1.2×108222c c c L d D +式中,取传动轴的支承长度L c =1.5m, d c =70mm, D c =90mm 分别为传动轴轴管的内外直径, n max =4500 r/min∴n k =1.2×108×22215007090+=6080.933 r/min在设计传动轴时,取安全系数K= n k /n max =1.2-2.0∴K= n k /n max =4500933.6080=1.351故符合要求② 传动轴轴管断面尺寸除应满足临界转速要求以外,还应保证有足够的扭转强度。

轴管的扭转应力τc =)(16441c c c d D T D -π≤[τc ] 式中[τc ]=300 Mpa∴τc =])1070()1090[(14.3875.107010901643433---⨯-⨯⨯⨯⨯⨯ =11.799 Mpa<[τc ]∴轴管的扭转应力校核符合要求.③ 对于传动轴上的花键轴,通常以底径计算其扭转应力τh ,许用应力一般按安全系数2-3确定τh = 3116h d T π式中,取花键轴的花键内径d h =70mm ,外径D h =80mm, ∴τh =33)1070(14.3875.107016-⨯⨯⨯=15.9 Mpa④ 传动轴花键的齿侧挤压应力σy 应满足σy =T 1K ’/)2)(4(h h h h d D d D -+L h n 0≤[σy ]式中,取花键转矩分布不均匀系数K ’=1.35,花键的有效工作长度L h =60mm ,花键齿数n 0=18,当花键的齿面硬度大于35HRC 时:许用挤压应力[σy ]=25-50 Mpa∴σy = 910186055.3735.1875.1070-⨯⨯⨯⨯⨯ =7.139Mpa <[σy ]∴传动轴花键的齿侧挤压应力σy 满足要求1.6 参考文献:[1] 王望予.汽车设计.北京:机械工业出版社,2004.8[2] 纪名刚.机械设计.北京:高等教育出版社,2006.5[3] 刘鸿文.材料力学.北京:高等教育出版社,2004.1[4] 羊拯民.传动轴和万向节. 北京:人民交通出版社,1986,10。

相关文档
最新文档