人大附中2020届初三第一学期10月月考数学试题
北京市人民大学附属中学2023-2024学年九年级上学期月考数学试题
![北京市人民大学附属中学2023-2024学年九年级上学期月考数学试题](https://img.taocdn.com/s3/m/88a6d53d26284b73f242336c1eb91a37f1113281.png)
北京市人民大学附属中学2023-2024学年九年级上学期月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.一元二次方程2350+-=x x 的二次项系数、一次项系数、常数项分别是()A .3,1,5B .3,1,5-C .3,1-,5D .3,1-,5-2.将抛物线2y x =向上平移1个单位后,得到的抛物线的解析式是()A .21y x =+B .21y x =-C .2(1)y x =-D .2(1)y x =+3.剪纸艺术是最古老的中国民间艺术之一,先后入选中国国家级非物质文化遗产名录和人类非物质文化遗产代表作名录.以下剪纸中,为中心对称图形的是()A .B .C .D .4.用配方法解方程2620x x -+=,配方后所得的方程是()A .()237x -=B .()237x +=C .()2311x -=D .()2311x +=5.在平面直角坐标系xOy 中,已知点()4,3A ,以原点O 为圆心,5为半径作O ,则()A .点A 在O 上B .点A 在O 内C .点A 在O 外D .点A 与O 的位置关系无法确定6.如图,在正方形网格中,将MNP △绕某一点旋转某一角度得到M N P '''△,则旋转中心是()A .点AB .点7.利用图形的旋转可以设计出许多美丽的图案.右面图本图案以点O 为旋转中心,顺时针(或逆时针)旋转角转角α的值不可能是()A .36︒B .8.已知抛物线(429y x =--结论中正确的是()A .若11x 2<,则10y <<C .若11x 2<,则12y y <二、填空题9.点()1,2A -关于原点对称的点的坐标是10.方程29x =的解是11.若关于x 的一元二次方程12.请写出一个开口向下,经过原点的二次函数的表达式13.如图,A 、B 、C 是⊙O 14.在△ABC 中,BAC ∠=15.抛物线2y ax bx c =++上部分点的横坐标x (2)-1-01…y…0466…据此我们可以推知一元二次方程16.在ABC 中,90ABC ∠=直线CB 与直线DE 交于点F 出下面四个结论:①BF 的值一直变大;BF EF -的值一直变小;④当所有正确结论的序号是三、解答题17.解方程:241x x x -=-.18.如图,在ABC 中,AB AC =,80BAC ∠=︒,D 在BC 边上,连接AD ,将AD 绕点A 逆时针旋转80︒得到线段AE ,连接CE .(1)依题意补全图形;(2)求证:BD CE =.21.如图,小明同学用一张长为无盖长方体纸盒,他将纸板的四个角各剪去一个同样大小的正方形,可(损耗不计).求剪去的正方形的边长.22.已知关于x 的方程2x -(1)求证:该方程总有两个实数根;(2)若该方程的两个实数根中有且仅有一个正根,求23.已知二次函数2y ax =+(1)求该二次函数的解析式并在平面直角坐标系(2)当22x -<<时,对于x 的每一个值,函数()20y ax k a =+≠的值且不大于24.如图,AB 是O 的直径,点是等边三角形;(1)求证:ACD(2)若点F是 AC的中点,连接求线段CG的长.25.篮球是学生非常喜爱的运动项目之一.篮圈中心距离地面的竖直高度是明站在距篮圈中心水平距离触篮球架的过程中,其运行路线可以看作是抛物线的一部分.当篮球运行的水平距离是小明进行了多次定点投篮练习,并做了记录:(1)第一次训练时,篮球的水平距离x0水平距离/my 2.0竖直距离/m①结合表中数据,直接写出篮球运行的最高点距离地面的竖直高度,并求足的函数解析式;②判断小明第一次投篮练习是否投进篮筐,并说明理由;(2)将小明第i次投篮后,篮球运行到最高点时,篮球运行的水平距离记为的取值范围.27.已知ABC 是等边三角形,点D 在ABC 内部,且120BDC ∠=︒.(1)如图1,设ABD α∠=,求ACD ∠的度数(用含α的式子表示);(2)如图2,点E 是BC 的中点,连接AD ,DE ,用等式表示线段AD 与DE 之间的数量关系,并证明.28.对于C 和C 内一点P (P 与C 不重合)给出如下定义:过点P 可以作出无数条C 的弦,若在这些弦中,长度为正整数的弦有k 条,则称点P 为C 的k 属相关点,k 为点P 关于C 的相关系数.在平面直角坐标系xOy 中,已知O 的半径为3.(1)若点M 的坐标为()2,0,则经过点M 的O 的所有弦中,最短的弦长为_______,点M 关于O 的相关系数为_______;(2)若点()3,4Q ,点N 为O 的4属相关点,求线段NQ 长的取值范围;(3)点T 是x 轴正半轴上一点,T e 的半径为2,点R ,S 分别在O 与T e 上,点R 关于T e 的相关系数记为r ,点S 关于O 的相关系数记为s .当点T 在x 轴正半轴上运动时,若存在点R ,S ,使得3r s +=,且r s <.直接写出点T 的横坐标t 的取值范围.。
北京市海淀区中国人民大学附属中学2023-2024学年九年级上学期月考数学试题
![北京市海淀区中国人民大学附属中学2023-2024学年九年级上学期月考数学试题](https://img.taocdn.com/s3/m/618001301611cc7931b765ce050876323112748e.png)
北京市海淀区中国人民大学附属中学2023-2024学年九年级上学期月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题....BD,BC的中点,连接A.32B.25.用配方法解一元二次方程A.()223x+=A.ABC DEC△△≌C.2=AD AC8.抛物线y=ax2+bx+c的对称轴是直线0)和点(﹣3,0)之间,其部分图象如图所示,下列结论中正确的个数有(﹣b=0;②c≤3a;③关于x的方程A.1个B.2个二、填空题9.若1是关于x的方程2x ax-10.若二次函数y=ax2+bx+c的图象如图所示,则12.若关于x 的一元二次方程为.13.如图是某停车场的平面示意图,停车场外围的长为道的宽都相等.停车位总占地面积为为.14.点()()122A y B a y ,,,在二次函数22y x x =-合条件的a 的值.三、解答题15.解方程:(1)249x =;(2)2680x x -+=.16.如图,在ABC 中,90ACB ∠=︒,将ABC 绕点C 顺时针旋转90︒得到DEC ,点A 与点D 对应,点B 与点E 对应.(1)依题意补全图形;(2)直线AB 与直线DE 的位置关系为___________.17.已知m 是方程2240x x +-=的一个根,求代数式2(2)(3)(3)m m m +++-的值.18.如图,在ABC 中,90,20C B ∠=︒∠=︒,将ABC 绕点A 顺时针旋转25︒得到ADE V ,AD 交BC 于点F .若3AE =,求AF 的长.19.已知二次函数2y x bx c =++的图象过点()0,3A ,()1,0B .(1)求这个二次函数的解析式;(2)画出这个函数的图象.(3)结合图象,直接写出不等式20x bx c ++<的解集.20.已知关于x 的一元二次方程2660x m x m --=+().(1)求证:该方程总有两个实数根;(2)若该方程有一个实数根小于2,求m 的取值范围.21.如图,在△ABC 中,90ABC ∠=︒,BD 为△ABC 的中线.BE DC ∥,BE DC =,连接CE .(1)点F的坐标是___________(2)过点F的直线与抛物线交于射线AM射出,AM所在直线与①画出沿射线FB方向射出的光线的反射光线②BP所在直线与x轴的交点坐标为23.在平面直角坐标系xOy(1)求抛物线的顶点坐标(用含m的式子表示);P.(2)已知点(3,2)①当抛物线过点P时,求m的值;(1)①依题意补全图形;②分别求∠CEB 和∠(2)用等式表示线段25.在平面直角坐标系时,若实数k 满足y 有点关于点A 的距离系数存在最小值,则称此最小值为图形(1)当点A 与点O 重合时,在()()()1232,22,14,4P P P --,,中,关于点是___________;(2)已知点()()2,1,1,1B C -,若线段BC 关于点(),1A m -的距离系数小于范围为___________;(3)已知点()()4,0,0,A T t ,其中24t ≤≤.以点T 为对角线的交点作边长为。
北京市中国人民大学附属中学2024~2025学年上学期10月月考九年级数学试卷
![北京市中国人民大学附属中学2024~2025学年上学期10月月考九年级数学试卷](https://img.taocdn.com/s3/m/23d1d72cf342336c1eb91a37f111f18582d00c09.png)
北京市中国人民大学附属中学2024~2025学年上学期10月月考九年级数学试卷一、单选题1.一元二次方程2230x x --=的二次项系数、一次项系数、常数项分别是( ) A .2,1,3 B .2,1,3- C .−2,1,3 D .2,1-,3- 2.巴黎奥运会后,受到奥运健儿的感召,全民健身再次成为了一种时尚,球场上出现了更多年轻人的身影.下面四幅球类的平面图案中,是中心对称图形的是( ) A . B . C . D . 3.抛物线2(4)5y x =--的开口方向和顶点坐标分别是( )A .开口向下,(4,5)-B .开口向上,(4,5)-C .开口向下,(4,5)--D .开口向上,(4,5)--4.如图,将ABC V 绕点A 逆时针旋转100°,得到ADE V .若点D 在线段BC 的延长线上,则B ∠的度数为( )A .30°B .40°C .50°D .60°5.用配方法解方程2420x x -+=,配方正确的是( )A . ()222x +=B .(()222x -=C .()222x -=-D .()226x -= 6.已知二次函数2y ax bx c =++的图象如图所示,则下列选项中错误的是( )A .0a <B .0c >C .0b >D .20a b +>7.如图,在正三角形网格中,以某点为中心,将MNP △旋转,得到111M N P △,则旋转中心是( )A .点AB .点BC .点CD .点D8.已知点()()()1212,2024,,2024P x Q x x x ≠在二次函数21y ax bx =++的图象上,则当12x x x =+时,y 的值为( )A .1B .2025C .1-D .2024二、填空题9.方程25x x =的解是.10.点()1,2P -关于原点的对称点的坐标为.11.如果关于x 的方程2310kx x +-=有两个不相等的实数根,那么k 的取值范围是 . 12.将抛物线223y x =-向右平移2个单位,向下平移1个单位后,所得抛物线的顶点坐标为.13.如图,在平面直角坐标系xOy 中,点A ,点B 的坐标分别为(0,2),(1,0)-,将线段AB 绕点(2,2)逆时针旋转α角()0180α︒<<︒,若点A 的对应点A '的坐标为(2,0),则α为,点B 的对应点B '的坐标为.14.如图,抛物线y =ax 2+bx +c 的对称轴为x =1,点P ,点Q 是抛物线与x 轴的两个交点,若点P 的坐标为(4,0),则点Q 的坐标为.15.在我国古代数学著作《九章算术》中记载了这样一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现代语言表述为:如图,AB 为O e 的直径,弦CD AB ⊥于点1E AE =,寸,10CD =寸,求直径AB 的长.小宇对这个问题进行了分析:(1)由直径AB CD ⊥于E ,可得5CE DE ==,其依据是.(2)连接OC ,则有OC OA =,在COE V中利用勾股定理列方程可求得OC 的长,从而得到直径AB 长为寸.16.如图,菱形ABCD 的边长为6,将一个直角的顶点置于菱形ABCD 的对称中心O 处,此时这个直角的两边分别交边,BC CD 于M ,N ,若ON CD ⊥,且2ON =,则MN 的长为.三、解答题17.解方程:233x x x -=+.18.如图,ABC V 是等边三角形,点D 在边AC 上,以CD 为边作等边CDE V .连接BD ,AE .求证:BD AE =.19.已知1x =是关于x 的方程2230x mx m -+=的根,求代数式2(2)(3)(1)m m m -+-+的值. 20.已知二次函数2y x bx c =++的图象过点(0,3),(1,0)A B .(1)求这个二次函数的解析式;(2)画出这个函数的图象;(3)写出当13x -<<时,函数值y 的取值范围.21.判断下列说法是否正确,如正确,请说明理由;如错误,请举出反例.(注:本题无论正误都需要画图并说明)(1)圆的任意一条弦的两个端点把圆分成优弧和劣弧;(2)平分弦的直径垂直于弦,并且平分弦所对的两条弧.22.已知关于x 的一元二次方程22230x mx m --=.(1)求证:该方程总有两个实数根;(2)若方程恰有一个实根大于1-,求m 的取值范围.23.如图,Rt ABC V 中,90C ∠=︒,6AC =,8BC =.动点P ,Q 分别从A ,C 两点同时出发,点P 沿边AC 向C 以每秒3个单位长度的速度运动,点Q 沿边BC 向B 以每秒4个单位长度的速度运动,当P ,Q 到达终点C ,B 时,运动停止.设运动时间为t (单位:秒).(1)①当运动停止时,t 的值为______.②设P ,C 之间的距离为y ,则y 与t 满足______(选填“正比例函数关系”,“一次函数关系”,“二次函数关系”)(2)设PCQ △的面积为S ,①求S 的表达式(用含有t 的代数式表示),并写出t 的取值范围;②S 是否可以为7?若可以,请求出此时t 的值,若不能,请通过计算说明理由. 24.如图,MPN α∠=,点A ,B 在射线PN 上,以AB 为直径作半圆,圆心为O ,半圆交射线PM 于点C ,D .(1)如图1,当30α=︒时,若,AB 10CD 6==,求AP 的长;(2)如图2,若PC OB =,且AB ,求α的值.25.如图1,某公园在入园处搭建了一道“气球拱门”,拱门两端落在地面上.若将拱门看作抛物线的一部分,建立如图2所示的平面直角坐标系.当拱门上的点到O 点的水平距离为x (单位:m )时,它距地面的竖直高度为y (单位:m ).(1)经过对拱门进行测量,发现x 与y 的几组数据如下:根据上述数据,直接写出该拱门的高度(即最高点到地面的距离)和跨度(即拱门底部两个端点间的距离),并求y 与x 满足的函数关系式.(2)在一段时间后,公园重新维修拱门.在同样的坐标系下,新拱门上的点距地面的竖直高度y (单位:m )与它到O 点的水平距离x (单位:m )近似满足函数关系()20.187.30y x h =--+,若记原拱门的跨度为1d ,新拱门的跨度为2d ,则1d ______2d (填“>”,“=”或“<”).26.在平面直角坐标系xOy 中,点()11x y ,,()21a y +,在抛物线22y x ax c =-+上.(1)抛物线的对称轴为______(用含a 的式子表示),当01a <<时,2y 与c 的大小关系为2y ______c (填“>”“<”或“=”);(2)若110x -<<,且对于每个1x ,都有12y y >成立.①求a 的取值范围;②若抛物线还过点()33a y ,,求证:如果1230y y y <,那么()2130y y y ->.27.如图,在ABC V 中,90,45,ACB BAC D ∠=︒∠<︒为边AC 上一点(不与点A ,C 重合),点D 关于直线AB 的对称点为E ,连接BD ,将线段BD 绕点B 旋转,使点D 的对应点F 恰好在线段AE 的延长线上.(1)求证:12ABC DBF ∠=∠; (2)连接DF ,过点C 作AB 的垂线,分别交,AB DF 于点G ,H .①依题意补全图形;②用等式表示DH 与HF 的数量关系,并证明.28.在平面直角坐标系xOy 中,已知点(,)P a b ,对于点M 给出如下定义:将点M 向右(0a ≥)或向左(0)a <平移a 个单位长度,得到点M ',点M '关于点P 的对称点为N ,称点N 为点M 关于点P 的“联络点”.(1)若点(2,0)M -,点(1,1)P ,则点M 关于点P 的“联络点”的坐标为______;(2)如图,若点M 与点P 关于原点O 对称,点M 关于点P 的“联络点”为点N ,①求作:点M '和点N (尺规作图,保留作图痕迹);②连接MN ,在MN 上取点T ,使PT x ∥轴,连接OT ,求证:14OT M N '=;(3)已知点C 是直线2y x =+上的动点,点D 是直线y x =-上的定点,点C 关于点D 的“联络点”为点E ,若线段CE 长的取值范围是CE ≥D 的横坐标D x 的取值范围.。
北京市中国人民大学附属中学朝阳学校2024~—2025学年上学期10月月考九年级数学试卷
![北京市中国人民大学附属中学朝阳学校2024~—2025学年上学期10月月考九年级数学试卷](https://img.taocdn.com/s3/m/349582e61b37f111f18583d049649b6649d70909.png)
北京市中国人民大学附属中学朝阳学校2024~—2025学年上学期10月月考九年级数学试卷一、单选题1.若关于x 的方程()2110m x mx -+-=是一元二次方程,则m 的取值范围是( )A .1m ≠B .1m =C .1m ≥D .0m ≠ 2.抛物线()222y x =-+的顶点坐标是( )A .()2,2-B .()2,2-C .()2,2D .()2,2--3.抛物线y=﹣12x 2+3x ﹣52的对称轴是( ) A .x=3 B .x=﹣3 C .x=6 D .x=﹣524.用配方法解方程2890x x ++=,变形后的结果正确的是( )A .()249x +=-B .()247x +=-C .()2425x +=D .()247x += 5.要得到抛物线()2241y x =--,可以将抛物线22y x =:( )A .向左平移4个单位长度,再向上平移1个单位长度B .向左平移4个单位长度,再向下平移1个单位长度C .向右平移4个单位长度,再向上平移1个单位长度D .向右平移4个单位长度,再向下平移1个单位长度6.已知方程2x 2+4x ﹣3=0的两根分别为x 1和x 2,则x 1+x 2的值等于( ) A .2 B .﹣2 C .32 D .﹣327.函数221y ax x =-+和y ax a =+(a 是常数,且0)a ≠在同一平面直角坐标系中的图象可能是( )A .B .C .D .8.如图,在菱形ABCD 中,∠BAD =60°,AB =2,E 是DC 边上一个动点,F 是AB 边上一点,∠AEF =30°.设DE =x ,图中某条线段长为y ,y 与x 满足的函数关系的图象大致如图所示,则这条线段可能是图中的( ).A .线段ECB .线段AEC .线段EFD .线段BF二、填空题9.方程22x x =的根1x =,2x = .10.已知a 是方程23610x x +-=的一个根,则22a a +=.11.写一个当x >0时,y 随x 的增大而增大的函数解析式.12.已知11(,)A x y ,22(,)B x y 是函数22y x =-图象上的两点,如果120x x <<,那么1y ,2y 的大小关系是.13.如图,某小区规划在一个长为16m 、宽为9m 的矩形场地ABCD 上修建三条同样宽的小路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草.若草坪部分的总面积为112m 2,求小路的宽度.若设小路的宽度为x m ,则x 满足的方程为.14.菱形ABCD 的一条对角线长为6,边AB 的长是方程27120x x -+=的一个根,则菱形ABCD 的周长为15.抛物线y =ax 2+bx+c 的部分图象如图,则当y >3时,x 的取值范围是.16.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论中正确的是.①0ac >;②当1x >时,y 随x 的增大而减小;③20b a -=;④3x =是关于x 的方程20(a 0)++=≠ax bx c 的一个根;⑤若(0,)A m ,(2.5,)B n ,(3,)C t 均在二次函数的图象上,则m n t >>;⑥若抛物线与y 轴的交点在(0,3)-与(0,2)-之间(包含边界),则系数a 的取值范围是213a ≤≤.三、解答题17.解下列一元二次方程:(1)2410x x --=;(2)2(1)250x +-=.18.解不等式组27442x x x x +>-⎧⎪⎨+<⎪⎩,并将解集表示在数轴上.19.已知210x y +-=,求代数式222444x y x xy y +++的值. 20.已知关于x 的一元二次方程x 2+(k +1)x +k =0.(1)求证:方程总有两个实数根;(2)若该方程有一个根是正数,求k 的取值范围.21.已知:如图,在平行四边形ABCD 中,E 、F 是对角线AC 上的两点,且AF CE =.求证:DE BF =.22.已知抛物线243y x x =-+.(1)在平面直角坐标系中画出这条抛物线;(2)当x 取什么值时,0y >;(3)当x 取什么值时,y 随x 的增大而减小?23.二次函数23y ax bx =+-中的,x y 满足下表:(1)求这个二次函数的解析式.(2)求m 的值.24.在平面直角坐标系xOy 中,函数(0)y kx b k =+≠的图象经过点(4,3),(2,0)-,且与y 轴交于点A .(1)求该函数的解析式及点A 的坐标;(2)当0x >时,对于x 的每一个值,函数y x n =+的值大于函数(0)y kx b k =+≠的值,直接写出n 的取值范围.25.某商店销售一种销售成本为40元/千克的水产品,若按50元/千克销售,一个月可售出500kg ,销售价每涨价1元,月销售量就减少10kg .(1)设涨价x 元,则销售量为____________kg (用含x 的式子表示),月销售利润y (单位:元)与涨价x (单位:元/千克)之间的函数解析式为____________;(2)求当涨价多少元时利润最大?26.在平面直角坐标系xOy 中,已知抛物线:224(0)y ax ax a =-+>.(1)抛物线的对称轴为x =____________;抛物线与y 轴的交点坐标为____________;(2)若抛物线的顶点恰好在x 轴上;写出抛物线的顶点坐标,并求它的解析式;(3)11(,)A x y ,22(,)B x y 是此抛物线上的两点,若12x x <,且122x x +>,比较1y ,2y 的大小,并说明理由.27.已知:如图,ABC V 中,AC BC =,90ACB ∠=︒,点D 在AB 边上,点A 关于直线CD 的对称点为E ,射线BE 交直线CD 于点F ,连接AF .(1)设ACD α∠=,则CBF =∠____________(用含α的式子表示);(2)用等式表示线段AF ,CF ,BF 之间的数量关系,并证明.28.在平面直角坐标系xOy 中,对于点00(,)P x y ,给出如下定义:若存在实数1x ,2x ,1y ,2y 使得0112x x x x -=-且0112y y y y -=-,则称点P 为以点11(,)x y 和22(,)x y 为端点的线段的等差点.(1)若线段m 的两个端点坐标分别为(1,2)和(3,2)-,则下列点是线段m 等差点的有__________;(填写序号即可)①1(16)P -,;②2(20)P ,;③3(4,4)P -;④4(5,6)P -. (2)点A ,B 都在直线y x =-上,已知点A 的横坐标为2-,(0)M t ,,(11)N t +,. ①如图1,当1t =-时,线段AB 的等差点在线段MN 上,求满足条件的点B 的坐标; ②如图2,点B 横坐标为2,以AB 为对角线构造正方形ACBD ,在正方形ACBD 的边上(包括顶点)任取两点连接的线段中,若线段MN 上存在其中某条线段的等差点,直接写出t 的取值范围__________.。
北京市中国人民大学附属中学2020-2021学年九年级上学期数学10月月考试卷
![北京市中国人民大学附属中学2020-2021学年九年级上学期数学10月月考试卷](https://img.taocdn.com/s3/m/1728f45cd0d233d4b04e6995.png)
北京市中国人民大学附属中学2020-2021学年九年级上学期数学10月月考试卷一、单选题(共8题;共16分)1.如图,点P是反比例函数图像上的一个点,过作轴,轴,则矩形的面积是()A. 2B.C. 4D.2.如图,在中,为边上一点,交于点,若,,则的长为()A. 6B. 9C. 15D. 183.已知⊙O的半径OA长为1,OB=,则可以得到的正确图形可能是()A. B. C. D.4.如图,为的切线,切点为,交于点为上一点,若则的度数为()A. B. C. D.5.已知点在反比例函数的的图像上,当时,的取值范围是()A. B. 或 C. D. 或6.在平面直角坐标系中,对于点,若,则称点P为“同号点”.下列函数的图象中不存..在.“同号点”的是()A. y=-x+1B.C.D.7.如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC相似的是()A. B. C. D.8.如图,点A,B,C,D在⊙O上,弦AD的延长线与弦BC的延长线相交于点E.用①AB是⊙O的直径,②CB=CE,③AB=AE中的两个作为题设,余下的一个作为结论组成一个命题,则组成真命题的个数为()A. 0B. 1C. 2D. 3二、填空题(共8题;共9分)9.若反比例函数的图象经过点(3,-1),则该反比例函数的表达式为________.10.在半径为12cm的圆中,长为4πcm的弧所对的圆心角的度数为________.11.函数图象上两点,则的大小关系为:________ .12.若,则=________13.如图,是的直径,点是延长线上一点,切于点,若,则等于________.14.如图,在平面直角坐标系中,点的坐标分别是是的外接圆,则圆心的坐标为________,的半径为________.15.如图,在平面直角坐标系中,函数与的图像交于、两点,过点作轴的垂线,交函数的图像于点,连接,则的面积为________.16.小明使用电脑软件探究函数的图象,他输入了一组的值,得到了下面的函数图象,由学习函数的经验,可以推断出小明输入的的值满足________ ,________ ,________ .(请填写“ ”或“ ”或“ ”)三、解答题(共8题;共72分)17.解方程:18.如图,在△ABC中,边BC与⊙A相切于点D,∠BAD=∠CAD.求证:AB=AC.19.在中,求证:.20.如图,一次函数与反比例函数,(其中)图象交于,两点.(1)求一次函数和反比例函数的表达式;(2)求的面积.21.如图,为的直径,是上的点,是外一点,于点平分.(1)求证:是的切线;(2)若,求的半径.22.在平面直角坐标系xOy中,抛物线y=a-4ax与x轴交于A,B两点(A在B的左侧).(1)求点A,B的坐标;(2)已知点C(2,1),P(1,- a),点Q在直线PC上,且Q点的横坐标为4.①求Q点的纵坐标(用含a的式子表示);②若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.23.如图,是等腰直角三角形,是直角三角形,,点为边中点将绕点顺时针旋转,旋转角记为,点为边的中点.(1)如图,求初始状态时的大小;(2)如图,在旋转过程中,若点构成平行四边形,请直接写出此时的值;(3)在旋转过程中,若点和点重合,请在图中画出并连接,判断此时是否有?如果成立,请证明;如果不成立,请说明理由.24.在平面直角坐标系中,动点为函数图像上的任意一点,点和点的坐标分别为.现给出如下定义:以线段为直径的圆称为点的“反比例伴随圆”,(1)在图中,点坐标为,请画出点的“反比例伴随圆” ,并写出与轴的交点坐标;(2)在点运动过程中,直接写出其“反比例伴随圆”半径的取值范围;(3)点由运动到的过程中,直接写出其对应的“反比例伴随圆”扫过的面积.答案解析部分一、单选题1.【答案】C2.【答案】B3.【答案】D4.【答案】B5.【答案】D6.【答案】C7.【答案】A8.【答案】D二、填空题9.【答案】10.【答案】60°11.【答案】<12.【答案】13.【答案】14.【答案】(3,3);15.【答案】316.【答案】;;三、解答题17.【答案】解:方程可化为:因式分解得:所以或解得:,.18.【答案】解:∵BC与⊙A相切于点D,∴AD⊥BC,∴∠ADB=∠ADC=90°,∵∠BAD=∠CAD,AD=AD,∴△ABD≌△ACD(ASA),∴AB=AC.19.【答案】证明:∵DE∥BC,∴∠ADE=∠B.又∵DF∥AC,∴∠A=∠BDF.∴△ADE∽△DBF.20.【答案】(1)解:∵一次函数与反比例函数图象交于两点,根据反比例函数图象的对称性可知,,∴,解得,故一次函数的解析式为,又知点在反比例函数的图象上,故,故反比例函数的解析式为;(2)解:设直线与轴交于点,令,则,∴,∴.21.【答案】(1)证明:∵AD平分∠BAC,∴∠OAD=∠DAE.∵OA=OD,∴∠ODA=∠OAD.∴∠ODA=∠DAE.∴OD∥AE.∵AC⊥PD,∴∠AEP=90°.∴∠ODP=∠AEP=90°.∴OD⊥PE.∵OD是⊙O的半径,∴PD是⊙O的切线.(2)解:如图,连接BD,∵AD平分∠BAC,∠BAC=60°,∴∠BAD=∠DAE=30°.∵AC⊥PE,DE=,∴AD=2DE=.∵AB为⊙O的直径,∴∠ADB=90°.∴AB=2BD.设BD=x,则AB=2x,∵AD2+BD2=AB2,∴x2+()2=(2x)2,解得x=即BD=,AB=,∴AO=,∴⊙O的半径为.22.【答案】(1)解:令y=0,则a -4ax=0. 解得∴ A(0,0),B(4,0)(2)解:①设直线PC的解析式为将点P(1,- a),C(2,1)代入上式,解得∴y=(1+ a)x-1-3a.∵点Q在直线PC上,且Q点的横坐标为4,∴Q点的纵坐标为3+3a②当a>0时,如图1,不合题意;图1当a<0时,由图2,图3可知,3+3a≥0.图2 图3∴a≥-1.∴正确的a的取值范围是-1≤a<0.23.【答案】(1)解:∵∠BED=30°,△BDE是直角三角形,∴∠EBD=90°-∠BED=60°.又∵D是BC的中点,∴DE是BC的垂直平分线.∵BE=CE ,∠BEC=60°,∴△BCE是等边三角形.∴BC=BE.∵△ABC是等腰三角形,∠ABC=90°,∴AB=BC.∴BE=AB.∵AB⊥BC,DE⊥BC,∴AB∥DE,∴∠ABE=∠BED=30°.∴∠BAE=∠BEA=(180°-∠ABE)=75°.∴∠AEC=∠BAE+∠BEC=135°.(2)解:∵四边形BDFB'是平行四边形,∠FB'D=60°∴B'F ∥BD,∴∠B D B'=∠FB'D=60°即=60°.(3)解:△B'DE如图所示,AE⊥DE不成立,理由如下:DE与AB相交于点G,假设AE⊥DE,则△AEG∽△DBG,设BG=a,∠BDG=30°,∴DG=2a,BD=a,AB=2 BD=a.∴AG=AB-BG=(-1)a,B'D=BD=a.∴DE==3a .∴GE=DE-DG=3a-2a=a.∴,.∴与假设矛盾.∴AE⊥DE不成立.24.【答案】(1)解:如图所示:与x轴交于点D,E∵A(2,)即a=2,b=∴B(0,),C(0,-2)∴直径BC= -(-2)=∴r=∴= ,= -2=∴OD= =3∴D(3,0)E(-3,0)∴与x轴交于点的坐标为(3,0)(-3,0)(2)解:直径=BC= =∴r=∵A(a,b)在上∴即∵=6∴r min=∴r≥3(3)解:∵,∴,∴= ∴S=S圆+ =18π+72。
北京中国人民大学附属中学朝阳学校2019-2020学年九年级(上)月考数学试卷(10月份)
![北京中国人民大学附属中学朝阳学校2019-2020学年九年级(上)月考数学试卷(10月份)](https://img.taocdn.com/s3/m/bac31552866fb84ae45c8df9.png)
2019-2020学年人大附中朝阳学校九年级(上)月考数学试卷一.选择题(共8小题)1.抛物线y=(x﹣1)2+2的对称轴是()A.直线x=﹣1B.直线x=1C.直线x=﹣2D.直线x=22.“垃圾分类,从我做起”,以下四幅图案分别代表四类垃圾,其中图案是中心对称图形的是()A.B.C.D.3.用配方法解方程x2+4x=3,下列配方正确的是()A.(x﹣2)2=1B.(x﹣2)2=7C.(x+2)2=7D.(x+2)2=14.抛物线y=x2向左平移3个单位,再向下平移2个单位后,所得的抛物线表达式是()A.y=(x+3)2﹣2B.y=(x﹣3)2+2C.y=(x﹣3)2﹣2D.y=(x+3)2+25.如图,A,B,C是⊙O上的三个点,若∠C=35°,则∠AOB的度数为()A.35°B.55°C.65°D.70°6.如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC上时,连接AD,若∠ACB=30°,则∠DAC的度数是()A.60°B.65°C.70°D.75°7.如图,抛物线y=ax2+bx+3(a≠0)的对称轴为直线x=1,如果关于x的方程ax2+bx﹣8=0(a≠0)的一个根为4,那么该方程的另一个根为()A.﹣4B.﹣2C.1D.38.两个少年在绿茵场上游戏.小红从点A出发沿线段AB运动到点B,小兰从点C出发,以相同的速度沿⊙O逆时针运动一周回到点C,两人的运动路线如图1所示,其中AC=DB.两人同时开始运动,直到都停止运动时游戏结束,其间他们与点C的距离y与时间x(单位:秒)的对应关系如图2所示.则下列说法正确的是()A.小红的运动路程比小兰的长B.两人分别在1.09秒和7.49秒的时刻相遇C.当小红运动到点D的时候,小兰已经经过了点DD.在4.84秒时,两人的距离正好等于⊙O的半径二.填空题(共8小题)9.方程x2﹣2x=0的根是.10.如图,⊙O的半径等于4,如果弦AB所对的圆心角等于120°,那么圆心O到弦AB的距离等于.11.如图,抛物线y=ax2+bx与直线y=mx+n相交于点A(﹣3,﹣6),B(1,﹣2),则关于x的方程ax2+bx =mx+n的解为.12.一个斜边长是8的Rt△AEC,一个斜边长是6的Rt△AFB,一个正方形AEDF,拼成一个如图所示的Rt△BCD,则Rt△AEC和Rt△AFB的面积之和是.13.如图显示了小亚用计算机模拟随机投掷一枚某品牌啤酒瓶盖的实验的结果.那么可以推断出如果小亚实际投掷一枚品牌啤酒瓶盖时,“凸面向上”的可能性“凹面向上”的可能性.(填“大于”,“等于”或“小于”).14.若二次函数y=2x2﹣5的图象上有两个点A(2,a)、B(3,b),则a b(填“<”或“=”或“>”).15.如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C,与x轴交于A,B两点,其中点B的坐标为B(4,0),抛物线的对称轴交x轴于点D,CE∥AB,并与抛物线的对称轴交于点E.现有下列结论:①a>0;②b>0;③4a+2b+c<0;④AD+CE=4.其中所有正确结论的序号是.16.如图,一段抛物线:y=x(x﹣2)(0≤x≤2),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…,如此进行下去,得到图形(1)请写出抛物线C2的解析式:.(2)若点P(4037.5,a)在图形G上,则a=.三.解答题(共12小题)17.解方程:x2﹣4x﹣5=0(用配方法)18.下面是小明主设计的“作一个含30°角的直角三角形”的尺规作图过程.已知:直线l.求作:△ABC,使得∠ACB=90°,∠ABC=30°.作法:如图,①在直线l上任取两点O,A;②以点O为圆心,OA长为半径画弧,交直线l于点B;③以点A为圆心,AO长为半径画弧,交于点C;④连接AC,BC.所以△ABC就是所求作的三角形.根据小明设计的尺规作图过程:(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:在⊙O中,AB为直径,∴∠ACB=90°(①),(填推理的依据)连接OC∵OA=OC=AC,∴∠CAB=60°,∴∠ABC=30°(②),(填推理的依据)19.已知一个二次函数图象上部分点的横坐标x与纵坐标y的对应值如表所示:x…﹣3﹣2﹣101…y…0﹣3﹣4﹣30…(1)求这个二次函数的表达式;(2)在给定的平面直角坐标系中画出这个二次函数的图象;(3)当﹣4<x<﹣2时,直接写出y的取值范围.20.党的十八大提出,倡导富强、民主、文明、和谐,倡导自由、平等、公正、法治,倡导爱国、敬业、诚信、友善,积极培育和践行社会主义核心价值观,这24个字是社会主义核心价值观的基本内容.其中:“富强、民主、文明、和谐”是国家层面的价值目标;“自由、平等、公正、法治”是社会层面的价值取向;“爱国、敬业、诚信、友善”是公民个人层面的价值准则.小光同学将其中的“文明”、“和谐”、“自由”、“平等”的文字分别贴在4张硬纸板上,制成如图所示的卡片.将这4张卡片背面朝上洗匀后放在桌子上,从中随机抽取一张卡片,不放回,再随机抽取一张卡片.(1)小光第一次抽取的卡片上的文字是国家层面价值目标的概率是;(2)请你用列表法或画树状图法,帮助小光求出两次抽取卡片上的文字一次是国家层面价值目标、一次是社会层面价值取向的概率(卡片名称可用字母表示).21.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,、△ABC的顶点都在格点上,建立平面直角坐标系(1)点A的坐标为,点C的坐标为.(2)以原点O为中心,将△ABC逆时针旋转90°,得到△A1B1C1请在网格内画出△A1B1C1,并写出点A1和B1的坐标,.22.关于x的一元二次方程x2﹣(m+3)x+m+2=0.(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是正整数,求m的最小值.23.如图,在▱ABCD中,对角线AC,BD交于点O,过点B作BE⊥CD于点E,延长CD到点F,使DF =CE,连接AF.(1)求证:四边形ABEF是矩形;(2)连接OF,若AB=6,DE=2,∠ADF=45°,求OF的长度.24.行驶中的汽车,在刹车后由于惯性的原因,还要继续向前滑行一段距离才能停住,这段距离称为“刹车距离”.为了测定某种型号汽车的刹车性能,对这种汽车的刹车距离进行测试,测得的数据如下表 刹车时车速(千米/时) 051015202530刹车距离(米)0.10.30.611.62.1(1)在如图所示的平面直角坐标系中,以刹车时车速为横坐标,以刹车距离为纵坐标,描出这些数据所表示的点,并用平滑的曲线连接这些点,得到某函数的大致图象;(2)测量必然存在误差,通过观察图象估计函数的类型,求出一个大致满足这些数据的函数表达式; (3)一辆该型号汽车在高速公路上发生交通事故,现场测得刹车距离约为40米,已知这条高速公路限速100千米/时,请根据你确定的函数表达式,通过计算判断在事故发生时,汽车是否超速行驶.25.如图,在△ABC 中,∠ABC =90°,∠C =40°,点D 是线段BC 上的动点,将线段AD 绕点A 顺时针旋转50°至AD ',连接BD '.已知AB =2cm ,设BD 为x cm ,BD '为y cm .小明根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究,下面是小明的探究过程,请补充完整.(说明:解答中所填数值均保留一位小数) (1)通过取点、画图、测量,得到了x 与y 的几组值,如下表: x /cm0.50.71.01.52.02.3y/cm 1.7 1.3 1.10.70.9 1.1(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:线段BD'的长度的最小值约为cm;若BD'≥BD,则BD的长度x的取值范围是.26.在平面直角坐标系xOy中,抛物线y=mx2﹣2mx+n(m≠0)与x轴交于点A,B,点A的坐标为(﹣2,0).(1)写出抛物线的对称轴;(2)直线y=x﹣4m﹣n过点B,且与抛物线的另一个交点为C.①分别求直线和抛物线所对应的函数表达式;②点P为抛物线对称轴上的动点,过点P的两条直线l1:y=x+a和l2:y=﹣x+b组成图形G.当图形G与线段BC有公共点时,直接写出点P的纵坐标t的取值范围.27.在△ABC中,AB=AC,∠BAC=90°,点D在射线BC上(与B、C两点不重合),以AD为边作正方形ADEF,使点E与点B在直线AD的异侧,射线BA与射线CF相交于点G.(1)若点D在线段BC上,如图1.①依题意补全图1;②判断BC与CG的数量关系与位置关系,并加以证明;(2)若点D在线段BC的延长线上,且G为CF中点,连接GE,AB=,则GE的长为,并简述求GE长的思路.28.在平面直角坐标系xOy中,A(t,0),B(t+,0),对于线段AB和x轴上方的点P给出如下定义:当∠APB=60°时,称点P为AB的“等角点”.(1)若t=﹣,在点C(0,),D(,1),E(﹣,)中,线段AB的“等角点”是;(2)直线MN分别交x轴、y轴于点M、N,点M的坐标是(6,0),∠OMN=30°.①线段AB的“等角点”P在直线MN上,且∠ABP=90°,求点P的坐标;②在①的条件下,过点B作BQ⊥P A,交MN于点Q,求∠AQB的度数;③若线段AB的所有“等角点”都在△MON内部,则t的取值范围是.。
2022-2023学年北京市海淀人民大学附属中学九年级上学期10月月考数学试卷和答案
![2022-2023学年北京市海淀人民大学附属中学九年级上学期10月月考数学试卷和答案](https://img.taocdn.com/s3/m/0d11dc42a66e58fafab069dc5022aaea988f4114.png)
2022-2023学年度第一学期初三年级数学练习2考生须知:1.本试卷共7页,共两部分,28道题.满分100分.考试时间100分钟.2.在试卷和答题卡上准确填写姓名、班级和学号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束,将答题卡和草稿纸一并交回.第一部分选择题一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.若关于x 的一元二次方程220x x t +-=的一个根为1,则t 的值为()A.2B.3C.-2D.-12.下列交通标志中,是中心对称图形的是()A.禁止驶入B.靠左侧道路行驶C.向左和向右转弯D.环岛行驶3.用配方法解方程2640x x +-=,正确的是()A.()237x -= B.()237x += C.()2313x -= D.()2313x +=4.将二次函数图象22y x =向下平移1个单位长度,所得二次函数的解析式是()A.221y x =+ B.221y x =- C.22(1)y x =- D.22(1)y x =+5.如图,AB 为O ⊙的直径,点C ,D 在O ⊙上,若130ADC ∠=︒,则BAC ∠的度数为()A.25°B.30°C.40°D.50°6.在公园的O 处附近有A ,B ,C 三棵树,位置如图所示(图中小正方形的边长均为1米).现计划修建一座以O 为圆心,r 为半径的圆形水池.下列r 的值(单位:米)可以保证不砍伐A ,B ,C 三棵树的是()A.B.3C.D.1.87.如图,在ABC 中,AB AC =,若M 是BC 边上任意一点,将ABM 绕点A 逆时针旋转得到ACN △,点M 的对应点为点N ,连接MN ,则下列结论不一定成立的是()A.AM AN =B.AMN ANM ∠=∠C.CA 平分BCN∠ D.MN AC⊥8.点()11,A x y ,()22,B x y 在二次函数2y x =的图象上,12x x ≠,下列推断正确的是()①对任意的12x x <.都有12y y <;②对任意的120x x +=,都有12y y =③存在1x ,2x ,满足120x x +=,且120y y +=.④对于任意的小于1的正实数t ,存在1x ,2x ,满足121x x -=,且12y y t -=A.①③B.②③C.②④D.②③④第二部分非选择题二、填空题(共16分,每题2分)9.点()2,3-关于原点的对称点的坐标为________.10.若关于x 的一元二次方程20x x m ++=有两个相等的实数根,则m =_______.11.请写出一个开口向下,对称轴为y 轴的抛物线的解析式y =__________.12.如图,等边ABC △的三个顶点均在O ⊙上,连接OA ,OB ,OC ,则AOC ∠的度数为_______.13.若二次函数22y ax ax c =++的图象如图所示,则关于x 的方程220ax ax c ++=的实数根是________.14.斛是中国古代的一种量器.据《汉书,律历志》记载:“斛底,方而圜(huán )其外,旁有庣(tiāo )焉”.意思是说:“斛的底面为:正方形的四个顶点都在一个圆上,此圆外有一个同心圆”.如图所示,问题:现有一斛,其底面的外圆直径为五尺(即5尺),“庣旁”为五寸(即两同心圆的外圆与内圆的半径之差为0.5尺),则此斛底面的正方形的边长为_____________尺.15.点()12,A m y -,()2,B m y 在二次函数()21y x n =-+的图象上.若12y y >,则m 的取值范围为______.16.如图,射线OM 、ON 互相垂直,8OA =,点B 位于射线OM 的上方,且在线段OA 的垂直平分线l 上,连接AB ,5AB =.将线段AB 绕点O 按逆时针方向旋转得到对应线段A B '',若点B '恰好落在射线ON 上,则点A '到射线ON 的距离d ≈______.三、解答题(共68分,第17-20题,每题5分,第21-22,每题6分,第23题5分,第24-26题,每题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.解方程:2890x x --=.18.已知m 是方程22470x x --=的一个根,求代数式()()()2324m m m -+-+的值.19.如图,在正方形ABCD 中,射线AE 与边CD 交于点E ,将射线AE 绕点A 顺时针旋转,与CB 的延长线交于点F ,BF =DE ,连接FE.(1)求证:AF =AE ;(2)若正方形ABCD 的边长为2,直接写出四边形AFCE 的面积.20.下面是证明圆周角定理时需证的三种情况,请自选一种情况完成证明.圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.已知:O 中,AOB ∠,C ∠分别是AB 所对的圆心角和圆周角.求证:12∠=∠C AOB .情况一:当圆心O 在C ∠的一边上时,如图1.情况二:当圆心O 在C ∠内部时,如图2.情况三:当圆心O 在C ∠外部时,如图3.21.已知关于x 的一元二次方程()25620x k x k -+++=.(1)求证:此方程总有两个实数根;(2)若此方程的两根的差为2,求k 的值.22.如图,在ABC 中,AB AC =,AD 为BC 边上的中线,点E 为AD 的中点,作点B 关于点E 的对称点F ,连接AF,CF .(1)求证:四边形ADCF 为矩形;(2)若AD BC =,AB =BF 的长.23.在平面直角坐标系xOy 中,二次函数223y x x =-++的图象与y 轴交于点C ,过点C 作x 轴的平行线,与抛物线交于另一点D .(1)求点C 和点D 的坐标;(2)当2x >时,对于x 的每一个值,函数()0y mx m =≠的值大于二次函数223y x x =-++的值,直接写出m 的取值范围.24.如图,AB 为O ⊙的直径,E 为OB 的中点,弦CD AB ⊥于点E ,连接CO 并延长交O ⊙于点F ,连接BC .是等边三角形;(1)求证:BOC(2)若O⊙的半径为2,求CD的长.25.某公园在垂直于湖面的立柱上安装了一个多孔喷头,喷头高出湖面3米,从喷头每个孔喷出的水柱形状都相同,可以看作是抛物线的一部分,当喷头向四周同时喷水时,形成一个环状喷泉.安装后,通过测量其中一条水柱,获得如下数据,在距立柱水平距离为d米的地点,水柱距离湖面的高度为h米.d(米)0.501.00 1.50 2.00 2.50h(米) 3.75 4.00 3.75 3.00 1.75请解决以下问题:(1)在网格中建立适当的平面直角坐标系,根据已知数据描点,并用平滑的曲线连接;(2)结合表中所给数据或所画图象,直接写出这条水柱最高点距离湖面的高度;(3)求所画图象对应的函数表达式;(4)从安全的角度考虑,需要在这组喷泉外围设立一圈正方形护栏,这个喷泉的任何一条水柱在湖面上的落点到护栏的距离不能小于1米,请直接写出公园至少需要准备多少米的护栏(不考虑接头等其他因素).26.在平面直角坐标系xOy 中,已知抛物线224y x ax =-+,点()2,2A .(1)若此抛物线经过点A 时,求a 的值;(2)求此抛物线顶点坐标(用含a 的代数式表示);(3)已知(),2B a a -,若抛物线与线段AB 恰有一个公共点,结合函数图象,直接写出a 的取值范围.27.点E 为正方形ABCD 的边AB 延长线上一点.(1)如图1,当2AB BE ==时,连接CE ,DE ,则BEC ∠=____________°,DE=_____________.(2)如图2,将射线AE 绕着点A 逆时针旋转()0°<<40°αα得到射线AF ,作DH AF ⊥于点H ,在射线AF 取点M 使得2AM DH =,连接CM .①依题意补全图形;②猜想AMC ∠的度数,并证明.28.在平面直角坐标系xOy 中,已知O 的半径为2,对于点P ,直线l 和O ,给出如下定义:若点P 关于直线l 对称的点在O 上或O 的内部,则称点P 为O 关于l 的反射点.(1)已知直线l 为3x =,①在点()14,0P ,()24,1P ,()35,1P 中,是O 关于l 的反射点有_______________________;②若点P 为x 轴上的动点,且点P 为⊙O 关于l 的反射点,则点P 的横坐标的最大值为________________.(2)已知直线l 的解析式为()20y kx k =+≠,①当1k =-时,若点P 为直线72x =上的动点,且点P 为O 关于l 的反射点,则点P 的纵坐标t 的取值范围是___________________;②点()2,2B ,)C ,若线段BC 的任意一点都为O 关于l 的反射点,则k 的取值范围是_____________.2022-2023学年度第一学期初三年级数学练习2考生须知:1.本试卷共7页,共两部分,28道题.满分100分.考试时间100分钟.2.在试卷和答题卡上准确填写姓名、班级和学号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束,将答题卡和草稿纸一并交回.第一部分选择题一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.若关于x 的一元二次方程220x x t +-=的一个根为1,则t 的值为()A.2B.3C.-2D.-1【答案】B 【解析】【分析】根据方程的解的定义,把x =1代入方程,即可得到关于t 的方程,再求解即可.【详解】解:∵关于x 的一元二次方程220x x t +-=的一个根为1,∴21210t +⨯-=解得:t =3.故选B .【点睛】本题主要考查了一元二次方程的解的定义,正确理解一元二次方程的解是使得一元二次方程左右两边成立的未知数的值是解题的关键.2.下列交通标志中,是中心对称图形的是()A.禁止驶入B.靠左侧道路行驶C.向左和向右转弯D.环岛行驶【答案】A 【解析】【分析】根据中心对称图形围绕旋转中心旋转180°后,与原来一样的特点判断.【详解】A 项正确;B 、C 、D 项旋转180°后,与原图位置不同,所以错误;故选:A .【点睛】本题主要考查中心对称图形的概念,准确理解概念是解决问题的关键.3.用配方法解方程2640x x +-=,正确的是()A.()237x -= B.()237x += C.()2313x -= D.()2313x +=【答案】D 【解析】【分析】等式两边同时加上一次项系数一半的平方,利用完全平方公式进行整理即可.【详解】解:移项,得264x x +=.两边同时加9,得26913x x ++=.∴()2313x +=.故选:D .【点睛】本题考查配方法解一元二次方程,熟练掌握配方法是解题关键.4.将二次函数图象22y x =向下平移1个单位长度,所得二次函数的解析式是()A.221y x =+B.221y x =-C.22(1)y x =- D.22(1)y x =+【答案】B 【解析】【分析】根据函数图象的平移规律“上加下减”解答即可.【详解】解:将抛物线y =2x 2向下平移1个单位后所得到的新抛物线的表达式为y =2x 2﹣1,故选B .【点睛】本题考查的是二次函数图象的平移,熟知“上加下减,左加右减”的法则是解答此题的关键.5.如图,AB 为O ⊙的直径,点C ,D 在O ⊙上,若130ADC ∠=︒,则BAC ∠的度数为()A.25°B.30°C.40°D.50°【答案】C 【解析】【分析】根据圆内接四边形对角互补求得B ∠,根据直径所对的圆周角是直角可得90ACB ∠=︒,根据直角三角形的两个锐角互余即可求解.【详解】解:∵AB 为O ⊙的直径,∴90ACB ∠=︒,∵四边形ABCD 是圆内接四边形,130ADC ∠=︒,∴50B ∠=︒,∴905040BAC ∠=︒-︒=︒.故选:C .【点睛】本题考查了圆内接四边形对角互补,直径所对的圆周角是直角,直角三角形两个锐角互余,掌握以上知识是解题的关键.6.在公园的O 处附近有A ,B ,C 三棵树,位置如图所示(图中小正方形的边长均为1米).现计划修建一座以O 为圆心,r 为半径的圆形水池.下列r 的值(单位:米)可以保证不砍伐A ,B ,C 三棵树的是()A.B.3C.D.1.8【答案】D 【解析】【分析】根据根据勾股定理分别求出OA ,OC ,OB ,并将最小数值与各选项比较即可得出答案.【详解】解∶由题意可知,OA =2,OB =OC =∴OB >OC >OA ,2,32>2,1.82<,∴当半径r =1.8时,可以保证不砍伐A ,B ,C 三棵树,故选∶D .【点睛】本题考查了点与圆的位置关系,网格中计算两点间的距离,比较线段长短的方法,熟练运用勾股定理计算是解本题的关键.7.如图,在ABC 中,AB AC =,若M 是BC 边上任意一点,将ABM 绕点A 逆时针旋转得到ACN △,点M 的对应点为点N ,连接MN ,则下列结论不一定成立的是()A.AM AN =B.AMN ANM ∠=∠C.CA 平分BCN ∠D.MN AC⊥【答案】D 【解析】【分析】根据旋转的性质,对每个选项逐一判断即可.【详解】解:∵将△ABM 绕点A 逆时针旋转得到△ACN ,∴AB =AC ,∠ACN =∠B ,AM =AN ,故选项A 不符合题意;∴AMN ANM Ð=Ð,故选项B 不符合题意;∵AB AC =,∴∠B =∠ACB ,∵∠ACN =∠B ,∴∠ACN =∠ACB ,∴CA 平分BCN Ð,故选项C 不符合题意;∵CN 与CM 不一定相等,∴MN AC ^不一成立,故故选项D 符合题意;故选:D .【点睛】本题考查了旋转的性质,等腰三角形的性质以及角平分线的定义,熟练掌握旋转的性质是解题的关键.8.点()11,A x y ,()22,B x y 在二次函数2y x =的图象上,12x x ≠,下列推断正确的是()①对任意的12x x <.都有12y y <;②对任意的120x x +=,都有12y y =③存在1x ,2x ,满足120x x +=,且120y y +=.④对于任意的小于1的正实数t ,存在1x ,2x ,满足121x x -=,且12y y t -=A.①③ B.②③C.②④D.②③④【答案】C 【解析】【分析】根据题意可得当在y 轴右侧时,y 随x 的增大而增大,当在y 轴左侧时,y 随x 的增大而减小,可得到①错误;由120x x +=,可得点()11,A x y ,()22,B x y 关于y 轴对称,从而得到②正确;③错误;再由121x x -=,可得12y y -=()11,A x y ,()22,B x y 在y 轴两侧时,此可设点()11,A x y 在y 轴左侧,则()22,B x y 在y轴右侧,可得1214<0x x -≤⋅,可得④正确,即可.【详解】解:∵二次函数2y x =的图象的对称轴为y 轴,开口向上,∴当在y 轴右侧时,y 随x 的增大而增大,当在y 轴左侧时,y 随x 的增大而减小,∴当120<<x x 时.都有12<y y ,故①错误;∵120x x +=,∴12x x =-,∴点()11,A x y ,()22,B x y 关于y 轴对称,∴12y y =,故②正确;∵120x x +=,∴12x x =-,∵12x x ≠,∴120x x =-≠,∴221212+=+>0y y x x ,故③错误;∵121x x -=,∴221212121212y y x x x x x x x x -=-=-×+=+=,当点()11,A x y ,()22,B x y 在y 轴两侧时,此可设点()11,A x y 在y 轴左侧,则()22,B x y 在y 轴右侧,∵121x x -=,∴121<<0,0<<1x x -,∴12<0x x ⋅,即1214<0x x -≤⋅,∴0≤,∴120<1y y ≤-,即对于任意的小于1的正实数t ,存在1x ,2x ,满足121x x -=,且12=y y t-,故④正确;故选:C【点睛】本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.第二部分非选择题二、填空题(共16分,每题2分)9.点()2,3-关于原点的对称点的坐标为________.【答案】()2,3-【解析】【分析】根据两个点关于原点对称时,它们的坐标符号相反,可以直接得到答案.【详解】点()2,3-关于原点对称的点的坐标是()2,3-故答案为:()2,3-【点睛】本题主要考查了关于原点对称的点的坐标特点,两个点关于原点对称时,它们的坐标符号相反,即点P (x ,y )关于原点O 的对称点是P ′(-x ,-y ).10.若关于x 的一元二次方程20x x m ++=有两个相等的实数根,则m =_______.【答案】14【解析】【详解】∵关于x 的一元二次方程20x x m ++=有两个相等的实数根,∴方程根的判别式于0,∴由△=1﹣4m =0解得:m =14.故答案为:1411.请写出一个开口向下,对称轴为y 轴的抛物线的解析式y =__________.【答案】2y x =-(答案不唯一)【解析】【分析】对于二次函数2y ax bx c =++,开口向下,则0a <;对称轴为y 轴,则0b =,写出一个符合上述条件的二次函数即可.【详解】解:设抛物线的解析式为2y ax bx c =++.抛物线的开口向下,对称轴为y 轴,∴0a <,且0b =,∴符合条件的抛物线的解析式可以是2y x =-.故答案为2y x =-(答案不唯一).【点睛】本题考查了二次函数各项系数的性质,熟练掌握二次函数2y ax bx c =++中a 、b 、c 的意义是解决此类题的关键.12.如图,等边ABC △的三个顶点均在O ⊙上,连接OA ,OB ,OC ,则AOC ∠的度数为_______.【答案】120°##120度【解析】【分析】根据圆周角定理,即可求解.【详解】解∶∵△ABC 为等边三角形,∴∠ABC =60°,∵∠AOC =2∠ABC ,∴∠AOC =120°.故答案为:120°【点睛】本题主要考查了圆周角定理,等边三角形的性质,熟练掌握圆周角定理是解题的关键.13.若二次函数22y ax ax c =++的图象如图所示,则关于x 的方程220ax ax c ++=的实数根是________.【答案】11x =,23x =-【解析】【分析】把二次函数22y ax ax c =++化为顶点式得()21y a x c a =++-,从而得抛物线的对称轴为直线=1x -,抛物线与x 轴的一个交点为(3,0)-,根据抛物线的对称性解题即可.【详解】解:∵把二次函数22y ax ax c =++化为顶点式得()21y a x c a =++-,∴抛物线的对称轴为直线=1x -,∵抛物线与x 轴的一个交点为(3,0)-,设抛物线与x 轴的另一个交点为(m ,0)∴−3+m =−1×2,∴m =1,∴关于x 的方程220ax ax c ++=的实数根是11x =,23x =-,故答案为:11x =,23x =-.【点睛】本题考查二次函数与一元二次方程关系以及二次函数的性质,熟练掌握二次函数的对称性,能根据对称轴和一个交点的坐标求得另一交点的坐标是解题的关键.14.斛是中国古代的一种量器.据《汉书,律历志》记载:“斛底,方而圜(huán )其外,旁有庣(tiāo )焉”.意思是说:“斛的底面为:正方形的四个顶点都在一个圆上,此圆外有一个同心圆”.如图所示,问题:现有一斛,其底面的外圆直径为五尺(即5尺),“庣旁”为五寸(即两同心圆的外圆与内圆的半径之差为0.5尺),则此斛底面的正方形的边长为_____________尺.【答案】【解析】【分析】根据正方形性质确定△CDE 为等腰直角三角形,CE 为直径,根据题意求出正方形外接圆的直径CE ,求出CD ,问题得解.【详解】解∶如图,∵四边形CDEF 为正方形,∴90D ∠=︒,CD =DE ,∴CE 为直径,∠ECD =45°,∵AB =5,两同心圆的外圆与内圆的半径之差为0.5尺,∴CE =5-0.5×2=4,∵90D ∠=︒,∠ECD =45°,∴cos ∠ECD =CDCE,∴cos 42CD ECD CE =∠=⨯= ,故答案为∶【点睛】本题考查了正方形外接圆的性质,等腰直角三角形性质,解题关键是判断出正方形对角线为其外接圆直径.15.点()12,A m y -,()2,B m y 在二次函数()21y x n =-+的图象上.若12y y >,则m 的取值范围为______.【答案】2m <【解析】【分析】根据12y y >列出关于m 的不等式即可解得答案.【详解】解:∵点()12,A m y -,()2,B m y 都在二次函数()21y x n =-+的图象上,∴221(21)(3)y m n m n =--+=-+,22(1)y m n =-+,∵12y y >,∴22(3)(1)m n m n -+>-+,∴69210m m -++->,即2m <,∴2m <,故答案为:2m <.【点睛】本题考查了二次函数图象上点的坐标特征及解一元一次不等式,解题的关键是根据已知列出关于m 的不等式.16.如图,射线OM 、ON 互相垂直,8OA =,点B 位于射线OM 的上方,且在线段OA 的垂直平分线l 上,连接AB ,5AB =.将线段AB 绕点O 按逆时针方向旋转得到对应线段A B '',若点B '恰好落在射线ON 上,则点A '到射线ON 的距离d ≈______.【答案】245【解析】【分析】添加辅助线,连接'OA OB 、,过'A 点作'A P ON ⊥交ON 与点P .根据旋转的性质,得到''A B O ABO ≅ ,在'Rt A PO ∆和中,'B OA BOA ∠=∠,根据三角函数和已知线段的长度求出点A '到射线ON 的距离=A'P d .【详解】如图所示,连接'OA OB 、,过'A 点作'A P ON ⊥交ON 与点P .∵线段AB 绕点O 按逆时针方向旋转得到对应线段A B ''∴'8OA OA ==,''B OB A OA ∠=∠∴''''B OB BOA A OA BOA ∠-∠=∠-∠即''B OA BOA∠=∠∵点B 在线段OA 的垂直平分线l 上∴118422OC OA ==⨯=,5OB AB ==3BC ===∵''B OA BOA ∠=∠∴'sin ''sin 'A P BCB OA BOA A O OB∠==∠=∴'385A P =∴24'5d A P ==【点睛】本题主要考查旋转的性质和三角函数.对应点到旋转中心的距离相等,对应点与旋转中心所连的线段的夹角等于旋转角,旋转前、后的图形全等.三、解答题(共68分,第17-20题,每题5分,第21-22,每题6分,第23题5分,第24-26题,每题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.解方程:2890x x --=.【答案】19x =,21x =-【解析】【分析】根据因式分解法解一元二次方程即可.【详解】解:2890x x --=()()910x x -+=解得19x =,21x =-【点睛】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键.18.已知m 是方程22470x x --=的一个根,求代数式()()()2324m m m -+-+的值.【答案】8【解析】【分析】根据一元二次方程解的定义,可得2247m m -=,再把原式化简,再代入,即可求解.【详解】解:∵m 是方程22470x x --=的一个根,∴22470m m --=,即2247m m -=,()()()2324m m m -+-+2269248m m m m m =-++-+-2241m m =-+∵2247m m -=,∴原式718=+=.【点睛】本题主要考查一元二次方程的解、乘法公式及代数式的值,熟练掌握能使一元二次方程左右两边同时成立的未知数的值是一元二次方程的解,乘法公式及代数式的值是解题的关键.19.如图,在正方形ABCD 中,射线AE 与边CD 交于点E ,将射线AE 绕点A 顺时针旋转,与CB 的延长线交于点F ,BF =DE ,连接FE .(1)求证:AF =AE ;(2)若正方形ABCD 的边长为2,直接写出四边形AFCE 的面积.【答案】(1)见解析(2)四边形AFCE 的面积为4.【解析】【分析】(1)根据正方形的性质得到AB =AD ,∠ABC =∠D =∠BAD =90°,求得∠ABF =90°,根据全等三角形的性质即可得到结论;(2)根据全等三角形的性质得到△ABF 与△ADE 的面积相等,得到四边形AFCE 的面积等于正方形ABCD 的面积,于是得到结论.【小问1详解】证明:∵四边形ABCD 是正方形,∴AB =AD ,∠ABC =∠D =90°,∴∠ABF =90°,在△ABF 与△ADE 中,===90°=AB AD ABF D BF DE ∠∠⎧⎪⎨⎪⎩,∴△ABF ≌△ADE (SAS ),∴AF =AE ;【小问2详解】解:由(1)知,△ABF ≌△ADE ,∴△ABF 与△ADE 的面积相等,∴四边形AFCE 的面积等于正方形ABCD 的面积=2×2=4.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,证得△ABF ≌△ADE 是解题的关键.20.下面是证明圆周角定理时需证的三种情况,请自选一种情况完成证明.圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.已知:O 中,AOB ∠,C ∠分别是AB 所对的圆心角和圆周角.求证:12∠=∠C AOB .情况一:当圆心O 在C ∠的一边上时,如图1.情况二:当圆心O 在C ∠内部时,如图2.情况三:当圆心O 在C ∠外部时,如图3.【答案】证明见解析.【解析】【分析】情况一:当圆心O 在C ∠的一边上时,如图1,由外角性质得∠AOB =∠B +∠C ,再由∠B =∠C 即可得证结论成立;情况二:当圆心O 在C ∠内部时,连接CO 并延长交O 于点D ,由情况一知∶∠ACD =12∠AOD ,∠BCD =12∠BOD ,从而有∠ACB =12∠AOB ;情况三:当圆心O 在C ∠外部时,由情况一知∶∠ACD =12∠AOD ,∠BCD =12∠BOD ,∴∠ACB =∠BCD −∠ACD =12∠AOB .【详解】证明∶情况一:当圆心O 在C ∠的一边上时,如图1∵∠AOB 是△BOC 的一个外角,∴∠AOB =∠B +∠C ,∵OB =OC ,∴∠B =∠C ,∴∠AOB =2∠C ,∴∠C =12∠AOB ;情况二:当圆心O 在C ∠内部时,连接CO 并延长交O 于点D ,如下图,∵由情况一知∶∠ACD =12∠AOD ,∠BCD =12∠BOD ,∴∠ACB =∠ACD +∠BCD =12∠AOD +12∠BOD =12∠AOB ;情况三:当圆心O 在C ∠外部时,连接CO 并延长交00于点D ,如下图,∵由情况一知∶∠ACD =12∠AOD ,∠BCD =12∠BOD ,∴∠ACB =∠BCD −∠ACD =12∠BOD −12∠AOD =12∠AOB ;【点睛】本题主要考查了等腰三角形的性质、三角形的外角性质以及圆的认识,熟练掌握三角形的外角性质是解题的关键.21.已知关于x 的一元二次方程()25620x k x k -+++=.(1)求证:此方程总有两个实数根;(2)若此方程的两根的差为2,求k 的值.【答案】(1)见解析;(2)1或3-【解析】【分析】(1)根据方程的系数结合根的判别式24b ac ∆=-,可得出2(1)k D =+,由偶次方的非负性可得出0∆≥,进而可证出方程总有两个实数根;(2)根据求根公式表示方程的两个根,再根据两根之差为2的关系,分类讨论列方程解之即可.【小问1详解】证明:∵222(5)4(62)21(1)0k k k k k D =+-+=++=+³,∴此方程总有两个实数根;【小问2详解】解:由(1)知,2(1)k D =+,∴(5)(5)(1)22k k k x ++±+==,∴13x k =+,22x =,∵若此方程的两根的差为2,∴322k +-=或2(3)2k -+=,解得:1k =或3k =-;∴k 的值为1或3-.【点睛】本题考查根的判别式以及求根公式,解题的关键是:(1)熟知“当0∆≥时,方程有两个实数根”;(2)牢记求根公式:2b x a-=.22.如图,在ABC 中,AB AC =,AD 为BC 边上的中线,点E 为AD 的中点,作点B 关于点E 的对称点F ,连接AF ,CF .(1)求证:四边形ADCF 为矩形;(2)若AD BC =,AB =BF 的长.【答案】(1)见解析(2)【解析】【分析】(1)连接DF ,可证得四边形ABDF 为平行四边形,=BD AF ,BC AF ∥,再根据等腰三角形的性质可得BD =DC =AF ,AD BC ⊥,即可证得四边形ADCF 是矩形;(2)设AD =x ,则12BD x =,根据勾股定理即可求得AD 、BC 的长,再根据矩形的性质及勾股定理即可求得BF 的长.【小问1详解】证明:如图:连接DF ,点E 为AD 的中点,点B 与点F 关于点E 对称,=AE DE ∴,BE =FE ,∴四边形ABDF 为平行四边形,∴=BD AF ,BC AF ∥,AB AC = ,ABC ∴△是等腰三角形,又 AD 为BC 边上的中线,=BD CD ∴,AD BC ⊥,=90ADC ∠︒∴CD =AF ,∴四边形ADCF 为平行四边形,∴四边形ADCF 为矩形;【小问2详解】解:设AD =BC =x ,则12BD x =,在Rt ABD △中,222=AB AD BD +,得(22212x x ⎛⎫=+ ⎪⎝⎭,解得4x =或4x =-(舍去),∴AD =BC =4,四边形ADCF 为矩形,==4CF AD ∴,在Rt BCF △中,BF 【点睛】本题考查了平行四边形的判定与性质,矩形的判定与性质,等腰三角形的性质,勾股定理,作出辅助线是解决本题的关键.23.在平面直角坐标系xOy 中,二次函数223y x x =-++的图象与y 轴交于点C ,过点C 作x 轴的平行线,与抛物线交于另一点D .(1)求点C 和点D 的坐标;(2)当2x >时,对于x 的每一个值,函数()0y mx m =≠的值大于二次函数223y x x =-++的值,直接写出m 的取值范围.【答案】(1)C (0,3),D (2,3);(2)m >32.【解析】【分析】(1)令二次函数223y x x =-++中x =0,则y =3,从而求得C (0,3),再令二次函数223y x x =-++中y =0,即可求解点D 的坐标;(2)先求得,当2x >时,223y x x =-++的值小于3,又由当2x >时,对于x 的每一个值,函数()0y mx m =≠的值大于二次函数223y x x =-++的值,且()0y mx m =≠过点(2,2m ),从而有2m ≥3,进而即可求解.【小问1详解】解∶∵二次函数223y x x =-++的图象与y 轴交于点C ,∴令x =0,则y =0+0+3=3,∴C (0,3),∵过点C 作x 轴的平行线,与抛物线交于另一点D ,∴二次函数223y x x =-++,令y =3,得2323x x =++,解得x =0,或x =2,∴D (2,3);【小问2详解】解:∵当x =2时,2233y x x =-++=,则m =32∴当2x >时,223y x x =-++的值小于3,∵当2x >时,对于x 的每一个值,函数()0y mx m =≠的值大于二次函数223y x x =-++的值,且()0y mx m =≠,∴m 32≥【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,坐标与图形的性质以及二次函数与一次函数的关系,熟练掌握二次函数的性质是解题的关键.24.如图,AB 为O ⊙的直径,E 为OB 的中点,弦CD AB ⊥于点E ,连接CO 并延长交O ⊙于点F ,连接BC .(1)求证:BOC 是等边三角形;(2)若O ⊙的半径为2,求CD 的长.【答案】(1)见解析(2)【解析】【分析】(1)设O ⊙的半径为r ,取OC 的中点G ,连接EG ,根据直角三角形斜边上的中线等于斜边的一半,可得1122GE CO GO r ===,根据E 为OB 的中点,则12OE r =,可得GEO 是等边三角形,得出60COB ∠=︒,即可得证;(2)根据勾股定理求得CE 的长,根据垂径定理即可求解.【小问1详解】证明:如图,取OC 的中点G ,连接EG ,设O ⊙的半径为r ,∵AB CD ⊥,∴1122GE CO GO r ===,∵AB 为O ⊙的直径,∴BO r=∵E 为OB 的中点,∴12OE r =,∴OG GE OE==∴GEO 是等边三角形,∴60COB ∠=︒∵OC OB=∴COB 是等边三角形,【小问2详解】解:∵O ⊙的半径为2,∴1OE =,∴CE ,∵AB 为O ⊙的直径,CD AB ⊥,∴2CD CE ==.【点睛】本题考查了垂径定理,圆的基本概念,等边三角形的性质与判定,勾股定理,掌握以上知识是解题的关键.25.某公园在垂直于湖面的立柱上安装了一个多孔喷头,喷头高出湖面3米,从喷头每个孔喷出的水柱形状都相同,可以看作是抛物线的一部分,当喷头向四周同时喷水时,形成一个环状喷泉.安装后,通过测量其中一条水柱,获得如下数据,在距立柱水平距离为d 米的地点,水柱距离湖面的高度为h 米.d (米)0.50 1.00 1.50 2.00 2.50h (米) 3.75 4.00 3.75 3.00 1.75请解决以下问题:(1)在网格中建立适当的平面直角坐标系,根据已知数据描点,并用平滑的曲线连接;(2)结合表中所给数据或所画图象,直接写出这条水柱最高点距离湖面的高度;(3)求所画图象对应的函数表达式;(4)从安全的角度考虑,需要在这组喷泉外围设立一圈正方形护栏,这个喷泉的任何一条水柱在湖面上的落点到护栏的距离不能小于1米,请直接写出公园至少需要准备多少米的护栏(不考虑接头等其他因素).【答案】(1)见解析;(2)水柱最高点距离湖面的高度是4米;(3)214h d =--+();(4)公园至少需要准备32米的护栏.【解析】【分析】(1)根据对应点画图象即可;(2)由图象可得答案;(3)利用待定系数法可得关系式;(4)求出落水点距离喷头的水平距离,进而求出正方形的边长,进而可以求出正方形的周长.【小问1详解】如图,【小问2详解】由图象可得,顶点(1,4),∴水柱最高点距离湖面的高度是4米;【小问3详解】由图象可得,顶点(1,4),设二次函数的关系式为214h a d =-+(),把(2,3)代入可得a =-1,所以214h d =--+();【小问4详解】当h =0时,即2140d -+=-(),解得d =-1(舍去)或d =3,∴正方形的边长为2×(3+1)=8(米),∴至少需要准备栏杆4×8=32(米),∴公园至少需要准备32米的护栏.【点睛】本题考查二次函数的实际应用,熟练掌握二次函数的性质是解题关键.26.在平面直角坐标系xOy 中,已知抛物线224y x ax =-+,点()2,2A .(1)若此抛物线经过点A 时,求a 的值;(2)求此抛物线顶点坐标(用含a 的代数式表示);(3)已知(),2B a a -,若抛物线与线段AB 恰有一个公共点,结合函数图象,直接写出a 的取值范围.【答案】(1)32(2)()2,4a a -(3)0≤a ≤2或a <-1【解析】【分析】(1)把()2,2A 代入224y x ax =-+即可求出a 的值;(2)化为顶点式求解即可;(3)分a ≥0和a <0两种情况求解即可.【小问1详解】解:把()2,2A 代入224y x ax =-+,得2444a =-+,∴a =32.【小问2详解】解:224y x ax =-+=22224x ax a a -+-+=()224x a a --+,。
北京市人大附中2019-2020学年度第一学期人教版初三数学10月月考(word版无答案)
![北京市人大附中2019-2020学年度第一学期人教版初三数学10月月考(word版无答案)](https://img.taocdn.com/s3/m/039d598c551810a6f52486fc.png)
2019~2020学年度第一学期初三年级数学练习2一、选择题1.下列几何图形中,既是轴对称图形又是中心对称图形的是( )A . B.C.D.2.二次函数()2234y x =--+的顶点坐标是( ) A .()3,4B .()3,4-C .()3,4-D .()3,4--3.如图,在O ☉中,AB 为O ☉的直径,C 为圆上一点,若23CAB ∠=︒,则ABC ∠的度数为( )A .23︒B .46︒C .57︒D .67︒4.关于x 的一元二次方程2240kx x +-=的一个根是1,则k 的值是( ) A .1- B .2- C .1 D .25.如图,四边形ABCD 内接于O ☉,过B 点作BH AD ⊥于点H ,若135BCD =︒∠,4AB =,则BH 的长度为( )A B .C .D .不能确定6.用配方法解方程2620x x ++=,配方正确的是( ) A .()232x +=B .()232x -=C .()237x +=D .()237x -=7.一幅三角板如下图1放置(有一条边重合),如下图2把含45︒的直角三角板ACD 绕点A 顺时针旋转30︒得到''AC D △,若2BC =,则'BCC △的面积为( )A .3B .3C .6D .6-8.北京海淀区某中学经过食堂装修后重新营业,同学们很高兴品尝各种美食菜品,某同学想要得到本校食堂最受同学欢迎的菜品,以下是排乱的统计步骤: ①从扇形图中分析出最受学生欢迎的菜品②去食堂收集同学吃饭时选择的菜品名称和人数 ③绘制扇形图来表示各个种类菜品所占的百分比 ④整理所收集的数据并绘制频数分布表 正确统计步骤的顺序是( )A .②→③→①→④B .③→④→①→②C .①→②→④→③D .②→④→③→①二、填空题9.在平面直角坐标系xOy 中,点()3,4-关于原点对称的点的坐标为__________.10.如图,在ABC △中,AB AC =,作A D B C ⊥于点D ,以点A 为圆心,AD 为半径画A ☉,则点B 与A ☉的位置关系为__________.(填“在圆内”,“在圆上”或“在圆外”)11.若点()12,A y -,()23,B y 在抛物线22y ax ax b =-+上,若12y y >,请写出一组满足条件的实数a ,b 的值:a =__________,b =__________. 12.如图,O ☉的直径AB 垂直于弦CD ,垂足为E ,点F 为O ☉上一点,且满足22.5AFC =︒∠,8AB =,则CD 的长为__________.13.若二次函数224y x x c =+-与x 轴的一个交点是()1,0,则关于x 的一元二次方程222xx c +-的根为__________. 14.在一次期末数学测试中,某中学同年级人数相同的A 、B 两个班的成绩统计如下表:数学老师让同学们针对统计的结果进行一下评估,学生的评估结果如下: ①这次数学测试成绩中,A 、B 两个班的平均水平相同; ②A 班学生中数学成绩95分及以上的人数少; ③B 班学生的数学成绩比较整齐,分化较小;上述评估中,正确的是_________________.(填序号)15.如图,点(),P a b 为直线143y x =-上的一个动点,点P 绕原点逆时针旋转90︒后,恰好落到图中阴影区域(包括边界)内,则a 的取值范围是_____________.16.如图,线段AB 为O ☉的一条弦,以AB 为直角边作等腰直角ABC △.直线AC 恰好是O ☉的切线,点D 为O ☉上的一点,连接DA 、DB 、DC ,若3DA =,4DB =,则DC 的长为__________.三、解答题17.解方程:()358x x x =+-.18.如图,点D 是等边ABC △的边BC 上的点,以AD 为边作等边ADE △,连接CE . (1)求证:ABD ACE △≌△;(2)若20BAD =︒∠,求AEC ∠的度数.19.已知关于x 的一元二次方程()222210x a x a -+++=. (1)求证:不论a 取何实数,该方程都有两个实数根.(2)若该方程两个根12,x x 满足22120x x -=,求a 的值.20.如图,点C 是半圆O 上的一点,AB 是O ☉的直径,D 是AC 的中点,作DE AB ⊥于点E ,连接AC 交DE 于点F ,求证:AF DF =.下面是小明的解法,请帮他补充完整(包括补全图形)解:补全半圆O 为完整的O ☉,连接AD ,延长DE 交O ☉于点H (补全图形) ∵D 是AC 的中点,∴AD CD =,∵DE AB ⊥,AB 是O ☉的直径,∴AD AH =(_________________)(填推理的依据) ∴AH CD =.∴ADF FAD =∠∠(__________________)(填推理的依据) ∴AF DF =(___________)(填推理的依据)21.在平面直角坐标系xOy 中,抛物线21y x bx c =++与直线2y kx m =+相交于()1,0A -,()3,4B 两点.(1)请分别求出抛物线解析式和直角的解析式; (2)直接写出12y y -的最小值.22.如图,在ABCD 中,对角线BD 平分ABC ∠,过点A 作AE BD ∥,交CD 的延长线于点E ,过点E 作EF BC ⊥,交BC 延长线于点F . (1)求证:四边形ABCD 是菱形;(2)若45ABC =︒∠,2BC =,求EF 的长.23.某学校在9月下旬进行了初三体育中考模拟测试.该学校初三年级男女生共590人,女生290人,为了解该年级学生的体育成绩情况,随机抽样调查20名男生的体育成绩.过程如下,请将有关问题补充完整.注:体育总成绩(满分30分)=跑步(满分10分)+球类(满分10分)+引体向上或者实心球(满分10分),各单项及总分均为0.5的整数倍. 收集数据:a .该20个男生跑步成绩情况如下b .该20个男生总成绩和球类成绩情况统计图:注:该20名男生的体育总成绩平均分为26分,跑步平均成绩为8.8分 分析问题:(1) 这20名男生中跑步成绩的中位数是_________分.(2) 若在体育总成绩和球类成绩情况统计图中A 同学的跑步成绩是8分,则A 同学的引体向上(实心球)成绩是__________分.(3) 据有经验的体育老师估计现在体育总成绩大于等于24的男生正常情况下有望体育中考满分,则估计该年级体育中考满分的男生约有___________人. (4) 下列推断合理的是___________.①在体育总成绩和球类成绩情况统计图中B 同学的跑步和引体向上(实心球)成绩均为满分②在体育总成绩和球类成绩情况统计图中C 同学,可能是球类失误得了0分,但他的跑步和引体向上(实心球)成绩都是满分,只要把球类练好了中考体育有望满分.③对于这次体育模拟,男生的体育三项中,总体来说跑步相对其他两项是最弱项. ④对于这次体育模拟,男生的体育三项中,总体来说引体向上(实心球)是最强项.24.如图,AB 是O ☉的直径,过点A 的直线PC 交O ☉于A 、C 两点,AD 平分PAB ∠.射线AD 交于点D ,过点D 作DE PA ⊥于点E . (1)求证:ED 为O ☉的切线;(2)若10AB =,2ED AE =,求AC 的长.25.在平面直角坐标系xOy 中,抛物线2212y x ax a a=-+-的对称轴与x 轴交于点A . (1)求点A 的坐标(用含a 的代数式表示);(2)若抛物线与x 轴交于P 、Q 两点,且2PQ =,求抛物线的解析式;(2)点B 的坐标为110,4a ⎛⎫- ⎪⎝⎭,若该抛物线与线段AB 恰有一个公共点,结合函数图象,直接写出a 的取值范围.26.如图,ABC △是等边三角形,平面上的动点P 满足PC AB ⊥,记APB a =∠. (1)如图1,当点P 在直线BC 上方时,直接写出PAC ∠的大小(用含a 的代数式表示)(2)过点B 作BC 的垂线BD ,同时作60PAD =︒∠,射线AD 与直线BD 交于点D . ①如图2,判断ADP △的形状,并给出证明.②连接CD ,若在点P 的运动过程中,CD =,直接写出此时a 的值.27.在平面中,对于给定的线段AB 和点C ,若平面上的点P (可以与点C 重合)满足: APB ACB =∠∠,则称点P 为点C 关于线段AB 的联络点. 在平面直角坐标系xOy 中,已知点()2,0A ,()0,2B ,()2,0C -.(1) 在()12,2P ,()21,0P ,()31P 三个点中,是点O 关于线段AB 的联络点的是______________________.(2) 若点P 既是点O 关于线段AB 的联络点,同时又是点B 关于线段OA 的联络点,求点P 的横坐标m 的取值范围. (3) 直线()0y x b b =+>与x 轴、y 轴分别交于点M 、N ,若在线段BC 上存在点N 关于线段OM 的联络点,直接写出b 的取值范围.。
北京人大附中2019-2020学年九年级(上)月考数学试卷(10月份)
![北京人大附中2019-2020学年九年级(上)月考数学试卷(10月份)](https://img.taocdn.com/s3/m/e2ee35716c85ec3a86c2c559.png)
2019-2020学年九年级(上)月考数学试卷一.选择题(共8小题)1.下列图形中,既是轴对称图形,又是中心对称的图形是()A.B.C.D.2.二次函数y=﹣2(x﹣3)2+4的顶点坐标是()A.(3,4)B.(﹣3,4)C.(3,﹣4)D.(﹣3,﹣4)3.如图,在⊙O,AB为⊙O直径,C为上一点,若∠CAB=23°,则∠ABC的度数为()A.23°B.46°C.57°D.67°4.关于x的一元二次方程kx2+2x﹣4=0的一个根是1,则k的值是()A.﹣1 B.﹣2 C.1 D.25.如图,四边形ABCD内接于⊙O,过B点作BH⊥AD于点H,若∠BCD=135°,AB=4,则BH的长度为(A.B.2C.3D.不能确定6.用配方法解方程x2﹣6x+2=0,原方程可变形为()A.(x﹣3)2=11 B.(x﹣3)2=7 C.(x+3)2=7 D.(x﹣3)2=27.一副三角板如图1放置(有一条边重合),如图2把含45°的直角三角板ACD绕点A顺时针旋转30°,得到△AC′D′,若BC=2,则△BCC′的面积为()A.2﹣3 B.3﹣C.4﹣6 D.6﹣28.北京海淀区某中学经过食堂装修后重新营业,同学们很高兴品尝各种美食菜品某同学想要得到本校食堂最受同学双迎的菜品,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的菜品;②去食堂收集同学吃饭时选择的菜品名称和人数;③绘制扇形图来表示各个种类产品所占的百分比;④整理所收集的数据,并绘制频数分布表;正确统计步骤的顺序是()A.②→③→①→④B.③→④→①→②C.①→②→④→③D.②→④→③→①二.填空题(共8小题)9.在平面直角坐标系xOy中,点(3,﹣4)关于原点对称的点的坐标为.10.如图,在△ABC中,AB=AC,作AD⊥BC于点D,以点A为圆心,AD为半径画⊙A.则点B与⊙A的位置关系为(填“在圆内”.“在圆上”或“在圆外”)11.若点A(﹣2,y1),B(3,y2)在抛物线y=ax2﹣2ax+b上,若y1>y2,请写出一组满足条件的实数a,b的值:a=,b=.12.如图,⊙O的直径AB垂直于弦CD,垂足为E,点F为⊙O上一点,且满足∠AFC=22.5°,AB=8,则CD的长为.13.若二次函数y=2x2+4x﹣c与x轴的一个交点是(1,0),则关于x的一元二次方程x2﹣=﹣2x的根为.14.在一次数学测试中,同年级人数相同的甲、乙两个班的成绩统计如下表:班级平均分中位数方差甲班92.5 95.5 41.25乙班92.5 90.5 36.06 数学老师让同学们针对统计的结果进行一下评估,学生的评估结果如下:①这次数学测试成绩中,甲、乙两个班的平均水平相同;②甲班学生中数学成绩95分及以上的人数少;③乙班学生的数学成绩比较整齐,分化较小.上述评估中,正确的是.(填序号)15.如图,点P(a,b)为直线y=x﹣1上一个动点,点P绕原点逆时针旋转90°后,恰好落在图中阴影区域(包括边界)内,则a的取值范围是.16.如图,线段AB为⊙O的一条弦,以AB为直角边作等腰直角△ABC,直线AC恰好是⊙O的切线,点D为⊙O上的一点,连接DA,DB,DC,若DA=3,DB=4,则DC的长为.三.解答题(共10小题)17.解方程:3x=x(x+5)﹣818.如图,点D是等边△ABC的边BC上的点,以AD为边作等边△ADE,连接CE.(1)求证:△ABD≌△ACE;(2)若∠BAD=20°,求∠AEC的度数.19.已知关子x的一元二次方程x2﹣(2a+2)x+2a+1=0.(1)求证:不论a取何实数,该方程都有两个实数根:(2)若该方程两个根x1,x2满足x12﹣x22=0,求a的值20.如图,点C是半圆O上的一点,AB是⊙O的直径,D是的中点,作DE⊥AB于点E,连接AC交DE于点F.求证;AF=DF下面是小明的解法,请帮他补充完整(包括补全图形)解:补全半圆O为完整的⊙O,连结AD,延长DE交⊙O于点H(补全图形)∵D是AC的中点;∴=;∵DE⊥AB,AB是⊙O的直径;∴=()(填推理的依据);∴=;∴∠ADF=∠FAD()(填推理的依据);∴AF=DF()(填推理的依据);21.在平面直角坐标系xOy中,抛物线y1=x2﹣bx+c与直线y2=kx+m相交于A(﹣1,0),B(3,4)两点.(1)请分别求出抛物线解析式和直线的解析式;(2)直接写出y1﹣y2的最小值.22.如图,在▱ABCD中,对角线BD平分∠ABC,过点A作AE∥BD,交CD的延长线于点E,过点E作EF⊥BC,交BC延长线于点F.(1)求证:四边形ABCD是菱形;(2)若∠ABC=45°,BC=2,求EF的长.23.如图,AB是⊙O的直径,过点A的直线PC交⊙O于A,C两点,AD平分∠PAB,射线AD交⊙O于点D,过点D作DE⊥PA于点E.(1)求证:ED为⊙O的切线;(2)若AB=10,ED=2AE,求AC的长.24.在平面直角坐标系xOy中,抛物线y=x2﹣2ax+a2﹣的对称轴与x轴交于点A.(1)求点A的坐标(用含a的代数式表示);(2)若抛物线与x轴交于P,Q两点,且PQ=2,求抛物线解析式;(3)点B的坐标为(0,),若该抛物线与线段AB恰有一个公共点,结合函数图象直接写出a的取值范围.25.如图,△ABC是等边三角形,平面上的动点P满足PC⊥AB,记∠APB=α.(1)如图1,当点P在直线BC上方时,直接写出∠PAC的大小(用含α的代数式表示);(2)过点B作BC的垂线BD,同时作∠PAD=60°,射线AD与直线BD交于点D.①如图2,判断△ADP的形状,并给出证明;②连结CD,若在点P的运动过程中,CD=AB.直接写出此时α的值.26.在平面上,对于给定的线段AB和点C,若平面上的点P(可以与点C重合)满足,∠APB=∠ACB.则称点P为点C关于直线AB的联络点.在平面直角坐标系xOy中,已知点A(2,0),B(0,2),C(﹣2,0).(1)在P1(2,2),P(1,0),R(1+,1)三个点中,是点O关于线段AB的联络点的是.(2)若点P既是点O关于线段AB的联络点,同时又是点B关于线段OA的联络点,求点P的横坐标m 的取值范围;(3)直线y=x+b(b>0)与x轴,y轴分交于点M,N,若在线段BC上存在点N关于线段OM的联络点,直接写出b的取值范围.。
25深圳人大附中九年级上10月月考数学试卷0
![25深圳人大附中九年级上10月月考数学试卷0](https://img.taocdn.com/s3/m/2057e440b6360b4c2e3f5727a5e9856a57122650.png)
25深圳人大附中九年级上10月月考数学试卷一.选择题:每小题3分.1.方程4x 2-2x=-1的二次项系数、-次项系数、常数项分别为( ). A. 4、-2、-1 B. 4、2、-1 C. 4、-2、1 D. 4、2、12.下列命题中,正确的是( ).A. 有一组邻边相等的四边形是菱形B. 对角线互相平分且垂直的四边形是矩形C. 两组邻角相等的四边形是平行四边形D. 对角线互相垂直且相等的平行四边形是正方形3.用配方法解方程x 2+8x+7=0,则配方正确的是( ). A. (x+4)2=9 B. (x-4)2=9 C. (x-8)2=16 D. (x+8)2=574.新能源汽车销量的快速增长,促进了汽车企业持续的研发投入和技术创新.某上市公司今年1月份一品牌的新能源车单台的生产成本是13万元,由于技术改进和产能增长,生产成本逐月下降,3月份的生产成本为12.8万元.假设该公司今年一季度每个月生产成本的下降率都相同,设每个月生产成本的下降率为x,则根据题意所列方程正确的是( ). A. 13(1-x)2=12.8 B. 13(1-x 2)=12.8 C. 12.8(1-x 2)=13 D. 13(1+x)2=12.85.如图,将长方形纸片折叠,使A 点落在BC 上的F 处,折痕为BE,若沿EF 剪下,则折叠部分是一个正方形,其数学原理是( ).A. 邻边相等的矩形是正方形B. 对角线相等的菱形是正方形C. 两个全等的直角三角形构成正方形D. 轴对称图形是正方形6.已知一元二次方程kx 2-7x-7=0有两个实数根,k 的取值范围是( ). A. k>-74 B. k ≥-74 C. k ≥-74且k ≠0 D. k>-74且k ≠07.中国结寓意团圆、美满,以独特的东方神韵体现中国人民的智慧和深厚的文化底蕴,小陶家有一个菱形中国结装饰,测得BD=12cm,AC=16cm,直线EF ⊥AB 交两对边于点E,F,则EF 的长为( ). A. 8cm B. 10cm C. 485cm D. 965cm 8.如图①,动点P 从正六边形的A 点出发,沿A →F →E →D →C 以1cm/s 的速度匀速运动到点C,图②是点P 运动时,△ACP 的面积y(cm 2)随着时间x (s)的变化的关系图象,则正六边形的边长为( ). A. √3cm B. 2cm C. 1cm D. 3cm 图②二.填空题:每小题3分.9.方程(a+2)x |a |+3x-1=0是关于x 的一元二次方程,则a 的值为______. 图①10.已知一元二次方程x 2-x-2=0的一个根为m,则2023+m 2-m 的值为______.11.化学课代表在老师的培训下,学会了高锰酸钾制取氣气的实验室制法,回到班上后,第一节课手把手教会了若干名同学,第二节课会做该实验的每个同学又手把手教会了同样多的同学,这样全班49人恰好都会做这个实验了。
北京市人大附中2019-2020学年度第一学期人教版初三数学10月月考(word版 )
![北京市人大附中2019-2020学年度第一学期人教版初三数学10月月考(word版 )](https://img.taocdn.com/s3/m/6526354d910ef12d2bf9e75d.png)
2019~2020学年度第一学期初三年级数学练习2一、选择题1.下列几何图形中,既是轴对称图形又是中心对称图形的是( )A . B.C.D.2.二次函数()2234y x =--+的顶点坐标是( ) A .()3,4B .()3,4-C .()3,4-D .()3,4--3.如图,在O ☉中,AB 为O ☉的直径,C 为圆上一点,若23CAB ∠=︒,则ABC ∠的度数为( )A .23︒B .46︒C .57︒D .67︒4.关于x 的一元二次方程2240kx x +-=的一个根是1,则k 的值是( ) A .1- B .2- C .1 D .25.如图,四边形ABCD 内接于O ☉,过B 点作BH AD ⊥于点H ,若135BCD =︒∠,4AB =,则BH 的长度为( )AB .C .D .不能确定6.用配方法解方程2620x x ++=,配方正确的是( ) A .()232x +=B .()232x -=C .()237x +=D .()237x -=7.一幅三角板如下图1放置(有一条边重合),如下图2把含45︒的直角三角板ACD 绕点A 顺时针旋转30︒得到''AC D △,若2BC =,则'BCC △的面积为( )A .3B .3C .6-D .6-8.北京海淀区某中学经过食堂装修后重新营业,同学们很高兴品尝各种美食菜品,某同学想要得到本校食堂最受同学欢迎的菜品,以下是排乱的统计步骤: ①从扇形图中分析出最受学生欢迎的菜品②去食堂收集同学吃饭时选择的菜品名称和人数 ③绘制扇形图来表示各个种类菜品所占的百分比 ④整理所收集的数据并绘制频数分布表 正确统计步骤的顺序是( )A .②→③→①→④B .③→④→①→②C .①→②→④→③D .②→④→③→①二、填空题9.在平面直角坐标系xOy 中,点()3,4-关于原点对称的点的坐标为__________.10.如图,在ABC △中,AB AC =,作AD BC ⊥于点D ,以点A 为圆心,AD 为半径画A ☉,则点B 与A ☉的位置关系为__________.(填“在圆内”,“在圆上”或“在圆外”)11.若点()12,A y -,()23,B y 在抛物线22y ax ax b =-+上,若12y y >,请写出一组满足条件的实数a ,b 的值:a =__________,b =__________. 12.如图,O ☉的直径AB 垂直于弦CD ,垂足为E ,点F 为O ☉上一点,且满足22.5AFC =︒∠,8AB =,则CD 的长为__________.13.若二次函数224y x x c =+-与x 轴的一个交点是()1,0,则关于x 的一元二次方程222xx c +-的根为__________. 14.在一次期末数学测试中,某中学同年级人数相同的A 、B 两个班的成绩统计如下表:数学老师让同学们针对统计的结果进行一下评估,学生的评估结果如下: ①这次数学测试成绩中,A 、B 两个班的平均水平相同; ②A 班学生中数学成绩95分及以上的人数少; ③B 班学生的数学成绩比较整齐,分化较小;上述评估中,正确的是_________________.(填序号)15.如图,点(),P a b 为直线143y x =-上的一个动点,点P 绕原点逆时针旋转90︒后,恰好落到图中阴影区域(包括边界)内,则a 的取值范围是_____________.16.如图,线段AB 为O ☉的一条弦,以AB 为直角边作等腰直角ABC △.直线AC 恰好是O ☉的切线,点D 为O ☉上的一点,连接DA 、DB 、DC ,若3DA =,4DB =,则DC 的长为__________.三、解答题17.解方程:()358x x x =+-.18.如图,点D 是等边ABC △的边BC 上的点,以AD 为边作等边ADE △,连接CE . (1)求证:ABD ACE △≌△;(2)若20BAD =︒∠,求AEC ∠的度数.19.已知关于x 的一元二次方程()222210x a x a -+++=. (1)求证:不论a 取何实数,该方程都有两个实数根.(2)若该方程两个根12,x x 满足22120x x -=,求a 的值.20.如图,点C 是半圆O 上的一点,AB 是O ☉的直径,D 是AC 的中点,作DE AB ⊥于点E ,连接AC 交DE 于点F ,求证:AF DF =.下面是小明的解法,请帮他补充完整(包括补全图形)解:补全半圆O 为完整的O ☉,连接AD ,延长DE 交O ☉于点H (补全图形)∵D 是AC 的中点, ∴AD CD =,∵DE AB ⊥,AB 是O ☉的直径,∴AD AH =(_________________)(填推理的依据) ∴AH CD =.∴ADF FAD =∠∠(__________________)(填推理的依据) ∴AF DF =(___________)(填推理的依据)21.在平面直角坐标系xOy 中,抛物线21y x bx c =++与直线2y kx m =+相交于()1,0A -,()3,4B 两点.(1)请分别求出抛物线解析式和直角的解析式; (2)直接写出12y y -的最小值.22.如图,在ABCD 中,对角线BD 平分ABC ∠,过点A 作AE BD ∥,交CD 的延长线于点E ,过点E 作EF BC ⊥,交BC 延长线于点F . (1)求证:四边形ABCD 是菱形;(2)若45ABC =︒∠,2BC =,求EF 的长.23.某学校在9月下旬进行了初三体育中考模拟测试.该学校初三年级男女生共590人,女生290人,为了解该年级学生的体育成绩情况,随机抽样调查20名男生的体育成绩.过程如下,请将有关问题补充完整.注:体育总成绩(满分30分)=跑步(满分10分)+球类(满分10分)+引体向上或者实心球(满分10分),各单项及总分均为0.5的整数倍. 收集数据:a .该20个男生跑步成绩情况如下b .该20个男生总成绩和球类成绩情况统计图:注:该20名男生的体育总成绩平均分为26分,跑步平均成绩为8.8分 分析问题:(1) 这20名男生中跑步成绩的中位数是_________分.(2) 若在体育总成绩和球类成绩情况统计图中A 同学的跑步成绩是8分,则A 同学的引体向上(实心球)成绩是__________分.(3) 据有经验的体育老师估计现在体育总成绩大于等于24的男生正常情况下有望体育中考满分,则估计该年级体育中考满分的男生约有___________人. (4) 下列推断合理的是___________.①在体育总成绩和球类成绩情况统计图中B 同学的跑步和引体向上(实心球)成绩均为满分②在体育总成绩和球类成绩情况统计图中C 同学,可能是球类失误得了0分,但他的跑步和引体向上(实心球)成绩都是满分,只要把球类练好了中考体育有望满分. ③对于这次体育模拟,男生的体育三项中,总体来说跑步相对其他两项是最弱项. ④对于这次体育模拟,男生的体育三项中,总体来说引体向上(实心球)是最强项.24.如图,AB 是O ☉的直径,过点A 的直线PC 交O ☉于A 、C 两点,AD 平分PAB ∠.射线AD 交于点D ,过点D 作DE PA ⊥于点E . (1)求证:ED 为O ☉的切线;(2)若10AB =,2ED AE =,求AC 的长.25.在平面直角坐标系xOy 中,抛物线2212y x ax a a=-+-的对称轴与x 轴交于点A . (1)求点A 的坐标(用含a 的代数式表示);(2)若抛物线与x 轴交于P 、Q 两点,且2PQ =,求抛物线的解析式;(2)点B 的坐标为110,4a ⎛⎫- ⎪⎝⎭,若该抛物线与线段AB 恰有一个公共点,结合函数图象,直接写出a 的取值范围.26.如图,ABC △是等边三角形,平面上的动点P 满足PC AB ⊥,记APB a =∠. (1)如图1,当点P 在直线BC 上方时,直接写出PAC ∠的大小(用含a 的代数式表示)(2)过点B 作BC 的垂线BD ,同时作60PAD =︒∠,射线AD 与直线BD 交于点D . ①如图2,判断ADP △的形状,并给出证明.②连接CD ,若在点P 的运动过程中,CD ,直接写出此时a 的值.27.在平面中,对于给定的线段AB 和点C ,若平面上的点P (可以与点C 重合)满足: APB ACB =∠∠,则称点P 为点C 关于线段AB 的联络点. 在平面直角坐标系xOy 中,已知点()2,0A ,()0,2B ,()2,0C -.(1) 在()12,2P ,()21,0P ,()31P +三个点中,是点O 关于线段AB 的联络点的是______________________.(2) 若点P 既是点O 关于线段AB 的联络点,同时又是点B 关于线段OA 的联络点,求点P的横坐标m 的取值范围. (3) 直线()0y x b b =+>与x 轴、y 轴分别交于点M 、N ,若在线段BC 上存在点N 关于线段OM 的联络点,直接写出b 的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人大附中2020届初三第一学期10月月考
数学试卷
2020.10
第1-8题均有四个选项,符合题意的选项只有一个
1. 一元二次方程2
230x x --=的二次项系数,一次项系数、常数项分别是( )
A. 2,1,3
B.2,1,-3
C.2,-1,3
D.2,-1,-3
2. 如图,圆O 的弦中最长的是( )
A. AB
B. CD
C. EF
D. GH
3. 抛物线2
1y x =-的顶点坐标是( )
A(0,0)
B.(0,-1) C . (0,1) D.(-1,0)
4、用配方法解方程2
250x x --=,配方正确的是( )
A.2
(1)
4x -= B. 2
(1)4x +=
C. 2
(1)6x -=
D. 2
(1)6x +=
5.第二十四届冬季奥林匹克运动会将于2022年在北京举办,北京将成为历史上第一座既举办过夏奥会,又举办过冬奥会的城市.下面的图形是各界冬奥会会徽中的部分图案,其中是轴对称图形,又是中心对称图形的是( )
6.方程2
210x x +-=的根的情况是( )
A 有两个不相等的实数根
B.有两个相等的实根
C.无实数根
D.无法确定
7.如图,将△ABC 绕点C 逆时针转,得到△CDE ,若点A 的对应点D 恰好在线段AB 上,且CD 平分∠ACB ,记线段BC 与DE 的交点为F.下列结论中,不正确的是( )
A.CA=CD
B.△CDF ≌△CDA
C.∠BDF=∠ACD
D ,DF=EF
8.在平面直角坐标系xOy 中,对于自变量为x 的1y 和2y ,若当-1≤x≤1时,都满足121y y -≤成立,则称函数1y 和
2y 互为“关联的”.下列函数中,不与2y x =互为“关联的”的函是( )
A. 2
1y x =-
B. 2
2y x =
C.()2
1y x =-
D. 2
1y x =-+
二、填空题(本题共16分,每小题2分) 9、点(-2,3)关于原点的对称点的坐标为
10、写出一个对称轴为y 轴的二次函数的表达式
11、若关于x 的方程2
240x kx k ++-=的一个根是1,则k 的值为
12、如图,AB 是⊙O 的弦,直径CD ⊥AB 于点H ,若⊙O 的半径为10,AB=16,则DH 的长为
13、已知二次函数2
y ax bx c =++的图像如图所示,则a
0,
24b ac -
0(两空均选填“>”,“=”,“<”)
14、如果m 是方程2
32020x x +=的根,那么代数式()()2
211m m m +--的值为
15、已知二次函数2
y ax bx c =++中的x 和y 满足下表:
根据图表中信息推断,方程100ax bx c ++-=的根为
16.如图,在正方形ABCD 中,点E 在线段BC 上,且满足CE-=2BE ,过点B 作AE 的垂线,与CD 交于点F ,点P 、Q 分别为线段AE 和BF 的中点,连接PQ ,若PQ=2,则正方形ABCD 的边长为
三、解答题(本题共60分,第17-20题,每小题5分,第21题4分,第22题6分,第23-24题,每小题5分,第25题6分,第26-27题,每小题7分)解答应写出文字,说明演算步骤或证明过程 17.解方程:2
5738x x x ++=+
18.求抛物线2
2y x x =-与x 的交点坐标,并在坐标系中画出图像.
19.如图,△ABC 中,AB=AC ,点D ,E 在直线BC 上,F 在BA 的延长线上,且满足BF=CE ,∠E=∠F.
求证:AE=DF.
20.已知关于x 的一元二次方程()2330.mx m x -++=
(1)求证:无论m 为何值,x =1都是该方程的一个根; (2)若此方程的根都为正整数,求整数的值.
21.如图,在平面直角坐标系x O y 中,已知点A(3,1),B(2,3),C(2,1),将△ABC 绕平面内的某个点P 逆时针旋转α(0°<α<180°)角度后,得到△DEF ,其中点A 、B 、的对应点为D(0,2),E(-2.1), (1)在图中标出点P 的位置,并画出旋转后的△DEF ; (2) 旋转角α的度数为
°;
(3)小宇尝试通过运用若干次轴对称变换来代替上面的旋转过程,他写出了一种变换的方法,请将其补全:先将△ABC 关于直线x =1对称,再将所得的图形再关于直线
(填直线的表达式)对称得到△DEF
22.小宇遇到了这样一个问题:
表达式为2
y ax c =+
(1)写出M ,C 、N 、F 四个点的坐标; (2)求出抛物线的表达式
(3)利用求出的表达式,帮助小宇解决这个问题.
23.如图,AB 是⊙O 的直径,弦CD 与AB 交于点M ,过点D 作DE ⊥CD 交⊙O 于点E ,若M 为CD 的中点.
(1)求证:DE ∥AB ;
(2)连接AD ,OE ,若OE ∥AD ,求∠BAD 的度数.
24.小宇在学习过程中遇到一个函数2
1(21)2y x x x =--+-
下面是小宇对其探究的过程,请补充完整: (1)对于函数11y x =-,图像关于直线x =1对称:
对于二次函数2
221y x x =-+,图像的对称轴为
;
综合上述分析,进一步探究发现,函数y 的图像也是轴对称图形,其对称轴为
.
(2)如图,在平面直角标系xOy 中画出了函数y 的部分图像,用描点法将这个函数图像补充完整.
(3)结合函数图像和解式的分析,小宇得出以下三个结论:
①函数y 有最小值,没有最大值;
②函数y 的图像与轴的负半轴交点的横坐标P 满足112
P -<<-
; ③12()()M x m N x n ,,,函数y 图像上的两点,若12x x <,且122x x +>,则一定有m <n , 所有正确结论的序号是
25.在平面直角坐标系x O y 中,点A(t ,2)(t ≠0)在二次函数2
)0(2y ax bx a =++≠的图像上,
(1)当t =2时,求二次函数对称轴的表达式;
(2)若点B(5-t ,0)也在这个二次函数的图像上,结合函数图像作答: ①当这个函数的最小值为0时,求t 的值;
②若在0≤x ≤1时,y 随x 的增大而增大,直接写出t 的取值范围.
26.如图,在△ABC 中,AC=BC ,∠ACB=α,点P 为∠ACB 平分线上的一动点,且满足PC<PA.连接PA ,PB ,以P 为中心,将线段PB 旋转,得到线段PD ,使点D 在AC 的延长线上. (1)依题意补全图形;
(2)求证:①PA=PB ;②∠BPD=∠BCD ;
(3)过点D 作PC 的垂线,与PC 的延长线交于点E ,写出一个α的值,使得对于任意符合条件的点P ,都有PE AC
是一个定值,画出图形,并求出这个定值,
27、在平面直角坐标系x O y 中,已知y 是x 的函数,对于这个函数图像上的一点A(a ,b )和给定的实数t (t >0),若这个函数在a x a t ≤≤+上有定义且满足:当a x a t ≤≤+时,函数值y 的最大值M 与最小值m 的差M-m =t ,就称这个函数满足性质中φ(A ,t ).
如图1,对于函数y =x ,给定其图象上的点O (0,0)和t =1,在0≤x ≤1上函数值y 的最大值M=1,最小值m =0,满足,M-m =t ,因比函数y =x 满足性质φ(O ,1),
(1)根据定义,判断函数2
y x =是否满足性质φ(O ,1),并说明理由;
(2)已和函数1
,0,
2,0
x x y kx x ⎧-≤⎪=⎨⎪>⎩点M 的坐标为(-2,1),若这个函数满足性质φ(M ,3),结合函数图像,
求k 的值;
(3)点P 为二次函数212y x =
图像上的动点,若存在唯一的t >0,使得函数21
2
y x =满足性质φ(P ,t ),直接写出点P 的横坐标m 的取值范围.。