求曲线的轨迹方程(上课用)
求轨迹方程的几种常用方法
求轨迹方程的几种常用方法求轨迹的方程,是学习解析几何的基础,求轨迹的方程常用的方法主要有:1直接法:若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点坐标为( x, y )后,就可根据命题中的已知条件,研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有x,y 的关系式。
从而得到轨迹方程,这种求轨迹方程的方法称作直接法。
例1 :在直角△ ABC中,斜边是定长2a (a 0),求直角顶点C的轨迹方程。
解:由于未给定坐标系,为此,首先建立直角坐标系,取AB所在的直线为X轴,AB的中点0为坐标原点,过0与AB垂直的直线为y轴(如图).则有A ( a,0),B (a,0)。
设动点C为(x, y),••• | AC |2 |BC |2 |AB|2,a)2y2]2h(x a)2y2]24a2,即x2由于C点到达A、B位置时直角三角形ABC不存在,轨迹中应除去A、B两点,故所求方程为x2y2a2( x a )。
2•代入法(或利用相关点法):即利用动点是定曲线上的动点,另一动点依赖于它,那么可寻求它们坐标之间的关系,然后代入定曲线的方程进行求解,就得到原动点的轨迹。
例2 :已知一条长为6的线段两端点A、B分别在x、y轴上滑动,点M在线段AB上,且AM : MB 1:2,求动点M的轨迹方程。
解:设 A (a,0) , B (0, b), M (x, y),一方面,. 另一方面,36 , M分AB的比为1,2评注:本例中,由于 M 点的坐标随着 A 、B 的变化而变化,因而动点 M 的坐标(x, y)可以用A 、B 点 的坐标来表示,而点 M 又满足已知条件,从而得到 M 的轨迹方程。
此外,与上例一样,求曲线的方程时, 要充分注意化简过程是否完全同解变形,还要考虑曲线上的一些特殊点。
3.几何法:求动点轨迹问题时,动点的几何特征与平面几何中的定理及有关平面几何知识有着直接或间接的联 系,且利用平面几何的知识得到包含已知量和动点坐标的等式,化简后就可以得到动点的轨迹方程,这种 求轨迹方程的方法称作几何法。
圆锥曲线的轨迹方程问题(教师版)
圆锥曲线的轨迹方程问题1.抛物线C :y 2=2px (p >0)的焦点为F ,P 在抛物线C 上,O 是坐标原点,当PF 与x 轴垂直时,△OFP 的面积为1.(1)求抛物线C 的方程;(2)若A ,B 都在抛物线C 上,且OA ⋅OB =-4,过坐标原点O 作直线AB 的垂线,垂足是G ,求动点G 的轨迹方程.【答案】(1)y 2=4x ;(2)x 2+y 2-2x =0x ≠0【解析】(1)当PF 与x 轴垂直时,P p 2,p ,故S △OFP =12×p 2×p =1,故p =2,故抛物线的方程为:y 2=4x .(2)设A y 214,y 1 ,B y 224,y 2,直线AB :x =ty +m ,因为OA ⋅OB =-4,故y 21y 2216+y 1y 2=-4,整理得到:y 21y 22+16y 1y 2+64=0,故y 1y 2=-8.由x =ty +my 2=4x可得y 2-4ty -4m =0,故-4m =-8即m =2,故直线AB :x =ty +2,此直线过定点M 2,0 .因为OG ⊥GM ,故G 的轨迹为以OM 为直径的圆,其方程为:x -0 x -2 +y -0 y -0 =0即x 2+y 2-2x =0.因为直线AB :x =ty +2与x 轴不重合,故G 不为原点,故G 的轨迹方程为:x 2+y 2-2x =0x ≠0 .2.已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的离心率e =233,且经过点P 3,1 .(1)求双曲线C 的方程;(2)设A ,B 在C 上,PA ⊥PB ,过P 点向AB 引垂线,垂足为M ,求M 点的轨迹方程.【答案】(1)x 26-y 22=1;(2)x -92 2+y +122=92(去掉点P )【解析】(1)∵双曲线的离心率e =c a =233,∴c 2=43a 2=a 2+b 2,即a 2=3b 2,将P 3,1 代入C :x 23b 2-y 2b 2=1,即93b 2-1b2=1,解得b 2=2,a 2=6,故双曲线C 的方程为x 26-y 22=1;(2)当直线AB 斜率不存在时,不满足PA ⊥PB ,故不满足题意;当直线AB 斜率存在时,设A x 1,y 1 ,B x 2,y 2 ,AB :y =kx +m ,代入双曲线方程整理得:3k 2-1 x 2+6kmx +3m 2+6 =0.Δ>0,则x 1+x 2=-6km 3k 2-1,x 1x 2=3m 2+63k 2-1,∵PA ⊥PB ,∴x 1-3 x 2-3 +y 1-1 y 2-1 =0,即x 1-3 x 2-3 +kx 1+m -1 kx 2+m -1 =0,整理得18k 2+9km +m 2+m -2=0,即3k +m -1 6k +m +2 =0,当3k +m -1=0时,AB 过P 点,不符合题意,故6k +m +2=0,直线AB 化为y +2=k x -6 ,AB 恒过定点Q 6,-2 ,∴M 在以PQ 为直径的圆上且不含P 点,即M 的轨迹方程为x -92 2+y +12 2=92(去掉点P ).3.已知抛物线C :y =x 2,过点M 1,2 的直线交抛物线C 于A ,B 两点,以A ,B 为切点分别作抛物线C 的两条切线交于点P .(1)若线段AB 的中点N 的纵坐标为32,求直线AB 的方程;(2)求动点P 的轨迹.【答案】(1)x -y +1=0;(2)2x -y -2=0【解析】(1)依题意有:直线AB 的斜率必存在,故可设直线AB 的方程为y -2=k (x -1).由y -2=k (x -1),y =x 2, 可得:x 2-kx +k -2=0.设A (x 1,y 1),B (x 2,y 2),则有x 1+x 2=k ,x 1x 2=k -2.于是:y 1+y 2=x 21+x 22=(x 1+x 2)2-2x 1x 2=k 2-2k +4=3,解得k =1,故直线AB 的方程为x -y +1=0.(2)设P (x 0,y 0),对于抛物线y =x 2,y =2x ,于是:A 点处切线方程为y -y 1=2x 1(x -x 1),点P 在该切线上,故y 0-x 21=2x 1(x 0-x 1),即x 21-2x 0x 1+y 0=0.同理:P 点坐标也满足x 22-2x 0x 2+y 0=0,于是:x 1,x 2是方程x 2-2x 0x +y 0=0的两根,所以x 1+x 2=2x 0,x 1x 2=y 0.又由(1)可知:x 1+x 2=k ,x 1x 2=k -2,于是x 0=k2,y 0=k -2,消k 得y 0=2x 0-2,于是P 的轨迹方程为2x -y -2=0,点P 的轨迹是一条直线.4.已知圆C 与y 轴相切,圆心C 在直线x -2y =0上且在第一象限内,圆C在直线y =x 上截得的弦长为214.(1)求圆C 的方程;(2)已知线段MN 的端点M 的横坐标为-4,端点N 在(1)中的圆C 上运动,线段MN 与y 轴垂直,求线段MN 的中点H 的轨迹方程.【答案】(1)x -4 2+y -2 2=16;(2)4x 2+y -2 2=16【解析】(1)依题意,设所求圆C 的方程为x -a 2+y -b 2=r 2a >0 .所以圆心a ,b 到直线x -y =0d =a -b2,则有d 2+14 2=r 2,即a -b 2+28=2r 2.①由于圆C 与y 轴相切,所以r 2=a 2.②又因为圆C 的圆心在直线x -2y =0上,所以a -2b =0.③联立①②③,解得a =4,b =2,r =4,故所求圆C 的方程为x -4 2+y -2 2=16.(2)设点H 的坐标为x ,y ,点N 的坐标为x 0,y 0 ,点M 的坐标为-4,y ,因为H 是线段MN 的中点,所以x =x 0-42,y =y 0,于是有x 0=2x +4,y 0=y .①因为点N 在第(1)问中圆C 上运动,所以点N 满足x 0-4 2+y 0-2 2=16.②把①代入②,得2x +4-4 2+y -2 2=16,整理,得4x 2+y -2 2=16.此即为所求点H 的轨迹方程.5.已知圆O :x 2+y 2=4与x 轴交于点A (-2,0),过圆上一动点M 作x 轴的垂线,垂足为H ,N 是MH 的中点,记N 的轨迹为曲线C .(1)求曲线C 的方程;(2)过-65,0 作与x 轴不重合的直线l 交曲线C 于P ,Q 两点,设直线AP ,AS 的斜率分别为k 1,k 2.证明:k 1=4k 2.【答案】(1)x 22+y 2=1;(2)证明见解析.【解析】(1)设N (x 0,y 0),则H (x 0,0),∵N 是MH 的中点,∴M (x 0,2y 0),又∵M 在圆O 上,∴ x 20+(2y 0)2=4,即x 204+y 20=1;∴曲线C 的方程为:x 24+y 2=1;(2)①当直线l 的斜率不存在时,直线l 的方程为:x =-65,若点P 在轴上方,则点Q 在x 轴下方,则P -65,45 ,Q -65,-45,直线OQ 与曲线C 的另一交点为S ,则S 与Q 关于原点对称,∴S 65,45,k 1=k AP =45-0-65+2=1,k 2=k AS =45-065+2=14,∴k 1=4k 2;若点P 在x 轴下方,则点Q 在x 轴上方,同理得:P -65,-45 ,Q -65,45 ,S 65,-45,∴k1=k AP=-45-0-65+2=-1,k2=k AS=-45-065+2=-14,∴k1=4k2;②当直线l的斜率存在时,设直线l的方程为:x=my-6 5,,由x=my-65,与x24+y2=1联立可得(m2+4)y2-12m5y-6425=0,其中Δ=144m225+4×(m2+4)×6425>0,设P(x1,y1),Q(x2,y2),则S(-x2,-y2),则y1+y2=12m5m2+4,y1y2=-6425m2+4,∴k1=k AP=y1-0x1+2=y1x1+2,k2=k AS=-y2-0-x2+2=y2x2-2,则k1k2=y1x1+2⋅x2-2y2=y1my2-165my1+45y2=my1y2-165y1my1y2+45(y1+y2)-45y1=-6425m2+4-165y1-6425mm2+4+45⋅125mm2+4-45y1=-6425m2+4-165y1-1625m2+4-45y1=4,∴k1=4k2.6.已知点E(2,0),F22,0,点A满足|AE|=2|AF|,点A的轨迹为曲线C.(1)求曲线C的方程;(2)若直线l:y=kx+m与双曲线:x24-y29=1交于M,N两点,且∠MON=π2(O为坐标原点),求点A到直线l距离的取值范围.【答案】(1)x2+y2=1;(2)655-1,655+1.【解析】(1)设A(x,y),因为|AE|=2|AF|,所以(x-2)2+(y-0)2=2×x-2 22+(y-0)2,平方化简,得x2+y2=1;(2)直线l:y=kx+m与双曲线:x24-y29=1的方程联立,得y=kx+mx2 4-y29=1⇒(4k2-9)x2+8kmx+4m2+36=0,设M(x1,y1),N(x2,y2),所以有4k2-9≠0(8km)2-4⋅(4k2-9)(4m2+36)>0⇒m2+9>4k2且k≠±32,所以x 1+x 2=-8km 4k 2-9,x 1x 2=4m 2+364k 2-9,因为∠MON =π2,所以OM ⊥ON⇒x 1x 2+y 1y 2=0⇒x 1x 2+(kx 1+m )(kx 2+m )=0,化简,得(k 2+1)x 1x 2+km (x 1+x 2)+m 2=0,把x 1+x 2=-8km 4k 2-9,x 1x 2=4m 2+364k 2-9代入,得(k 2+1)⋅4m 2+364k 2-9+km ⋅-8km 4k 2-9 +m 2=0,化简,得m 2=36(k 2+1)5,因为m 2+9>4k 2且k ≠±32,所以有36(k 2+1)5+9>4k 2且k ≠±32,解得k ≠±32,圆x 2+y 2=1的圆心为(0,0),半径为1,圆心(0,0)到直线l :y =kx +m 的距离为d =mk 2+1=65k 2+1k 2+1=655>1,所以点A 到直线距离的最大值为655+1,最小值为655-1,所以点A 到直线距离的取值范围为655-1,655+1 ,7.在平面直角坐标系xOy 中,点D ,E 的坐标分别为-2,0 ,2,0 ,P 是动点,且直线DP 与EP 的斜率之积等于-14.(1)求动点P 的轨迹C 的方程;(2)已知直线y =kx +m 与椭圆:x 24+y 2=1相交于A ,B 两点,与y 轴交于点M ,若存在m 使得OA +3OB =4OM,求m 的取值范围.【答案】(1)x 24+y 2=1x ≠±2 ;(2)-1,-12 ∪12,1 【解析】(1)设P x ,y ,则k EP ⋅k DP =y x -2⋅y x +2=-14x ≠±2 ,所以可得动点P 的轨迹C 的方程为x 24+y 2=1x ≠±2 .(2)设A x 1,y 1 ,B x 2,y 2 ,又M 0,m ,由OA +3OB =4OM得x 1+3x 2,y 1+3y 2 =0,4m ,x 1=-3x 2联立y =kx +m x 24+y 2=1可得4k 2+1 x 2+8kmx +4m 2-4=0∵Δ=(8km )2-4×(4k 2+1)×(4m 2-4)>0,即64k 2-16m 2+16>0∴4k 2-m 2+1>0,且x 1+x 2=-8km4k 2+1x 1x 2=4m 2-44k 2+1,又x 1=-3x 2∴x 2=4km 4k 2+1,则x 1⋅x 2=-3x 22=4km 4k 2+1 2=4m 2-44k 2+1,∴16k 2m 2-4k 2+m 2-1=0,∴k 2=m 2-14-16m 2代入4k 2-m 2+1>0得m 2-11-4m2+1-m 2>0,14<m 2<1,解得m ∈-1,-12 ∪12,1 .∴m 的取值范围是-1,-12 ∪12,1 8.如图,设点A ,B 的坐标分别为(-3,0),(3,0),直线AP ,BP 相交于点P ,且它们的斜率之积为-23.(1)求P 的轨迹方程;(2)设点P 的轨迹为C ,点M 、N 是轨迹为C 上不同于A ,B 的两点,且满足AP ∥OM ,BP ∥ON ,求△MON 的面积.【答案】(1)x 23+y 22=1x ≠±3 ;(2)62【解析】(1)由已知设点P 的坐标为x ,y ,由题意知k AP ⋅k BP =y x +3⋅y x -3=-23x ≠±3 ,化简得P 的轨迹方程为x 23+y 22=1x ≠±3(2)证明:由题意M 、N 是椭圆C 上非顶点的两点,且AP ⎳OM ,BP ⎳ON ,则直线AP ,BP 斜率必存在且不为0,又由已知k AP ⋅k BP =-23.因为AP ⎳OM ,BP ⎳ON ,所以k OM k ON =-23设直线MN 的方程为x =my +t ,代入椭圆方程x 23+y 22=1,得3+2m 2 y 2+4mty +2t 2-6=0....①,设M ,N 的坐标分别为x 1,y 1 ,x 2,y 2 ,则y 1+y 2=-4mt 3+2m 2,y 1y 2=2t 2-63+2m 2又k OM ⋅k ON =y 1y 2x 1x 2=y 1y 2m 2y 1y 2+mt y 1+y 2 +t 2=2t 2-63t 2-6m 2,所以2t 2-63t 2-6m2=-23,得2t 2=2m 2+3又S △MON =12t y 1-y 2 =12t -24t 2+48m 2+723+2m 2,所以S △MON =26t t 24t 2=62,即△MON 的面积为定值62.9.在平面直角坐标系xOy 中,已知直线l :x =1,点F 4,0 ,动点P 到点F 的距离是它到直线l 的距离的2倍,记P 的轨迹为曲线C .(1)求曲线C 的方程;(2)过点F 且斜率大于3的直线交C 于两点,点Q -2,0 ,连接QA 、QB 交直线l 于M 、N 两点,证明:点F 在以MN 为直径的圆上.【答案】(1)x 24-y 212=1;(2)证明见解析【解析】(1)设P x ,y ,由题意得x -4 2+y 2=2x -1 化简得x 24-y 212=1,所以曲线C 的方程为x 24-y 212=1.(2)证明:设A x 1,y 1 、B x 2,y 2 、M 1,m 、N 1,n ,设直线AB 的方程为y =k x -4 且k >3,联立y =k x -4 x 24-y 212=1得3-k 2 x 2+8k 2x -16k 2-12=0,3-k 2≠0,Δ=64k 4+43-k 2 16k 2+12 =144k 2+1 >0,由韦达定理可得x 1+x 2=8k 2k 2-3,x 1x 2=16k 2+12k 2-3,因为点M 在直线QA 上,则k QM =k QA ,即m3=y 1x 1+2,可得m =3y 1x 1+2=3k x 1-4x 1+2,同理可得n =3k x 2-4 x 2+2,FM=-3,m ,FN =-3,n ,所以,FM ⋅FN =9+mn =9+9k 2x 1x 2-4x 1+x 2 +16x 1x 2+2x 1+x 2 +4=9+9k 216k 2+12-32k 2+16k 2-4816k 2+12+16k 2+4k 2-12=0,故点F 在以MN 为直径的圆上.10.已知圆C :x 2+y 2-2x -2y +1=0,O 为坐标原点,动点P 在圆C 外,过P 作圆C 的切线,设切点为M .(1)若点P 运动到(2,3)处,求此时切线l 的方程;(2)求满足条件PM =PO 的点P 的轨迹方程.【答案】(1)x =2或3x -4y +6=0;(2)2x +2y -1=0.【解析】(1)把圆C 的方程化为标准方程为(x -1)2+(y -1)2=1,∴圆心为C (1,1),半径r =1.当l 的斜率不存在时,此时l 的方程为x =2,C 到l 的距离d =1=r ,满足条件.当l 的斜率存在时,设斜率为k ,得l 的方程为y -3=k (x -2),即kx -y +3-2k =0,则k -1+3-2k1+k 2=1,解得k =34.∴l 的方程为y -3=34(x -2),即3x -4y +6=0.综上,满足条件的切线l 的方程为x =2或3x -4y +6=0.(2)设P (x ,y ),则|PM |2=|PC |2-|MC |2=(x -1)2+(y -1)2-1,|PO |2=x 2+y 2,∵|PM |=|PO |.∴(x -1)2+(y -1)2-1=x 2+y 2,整理,得2x +2y -1=0,∴点P 的轨迹方程为2x +2y -1=0.11.已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1、l 2分别交C 于A 、B 两点,交C 的准线于P 、Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明:AR ∥FQ .(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.【答案】(1)证明见解析;(2)y 2=x -1.【解析】(1)由题意可知F 12,0 ,设l 1:y =a ,l 2:y =b 且ab ≠0,A a 22,a ,B b 22,b ,P -12,a ,Q -12,b ,R -12,a +b 2 ,直线AB 方程为2x -(a +b )y +ab =0,∵点F 在线段AB 上,∴ab +1=0,记直线AR 的斜率为k 1,直线FQ 的斜率为k 2,∴k 1=a -b 1+a 2,k 2=b-12-12=-b ,又∵ab +1=0,∴k 1=a -b 1+a 2=a -b a 2-ab =1a =-aba =-b =k 2,∴AR ∥FQ ;(2)设l 1:y =a ,l 2:y =b ,A a 22,a ,B b 22,b ,设直线AB 与x 轴的交点为D x 1,0 ,∴S △ABF =12a -b FD =12a -b x 1-12,又S△PQF=a-b2,∴由题意可得S△PQF=2S△ABF,即a-b2=2×12·a-b⋅x1-12,解得x1=0(舍)或x1=1.设满足条件的AB的中点为E(x,y),则x=a2+b24y=a+b2,当AB与x轴不垂直时,由k AB=k DE可得a-ba22-b22=yx-1,即2a+b=yx-1(x≠1),∴y2=x-1x≠1.当AB与x轴垂直时,E与D重合,也满足y2=x-1.∴AB中点的轨迹方程为y2=x-1.12.已知椭圆C:x2a2+y2b2=1a>b>0的长轴长为4,左顶点A到上顶点B的距离为5,F为右焦点.(1)求椭圆C的方程和离心率;(2)设直线l与椭圆C交于不同的两点M,N(不同于A,B两点),且直线BM ⊥BN时,求F在l上的射影H的轨迹方程.【答案】(1)x24+y2=1,离心率为32;(2)x-322+y+3102=2125【解析】(1)由题意可得:2a=4,a2+b2=5,a2=b2+c2,可得a=2,c=3,b=1,所以椭圆C的方程为x24+y2=1,离心率为e=ca=32.(2)当直线斜率存在时,可设l:y=kx+m代入椭圆方程x24+y2=1,得:4k2+1x2+8kmx+4m2-1=0.设M x 1,y 1 ,N x 2,y 2 ,则x 1+x 2=-8km4k 2+1x 1x 2=4m 2-1 4k 2+1.因为直线BM ,BN 垂直,斜率之积为-1,所以k BM ⋅k BN =-1,所以k BM ⋅k BN =k 2x 1x 2+k m -1 x 1+x 2 +m -1 2x 1x 2=-1.将x 1+x 2=-8km 4k 2+1x 1x 2=4m 2-1 4k 2+1代入,整理化简得:m -1 5m +3 =0,所以m =1或m =-35.由直线l :y =kx +m ,当m =1时,直线l 经过0,1 ,与B 点重合,舍去,当m =-35时,直线l 经过定点E 0,-35,当直线斜率不存在时,可设l :x =t ,则M t ,1-t 24 ,N t ,-1-t 24,因为k BM ⋅k BN =-1,所以1-t 24-1t ×-1-t 24+1t=-1,解得t =0,舍去.综上所述,直线l 经过定点E 0,-35,而F 在l 上的射影H 的轨迹为以EF 为直径的圆,其E 0,-35 ,F 3,0 ,所以圆心32,-310 ,半径r =215,所以圆的方程为x -32 2+y +310 2=2125,即为点H 的轨迹方程.13.在平面直角坐标系xOy 中,A (-3,0),B (3,0),C 是满足∠ACB =π3的一个动点.(1)求△ABC 垂心H 的轨迹方程;(2)记△ABC 垂心H 的轨迹为Γ,若直线l :y =kx +m (km ≠0)与Γ交于D ,E 两点,与椭圆T :2x 2+y 2=1交于P ,Q 两点,且|DE |=2|PQ |,求证:|k |>2.【答案】(1)x 2+(y +1)2=4(y ≠-2);(2)证明见解析.【解析】设△ABC 的外心为O 1,半径为R ,则有R =AB 2sin ∠ACB=2,又∠OO 1B =∠OO 1C =π3,所以OO 1=R cos π3=1,即O 1(0,1),或O 1(0,-1),当O 1坐标为(0,1)时.设C (x ,y ),H x 0,y 0 ,有O 1C =R ,即有x 2+(y -1)2=4(y >0),由CH ⊥AB ,则有x 0=x ,由AH ⊥BC ,则有AH ⋅BC=x 0+3 (x -3)+y 0y =0,所以有y 0=-x 0+3 (x -3)y =3-x 2y =(y -1)2-1y=y -2,y >0,则y 0=y -2>-2,则有x 20+y 0+1 2=4(y 0>-2),所以△ABC 垂心H 的轨迹方程为x 2+(y +1)2=4(y >-2).同理当O 1坐标为(0,-1)时.H 的轨迹方程为x 2+(y -1)2=4(y <2).综上H 的轨迹方程为x 2+(y +1)2=4(y >-2)或x 2+(y -1)2=4(y <2).(2)若取x 2+(y +1)2=4(y >-2),记点(0,-1)到直线l 的距离为d ,则有d =|m +1|1+k 2,所以|DE |=24-d 2=24-(m +1)21+k 2,设P x 1,y 1 ,Q x 2,y 2 ,联立y =kx +m 2x 2+y 2=1,有2+k 2 x 2+2kmx +m 2-1=0,所以Δ=4k 2+2-2m 2 >0,|PQ |=1+k 2⋅Δ2+k 2=21+k 2 k 2+2-2m 2 2+k 2,由|DE |=2|PQ |,可得4-(m +1)21+k 2=4k 2+1 k 2+2-8m 2k 2+1 2+k 2 2≤4k 2+1 k 2+2-8m 2k 2+22,所以4k 2+2+8m 22+k 22≤(m +1)2k 2+1,即有4k 2+1 k 2+2+8k 2+1 m 22+k 22≤(m +1)2,所以2+2m 2-4k 2+1 k 2+2-8k 2+1 m 2k 2+22≥(m -1)2,即2k 2k 2+2k 2m 2k 2+2-1 =(m -1)2⇒k 2m 2k 2+2-1≥0⇒m 2≥1+2k2又Δ>0,可得m 2<1+k 22,所以1+2k2<1+k 22,解得k 2>2,故|k |>2.同理,若取x 2+(y -1)2=4(y <2),由对称性,同理可得|k |> 2.综上,可得|k |> 2.14.在平面直角坐标系中,△ABC 的两个顶点A ,B 的坐标分别为-1,0 ,1,0 ,平面内两点G ,M 同时满足以下3个条件:①G 是△ABC 三条边中线的交点;②M 是△ABC 的外心;③GM ⎳AB .(1)求△ABC 的顶点C 的轨迹方程;(2)若点P 2,0 与(Ⅰ)中轨迹上的点E ,F 三点共线,求PE ⋅PF 的取值范围.【答案】(1)x 2+y 23=1(y ≠0);(2)3,92.【解析】(1)设C x ,y ,G x 0,y 0 ,M x M ,y M ,圆锥曲线的轨迹方程问题第11页因为M 是△ABC 的外心,所以MA =MB ,所以M 在线段AB 的中垂线上,所以x M =-1+12=0.因为GM ⎳AB ,所以y M =y 0.又G 是△ABC 三条边中线的交点,所以G 是△ABC 的重心,所以x 0=-1+1+x 3=x 3,y 0=0+0+y 3=y 3,所以y M =y 0=y 3.又MA =MC ,所以0+1 2+y 3-0 2=0-x 2+y 3-y 2,化简得x 2+y 23=1(y ≠0),所以顶点C 的轨迹方程为x 2+y 23=1(y ≠0).(2)因为P ,E ,F 三点共线,所以P ,E ,F 三点所在直线斜率存在且不为0,设所在直线的方程为y =k x -2 ,联立y =k x -2 ,x 2+y 23=1,得k 2+3 x 2-4k 2x +4k 2-3=0.由Δ=4k 2 2-4k 2+3 4k 2-3 >0,得k 2<1.设E x 1,y 1 ,F x 2,y 2 ,则x 1+x 2=4k 2k 2+3,x 1⋅x 2=4k 2-3k 2+3.所以PE ⋅PF =1+k 22-x 1 ⋅1+k 22-x 2 =1+k 2 ⋅4-2x 1+x 2 +x 1⋅x 2=1+k 2 ⋅4k 2+3 -8k 2+4k 2-3 k 2+3=91+k 2 k 2+3=9-18k 2+3.又0<k 2<1,所以3<k 2+3<4,所以3<PE ⋅PF <92.故PE ⋅PF 的取值范围为3,92 .15.已知A x 1,y 1 ,B x 2,y 2 是抛物线C :y 2=4x 上两个不同的点,C 的焦点为F .(1)若直线AB 过焦点F ,且y 21+y 22=32,求AB 的值;(2)已知点P -2,2 ,记直线PA ,PB 的斜率分别为k PA ,k PB ,且k PA +k PB =-1,当直线AB 过定点,且定点在x 轴上时,点D 在直线AB 上,满足PD ⋅AB =0,求点D 的轨迹方程.【答案】(1)AB =10;(2)x 2+y -1 2=5(除掉点-2,0 ).【解析】(1)由抛物线方程知:F 1,0 ,准线方程为:x =-1.圆锥曲线的轨迹方程问题第12页∵AF =x 1+1=y 214+1,BF =x 2+1=y 224+1,∴AB =AF +BF =y 21+y 224+2=10.(2)依题意可设直线AB :x =ty +m ,由y 2=4x x =ty +m得:y 2-4ty -4m =0,则Δ=16t 2+16m >0,∴y 1+y 2=4t y 1y 2=-4m ⋯①∵k PA +k PB =y 1-2x 1+2+y 2-2x 2+2=y 1-2ty 1+m +2+y 2-2ty 2+m +2=-1,∴2ty 1y 2+m +2 y 1+y 2 -2t y 1+y 2 -4m +2 t 2y 1y 2+t m +2 y 1+y 2 +m +2 2=-1⋯②由①②化简整理可得:8t -4m +m 2-4=0,则有m +2-4t m -2 =0,解得:m =2或m =4t -2.当m =4t -2时,Δ=16t 2+64t -32=16t +2 2-96>0,解得:t >-2+6或t <-2-6,此时AB :x =ty +4t -2=t y +4 -2过定点-2,-4 ,不符合题意;当m =2时,Δ=16t 2+32>0对于∀t ∈R 恒成立,直线AB :x =ty +2过定点E 2,0 ,∴m =2.∵PD ⋅AB =0,∴PD ⊥AB ,且A ,B ,D ,E 四点共线,∴PD ⊥DE ,则点D 的轨迹是以PE 为直径的圆.设D x ,y ,PE 的中点坐标为0,1 ,PE =25,则D 点的轨迹方程为x 2+y -1 2=5.当D 的坐标为-2,0 时,AB 的方程为y =0,不符合题意,∴D 的轨迹方程为x 2+y -1 2=5(除掉点-2,0 ).圆锥曲线的轨迹方程问题第13页。
高中数学 求曲线轨迹方程讲义
授课内容求曲线轨迹方程专题精讲【方法介绍】常见的求曲线轨迹方程的方法:1、直接法:给出某些条件(几何、三角或向量表达式等)求轨迹方程;2、定义法:根据曲线的定义,求轨迹方程;3、参数法:(包括解决中点弦问题的点差法)求轨迹方程.4、代入法:求轨迹方程;5、交轨法:求轨迹方程方法一、直接法求轨迹方程.给出某种条件:平面几何、三角函数、解析几何、向量形式等.求解程序:①设动点P 的坐标为P(x ,y);②按题目的条件写出关系式;③整合关系式;④注明范围.例1、 设m R ∈,在平面直角坐标系中,已知向量(,1)a mx y =+,向量(,1)b x y =-,a b ⊥,动点(,)M x y 的轨迹为E .求轨迹E 的方程,并说明该方程所表示曲线的形状;练习(1)求和定圆222k y x =+的圆周的距离等于k 的动点P 的轨迹方程;(2)过点A(a ,o)作圆O ∶)0(222>>=+R a R y x 的割线,求割线被圆O 截得弦的中点的轨迹.PMN方法二、根据圆锥曲线的定义,求轨迹方程例2、如图,圆O 1与圆O 2的半径都是1,O 1O 2=4,过动点P 分别作圆O 1、圆O 2的切线PM 、PN (M 、N 分别为切点),使得2PM PN =试建立适当的坐标系,并求动点 P 的轨迹方程.注:动圆圆心轨迹问题①动圆与两外离定圆均外切(含相交);②动圆过定点且定圆外切;③动圆过定点且定直线相切;④动圆与两定圆一个外切,一个内切;⑤动圆过定点且定圆相切.练习2、设Q 是圆422=+y x 上的动点,另有点A )0,3(,线段AQ 的垂直平分线l 交半径OQ 于点P(见图2-45),当Q 点在圆周上运动时,求点P 的轨迹方程.方法三、参数法求轨迹方程:例3、动圆P 过点A (0,1)且与直线y=-1相切,O 是坐标原点,动圆P 的圆心轨迹是曲线C. (1)求曲线C 的方程;(2)过A 作直线l 交曲线C 于,D E 两点,求弦DE 的中点M 的轨迹方程; (3)在(2)中求ODE 的重心G 的轨迹方程。
求曲线方程的几种常用方法
求曲线方程的几种常用方法宜君县高级中学 马卫娟已知动点所满足的条件,求动点的轨迹方程是平面解析几何的一个重要题型。
下面就通过实例介绍几种求曲线方程的常用方法。
一.直接法:即课本中主要介绍的方法。
若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点的坐标为(x,y),再根据命题中的已知条件,研究动点形成的几何特征,运用几何或代数的基本公式、定理等列出含有x,y 的关系式,从而得到轨迹方程。
例1.在直角△ABC 中,斜边是定长2a(a>0),求直角顶点C 的轨迹方程。
解法一:以AB 所在直线为x 轴,线段AB 的中垂线为y 轴建立直角坐标系(如图所示)则有:A(-a,0)、B(a,0),设动点C 的坐标为(x,y) 则满足条件的点C 的集合为}/{222AB BCAC C P =+=所以()()()22222222)()(a ya x ya x =+-+++即222a y x =+因为当点C 与A 、B 重合时,直角△ABC 不存在,所以轨迹中应除去A 、B 两点,既ax ±≠。
故所求点C 的轨迹方程为222ay x =+()a x ±≠。
解法二:如解法一建立直角坐标系,设A(-a,0)、B(a,0)、C(x,y) ∵A C ⊥BC ∴1-=⋅BC AC K K∴1-=-⋅+ax y ax y (1)化简得:222a y x =+(2)由于a x ±≠时,方程(1)与(2)不等价,所以所求点C 的轨迹方程为222ay x =+()a x ±≠。
解法三:如解法一建立直角坐标系,则:A(-a,0)、B(a,0),设C(x,y) 连接CO ,则有:AB CO 21=所以a a yx =⋅=+22122即222ay x =+轨迹中应除去A ,B 两点(理由同解法一) 故所求点C 的轨迹方程为222ay x =+()a x ±≠。
说明:利用直接法求曲线方程的一般步骤(1) 建立适当的直角坐标系,用(x,y)表示曲线上任意点M 的坐标; (2) 写出适合条件P 的点M 的集合P={M\p(m)}; (3) 用坐标表示条件P(M),列出方程f(x,y)=0; (4) 化方程f(x,y)为最简形式;(5) 证明以化简后的方程的解为坐标的点都是曲线上的点。
求曲线轨迹方程的方法
求曲线轨迹方程的方法一、 直接法例 1 如图1,过点P(2,4)作相互垂直的直线12,,l l 12A B l x l y 若交轴于,交轴于,求线段AB 的中点M 的轨迹方程。
解:设M(x ,y )为所求轨迹上的任意一点。
因为M 为AB 中点,则(2,0),(0,2)A x B y ,又因1212,P(24)PA PB 1PA PB l l l l ⊥⊥⋅=-且过点,,则,即k k 因为442442(1),,1,222222PA PB y y k x k x x --=≠=⋅=---则 250(1)x y x +-=≠即有当x =1时,A(2,0),B(0,4),此时AB 中点M 的坐标为(1,2),它也满足方程250,M 250x y x y +-=+-=故所求点的轨迹方程为点评:这是直接法求轨迹方程,利用了动点满足的明确的等量关系,获得动点轨迹方程。
二、 定义法例2、已知两圆222212:(4)2,:(4)2,C x y C x y ++=-+=动圆M 与两圆12,C C 都相切,求动圆M 圆心的轨迹方程。
解:动圆M 与两圆12,C C 都要相切,有四种情况:(1) 动圆M 与两圆都外切 (2) 动圆M 与两圆都内切(3)动圆M 与12C C 内切,与外切 (4)动圆M 与12C C 外切,与内切在情况(1)(2)下,动圆圆心M 的轨迹方程为0x =,在情况(3)下,设动圆M的半径为r,则1221MC r MC r MC MC ==-=故得在情况(4)下,同理可得12MC MC -=从而12MC MC -=±,根据双曲线定义,可知点M 的轨迹方程为:221214x y -=。
点评:若动点轨迹的条件符合某一基本轨迹(如圆、椭圆、双曲线、抛物线)的定义,则可以直接根据定义求出动点的轨迹方程三、 相关点法例3、设点00(,):(,01)P x y l x m y m m =≠±<<在直线上,过点P 作双曲线221x y -=的两条切线PA 、PB ,切点为A ,B ,定点1(,0),M m 过点A 作直线0N x y -=的垂线,垂足为,试求∆AMN 的重心C 所在的曲线方程。
求轨迹方程的方法
求轨迹方程的方法轨迹方程是描述物体在运动过程中所遵循的路径的数学表达式。
轨迹方程的求解方法因物体的运动方式而异。
下面将介绍几种常见的物体运动方式,并讨论如何求解它们的轨迹方程。
1.直线运动:物体在直线上做匀速或变速直线运动时,其轨迹方程为y = mx + b,其中m为斜率,b为截距。
若已知起始点的坐标和运动速度,则可以通过这些参数来确定轨迹方程。
2.曲线运动:物体在空间中做曲线运动时,其轨迹方程一般无法用简单的直线方程表示。
这时需要通过其他方法来求解轨迹方程。
以下是几种常见的曲线运动例子:-圆周运动:若物体做匀速圆周运动,其轨迹方程可以用参数方程表示:x = r * cos(θ),y = r * sin(θ),其中r为圆的半径,θ为角度。
通过改变θ的取值范围,可以得到整个圆周的轨迹方程。
-椭圆运动:椭圆运动可以用参数方程表示:x = a * cos(θ),y = b * sin(θ),其中a和b分别为椭圆长轴和短轴的长度。
同样通过改变θ的取值范围,可以得到整个椭圆的轨迹方程。
-抛物线运动:物体做匀速或变速抛物线运动时,其轨迹方程可以用解析几何中的一般二次方程表示:y = ax^2 + bx + c,其中a、b和c为常数。
通过给定的起始点和速度,可以确定这些常数,从而求解轨迹方程。
-双曲线运动:物体做匀速或变速双曲线运动时,其轨迹方程可以用参数方程表示:x = a * sec(θ),y = b * tan(θ),其中a和b为常数。
同样通过改变θ的取值范围,可以得到整个双曲线的轨迹方程。
除了上述运动方式外,还存在许多其他复杂的运动形式,例如螺线、摆线等。
对于这些运动形式,求解轨迹方程的方法往往需要借助更高级的数学工具,如极坐标、参数方程、微分方程等。
总结起来,轨迹方程的求解方法因物体的运动方式而异。
对于直线运动,可以直接得到轨迹方程;对于曲线运动,常常需要借助参数方程、解析几何等数学工具来求解。
对于更加复杂的运动形式,可能需要借用更高级的数学方法来确定轨迹方程。
求轨迹方程的常用方法(经典)
求轨迹方程的常用方法(一)求轨迹方程的一般方法:1. 待定系数法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。
2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。
3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ),y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。
4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。
5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。
6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。
(二)求轨迹方程的注意事项:1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P 的运动规律,即P 点满足的等量关系,因此要学会动中求静,变中求不变。
)()()(0)(.2为参数又可用参数方程表示程轨迹方程既可用普通方t t g y t f x ,y x ,F ⎩⎨⎧=== 来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。
曲线的轨迹方程的求法
曲线的轨迹方程的求法求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法(1)直接法 直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程(2)定义法 若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求(3)相关点法 根据相关点所满足的方程,通过转换而求动点的轨迹方程(4)参数法 若动点的坐标(x ,y )中的x ,y 分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程求轨迹方程,一定要注意轨迹的纯粹性和完备性 要注意区别“轨迹”与“轨迹方程”是两个不同的概念例1如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程命题意图 知识依托 利用平面几何的基本知识和两点间的距离公式建立线段AB 中点的轨迹方程错解分析 欲求Q 的轨迹方程,应先求R 的轨迹方程,不深刻,发现不了问题的实质,很难解决此题技巧与方法 的点的轨迹方程,再以此点作为主动点,所求的轨迹上的点为相关点,求得轨迹方程解 设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR | 又因为R 是弦AB 的中点,依垂径定理 在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2)又|AR |=|PR |=22)4(y x +-所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1=20,241+=+y y x , 代入方程x 2+y 2-4x -10=0,得244)2()24(22+⋅-++x y x -10=0 整理得 x 2+y 2=56,这就是所求的轨迹方程例2设点A 和B 为抛物线 y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线命题意图 本题主要考查“参数法”求曲线的轨迹方程 知识依托 直线与抛物线的位置关系错解分析 当设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2)时,注意对“x 1=x 2”的讨论技巧与方法 将动点的坐标x 、y 用其他相关的量表示出来,然后再消掉这些量,从而就建立了关于x 、y 的关系解法一 设A (x 1,y 1),B (x 2,y 2),M (x ,y ) (x ≠0) 直线AB 的方程为x =my +a 由OM ⊥AB ,得m =-yx由y 2=4px 及x =my +a ,消去x ,得y 2-4p my -4pa =0所以y 1y 2=-4pa , x 1x 2=22122()(4)y y a p =所以,由OA ⊥OB ,得x 1x 2 =-y 1y 2 所以244a pa a p =⇒=故x =my +4p ,用m =-yx代入,得x 2+y 2-4px =0(x ≠0) 故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点解法二 设OA 的方程为y kx =,代入y 2=4px 得222(,)p p A k k则OB 的方程为1y x k =-,代入y 2=4px 得2(2,2)B pk pk - ∴AB 的方程为2(2)1ky x p k =--,过定点(2,0)N p ,由OM ⊥AB ,得M 在以ON 为直径的圆上(O 点除外) 故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点解法三 设M (x ,y ) (x ≠0),OA 的方程为y kx =,代入y 2=4px 得222(,)p p A k k则OB 的方程为1y x k=-,代入y 2=4px 得2(2,2)B pk pk -由OM ⊥AB ,得 M 既在以OA 为直径的圆 222220p p x y x y k k+--=……①上,又在以OB 为直径的圆 222220x y pk x pky +-+=……②上(O 点除外), ①2k ⨯+②得 x 2+y 2-4px =0(x ≠0)故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点例3某检验员通常用一个直径为2 cm 和一个直径为1 cm 的标准圆柱,检测一个直径为3 cm 的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少?命题意图 本题考查“定义法”求曲线的轨迹方程,及将实际问题转化为数学问题的能力 知识依托 圆锥曲线的定义,求两曲线的交点错解分析 正确理解题意及正确地将此实际问题转化为数学问题是顺利解答此题的关键 技巧与方法 研究所给圆柱的截面,建立恰当的坐标系,找到动圆圆心的轨迹方程解 设直径为3,2,1的三圆圆心分别为O 、A 、B ,问题转化为求两等圆P 、Q ,使它们与⊙O 相内切,与⊙A 、⊙B 相外切建立如图所示的坐标系,并设⊙P 的半径为r ,则 |PA |+|PO |=(1+r)+(1 5-r)=2 5∴点P 在以A 、O 为焦点,长轴长2 5的椭圆上,其方程为3225)41(1622y x ++=1 ① 同理P 也在以O 、B 为焦点,长轴长为2的椭圆上,其方程为 (x -21)2+34y 2=1 ②由①、②可解得)1412,149(),1412,149(-Q P ,∴r =73)1412()149(2322=+-故所求圆柱的直径为76cm 例4已知A 、B 为两定点,动点M 到A 与到B 的距离比为常数λ,求点M 的轨迹方程,并注明轨迹是什么曲线 解 建立坐标系如图所示, 设|AB |=2a ,则A (-a ,0),B (a ,0) 设M (x ,y )是轨迹上任意一点则由题设,得||||MB MA =λ,坐标代入,得2222)()(ya x y a x +-++=λ,化简得(1-λ2)x 2+(1-λ2)y 2+2a (1+λ2)x +(1-λ2)a 2=0(1)当λ=1时,即|M A|=|M B|时,点M 的轨迹方程是x =0,点M 的轨迹是直线(y 轴)(2)当λ≠1时,点M 的轨迹方程是x 2+y 2+221)1(2λ-λ+a x +a 2=0 点M 的轨迹是以(-221)1(λ-λ+a ,0)为圆心,|1|22λ-λa 为半径的圆曲线轨迹方程1 已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A 圆B 椭圆C 双曲线的一支D 抛物线2 设A 1、A 2是椭圆4922y x +=1的长轴两个端点,P 1、P 2是垂直于A 1A 2的弦的端点,则直线A 1P 1与A 2P 2交点的轨迹方程为( )A 14922=+y xB 14922=+x yC 14922=-y xD 14922=-x y3 △ABC 中,A 为动点,B 、C 为定点,B (-2a ,0),C (2a ,0),且满足条件sin C -sin B =21sin A ,则动点A 的轨迹方程为_________4 高为5 m 和3 m 的两根旗杆竖在水平地面上,且相距10 m ,如果把两旗杆底部的坐标分别确定为A (-5,0)、B (5,0),则地面观测两旗杆顶端仰角相等的点的轨迹方程是_________5 已知A 、B 、C 是直线l 上的三点,且|AB |=|BC |=6,⊙O ′切直线l 于点A ,又过B 、C 作⊙O ′异于l 的两切线,设这两切线交于点P ,求点P 的轨迹方程6 双曲线2222by a x -=1的实轴为A 1A 2,点P 是双曲线上的一个动点,引A 1Q ⊥A 1P ,A 2Q⊥A 2P ,A 1Q 与A 2Q 的交点为Q ,求Q 点的轨迹方程7 已知双曲线2222ny m x -=1(m >0,n >0)的顶点为A 1、A 2,与y 轴平行的直线l 交双曲线于点P 、Q(1)求直线A 1P 与A 2Q 交点M 的轨迹方程;(2)当m ≠n 时,求所得圆锥曲线的焦点坐标、准线方程和离心率8 已知椭圆2222by a x +=1(a >b >0),点P 为其上一点,F 1、F 2为椭圆的焦点,∠F 1PF 2的外角平分线为l ,点F 2关于l 的对称点为Q ,F 2Q 交l 于点R(1)当P 点在椭圆上运动时,求R 形成的轨迹方程;(2)设点R 形成的曲线为C ,直线l y =k (x +2a )与曲线C 相交于A 、B 两点,当△AOB 的面积取得最大值时,求k 的值曲线轨迹方程参考答案1 解析 ∵|PF 1|+|PF 2|=2a ,|PQ |=|PF 2|,∴|PF 1|+|PF 2|=|PF 1|+|PQ |=2a ,即|F 1Q |=2a ,∴动点Q 到定点F 1的距离等于定长2a ,故动点Q 的轨迹是圆 答案 A 2 解析 设交点P (x ,y ),A 1(-3,0),A 2(3,0),P 1(x 0,y 0),P 2(x 0,-y 0) ∵A 1、P 1、P 共线,∴300+=--x y x x y y ∵A 2、P 2、P 共线,∴300-=-+x yx x y y 解得x 0=149,149,3,92220200=-=-=y x y x x y y x 即代入得答案 C3 解析 由sin C -sin B =21sin A ,得c -b =21a ,∴应为双曲线一支,且实轴长为2a,故方程为)4(1316162222a x a y a x >=- 答案 )4(1316162222a x ay a x >=- 4 解析 设P (x ,y ),依题意有2222)5(3)5(5yx yx +-=++,化简得P 点轨迹方程为4x 2+4y 2-85x +100=0 答案 4x 2+4y 2-85x +100=05 解 设过B 、C 异于l 的两切线分别切⊙O ′于D 、E 两点,两切线交于点P 由切线的性质知 |BA |=|BD |,|PD |=|PE |,|CA |=|CE |,故|PB |+|PC |=|BD |+|PD |+|PC |=|BA |+|PE |+|PC |=|BA |+|CE |=|AB |+|CA |=6+12=18>6=|BC |,故由椭圆定义知,点P 的轨迹是以B 、C 为两焦点的椭圆,以l 所在的直线为x 轴,以BC 的中点为原点,建立坐标系,可求得动点P 的轨迹方程为728122y x +=1(y ≠0) 6 解 设P (x 0,y 0)(x ≠±a ),Q (x ,y ) ∵A 1(-a ,0),A 2(a ,0)由条件⎪⎩⎪⎨⎧-=±≠-=⎪⎪⎩⎪⎪⎨⎧-=-⋅--=+⋅+y a x y a x x x a x y a x y a x y a x y 220000000)( 11得而点P (x 0,y 0)在双曲线上, ∴b 2x 02-a2y 02=a 2b 2 即b 2(-x 2)-a 2(ya x 22-)2=a 2b 2化简a 2x 2-b 2y 2=a 4(x ≠±a )7 解 (1)设P 点的坐标为(x 1,y 1),则Q 点坐标为(x 1,-y 1),又有A 1(-m ,0),A 2(m ,0),则A 1P 的方程为 y =)(11m x m x y ++ ①A 2Q 的方程为 y =-)(11m x mx y -- ②①³②得 y 2=-)(2222121m x mx y -- ③又因点P 在双曲线上,故).(,12212221221221m x mn y n y m x -==-即代入③并整理得2222ny m x +=1 此即为M 的轨迹方程(2)当m ≠n 时,M 的轨迹方程是椭圆 (ⅰ)当m >n 时,焦点坐标为(±22n m -,0),准线方程为x =±222n m m -,离心率e =m n m 22-;(ⅱ)当m <n 时,焦点坐标为(0,±22n m -),准线方程为y =±222mn n -,离心率e =n m n 22-8 解 (1)∵点F 2关于l 的对称点为Q ,连接PQ ,∴∠F 2PR =∠QPR ,|F 2R |=|QR |,|PQ |=|PF 2|又因为l 为∠F 1PF 2外角的平分线,故点F 1、P 、Q 在同一直线上,设存在R (x 0,y 0),Q (x 1,y 1),F 1(-c ,0),F 2(c ,0) |F 1Q |=|F 2P |+|PQ |=|F 1P |+|PF 2|=2a ,则(x 1+c )2+y 12=(2a )2又⎪⎪⎩⎪⎪⎨⎧=+=221010y y c x x 得x 1=2x 0-c ,y 1=2y 0 ∴(2x 0)2+(2y 0)2=(2a )2,∴x 02+y 02=a 2 故R 的轨迹方程为 x 2+y 2=a 2(y ≠0)(2)如右图,∵S △AOB =21|OA |²|OB |²sin AOB =22a sin AOB当∠AOB =90°时,S △AOB 最大值为21a 2此时弦心距|OC |=21|2|kak +在Rt △AOC 中,∠AOC =45°,.33,2245cos 1|2|||||2±=∴=︒=+=∴k k a ak OA OC。
求曲线的轨迹方程(上课用)
得动圆圆心的轨迹方程为y=0(x<0),或y2=8x(x>0)
二、待定系数法: 已知曲线类型,可先设曲线方程, 再将已知条件代入,求出系数。
例、 已知椭圆的焦点坐标为 (0,2 3) 和 (0,2 3,) 且经过点 ( 6, 5) ,求椭圆的标准方程。
x2 y2 1 8 20
三、定义法:
∵OQ = OM + ON,∴(x,y)=(x0,2y0),
即
x0
y0
x y
2
,
又点M(x0,y0)在圆C上, ∴ x02+y02=4,
∴ x2 y2 4 , 即 y2 x2 1.
4
16 4
由已知,直线 m // x 轴,所以 y ≠ 0.
∴点Q的轨迹方程是 y2 x2 1( y 0) , 16 4
轨迹是焦点坐标为F1(0, 2 3 ), F2(0,2 3 ),长轴长为8的椭圆,并去掉 (-2,0)和(2,0)两点。
练习.P 是椭圆 x 2 y 2 1上的动点, 作 PD⊥y 轴, D 为垂足, 16 9
则 PD 中点的轨迹方程为( D )
A. x 2 y 2 1 9 16
解:设B(x1, y1), C(x2 , y2 ),中点P(x, y),则 x12 4 y12 4 x22 4 y22 4
两式相减得:y2 y1 x2 x1 x x2 x1 4( y2 y1 ) 4 y
由k BC
k AP得
x 4y
y
x
2
x2 y2 1( y 0)
43
1、直接法
练习、求与圆x2+y2-4x=0外切且与Y轴相切的动
求曲线轨迹方程的方法
四、参数法求曲线方程
若过点 P(1,1)且互相垂直的两条直线 l1,l2 分别与 x 轴,y 轴交于 A,B 两点,则 AB 中点 M 的轨迹方程为________.
四、参数法求曲线方程
【审题】 斜率存在时,点斜式设l1的方程→得l2的方程→ 联立方程→求交点坐标→消去参数→得结果→斜率不存在时将
三、相关点法求曲线轨迹方程
基本思路:
①设点:设被动点的坐标 M (x, y),主动点的坐标 P(x0, y0;) ②求关系式:用被动点的坐标M (x, y) 表示主动点的坐标 P(x0, y0 ),即
得关系式
xy00
g(x, h(x,
y) y)
③代换:将上述关系式带入主动点满足的方程,化简整理可得所求动 点的轨迹方程。
三、相关点法求曲线轨迹方程
x 例 在圆 x2 y2 4上任取一点P,过点P作 轴的垂线段PD,
D为垂足。当点P在圆上运动时,线段PD的中点M的轨迹方程。
解析:设M (x, y), P(x0 , y0 ),则x
x0 , y
y0 2
.
因为点P在圆上,所以x02 y02 4 。
把 x0 x, y0 2x带入上式得:x2 4 y2 4.
二:定义法求轨迹方程
思路:如果动点的轨迹满足某种已知曲线定义,则可由曲 线的定义直接写出方程,利用定义法求轨迹方程要善于抓 住曲线定义的特征。 要点:四种曲线定义及成立条件
方法:建系设点 定型(思考几何关系,进而寻求数量关系) 定方程 定范围
二:定义法求轨迹方程
圆的定义: |PC|=r (r>0) 椭圆的定义:
一:直接法(直译法)求轨迹方程
例 已知一条直线 l 和它上方的一个点F,点F到l 的距离是2.一条曲线 也 l 在的上方,它上面的每一点到F的距离减去到 l 的距离的差都是2,
高中数学曲线轨迹方程的求法
题目高中数学复习专题讲座曲线的轨迹方程的求法 高考要求求曲线的轨迹方程是解析几何的两个基本问题之一 求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系 这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点 重难点归纳求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法 (1)直接法 直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程(2)定义法 若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求(3)相关点法 根据相关点所满足的方程,通过转换而求动点的轨迹方程(4)参数法 若动点的坐标(x ,y )中的x ,y 分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程求轨迹方程,一定要注意轨迹的纯粹性和完备性 要注意区别“轨迹”与“轨迹方程”是两个不同的概念 典型题例示范讲解例1如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程命题意图 本题主要考查利用“相关点代入法”求曲线的轨迹方程知识依托 利用平面几何的基本知识和两点间的距离公式建立线段AB 中点的轨迹方程错解分析 欲求Q 的轨迹方程,应先求R 的轨迹方程,若学生思考不深刻,发现不了问题的实质,很难解决此题技巧与方法 对某些较复杂的探求轨迹方程的问题,可先确定一个较易于求得的点的轨迹方程,再以此点作为主动点,所求的轨迹上的点为相关点,求得轨迹方程解 设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR | 又因为R 是弦AB 的中点,依垂径定理 在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2)又|AR |=|PR |=22)4(y x +-所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1=2,241+=+y y x , 代入方程x 2+y 2-4x -10=0,得244)2()24(22+⋅-++x y x -10=0 整理得 x 2+y 2=56,这就是所求的轨迹方程例2设点A 和B 为抛物线 y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线命题意图 本题主要考查“参数法”求曲线的轨迹方程 知识依托 直线与抛物线的位置关系 错解分析 当设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2)时,注意对“x 1=x 2”的讨论技巧与方法 将动点的坐标x 、y 用其他相关的量表示出来,然后再消掉这些量,从而就建立了关于x 、y 的关系解法一 设A (x 1,y 1),B (x 2,y 2),M (x ,y ) (x ≠0) 直线AB 的方程为x =my +a由OM ⊥AB ,得m =-yx由y 2=4px 及x =my +a ,消去x ,得y 2-4p my -4pa =0所以y 1y 2=-4pa , x 1x 2=22122()(4)y y a p = 所以,由OA ⊥OB ,得x 1x 2 =-y 1y 2 所以244a pa a p =⇒= 故x =my +4p ,用m =-yx代入,得x 2+y 2-4px =0(x ≠0) 故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点解法二 设OA 的方程为y kx =,代入y 2=4px 得222(,)p p A k k则OB 的方程为1y x k =-,代入y 2=4px 得2(2,2)B pk pk - ∴AB 的方程为2(2)1ky x p k=--,过定点(2,0)N p , 由OM ⊥AB ,得M 在以ON 为直径的圆上(O 点除外)故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点解法三 设M (x ,y ) (x ≠0),OA 的方程为y kx =,代入y 2=4px 得222(,)p p A k k则OB 的方程为1y x k=-,代入y 2=4px 得2(2,2)B pk pk -由OM ⊥AB ,得M 既在以OA 为直径的圆 222220p p x y x y k k+--=……①上, 又在以OB 为直径的圆 222220x y pk x pky +-+=……②上(O 点除外),①2k ⨯+②得 x 2+y 2-4px =0(x ≠0)故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点例3某检验员通常用一个直径为2 cm 和一个直径为1 cm 的标准圆柱,检测一个直径为3 cm 的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少?命题意图 本题考查“定义法”求曲线的轨迹方程,及将实际问题转化为数学问题的能力知识依托 圆锥曲线的定义,求两曲线的交点错解分析 正确理解题意及正确地将此实际问题转化为数学问题是顺利解答此题的关键技巧与方法 研究所给圆柱的截面,建立恰当的坐标系,找到动圆圆心的轨迹方程解 设直径为3,2,1的三圆圆心分别为O 、A 、B ,问题转化为求两等圆P 、Q ,使它们与⊙O 相内切,与⊙A 、⊙B 相外切建立如图所示的坐标系,并设⊙P 的半径为r ,则|P A |+|PO |=(1+r)+(1 5-r)=2 5∴点P 在以A 、O 为焦点,长轴长2 5的椭圆上,其方程为 3225)41(1622y x ++=1 ① 同理P 也在以O 、B 为焦点,长轴长为2的椭圆上,其方程为(x -21)2+34y 2=1 ② 由①、②可解得)1412,149(),1412,149(-Q P ,∴r =73)1412()149(2322=+- 故所求圆柱的直径为76cm 例4已知A 、B 为两定点,动点M 到A 与到B 的距离比为常数λ,求点M 的轨迹方程,并注明轨迹是什么曲线解 建立坐标系如图所示, 设|AB |=2a ,则A (-a ,0),B (a ,0) 设M (x ,y )是轨迹上任意一点则由题设,得||||MB MA =λ,坐标代入,得2222)()(ya x y a x +-++=λ,化简得(1-λ2)x 2+(1-λ2)y 2+2a (1+λ2)x +(1-λ2)a 2=0(1)当λ=1时,即|M A|=|M B|时,点M 的轨迹方程是x =0,点M 的轨迹是直线(y 轴)(2)当λ≠1时,点M 的轨迹方程是x 2+y 2+221)1(2λ-λ+a x +a 2=0 点M 的轨迹是以(-221)1(λ-λ+a ,0)为圆心,|1|22λ-λa 为半径的圆学生巩固练习1 已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A 圆B 椭圆C 双曲线的一支D 抛物线2 设A 1、A 2是椭圆4922y x +=1的长轴两个端点,P 1、P 2是垂直于A 1A 2的弦的端点,则直线A 1P 1与A 2P 2交点的轨迹方程为( )A 14922=+y xB 14922=+x yC 14922=-y xD 14922=-x y3 △ABC 中,A 为动点,B 、C 为定点,B (-2a ,0),C (2a,0),且满足条件sin C -sin B =21sin A ,则动点A 的轨迹方程为_________4 高为5 m 和3 m 的两根旗杆竖在水平地面上,且相距10 m ,如果把两旗杆底部的坐标分别确定为A (-5,0)、B (5,0),则地面观测两旗杆顶端仰角相等的点的轨迹方程是_________ 5 已知A 、B 、C 是直线l 上的三点,且|AB |=|BC |=6,⊙O ′切直线l 于点A ,又过B 、C 作⊙O ′异于l 的两切线,设这两切线交于点P ,求点P 的轨迹方程6 双曲线2222by a x -=1的实轴为A 1A 2,点P 是双曲线上的一个动点,引A 1Q ⊥A 1P ,A 2Q ⊥A 2P ,A 1Q 与A 2Q 的交点为Q ,求Q 点的轨迹方程7 已知双曲线2222ny m x -=1(m >0,n >0)的顶点为A 1、A 2,与y 轴平行的直线l 交双曲线于点P 、Q(1)求直线A 1P 与A 2Q 交点M 的轨迹方程; (2)当m ≠n 时,求所得圆锥曲线的焦点坐标、准线方程和离心率8 已知椭圆2222by a x +=1(a >b >0),点P 为其上一点,F 1、F 2为椭圆的焦点,∠F 1PF 2的外角平分线为l ,点F 2关于l 的对称点为Q ,F 2Q 交l 于点R(1)当P 点在椭圆上运动时,求R 形成的轨迹方程;(2)设点R 形成的曲线为C ,直线l y =k (x +2a )与曲线C 相交于A 、B 两点,当△AOB 的面积取得最大值时,求k 的值 参考答案1 解析 ∵|PF 1|+|PF 2|=2a ,|PQ |=|PF 2|, ∴|PF 1|+|PF 2|=|PF 1|+|PQ |=2a ,即|F 1Q |=2a ,∴动点Q 到定点F 1的距离等于定长2a ,故动点Q 的轨迹是圆 答案 A2 解析 设交点P (x ,y ),A 1(-3,0),A 2(3,0),P 1(x 0,y 0),P 2(x 0,-y 0)∵A 1、P 1、P 共线,∴300+=--x yx x y y ∵A 2、P 2、P 共线,∴300-=-+x yx x y y 解得x 0=149,149,3,92220200=-=-=y x y x x y y x 即代入得答案 C3 解析 由sin C -sin B =21sin A ,得c -b =21a ,∴应为双曲线一支,且实轴长为2a,故方程为)4(1316162222a x a y a x >=-答案 )4(1316162222ax a y a x >=-4 解析 设P (x ,y ),依题意有2222)5(3)5(5yx yx +-=++,化简得P点轨迹方程为4x 2+4y 2-85x +100=0 答案 4x 2+4y 2-85x +100=05 解 设过B 、C 异于l 的两切线分别切⊙O ′于D 、E 两点,两切线交于点P 由切线的性质知 |BA |=|BD |,|PD |=|PE |,|CA |=|CE |,故|PB |+|PC |=|BD |+|PD |+|PC |=|BA |+|PE |+|PC |=|BA |+|CE |=|AB |+|CA |=6+12=18>6=|BC |,故由椭圆定义知,点P 的轨迹是以B 、C 为两焦点的椭圆,以l 所在的直线为x 轴,以BC 的中点为原点,建立坐标系,可求得动点P 的轨迹方程为728122y x +=1(y ≠0) 6 解 设P (x 0,y 0)(x ≠±a ),Q (x ,y ) ∵A 1(-a ,0),A 2(a ,0)由条件⎪⎩⎪⎨⎧-=±≠-=⎪⎪⎩⎪⎪⎨⎧-=-⋅--=+⋅+y a x y a x x x ax y a x y a x y a x y 220000000)( 11得 而点P (x 0,y 0)在双曲线上,∴b 2x 02-a 2y 02=a 2b 2即b 2(-x 2)-a 2(ya x 22-)2=a 2b 2化简得Q 点的轨迹方程为 a 2x 2-b 2y 2=a 4(x ≠±a )7 解 (1)设P 点的坐标为(x 1,y 1),则Q 点坐标为(x 1,-y 1),又有A 1(-m ,0),A 2(m ,0),则A 1P 的方程为 y =)(11m x mx y ++ ①A 2Q 的方程为 y =-)(11m x mx y --②①×②得 y 2=-)(2222121m x mx y --③又因点P 在双曲线上,故).(,12212221221221m x m n y n y m x -==-即代入③并整理得2222ny m x +=1 此即为M 的轨迹方程(2)当m ≠n 时,M 的轨迹方程是椭圆(ⅰ)当m >n 时,焦点坐标为(±22n m -,0),准线方程为x =±222nm m -,离心率e =mn m 22-;(ⅱ)当m <n 时,焦点坐标为(0,±22n m -),准线方程为y =±222mn n -,离心率e8 解 (1)∵点F 2关于l 的对称点为Q ,连接PQ , ∴∠F 2PR =∠QPR ,|F 2R |=|QR |,|PQ |=|PF 2|又因为l 为∠F 1PF 2外角的平分线,故点F 1、P 、Q 在同一直线上,设存在R (x 0,y 0),Q (x 1,y 1),F 1(-c ,0),F 2(c ,0)|F 1Q |=|F 2P |+|PQ |=|F 1P |+|PF 2|=2a ,则(x 1+c )2+y 12=(2a )2又⎪⎪⎩⎪⎪⎨⎧=+=221010y y c x x 得x 1=2x 0-c ,y 1=2y 0∴(2x 0)2+(2y 0)2=(2a )2,∴x 02+y 02=a 2 故R 的轨迹方程为 x 2+y 2=a 2(y ≠0)(2)如右图,∵S △AOB =21|OA |·|OB |·sin AOB =22a sin AOB当∠AOB =90°时,S △AOB 最大值为21a 2此时弦心距|OC在Rt △AOC 中,∠AOC =45°,.33,2245cos 1|2|||||2±=∴=︒=+=∴k k a ak OA OC。
解析几何中求曲线轨迹方程的常见方法总结(学生用)
解析几何中求曲线轨迹方程的常见方法总结一.直接法:直接法是将动点满足的几何条件或者等量关系直接坐标化,列出等式,化简即得动点轨迹方程。
它的基本步骤是建系、设点、列式、代换、化简、证明。
例1.已知线段6=AB ,直线BM AM ,相交于M ,且它们的斜率之积是49,求点M 的轨迹方程。
习题:1.(2011新课标全国理)在平面直角坐标系xOy 中,已知()1,0-A ,B 点在直线3-=y 上,M 点满足,,//BA MB AB MA OA MB ⋅=⋅M 点的轨迹为曲线C ,求C 的方程。
2.(2010年北京卷)在平面直角坐标系xOy 中,点B 与点()1,1-A 关于原点O 对称,P 是动点,且直线AP 与直线BP 的斜率之积等于31-,求动点P 的轨迹方程。
3.(2012四川理)如图,动点M 到两定点(1,0)A -、(2,0)B 构成MAB ∆,且2MBA MAB∠=∠,设动点M 的轨迹为C ,求轨迹C 的方程;y xB A O M4.(2012年江西)已知三点()0,0O ,()1,2-A ,()1,2B ,曲线C 上任意一点()y x M ,满足()2MA MB OM OA OB +=⋅++ ,求曲线C 的方程;二.定义法:若动点轨迹的条件符合某一基本曲线的定义(如椭圆、双曲线、抛物线、圆等),则可先设出轨迹方程,再根据已知条件,求出待定方程中的常数,即可得到轨迹方程例2.若(8,0),(8,0)B C -为ABC ∆的两顶点,AC 和AB 两边上的中线长之和是30,则ABC ∆的重心轨迹方程是_______________。
变式:1.方程222(1)(1)|2|x y x y -+-=++表示的曲线是 ( )A .椭圆B .双曲线C .线段D .抛物线2.一动圆与已知圆1Q :()1322=++y x 外切,与圆2Q :()813-22=+y x 内切,试求这个动圆圆心的轨迹方程。
三、代入法:代入法又称转移法或相关点发,即如果点P 的运动轨迹或所在曲线已知,而点Q 与点P 之间的坐标又可以建立某种关系,则借助点P 的轨迹可以得到点Q 的轨迹 转移法求曲线方程时一般有两个动点,一个是主动的,另一个是次动的。
几种常见求轨迹方程的方法
几种常见求轨迹方程的方法1.直接法由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法.例1:(1)求和定圆x2+y2=k2的圆周的距离等于k的动点P的轨迹方程;(2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹.对(1)分析:动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R或|OP|=0.解:设动点P(x,y),则有|OP|=2R或|OP|=0.即x2+y2=4R2或x2+y2=0.故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0.对(2)分析:题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数.由学生演板完成,解答为:设弦的中点为M(x,y),连结OM,则OM⊥AM.∵kOM·kAM=-1,其轨迹是以OA为直径的圆在圆O内的一段弧(不含端点).2.定义法利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件.直平分线l交半径OQ于点P,当Q点在圆周上运动时,求点P的轨迹方程.分析:∵点P在AQ的垂直平分线上,∴|PQ|=|PA|.又P在半径OQ上.∴|PO|+|PQ|=R,即|PO|+|PA|=R.故P点到两定点距离之和是定值,可用椭圆定义写出P点的轨迹方程.解:连接PA ∵l⊥PQ,∴|PA|=|PQ|.又P在半径OQ上.∴|PO|+|PQ|=2.由椭圆定义可知:P点轨迹是以O、A为焦点的椭圆.3.相关点法若动点P(x,y)随已知曲线上的点Q(x0,y0)的变动而变动,且x0、y0可用x、y表示,则将Q点坐标表达式代入已知曲线方程,即得点P的轨迹方程.这种方法称为相关点法(或代换法).例3 已知抛物线y2=x+1,定点A(3,1)、B为抛物线上任意一点,点P在线段AB上,且有BP∶PA=1∶2,当B点在抛物线上变动时,求点P的轨迹方程.分析:P点运动的原因是B点在抛物线上运动,因此B可作为相关点,应先找出点P与点B的联系.解:设点P(x,y),且设点B(x0,y0) ∵BP∶PA=1∶2,且P为线段AB 的内分点.4.待定系数法求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求.例4 已知抛物线y2=4x和以坐标轴为对称轴、实轴在y轴上的双曲曲线方程.分析:因为双曲线以坐标轴为对称轴,实轴在y 轴上,所以可设双曲线方ax2-4b2x+a2b2=0 ∵抛物线和双曲线仅有两个公共点,根据它们的对称性,这两个点的横坐标应相等,因此方程ax2-4b2x+a2b2=0应有等根.∴△=1664-4Q4b2=0,即a2=2b.(以下由学生完成) 由弦长公式得:即a2b2=4b2-a2.。
求轨迹方程的常用方法(经典)
求轨迹方程的常用方法(一)求轨迹方程的一般方法:1. 待定系数法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。
2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。
3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ),y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。
4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。
5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。
6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。
(二)求轨迹方程的注意事项:1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P 的运动规律,即P 点满足的等量关系,因此要学会动中求静,变中求不变。
)()()(0)(.2为参数又可用参数方程表示程轨迹方程既可用普通方t t g y t f x ,y x ,F ⎩⎨⎧=== 来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。
专题37 求曲线的轨迹方程(学生版)高中数学53个题型归纳与方法技巧总结篇
专题37求曲线的轨迹方程【考点预测】曲线的方程和方程的曲线在直角坐标系中,如果是某曲线C (看作适合某种条件的点的集合或轨迹)上的点与一个二元方程(),0f x y =的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解(完备性)(2)以这个方程的解为坐标的点都是曲线上的点(纯粹性)那么,这个方程叫做曲线的方程,这条曲线叫方程的曲线.事实上,曲线可以看作一个点集C ,以一个二元方程的解作为坐标的点也组成一个点集F ,上述定义中(1)(2)C FC F F C⇔⊆⎧⇔=⎨⇔⊆⎩条件条件【方法技巧与总结】一.直接法求动点的轨迹方程利用直接法求动点的轨迹方程的步骤如下:(1)建系:建立适当的坐标系(2)设点:设轨迹上的任一点(),P x y (3)列式:列出有限制关系的几何等式(4)代换:将轨迹所满足的条件用含,x y 的代数式表示,如选用距离和斜率公式等将其转化为,x y 的方程式化简(5)证明(一般省略):证明所求方程即为符合条件的动点轨迹方程(对某些特殊值应另外补充检验).简记为:建设现代化,补充说明.注:若求动点的轨迹,则不但要求出动点的轨迹方程,还要说明轨迹是什么曲线.二.定义法求动点的轨迹方程回顾之前所讲的第一定义的求解轨迹问题,我们常常需要把动点P 和满足焦点标志的定点连起来判断.熟记焦点的特征:(1)关于坐标轴对称的点;(2)标记为F 的点;(3)圆心;(4)题目提到的定点等等.当看到以上的标志的时候要想到曲线的定义,把曲线和满足焦点特征的点连起来结合曲线定义求解轨迹方程.三.相关点法求动点的轨迹方程如果动点P 的运动是由另外某一点P '的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出(,)P x y ,用(,)x y 表示出相关点P '的坐标,然后把P '的坐标代入已知曲线方程,即可得到动点P 的轨迹方程.四.交轨法求动点的轨迹方程在求动点的轨迹方程时,存在一种求解两动曲线交点的轨迹问题,这类问题常常可以先高中数学53个题型归纳与方法技巧总结篇解方程组得出交点(含参数)的坐标,再消去参数得出所求轨迹的方程,该方法经常与参数法并用,和参数法一样,通常选变角、变斜率等为参数.五.参数方程法求动点的轨迹方程动点(,)M x y 的运动主要是由于某个参数ϕ的变化引起的,可以选参、设参,然后用这个参数表示动点的坐标,即()()x f y g ϕϕ=⎧⎨=⎩,再消参.六.点差法求动点的轨迹方程圆锥曲线中涉及与弦的中点有关的轨迹问题可用点差法,其基本方法是把弦的两端点1122(,),(,)A x y B x y 的坐标代入圆锥曲线方程,两式相减可得12x x +,12y y +,12x x -,12y y -等关系式,由于弦AB 的中点(,)P x y 的坐标满足122x x x =+,122y y y =+且直线AB 的斜率为2121y y x x --,由此可求得弦AB 中点的轨迹方程.【题型归纳目录】题型一:直接法题型二:定义法题型三:相关点法题型四:交轨法题型五:参数法题型六:点差法题型七:立体几何与圆锥曲线的轨迹题型八:复数与圆锥曲线的轨迹题型九:向量与圆锥曲线的轨迹题型十:利用韦达定理求轨迹方程【典例例题】题型一:直接法例1.(2022·全国·高三专题练习)已知点P 是椭圆22164x y +=上任意一点,过点P 作x 轴的垂线,垂足为M ,则线段PM 的中点(),N x y 的轨迹方程为______.【方法技巧与总结】如果动点满足的几何条件本身就是一些几何量的等量关系且这些几何简单明了且易于表达,那么只需把这些关系“翻译”成含,x y 的等式,就可得到曲线的轨迹方程,由于这种求轨迹方程的过程不需要其他步骤,也不需要特殊的技巧,所以被称为直接法.例2.(2022·河南河南·模拟预测(理))已知平面上的动点P 到点(0,0)O 和(2,0)A 的距离之P 到x 轴的距离最大值为_____.例3.(2022·全国·高三课时练习)已知点(),P x y 到定点10,2M ⎛⎫⎪⎝⎭的距离比它到x 轴的距离大12.(1)求点P 的轨迹C 的方程;例4.(2022·湖南·模拟预测)已知平面直角坐标系中有两点()()122,0,2,0F F -,且曲线1C 上的任意一点P 都满足125PF PF ⋅=.求曲线1C 的轨迹方程并画出草图;例5.(2022·湖南湘潭·高三开学考试)已知,A B 两点的坐标分别为(2,0),(2,0)-,直线,AP BP的交点为P ,且它们的斜率之积14-.求点P 的轨迹E 的方程;题型二:定义法例6.(2022·全国·高三专题练习)已知定点A (1,1)和直线L :x +y -2=0,那么到定点A 和到定直线L 距离相等的点的轨迹为()A .椭圆B .双曲线C .抛物线D .直线【方法技巧与总结】若动点的轨迹符合某一已知曲线(圆,椭圆,双曲线,抛物线)的定义,则可根据定义直接求出方程中的待定系数,故称待定系数法.例7.(2022·全国·高三专题练习)已知圆F :()2221x y -+=,动圆P 与圆F 外切,且与定直线3x =-相切,设动点P 的轨迹为E .求E 的方程;例8.(2022·江西南昌·三模(理))已知两条直线1l :2320x y -+=,2l :3230x y -+=,有一动圆(圆心和半径都在变动)与1l ,2l 都相交,并且1l ,2l 被截在圆内的两条线段的长度分别是定值26,24,则动圆圆心的轨迹是()A .圆B .椭圆C .双曲线D .直线例9.(2022·上海市大同中学高三开学考试)已知定点()4,0P -和定圆22:8Q x y x +=,动圆M 和圆Q 外切,且经过点P ,求圆心M 的轨迹方程_______例10.(2022·全国·高三专题练习)设动圆M 与y 轴相切且与圆C :2220x y x +-=相外切,则动圆圆心M 的轨迹方程为______.例11.(2022·黑龙江·哈尔滨市第六中学校高三期末)已知圆1C :()2239x y ++=和圆2C :()2231x y +-=,动圆M 同时与圆1C 及圆2C 外切,则动圆的圆心M 的轨迹方程为______.例12.(2022·全国·高三专题练习(理))设圆222150x y x ++-=的圆心为A ,直线l 过点()10B ,且与x 轴不重合,l 交圆A 于,C D 两点,过B 作AC 的平行线交AD 于点E .证明EA EB +为定值,并写出点E 的轨迹方程;例13.(2022·全国·高三专题练习)已知P 是圆22:(1)16A x y -+=上的动点,M 是线段AP 上一点,()1,0B -,且PM MB =,求点M 的轨迹C 的方程例14.(2022·河南郑州·高三阶段练习(理))如图,已知圆1F 的方程为2249(1)8x y ++=,圆2F 的方程为221(1)8x y -+=,若动圆M 与圆1F 内切与圆2F 外切.求动圆圆心M 的轨迹C 的方程;例15.(2022·山东潍坊·模拟预测)已知圆M 与圆1F :()2221x y ++=外切,同时与圆2F :()22249x y -+=内切.说明动点M 的轨迹是何种曲线,并求其轨迹方程;例16.设圆222150x y x ++-=的圆心为A ,直线l 过点(1,0)B 且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E ,求点E 的轨迹方程.题型三:相关点法例17.(2022·全国·高三课时练习)设,A B 分别是直线2y x =和2y x =-上的动点,且满足AB 4=,则AB 的中点M 的轨迹方程为()A .22116y x +=B .22116x y +=C .22116y x -=D .22116x y -=【方法技巧与总结】有些问题中,所求轨迹上点(),M x y 的几何条件是与另一个已知方程的曲线上点(),M x y '''相关联的,这时要通过建立这两点之间关系,并用,x y 表示,y x '',再,y x ''将代入已知曲线方程,即得,x y 关系式.例18.(2022·全国·高三课时练习)已知ABC 的顶点()3,0B -,()1,0C ,顶点A 在抛物线2y x 上运动,则ABC 的重心G 的轨迹方程为______.例19.(2022·全国·高三课时练习)当点P 在圆221x y +=上变动时,它与定点()3,0Q 的连线PQ 的中点的轨迹方程是()A .22650x y x +++=B .22680x y x +-+=C .22320x y x +-+=D .22320x y x +++=例20.(2022·全国·高三课时练习)已知A 、B 分别是直线y =和y =上的两个动点,线段AB 的长为P 是AB 的中点.求动点P 的轨迹C 的方程.题型四:交轨法例21.(2022·四川凉山·高三期末(理))设椭圆22148x y +=的上、下顶点分别为A 、B ,直线y m =与椭圆交于两点M 、N ,则直线AM 与直线BN 的交点F 一定在下列哪种曲线上()A .抛物线B .双曲线C .椭圆D .圆【方法技巧与总结】在求动点的轨迹方程时,存在一种求解两动曲线交点的轨迹问题,这类问题常常可以先解方程组得出交点(含参数)的坐标,再消去参数得出所求轨迹的方程,该方法经常与参数法并用,和参数法一样,通常选变角、变斜率等为参数.例22.(多选题)(2022·江苏·南京市第一中学高三开学考试)已知椭圆C :2212x y a +=(2a >)P (1,1)的直线与椭圆C 交于A ,B 两点,且满足AP PB λ= .动点Q 满足AQ QB λ=-,则下列结论正确的是()A .3a =B .动点Q 的轨迹方程为2360x y +-=C .线段OQ (OD .线段OQ (O 例23.(2022·北京市朝阳区人大附中朝阳分校高三阶段练习)在矩形ABB A ''中,8,6A A AB ='=,把边AB 分成n 等份,在B B '的延长线上,以B B '的n 分之一为单位长度连续取点.过边AB 上各分点和点A '作直线,过B B '延长线上的对应分点和点A 作直线,这两条直线的交点为P ,如图建立平面直角坐标系,则点P 满足的方程是___________.例24.(河北省邢台市名校联盟2022届高三上学期开学考试数学试题)已知1A 、2A 为椭圆C :2213y x +=的左右顶点,直线0x x =与C 交于AB 、两点,直线1A A 和直线2A B 交于点P .求点P 的轨迹方程.例25.(2022·河南·新蔡县第一高级中学高三阶段练习(理))已知反比例函数1y x=的图像C 是以x 轴与y 轴为渐近线的等轴双曲线.(1)求双曲线C 的顶点坐标与焦点坐标;(2)设1A 、2A 为双曲线C 的两个顶点,点()00,M x y 、()00,N y x 是双曲线C 上不同的两个动点.求直线1A M 与2A N 交点的轨迹E 的方程;例26.(2022·全国·高三专题练习)如图,在平面直角坐标系中,O 为原点,()1,0F ,过直线l :4x =左侧且不在x 轴上的动点P ,作PH l ⊥于点H ,HPF ∠的角平分线交x 轴于点M ,且2PH MF =,记动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)已知曲线C 与x 轴正半轴交于点1A ,过点()4,0S -的直线1l 交C 于A ,B 两点,AS BS λ=,点T 满足AT TB λ=,其中1λ<,证明:12ATB TSO ∠=∠.例27.(2022·全国·模拟预测(文))设抛物线C :28x y =,过点()0,1的直线l 与C 交于A ,B 两点,分别过点A ,B 作抛物线的切线,两切线相交于点P ,求点P 的轨迹方程;例28.(2022·湖南·长郡中学模拟预测)已知双曲线C :()222210,0x y a b a b -=>>的离心率为2,1F ,2F 为双曲线C 的左、右焦点,()2,3A 是双曲线C 上的一个点.(1)求双曲线C 的方程;(2)若过点()4,0B 且不与渐近线平行的直线l (斜率不为0)与双曲线C 的两个交点分别为M ,N ,记双曲线C 在点M ,N 处的切线分别为1l ,2l ,点P 为直线1l 与直线2l 的交点,试求点P的轨迹方程(注:若双曲线的方程为22221x y a b -=,则该双曲线在点()00,x y 处的切线方程为00221x x y ya b-=)例29.(2022·全国·高三专题练习)已知抛物线C 的顶点为原点,其焦点()0,F c (0)c >到直线:20l x y --=(1)求抛物线C 的方程;(2)设点0(P x ,0)y 为直线l 上一动点,过点P 作抛物线C 的两条切线PA ,PB ,其中A ,B 为切点,求直线AB 的方程,并证明直线AB 过定点Q ;(3)过(2)中的点Q 的直线m 交抛物线C 于A ,B 两点,过点A ,B 分别作抛物线C 的切线1l ,2l ,求1l ,2l 交点M 满足的轨迹方程.例30.(2022·上海·高三专题练习)双曲线22221x y a b -=的实轴为12A A ,点P 是双曲线上的一个动点,引11A Q A P ⊥,22A Q A P ⊥,1A Q 与2A Q 的交点为Q ,求点Q 的轨迹方程.例31.(2022·全国·高三课时练习)已知点()2,2P -、()0,2Q 以及直线:l y x =,的线段AB 在直线l 上移动(如图所示),求直线PA 和QB 的交点M 的轨迹方程.题型五:参数法例32.(2022·新疆·皮山县高级中学高三期末(文))已知()2cos ,4sin A θθ,()2sin ,4cos B θθ-,当R θ∈时,线段AB 的中点轨迹方程为()A .22128x y -=B .22128x y +=C .22182y x -=D .22182x y +=【方法技巧与总结】有时不容易得出动点应满足的几何条件,也无明显的相关点,但却较容易发现(或经分析可发现)该动点常常受到另一个变量(角度,斜率,比值,解距或时间等)的制约,即动点坐标(),x y 中的,x y 分别随另一变量的变化而变化,我们称这个变量为参数,由此建立轨迹的参数方程,这种方法叫参数法.例33.(2022·全国·高三专题练习(理))已知曲线:C y =和直线l :y =kx (k ≠0),若C 与l 有两个交点A 和B ,求线段AB 中点的轨迹方程.例34.(2022·江西景德镇·高三期末(理))已知两条动直线14:xl y λ=与2:l y λ=(0λ≠,λ为参数)的交点为P .求点P 的轨迹C 的方程;例35.(2022·北京市第五十七中学高三期中)P 是圆224x y +=上的动点,P 点在x 轴上的射影是D ,点M 满足2DP DM =.(1)求动点M 的轨迹C 的方程;(2)过11,2⎛⎫⎪⎝⎭Q 作弦且弦被Q 平分,求此弦所在的直线方程及弦长;(3)过点(30)N ,的直线l 与动点M 的轨迹C 交于不同的两点A ,B ,求以OA ,OB 为邻边的平行四边形OAEB 的顶点E 的轨迹方程.例36.(2022·全国·高三专题练习)已知直线l 1:y =k 1x 和l 2:y =k 2x 与抛物线y 2=2px (p >0)分别相交于A ,B 两点(异于原点O )与直线l :y =2x +p 分别相交于P ,Q 两点,且122k k ⋅=-.求线段AB 的中点M 的轨迹方程;例37.(2022·江苏·周市高级中学高三阶段练习)已知直线:1,0,sin cos 2x y l πθθθ⎛⎫+=∈ ⎪⎝⎭与坐标轴的交点分别为A ,B ,则线段AB 的中点C 的轨迹与坐标轴围成的图形面积为()A .2πB .4πC .8πD .16π例38.(2022·全国·高三课时练习)已知曲线()1:10x y C a b ab+=>>所围成的封闭图形的面积为曲线1C 记2C 是以曲线1C 与坐标轴的交点为顶点的椭圆.(1)求椭圆2C 的标准方程;(2)设AB 是过椭圆2C 中心的任意弦,l 是线段AB 的垂直平分线,M 是l 上异于椭圆中心的点,MO OA λ=(O 为坐标原点,0λ≠),当点A 在椭圆2C 上运动时,求点M 的轨迹方程.题型六:点差法例39.(2022·全国·高三专题练习)椭圆2214x y +=,则该椭圆所有斜率为12的弦的中点的轨迹方程为_________________.【方法技巧与总结】圆锥曲线中涉及与弦的中点有关的轨迹问题可用点差法.例40.(2022·全国·高三课时练习)斜率为2的平行直线截双曲线221x y -=所得弦的中点的轨迹方程是______.例41.(2022·全国·高三专题练习)已知椭圆22143x y +=的弦AB 所在直线过点()1,1E ,求弦AB 中点F 的轨迹方程.例42.(2022·上海市行知中学高三开学考试)已知曲线Γ上一动点P 到两定点()10,2F -,()20,2F 的距离之和为,过点()1,0Q -的直线L 与曲线Γ相交于点()11,A x y ,()22,B x y .(1)求曲线Γ的方程;(2)动弦AB 满足:AM MB =,求点M 的轨迹方程;例43.(2022·全国·高三期中)(1)若双曲线的一条渐近线方程为230x y +=,且两顶点间的距离为6,求该双曲线方程.(2)一组平行直线2y x b =+与椭圆221129x y +=相交,求弦的中点的轨迹方程.例44.(2022·上海·高三专题练习)已知椭圆22142x y +=,()11,M x y ,()22,N x y 是椭圆上的两个不同的点.(1)若点()1,1A 满足MA AN =,求直线MN 的方程;(2)若()11,M x y ,()22,N x y 的坐标满足121220x x y y +=,动点P 满足2OP OM ON =+(其中O 为坐标原点),求动点P 的轨迹方程,并说明轨迹的形状;题型七:立体几何与圆锥曲线的轨迹例45.(2022·全国·高三专题练习)在正方体1111ABCD A B C D -中,E 为11A D 的中点,F 为底面ABCD 上一动点,且EF 与底面ABCD 所成的角为60︒.若该正方体外接球的表面积为12π,则动点F 的轨迹长度为().A B C D 【方法技巧与总结】利用坐标法解决.例46.(2022·全国·高三专题练习)如图,点A 是平面α外一定点,过A 作平面α的斜线l ,斜线l 与平面α所成角为50︒.若点P 在平面α内运动,并使直线AP 与l 所成角为35︒,则动点P 的轨迹是()A .圆B .椭圆C .抛物线D .双曲线的一支例47.(2022·北京市第十三中学高一阶段练习)如图,正方体1l l l ABCD A B C D -中,P 为底面ABCD 上的动点,且1PE A C ⊥于E ,且PA PE =,则点P 的轨迹是()A .线段B .圆弧C .抛物线的一部分D .以上答案都不对例48.(多选题)(2022·广东·大埔县虎山中学模拟预测)如图所示,在棱长为2的正六面体1111ABCD A B C D -中,O 为线段1A C 的中点(图中未标出),以下说法正确的有().A .线段CD 中点为E ,则直线OE 与平面11A BCD 所成角的正弦值为12.B .在线段AB 上取靠近B 点的三等分点F ,则直线OF 与直线11CD 不共面.C .在平面ABCD 上存在一动点P ,满足2AP BP +=,则P 点轨迹为一椭圆.D .在平面11C D AB 上存在一动点Q ,点Q 到点O 的距离和点Q 到直线AB 的距离相等,则点Q .题型八:复数与圆锥曲线的轨迹例49.(2022·河南开封·高三阶段练习(文))已知i 为虚数单位,且013i12iz -=+,复数z 满足01z z -=,则复数z 对应点的轨迹方程为()A .()()22114x y -++=B .()()22114x y -++=C .()()22111x y +++=D .()()22111x y -+-=【方法技巧与总结】(1)利用坐标法解决.(2)利用复数几何意义例50.(多选题)(2022·重庆一中高一期末)若复数z 在复平面对应的点为Z ,则下来说法正确的有()A .若||3z =,则Z 在复平面内的轨迹为圆B .若|4||4|8z z ++-=,则Z 在复平面内的轨迹为椭圆C .不可能存在复数z 同时满足||3z =和|4||4|10z z ++-=D .若||3z =,则|4||4|z z ++-的取值范围为[8,10]例51.(2022·上海市徐汇中学高三期末)如果复数z 满足6|13i 2i |z z +++--=,则复数z 对应的点的轨迹是()A .直线B .椭圆C .线段D .圆例52.(2022·全国·高一课时练习)已知复数z 满足2||2||30z z --=,则复数z 对应的点的轨迹是___________.例53.(2022·江西赣州·高三期末(文))设复数()1cos i sin z θθ=++⋅(i 为虚数单位),则复数z 在复平面内对应的点(),x y 的轨迹方程为___________.题型九:向量与圆锥曲线的轨迹例54.(2022·全国·高三课时练习)已知()2,1A ,()2,1B -,O 为坐标原点,动点(),P x y 满足OP mOA nOB =+ ,其中,R m n ∈,且2212m n +=,则动点P 的轨迹方程是()A .2214y x +=B .2214x y +=C .2214y x -=D .2214x y -=【方法技巧与总结】(1)利用坐标法解决.(2)利用向量几何意义例55.(2022·安徽·合肥一六八中学模拟预测(理))已知向量a ,b是单位向量,若0a b ⋅= ,且345c a c b -+-= ,则c a +的取值范围是___________.例56.(2022·全国·高三课时练习)设过点(),P x y 的直线分别与x 轴的正半轴和y 轴的正半轴交于A 、B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点.若2BP PA =,且1OQ AB ⋅= ,则点P 的轨迹方程是______.例57.(2022·陕西师大附中高一期中)已知向量a ,b ,c ,满足4a = ,a 与b 的夹角为3,()3c c a ⋅-=-,则b c - 的最小值为()A .2B 32C 1D 1-例58.(2022·全国·高三专题练习)已知椭圆的标准方程为22142x y +=.(1)设动点P 满足:OP OM ON =+,其中M ,N 是椭圆上的点,直线OM 与ON 的斜率之积为12-,问:是否存在两个定点12,F F ,使得12PF PF +为定值?若存在,求12,F F 的坐标;若不存在,说明理由.(2)设动点P 满足:2OP OM ON =+,其中M ,N 是椭圆上的点,直线OM 与ON 的斜率之积为12-,问:是否存在点F ,使得点P 到F 的距离与到直线x =的距离之比为定值?若存在,求F 的坐标;若不存在,说明理由.例59.(2022·重庆八中高三阶段练习)抛物线2:2(0)C y px p =>的焦点为F ,P 在抛物线C 上,O 是坐标原点,当PF 与x 轴垂直时,OFP △的面积为1.(1)求抛物线C 的方程;(2)若A ,B 都在抛物线C 上,且4OA OB ⋅=-,过坐标原点O 作直线AB 的垂线,垂足是G ,求动点G 的轨迹方程.例60.(2022·全国·高三专题练习)已知平面上一定点(20)C ,和直线l :x =8,P 为该平面上一动点,作PQ ⊥l ,垂足为Q ,且1()2PC PQ + ·1()2PC PQ -=0.求动点P 的轨迹方程;题型十:利用韦达定理求轨迹方程例61.(2022·全国·高三课时练习)设椭圆E 的方程为2212x y +=,斜率为1的动直线l 交椭圆E 于A ,B 两点,以线段AB 的中点C 为圆心,AB 为直径作圆,圆心C 的轨迹方程为______.【方法技巧与总结】联立直线与曲线方程得出两根之和与之积关系,再进行转化.例62.(2022·全国·高三专题练习)设不同的两点A ,B 在椭圆22:23C x y +=上运动,以线段AB 为直径的圆过坐标原点O ,过O 作OM AB ⊥,M 为垂足.求点M 的轨迹方程.例63.(2022·浙江·杭州市富阳区场口中学高三期末)已知椭圆C ,其焦点是双曲线2213y x -=的顶点.(1)写出椭圆C 的方程;(2)直线l :y kx m =+与椭圆C 有唯一的公共点M ,过点M 作直线l 的垂线分别交x 轴、y 轴于(),0A x ,()0,B y 两点,当点M 运动时,求点(),P x y 的轨迹方程,并说明轨迹是什么曲线.例64.(2022·广东·高三阶段练习)已知椭圆()2222:10x y E a b a b +=>>其左、右顶点分别是A 、B ,且AB 4=.(1)求椭圆E 的标准方程;(2)已知点M 、N 是椭圆E 上异于A 、B 的不同两点,设点P 是以AM 为直径的圆1O 和以AN 为直径的圆2O 的另一个交点,记线段AP 的中点为Q ,若1AM AN k k =-⋅,求动点Q 的轨迹方程.例65.(2022·全国·高三专题练习)已知三角形ABC 的三个顶点均在椭圆224580x y +=上,且点A 是椭圆短轴的一个端点(点A 在y 轴正半轴上).(1)若三角形ABC 的重心是椭圆的右焦点,试求直线BC 的方程;(2)若角A 为090,AD 垂直BC 于D ,试求点D 的轨迹方程.【过关测试】一、单选题1.(2022·江苏省木渎高级中学模拟预测)复平面中有动点Z ,Z 所对应的复数z 满足|3||i |-=-z z ,则动点Z 的轨迹为()A .直线B .线段C .两条射线D .圆2.(2022·全国·高三专题练习)正三角形OAB 的边长为1,动点C 满足OC OA OB λμ=+,且221λλμμ++=,则点C 的轨迹是()A .线段B .直线C .射线D .圆3.(2022·全国·高三专题练习)四边形ABCD 为梯形,且2AB DC = ,||||2DC DA == ,3DAB π∠=,点P 是四边形ABCD 内及其边界上的点.若()()4AP DP PB BA -⋅+=-,则点P 的轨迹的长度是()A B .C .4πD .16π4.(2022·全国·高三专题练习)已知复数z 满足i i 2z z ++-=,则z 的轨迹为()A .线段B .直线C .椭圆D .椭圆的一部分5.(2022·河南安阳·高三开学考试(文))平面上到两条相交直线的距离之和为常数的点的轨迹为平行四边形,其中这两条相交直线是该平行四边形对角线所在的直线.若平面上到两条直线0x y -=,0y =的距离之和为2的点P 的轨迹为曲线Γ,则曲线Γ围成的图形面积为()A .B .C .D .6.(2022·河南·郑州四中高三阶段练习(理))下列四个命题中不正确的是()A .若动点P 与定点()4,0A -、()4,0B 连线PA 、PB 的斜率之积为定值49,则动点P 的轨迹为双曲线的一部分.B .设m ,R n ∈,常数0a >,定义运算“*”:()()22*m n m n m n =+--,若0x ≥,则动点(P x 的轨迹是抛物线的一部分.C .已知两圆()22:11A x y ++=、圆()22:125B x y -+=,动圆M 与圆A 外切、与圆B 内切,则动圆的圆心M 的轨迹是椭圆.D .已知()7,0A ,()7,0B -,()2,12C -,椭圆过A ,B 两点且以C 为其一个焦点,则椭圆的另一个焦点的轨迹为双曲线.7.(2022·全国·高三专题练习)已知正方体1111ABCD A B C D -的棱长为2,E F 、分别是棱1AA 、11A D 的中点,点P 为底面四边形ABCD 内(包括边界)的一动点,若直线1D P 与平面BEF 无公共点,则点P 的轨迹长度为()A .2BCD .8.(2022·安徽·合肥一中模拟预测(文))首钢滑雪大跳台是冬奥史上第一座与工业旧址结合再利用的竞赛场馆,它的设计创造性地融入了敦煌壁画中飞天的元素,建筑外形优美流畅,飘逸灵动,被形象地称为雪飞天.中国选手谷爱凌和苏翊鸣分别在此摘得女子自由式滑雪大跳台和男子单板滑雪大跳台比赛的金牌.雪飞天的助滑道可以看成一个线段PQ 和一段圆弧QM 组成,如图所示.假设圆弧QM所在圆的方程为22:(25)(2)162C x y ++-=,若某运动员在起跳点M 以倾斜角为45 且与圆C 相切的直线方向起跳,起跳后的飞行轨迹是一个对称轴在y 轴上的抛物线的一部分,如下图所示,则该抛物线的轨迹方程为()A .232(1)y x =--B .21364y x =--C .232(1)x y =--D .2364x y =-+二、多选题9.(2022·福建省福州第一中学三模)已知曲线C 是平面内到定点(0,1)F 和定直线:1l y =-的距离之和等于4的点的轨迹,若()00,P x y 在曲线C 上,则下列结论正确的是()A .曲线C 关于x 轴对称B .曲线C 关于y 轴对称C .022x - D .1||4PF 10.(2022·全国·高三专题练习)已知抛物线C :22y px =(p >0)的焦点F 与圆22:20E x y x +-=的圆心重合,直线l 与C 交于1122(,)(,)A x y B x y 、两点,且满足:0OA OB ⋅=(其中O 为坐标原点且A 、B 均不与O 重合),则()A .121216,16x x y y ==-B .直线l 恒过定点()4,0C .A 、B 中点轨迹方程:224y x =-D .AOB 面积的最小值为1611.(2022·福建·模拟预测)已知双曲线22:14y C x -=的左、右焦点分别为12,F F ,点P 在双曲线C 的右支上,若12F PF θ∠=,12PF F △的面积为S ,则下列选项正确的是()A .若60θ︒=,则S =B .若4S =,则2PF =C .若12PF F △为锐角三角形,则(4,S ∈D .若12PF F △的重心为G ,随着点P 的运动,点G 的轨迹方程为22919143y x x ⎛⎫-=> ⎪⎝⎭12.(2022·全国·高三专题练习)已知A 、B 两点的坐标分别是(1,0)-,(1,0),直线AP 、BP 相交于点P ,且两直线的斜率之积为m ,则下列结论正确的是()A .当1m =-时,点P 的轨迹圆(除去与x 轴的交点)B .当10m -<<时,点P 的轨迹为焦点在x 轴上的椭圆(除去与x 轴的交点)C .当01m <<时,点P 的轨迹为焦点在x 轴上的抛物线D .当1m 时,点P 的轨迹为焦点在x 轴上的双曲线(除去与x 轴的交点)三、填空题13.(2022·浙江·高三开学考试)已知双曲线221x y -=与直线():1l y kx m k =+≠±有唯一的公共点A ,过点A 且与l 垂直的直线分别交x 轴、y 轴于()()00,0,0,B x C y 两点,当点A 运动时,点()00,D x y 的轨迹方程是___________.14.(2022·江西·上饶市第一中学模拟预测(文))①已知点)A ,直线:l x =点P 满足到点A 的距离与到直线l②已知圆C 的方程为224x y +=,直线l 为圆C 的切线,记点)A ,()B 到直线l 的距离分别为1d ,2d ,动点P 满足1PA d =,2PB d =;③点S ,T 分别在x 轴,y 轴上运动,且3ST =,动点P 满足2133OP OS OT =+;在①,②,③这三个条件中,动点P 的轨迹W 为椭圆的是______.15.(2022·黑龙江·大庆实验中学模拟预测)已知在直角坐标平面内,两定点()0,1F ,()1,1M -,动点Q 满足以FQ 为直径的圆与x 轴相切.直线FQ 与动点Q 的轨迹E 交于另一点P ,当90PMQ ∠=︒时,直线PQ 的斜率为______.16.(2022·全国·高三专题练习)已知椭圆22149x y +=,一组平行直线的斜率是32,当它们与椭圆相交时,这些直线被椭圆截得的线段的中点轨迹方程是__.四、解答题17.(2022·四川内江·模拟预测(理))在ABC 中,(2,0)A -,(2,0)B ,AC 与BC 斜率的积是14-.(1)求点C 的轨迹方程;(2)(4,0)P ,求PC 的中点M 的轨迹方程.18.(2022·全国·高三专题练习)设椭圆22154x y +=的两条互相垂直的切线的交点轨迹为C ,曲线C 的两条切线PA 、PB 交于点P ,且与C 分别切于A 、B 两点,求PA PB ⋅的最小值.第21页共21页19.(2022·全国·高三专题练习)已知椭圆22:14x C y +=的右焦点F 与抛物线21:2C y px =的焦点重合.(1)求椭圆C 的离心率与抛物线1C 的方程;(2)过焦点F 的动直线与抛物线1C 交于A ,B 两点,从原点O 作直线AB 的垂线,垂足为M ,求动点M 的轨迹方程;(3)点R ⎭为椭圆C 上的点,设直线l 与OR 平行,且直线l 与椭圆C 交于P ,Q 两点,若PQR 的面积为1,求直线l 的方程.20.(2022·山东·肥城市教学研究中心模拟预测)在平面直角坐标系xOy 中,已知12,A A 两点的坐标分别是(,直线,A B A B 12相交于点B ,且它们的斜率之积为13.(1)求点B 的轨迹方程;(2)记点B 的轨迹为曲线C ,,,,M N P Q 是曲线C 上的点,若直线MN ,PQ 均过曲线C 的右焦点F 且互相垂直,线段MN 的中点为R ,线段PQ 的中点为T .是否存在点G ,使直线RT 恒过点G ,若存在,求出点G 的坐标,若不存在,说明理由.21.(2022·湖南·长郡中学模拟预测)已知双曲线C :()222210,0x y a b a b-=>>的离心率为2,1F ,2F 为双曲线C 的左、右焦点,()2,3A 是双曲线C 上的一个点.(1)求双曲线C 的方程;(2)若过点()4,0B 且不与渐近线平行的直线l (斜率不为0)与双曲线C 的两个交点分别为M ,N ,记双曲线C 在点M ,N 处的切线分别为1l ,2l ,点P 为直线1l 与直线2l 的交点,试求点P 的轨迹方程(注:若双曲线的方程为22221x y a b-=,则该双曲线在点()00,x y 处的切线方程为00221x x y y a b-=)。
曲线轨迹方程的六种求法
曲线轨迹方程的六种求法求曲线的轨迹方程是解析几何最基本,最重要的题型之一,是用代数方法研究几何问题的基础,这类题目把基本知识,方法技巧,逻辑思维能力,解题能力融于一体,掌握以下几种方法,有助于问题的解决。
一直接法直接法是将动点满足的几何条件或等量关系直接坐标化,列出等式,化简即得动点轨迹方程。
例1 已知定点A(-t,0)和B(t,0),t>0,S为一动点,SA和SB两直线的斜率乘积,求动点S的轨迹C的方程。
变式设直线,定点,动点P到直线的距离为,且。
求动点P 的轨迹C的方程。
二定义法若动点轨迹的条件符合某一基本曲线的定义(如椭圆,双曲线,抛物线,园等),则可用定义直接探求。
例2 在平面直角坐标系中,已知点,点动点M满足条件,求动点M的轨迹方程。
变式设圆C与两圆中的一个外切,一个内切,求圆C的圆心的轨迹方程。
代入法又称转移法或相关点法,即如果点P 的运动轨迹或所在曲线已知,而点Q 与点P 之间的坐标又可以建立某种关系,则借助点P 的轨迹可以得到点Q 的轨迹。
例3 如图,设P 是圆 上的动点,点D 是P 在x 轴上的射影,M 为PD 上的一点,且当P 在圆上运动时,求点M 的轨迹C 的方程。
变式 在圆 上任意取一点P ,过点P 作x 轴的垂线段PD ,D 是垂足,当P 在圆上运动时,求线段PD 的中点M 的轨迹方程。
四 参数法若动点的坐标(x,y)中的x,y 分别随另一变量的变化而变化,我们可以这个变量为参数,建立轨迹的参数方程。
例4 已知直线l 过M(1,0),与抛物线22x y = 交予A,B 两点,O 为坐标原点,点P 在y 轴的右侧,且满足1122OP OA OB =+,求P 点的轨迹C 的方程。
变式 设0λ> ,点A 的坐标为(1,1),点B 在抛物线2y x = 上运动,如图。
点Q 满足BQ QA λ=,经过点Q 作x 轴垂直的直线交抛物线于点M ,点P 满足QM MP λ=,求点P 的轨迹方程。
4.1. 求曲线的轨讲方程(补充知识)
例3:已知一条长为2a的线段两端点A、B分别在x、 y 轴上滑动,求线段AB的中点M的轨迹方程。
练习
1.已知点P(2,0),Q(8,0),点M与点P的距离是它 与点Q的距离的2倍,求点M的轨迹方程。
求曲线的轨迹方程
求曲线的轨迹方程
求曲线的轨迹方程,是学习解析几何的 基础,求曲线的轨迹方程的基本步骤为:
1.建立合适的直角坐标系---建系; 2.设M(x,y)是所求曲线上任意一点---设点; 3.根据题意列出关系式---列式; 4.对关系式进行化简---化简; 5.检查所求轨迹方程上的点是否都适合题意---检验。
求曲线的轨迹方程
求曲线的轨迹方程常用的方法主要有:
直接法: 根据动点所满足的几何条件,直接写出其 坐标所满足的代数方程.
例1:等腰三角形的顶点A的坐标是(4,2),底边一个端 点B的坐标为(3,5),求另一个端点C的轨迹方程。
求曲线的轨迹方程
坐标转移法(相关点法): 所求动点M的运动依赖 于已知曲线上的一个动点M0的运动,将M0的坐标 用M的坐标表示,代入已知曲线,所的方程即为所 求.
2.过点P(1,3)作两条相互垂直的直线l1,l2,l1 交x轴于点A,l2交y轴于点B,求线段AB的 中点M的轨迹方程。
高二数学求曲线的轨迹方程2(PPT)4-1
经过细胞的生长、分化,形成根的各种结构;另一方面保持自身原有的体积。 [] 伸长区的细胞由分生区细胞发展而来,分裂能力已减弱,细胞延长轴伸长。 伸长活动会导致原生韧皮部和初生木质部损坏,使之出现缺层(Lacuna)。 根毛区细胞已是成熟的细胞。根毛由表皮中的毛细胞(Trichoblast)生成,可有; 幼小衔接加盟品牌 幼小衔接加盟 幼小衔接教育加盟品牌 幼小衔接加盟多少钱 幼小衔接班加盟 加盟幼小衔接 幼小衔接教育加盟 ;效地增 大植物根部的吸收区域。树木根部的吸收面积可达M。 茎 茎是植物的营养器官之一。是大多数植物可见的主干。当然,例如仙 人掌的变态茎。茎下接根, 通过木质部将根部吸收到的水分和矿物质往上运输到各营养器官,通过韧皮部将光合作用的产物往下运输。茎来源于植物胚胎的胚芽。胚轴组成部分的茎, 准确地说是子叶下的部分。 最早拥有茎的植物为现已绝种的库氏裸蕨,现存则是松叶蕨,他们没有真正的根、叶。因此维管束植物(导管植物)中,最早出 现的器官是茎,根叶则是由茎演化而成。 变态茎 有些植物的茎,其功用已经特化不只是支持和运输的功能,其形态也不只是着生枝叶,我们称之变态茎。 常见的有仙人掌的块茎、洋葱的鳞茎、荸荠的球茎、姜的根茎、草莓的走茎、葡萄的卷须(茎卷须),还有茎(枝条)特化成叶状的芦笋等。 叶 叶是高等植 物的营养器官,侧边发育自植物的茎的叶原基。叶内含有叶绿素,是植物进行光合作用的主要场所。同时,植物的蒸散作用是通过叶的气孔实现的。 叶只出
现在真正的茎上,即只有维管植物才有叶。蕨类、裸子植物和被子植物等所有高等植物都有叶。相对地,苔藓植物、藻类、真菌和地衣则没有叶。在这些扁 平体(Thallus)中只能找到与叶相似的结构,但只能作为类似物(Analoga)。 完全叶包含三部分:叶片,叶柄和托叶。 叶片指的是完全叶上扁平的主体结 构。它会尽可能地吸收阳光,并通过气孔调节植物体内水分和温度。 叶柄是连接叶片与茎节的部分。 托叶着生于叶柄基部两侧或叶腋处,细小,早落。不同 的植物种类,托叶的形态也不同。例如豌豆有着大的叶片状托叶,而洋槐和酸枣的托叶则是针形,山樱花的托叶为羽状。其作用是保护幼叶。 变态叶 变态叶 由于功能改变所引起的形态和结构都发生变化的叶。如仙人掌的刺,玉叶金花的大萼片和开花植物的心皮。 花 花生于花托上,最外面是花瓣(或花被片),
高二数学求曲线的轨迹方程2(PPT)5-1
1.常见的轨迹: (1)在平面内,到两定点的距离相等的点的轨迹是连接 两定点的线段的垂直平分线. (2)平面内到角的两边距离相等的点的轨迹是这个角 的平分线. (3)平面内到定点的距离等于定长的点的轨迹是以定 点为圆心的圆. (4)平面内到定点的距离与到定直线的距离之比等于 常数的点的轨迹是圆锥曲线.当常数大于1时表示双曲 线;当常数等于1时,表示抛物线;当常数大于0而小于1时 表示椭圆.定点和定直线分别是圆锥曲线的焦点和相应 的准线. (5)平面内到定直线的距离等于某一定值的点的轨迹 是与这条直线平行的两条直线.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:设割线方程 y kx 2, B(x1, y1)、C(x2 , y2 )、P(x, y)
y kx 2
x
2
4y2
4
y A B
消去y得:(1 4k 2 )x2 16kx 12 0
x x1 x2 8k
①
2
1 4k 2
y k x1 x2 2 2
二、待定系数法: 已知曲线类型,可先设曲线方程, 再将已知条件代入,求出系数。
例、 已知椭圆的焦点坐标为 (0,2 3) 和 (0,2 3,) 且经过点 ( 6, 5) ,求椭圆的标准方程。
x2 y2 1 8 20
三、定义法:
定义法是指先分析、说明动点的轨迹满足某种 特殊曲线(如圆、椭圆、双曲线、抛物线等) 的定义或特征,再求出该曲线的相关参量,从 而得到轨迹方程.
x2 y2 1 16 12
2.△ABC 中, A(0,-2), B(0,2), 且 CA, AB, CB 成等差数列,
则 C 点的轨迹方程是
x2 y2 1( y 0)
16 12
四、相关点法(代入法)求轨迹方程
若动点所满足的条件不易表述或求出,但形 成轨迹的动点P很明显地依赖于另一动点Q的运动 时,且动点Q的轨迹方程为给定或容易求得,则 可利用相关点法。其关键是找出两动点的坐标间 的关系,这要充分利用题中的几何条件。
例、已知圆A:(x 2)2 y2 1与A(- 2,0),B(2,0)
分别满足求出下列条件的动点P的轨迹方程
(1)PAB的周长为10
x2 y2 1( y 0)
95
(2)圆P与圆A外切,且过
B点(P为动圆圆心)
x2 y2 1(x 1 )
1 15
2
44
练习 1、已知动圆 C 过点 A(-2,0),且与圆 M:(x-2)2+x2=64 相内切,求动圆 C 的圆心的 轨迹方程.
由k BC
k AP得
x 4y
y
x
2
即 x 2 ( y 1)2 1 4
(2010
辽宁文数)设 F1 , F2 分别为椭圆 C :
x2 a2
y2 b2
1
(a
b
0)
的左、右焦点,过 F2 的直线 l 与椭圆 C 相交于 A , B 两点,直线 l 的倾斜角为 60 ,
F1 到直线 l 的距离为 2 3 . (Ⅰ)求椭圆 C 的焦距; (Ⅱ)如果 AF2 2F2B ,求椭圆 C 的方程.
2
1 4k 2
②
P O
C
x
由① ②得:k x 4y
代入②得:
x 2 ( y 1)2 1(在椭圆内的部分) 4
解:设B(x1, y1), C(x2 , y2 ),中点P(x, y),则 x12 4 y12 4 x22 4 y22 4
两式相减得:y2 y1 x2 x1 x x2 x1 4( y2 y1 ) 4 y
x2 y 2 1( y 0) 43
1、直接法
练习、求与圆x2+y2-4x=0外切且与Y轴相切的动
圆的圆心的轨迹方程。
y
解:设动圆圆心为P(x,y).
AP
由题,得 (x 2)2 y2 2 | x | (x 2)2 y2 (2 | x |)2
oB
x
即
-4x+y2=4|x|
得动圆圆心的轨迹方程为y=0(x<0),或y2=8x(x>0)
相关点法也称代入法.
例、已知圆C:x2 + y2 = 4.过圆C上一动点M作平 行于x轴的直线m,设m与y轴的交点为N,若向 量OQ = OM + ON,求动点Q的轨迹方程,并说 明此轨迹是什么曲线。
解:设Q(x,y),M(x0,y0),则N(0,y0),
∵OQ = OM + ON,∴(x,y)=(x0,2y0),
求曲线的轨迹方程
1、直接法 2、待定系数法 3、定义法 4、相关点法 5、消参法
一.直接法:根据题目信息点,直接设点代 入.要注意的有二点:计算及自变量的 取值范围
例 1.在平面直角坐标系中,已知点 A(2,0)B(-2,0),
P 是平面内一动点,直线 PA,PB 的斜率之积为 3 . 4
求动点 P 的轨迹 C 的方程。
即
x0
y0
x y
2
,
又点M(x0,y0)在圆C上, ∴ x02+y02=4,
∴ x2 y2 4 , 即 y2 x2 1.
4
16 4
由已知,直线 m // x 轴,所以 y ≠ 0.
∴点Q的轨迹方程是 y2 x2 1( y 0) , 16 4
轨迹是焦点坐标为F1(0, 2 3 ), F2(0,2 3 ),长轴长为8的椭圆,并去掉 (-2,0)和(2,0)两点。
以上有不当之处,请大家给与批评指正, 谢谢大家!
15
练习.P 是椭圆 x 2 y 2 1上的动点, 作 PD⊥y 轴, D 为垂足, 16 9
则 PD 中点的轨迹方程为( D )
A. x 2 y 2 1 9 16
B. x2 y 2 1 64 9
C. x 2 y 2 1 94
D. x 2 y 2 1 49
例2、过点A(0,2)引椭圆x2 4y2 4的割线,交椭圆于