数学文化选修课考试题及答案
数学文化作业答案(全正确答案)
数学文化作业答案(全正确答案)1数学的研究对象是A、物质B、物质的运动C、自然界D、以上都不对 2一门学科,成功运用才能走向成熟。
D、数学 3研究对象不是物质或者物质运动形态的科学是C、数学4数学素养对于文科生并不重要正确答案:× 5通俗地说数学素养就是有条理地理性思维,周密地思考,求证,简洁,清晰,准确地表达。
正确答案:√ 6一个人不识字可以生活,不识数同样可以生活正确答案:× 7数学文化中的文化是指狭义的文化正确答案:× 8在我国数学文化最早是哪一年提出的?A、 9数学文化这个词最早出现于:B、 10数学文化这门课xx年被评为国家精品课程。
正确答案:×11“数学文化”中的文化是指广义文化。
正确答案:√ 12下列不属于开设数学文化课,学生收获的是:B、提高数学能力 13以下不属于数学文化的侠义意思的是: A、数学思想B、数学精神C、数学方法D、数学教育 14数学是和其他的自然学科在同一个层次上的科学。
正确答案:× 15数学的研究可以用到不同的自然科学。
正确答案:√ 16对数学文化中文化一词的界定,更倾向于广义的解释。
正确答案:× 17数学文化的研究对象是人。
正确答案:√ 18大学生素质文化教育这个词是何时提出来的D、上世纪九十年代19何时首推建立32个“国家大学生素质文化教育基地”C、1999年 xx年 1数学素养不包括 A、从数学的角度看问题B、控制问题中的因素 C、有条理地理性思考D、解决问题时的逻辑能力 2数学素养不是与生俱来的,是在学习和实践中培养的正确答案:√ 3数学训练能提高一个人的 A、推理能力B、抽象能力C、分析和创造能力D、以上都正确 4企业招考员工的题和数学推理往往有关正确答案:√ 5下面哪一项不是通过学习数学文化得到的? A、了解思想B、引起兴趣C、学会方法D、解题方法 6数学素养的高低决定一个人工作的成效正确答案:√ 7数学不仅是一些知识还是一种素质。
数学文化习题集 试题版
2021年数学文化专项习题集110题一、数学文化与阅读 (2)二、数学文化与函数 (6)三、数学文化与数列 (8)四、数学文化与新定义 (14)五、数学文化与三角函数 (17)六、数学文化与立体几何 (20)七、数学文化与概率统计 (27)八、数学文化与排列组合 (32)九、数学文化与解析几何 (33)一、数学文化与阅读例1. 在我国南宋数学家杨辉所著的《详解九章算法》(1261年)一书中,用如图1所示的三角形,解释二项和的乘方规律.在欧洲直到1623年以后,法国数学家布莱士·帕斯卡的著作(1655年)介绍了这个三角形.近年来国外也逐渐承认这项成果属于中国,所以有些书上称这是“中国三角形”(Chinese triangle).17世纪德国数学家莱布尼茨发现了“莱布尼茨三角形”如图2.在杨辉三角中相邻两行满足关系式:C n r +C n r+1=C n+1r+1,其中n 是行数,r ∈N .请类比上式,在莱布尼茨三角形中相邻两行满足的关系式是 .图1 图2例2. 在数学中,泰勒级数用无限项连加式——级数来表示一个函数,包括正弦,余弦,正切三角函数等等,其中泰勒级数是以于1715年发表了泰勒公式的英国数学家布鲁克•泰勒(Sir Brook Taylor )的名字来命名的.1715年,泰勒提出了一个常用的方法来构建这一系列级数并适用于所有函数,这就是后来被人们所熟知的泰勒级数,并建立了如下指数函数公式:01230!0!1!2!3!!n nxn x x x x x x e n n ∞===+++++∑,其中x ∈R ,*n N ∈,!1234n n =⨯⨯⨯⨯⨯,例如:0!1=,1!1=,2!2=,3!6=.试用上述公式估计12e的近似值为(精确到0.001)( ) A .1.601B .1.642C .1.648D .1.647例3. “克拉茨猜想”又称“31n +猜想”,是德国数学家洛萨·克拉茨在1950年世界数学家大会上公布的一个猜想:任给一个正整数n ,如果n 是偶数,就将它减半;如果n 是奇数,就将它乘3加1,不断重复这样的运算,经过有限步后,最终都能够得到1.已知正整数n 经过7次运算后首次得到1,则n 的所有不同取值的集合为____________.例4. 大约在20世纪30年代,世界上许多国家都流传着这样一个题目:任取一个正整数n ,如果它是偶数,则除以2;如果它是奇数,则将它乘以3加1,这样反复运算,最后结果必然是1.这个题目在东方被称为“角谷猜想”,世界一流的大数学家都被其卷入其中,用尽了各种方法,甚至动用了最先进的电子计算机,验算到对700亿以内的自然数上述结论均为正确的,但却给不出一般性的证明.例如取13n =,则要想算出结果1,共需要经过的运算步数是( ) A .9 B .10C .11D .12例5. 中国古代用算筹来进行记数,算筹的摆放形式有纵横两种形式(如图所示),表示一个多位数时,像阿拉伯记数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,其中个位、百位、方位……用纵式表示,十位、千位、十万位……用横式表示,则56846可用算筹表示为( )A .B .C .D .例6. 用“算筹”表示数是我国古代计数方法之一,计数形式有纵式和横式两种,如图1所示.金元时期的数学家李冶在《测圆海镜》中记载:用“天元术”列方程,就是用算筹来表示方程中各项的系数.所谓“天元术”,即是一种用数学符号列方程的方法,“立天元一为某某”,意即“设x 为某某”.如图2所示的天元式表示方程10110n n n n a x a x a x a --++⋅⋅⋅++=,其中0a ,1a ,…,1n a -,n a 表示方程各项的系数,均为筹算数码,在常数项旁边记一“太”字或在一次项旁边记一“元”字,“太”或“元”向上每层减少一次幂,向下每层增加一次幂.试根据上述数学史料,判断图3天元式表示的方程是()A.228617430+++=x x x27841630 ++=B.42x xC.2163842710x x x+++=++=D.43174328610x x例7.分形几何是美籍法国数学家芒德勃罗在20世纪70年代创立的一门数学新分支,其中的“谢尔宾斯基”图形的作法是:先作一个正三角形,挖去一个“中心三角形”(即以原三角形各边的中点为顶点的三角形),然后在剩下的每个小正三角形中又挖去一个“中心三角形”.按上述方法无限连续地作下去直到无穷,最终所得的极限图形称为“谢尔宾斯基”图形(如图所示),按上述操作7次后,“谢尔宾斯基”图形中的小正三角形的个数为()A.53B.63C.73D.83例8.“干支纪年法”是中国历法上自古以来使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”.“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为:甲子、乙丑、丙寅…癸酉,甲戌、乙亥、丙子…癸未,甲申、乙酉、丙戌…癸巳,…,共得到60个组合,称六十甲子,周而复始,无穷无尽.2019年是“干支纪年法”中的己亥年,那么2026年是“干支纪年法”中的A.甲辰年B.乙巳年C.丙午年D.丁未年例9.《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“”当作数字“1”,把阴爻“”当作数字“0”,则八封所代表的数表示如下:卦名符号表示的二进制数表示的十进制数坤0000艮0011坎0102巽0113依次类推,则六十四卦中的“屯”卦,符号为“”,其表示的十进制数是()A.33B.34C.36D.35例10.中国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位古人在从右到左依次排列的绳子上打结,满五进一,用来记录捕鱼条数,由图可知,这位古人共捕鱼()A.89条B.113条C.324条D.445条二、数学文化与函数例11. 中国传统文化中很多内容体现了数学的“对称美”.如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分体现了相互转化、对称统一的形式美、和谐美.定义:图象能够将圆O 的周长和面积同时等分成两部分的函数称为圆O 的一个“太极函数”,给出下列命题: ①对于任意一个圆O ,其“太极函数”有无数个; ②函数f (x )=ln(x 2+x 2+1)可以是某个圆的“太极函数”;③正弦函数y =sin x 可以同时是无数个圆的“太极函数”;④函数y =f (x )是“太极函数”的充要条件为函数y =f (x )的图象是中心对称图形. 其中正确的命题为( ) A .①③B .①③④C .②③D .①④例12. 天文学中为了衡量星星的明暗程度,古希腊天文学家喜帕恰斯(Hipparchus ,又名依巴谷)在公元前二世纪首先提出了星等这个概念.星等的数值越小,星星就越亮;星等的数值越大,它的光就越暗.到了1850年,由于光度计在天体光度测量中的应用,英国天文学家普森(..M R Pogson )又提出了衡量天体明暗程度的亮度的概念.天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足()1221 2.5lg lg m m E E -=-.其中星等为i m 的星的亮度为()1,2i E i =.已知“心宿二”的星等是1.00.“天津四” 的星等是1.25.“心宿二”的亮度是“天津四”的r 倍,则与r 最接近的是(当x 较小时, 2101 2.3 2.7x x x ≈++) A .1.24B .1.25C .1.26D .1.27例13. 我们经常听到这样一种说法:一张纸经过一定次数对折之后厚度能超过地月距离.但实际上,因为纸张本身有厚度,我们并不能将纸张无限次对折,当我们的厚度超过纸张的长边时,便不能继续对折了,一张长边为w ,厚度为x 的矩形纸张沿两个方向不断对折,则经过两次对折,长边变为12w ,厚度变为4x .在理想情况下,对折次数n 有下列关系:22log 3wn x≤(注:lg20.3≈),根据以上信息,一张长为21cm ,厚度为0.05mm 的纸最多能对折___次.例14. 如图所示,九连环是中国的一种古老的智力游戏,它环环相扣,趣味无穷.它主要由九个圆环及框架组成,每个圆环都连有一个直杆,各直杆在后一个圆环内穿过,九个直杆的另一端用平板或者圆环相对固定,圆环在框架上可以解下或者套上.九连环游戏按某种规则将九个环全部从框架上解下或者全部套上.将第n 个圆环解下最少需要移动的次数记为()f n (9n ≤且*n N ∈),已知()11f =,()21f =,且通过该规则可得()()()1221f n f n f n =-+-+,则解下第5个圆环最少需要移动的次数为( )A .7B .16C .19D .21例15. 秦九韶算法是中国南宋时期的数学家秦九韶提出的一种多项式简化算法.秦九韶算法是一种将一元n 次多项式的求值问题转化为n 个一次式的算法.其大大简化了计算过程,即使在现代,利用计算机解决多项式的求值问题时,秦九韶算法依然是最优的算法.用秦九韶算法计算当0.6x =时函数()432234f x x x x =+++的值时,需要进行加法运算的次数及函数值分别为() A .3,5.6426 B .4,5.6426 C .3,5.6416 D .4,5.6416三、数学文化与数列例16. 我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺.莞生一日,长一尺.蒲生日自半,莞生日自倍.问几何日而长等?”意思是:“今有蒲草第1天长高3尺,莞草第1天长高1尺.以后,蒲草每天长高前一天的一半,莞草每天长高前一天的2倍.问第几天蒲草和莞草的高度相同?”根据上述的已知条件,可求得第________天时,蒲草和莞草的高度相同.(结果采取“只入不舍”的原则取整数,相关数据:lg3≈0.4771,lg2≈0.3010).例17. 腾讯公司推出了下表所示的QQ 在线等级制度,设等级为n 级需要的天数为(*)n a n N ∈,则等级为50级需要的天数50a =__________例18. 我国古代数学名著《孙子算经》载有一道数学问题:“今有物不知其数,三三数之剩二,五五数之剩二,七七数之剩二.问物几何?”这里的几何指多少的意思.翻译成数学语言就是:求正整数N ,使N 除以3余2,除以5余2.根据这一数学思想,今有由小到大排列的所有正整数数列{}n a 、{}n b ,{}n a 满足被3除余2,12a =,{}n b 满足被5除余2,12b =,把数列{}n a 与{}n b 相同的项从小到大组成一个新数列,记为{}n c ,则下列说法正确的是( )A .211c a b =+B .623c a b =C .1046c a =D .1242a b c +=例19. 中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”意思为有一个人要走378里路,第一天健步行走,从第二天起脚痛,每天走的路程为前一天的一半,走了六天恰好到达目的地,请问第二天比第四天多走了( ) A .96里 B .72里C .48里D .24里例20. 《周髀算经》有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸,问芒种日影长为( ) A .一尺五寸 B .二尺五寸C .三尺五寸D .四尺五寸例21. 古希腊毕达哥拉斯学派的“三角形数”是一列点(或圆球)在等距的排列下可以形成正三角形的数,如1,3,6,10,15,….我国宋元时期数学家朱世杰在(四元玉鉴》中所记载的“垛积术”,其中的“落一形”堆垛就是每层为“三角形数”的三角锥的堆垛(如图所示,顶上一层1个球,下一层3个球,再下一层6个球,…).若一“落一形”三角锥垛有10层,则该堆垛总共球的个数为( )A .55B .220C .285D .385例22. 造纸术是我国古代四大发明之一.纸张的规格是指纸张制成后,经过修整切边,裁成一定的尺寸.现在我国采用国际标准,规定以A0、A1、…、A10;B0、B1、…、B10等标记来表示纸张的幅面规格.复印纸幅面规格只采用A 系列和B 系列,其中A 系列的幅面规格为:①A0规格的纸张的幅宽(以x 表示)和长度(以y 表示)的比例关系为:x y =;②将A0纸张沿长度方向对开成两等分,便成为A1规格.A1纸张沿长度方向对开成两等分,便成为A2规格,…,如此对开至A8规格.现有A0、A1、A2、…、A8纸各一张.若A4纸的面积为2624cm ,则这9张纸的面积之和等于______2cm .例23. 《周髀算经》中有这样一个问题,从冬至之日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影子长依次成等差数列,若冬至、立春、春分的日影子长的和是37.5尺,芒种的日影子长为4.5尺,则冬至的日影子长为_____.例24. 《孙子算经》是中国古代重要的数学著作,书中有一道题为:今有出门望见九堤,堤有九木,木有九枝,枝有九巢,巢有九禽,禽有九雏,雏有九毛,毛有九色,问各几何?若记堤与枝的个数分别为,m n ,现有一个等差数列{}n a ,其前n 项和为n S ,且2a m =,6S n =,则4a =( )A .84B .159C .234D .243例25. 在进行123100++++的求和运算时,德国大数学家高斯提出了倒序相加法的原理,该原理基于所给数据前后对应项的和呈现一定的规律生成,因此,此方法也称之为高斯算法.已知数列24034n na m =+,则122016...m a a a ++++=( )A .5042m +B .5044m +C .504m +D .2504m +例26. 《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为_____. 例27. “中国剩余定理”又称“孙子定理”,最早可见于中国南北朝时期的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”,原文如下:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何?现有这样一个相关的问题:将1到2020这2020个自然数中被5除余3且被7除余2的数按照从小到大的顺序排成一列,构成一个数列,则该数列各项之和为( )A .56383B .57171C .59189D .61242例28. 《张邱建算经》是我国古代内容极其丰富的数学名著.书中有如下问题:“今有马行转迟,次日减半,疾七日,行七百里.问日行几何?”其意思是:“现有一匹马,行走的速度逐渐变慢,每天走的里程是前一天的一半,连续行走7天,共走700里路,问每天走的里数为多少?”则该马第4天走的里数为( )A .128127B .700127C .5 600127D .44 800127例29. 在明代程大位所著的《算法统宗》中有这样一首歌谣,“放牧人粗心大意,三畜偷偷吃苗青,苗主扣住牛马羊,要求赔偿五斗粮,三畜户主愿赔偿,牛马羊吃得异样.马吃了牛的一半,羊吃了马的一半.”请问各畜赔多少?它的大意是放牧人放牧时粗心大意,牛、马、羊偷吃青苗,青苗主人扣住牛、马、羊向其主人要求赔偿五斗粮食(1斗=10升),三畜的主人同意赔偿,但牛、马、羊吃的青苗量各不相同.马吃的青苗是牛的一半,羊吃的青苗是马的一半.问羊、马、牛的主人应该分别向青苗主人赔偿多少升粮食?( ) A .2550100,,777 B .252550,,1477 C .100200400,,777 D .50100200,,777 例30. 《张丘建算经》是公元5世纪中国古代内容丰富的数学著作,书中卷上第二十三问:“今有女善织,日益功疾,初日织五尺,今一月织九匹三丈.问半月积几何?”其意思为“有个女子织布,每天比前一天多织相同量的布,第一天织五尺,一个月(按30天计)共织布9匹3丈.问:前半个月(按15天计)共织多少布?”已知1匹=4丈,1丈=10尺,可估算出前半个月一共织的布约有( )A .195尺B .133尺C .130尺D .135尺例31. 《张丘建算经》是中国古代的数学著作,书中有一道题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现一月(按30天计)共织390尺布”,则第30天织布( )A .7尺B .14尺C .21尺D .28尺例32. 朱世杰是历史上伟大的数学家之一,他所著的《四元玉鉴》卷中“如像招数”五问中有如下一段话:“今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日转多七人.”其大意为“官府陆续派遣1864人前往修筑堤坝,第一天派出64人,从第二天开始每天派出的人数比前一天多7人.”该段话中的1 864人全部派遣到位需要的天数为( )A .9B .16C .18D .20例33. 我国古代的天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气晷(ɡuǐ)长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).二十四个节气及晷长变化如图所示,相邻两个节气晷长的变化量相同,周而复始.若冬至晷长一丈三尺五寸,夏至晷长一尺五寸(一丈等于十尺,一尺等于十寸),则夏至之后的那个节气(小暑)晷长是( )A .五寸B .二尺五寸C .三尺五寸D .四尺五寸 例34. “斐波那契”数列由十三世纪意大利数学家斐波那契发现.数列中的一系列数字常被人们称之为神奇数.具体数列为1,1,2,3,5,8⋯,即从该数列的第三项数字开始,每个数字等于前两个相邻数字之和.已知数列{}n a 为“斐波那契”数列,n S 为数列{}n a 的前项和,若2020a =M 则2018=S __________.(用M 表示)例35. “斐波那契”数列是由十三世纪意大利数学家斐波那契发现的.数列中的一系列数字常被人们称为神奇数.具体数列为:1,1,2,3,5,8,13,…,即从该数列的第三项开始,每个数字都等于前两个相邻数字之和.已知数列{a n }为“斐波那契”数列,S n 为数列{a n }的前n 项和,若a 2 021=m ,则S 2 019=( )A .2mB .2m -12C .m +1D .m -1例36. 大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中华传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0,2,4,8,12,18,24,32,40,50,…,则此数列的第20项为( )A .220B .200C .180D .162例37. 《九章算术》中有一题:今有牛、马、羊食人苗.苗主责之粟五斗.羊主曰:“我羊食半马”.马主曰:“我马食半牛.”今欲衰偿之,问各出几何.其意思是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿五斗粟.羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半.”若按此比例偿还,牛、马、羊的主人各应赔偿多少粟?在这个问题中,牛主人比羊主人多赔偿( )A.507斗粟 B .107斗粟 C.157斗粟 D .207斗粟 例38. 《九章算术》中的“两鼠穿墙题”是我国数学的古典名题:“今有垣厚若干尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,问何日相逢,各穿几何?”题意是:有两只老鼠从墙的两边打洞穿墙,大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半,问几天两只老鼠能相遇,相遇时各自打了多少尺的墙.如果墙足够厚,S n 为前n 天两只老鼠打洞长度之和,则S n = 尺.例39. 如图所示是毕达哥拉斯的生长程序:正方形上连接着等腰直角三角形,等腰直角三角形边上再连接正方形,如此继续,若共得到4 095个正方形,设初始正方形的边长为√22,则最小正方形的边长为 .四、数学文化与新定义例40.德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数f(x)={1,x为有理数,0,x为无理数称为狄利克雷函数,则关于函数f(x)有以下四个命题:①f(f(x))=1;②函数f(x)是偶函数;③任意一个非零有理数T,f(x+T)=f(x)对任意x∈R恒成立;④存在三个点A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC为等边三角形.其中真命题的个数是()A.4B.3C.2D.1例41.规定记号“Δ”表示一种运算,即aΔb a+b,a,b∈R.若1Δk=3,则函数f(x)=kΔx的值域是________.例42.定义一种运算“※”,对于任意n∈N*均满足以下运算性质:(1)2※2017=1;(2)(2n +2)※2017=(2n)※2017+3.则2018※2017=________.例43.定义:若数列{a n}对任意的正整数n,都有|a n+1|+|a n|=d(d为常数),则称{a n}为“绝对和数列”,d叫作“绝对公和”.在“绝对和数列”{a n}中,a1=2,“绝对公和”为3,则其前2 019项的和S2019的最小值为()A.-3022B.3022C.-3025D.3035例44.设集合A={-1,0,1},集合B={0,1,2,3},定义A*B={(x,y)|x∈A∩B,y∈A∪B},则A*B中元素的个数是()A.7B.10C.25D.52例45.中国古代数学名草《周髀算经》曾记载有“勾股各自乘,并而开方除之”,用符号表示为()222*,,a b c a b c N+=∈,我们把a,b,c叫做勾股数.下列给出几组勾股数:3,4,5;5,12,13;7,24,25;9,40,41,以此类推,可猜测第5组股数的三个数依次是_____. 例46.设P,Q为两个非空实数集合,定义集合P⊗Q={z|z=a÷b,a∈P,b∈Q},若P={-1,0,1},Q={-2,2},则集合P⊗Q中元素的个数是()A.2 B.3C.4D.5例47. 设向量a 与b 的夹角为θ,定义a 与b 的“向量积”:a×b 是一个向量,它的模|a×b|=|a|·|b|·sin θ,若a =(-3,-1),b =(1,3),则|a×b |=( )A .3B .2C .23D .4例48. 如果把四个面都是直角三角形的四面体称为“三节棍体”,那么从长方体八个顶点中任取四个顶点,则这四个顶点是“三节棍体”的四个顶点的概率为________.例49. 中国古代近似计算方法源远流长,早在八世纪,我国著名数学家、天文学家张隧(法号:一行)为编制《大衍历》发明了一种近似计算的方法一二次插值算法(又称一行算法,牛顿也创造了此算法,但是比我国张隧晚了上千年):函数()y f x =在1x x =,2x x =,()3123x x x x x =<<处的函数值分别为()11y f x =,()22y f x =,()33y f x =则在区间[]3,i x x 上()f x 可以用二次函数来近似代替:()()()111212()f x y k x x k x x x x =+-+--,其中21121y y k x x -=-,3232y y k x x -=-,1231k k k x x -=-,若令10x =,22x π=,3x π=,请依据上述算法,估算2sin5π是( ) A .35B .1625C .1725D .2425例50. 设函数f (x )=x -[x ],其中[x ]表示不超过x 的最大整数,如[-1.2]=-2,[1.2]=1,[1]=1.将函数f (x )在区间(0,2)上零点的个数记为m ,函数f (x )与g (x )=-x 3的图象的交点个数记为n ,则定积分⎠⎛mn g (x )d x =________.例51. 若计算由曲线y =x 及直线x =1和x 轴所围成的曲边三角形的面积时,可将区间[0,1]等分为若干个小区间,并以直代曲得到若干个窄边矩形,其面积表示为x i ·Δx (i =1,2,3,…).当区间[0,1]被无限细分时,这些窄边矩形的面积之和将趋近于曲边三角形的面积,且面积S =⎠⎛01x d x .类比曲边三角形面积的求法,计算曲线y =x 及直线x =1和x 轴所围成的曲边三角形绕x 轴旋转360°所成旋转体的体积,则体积V 可以表示为( )A.⎠⎛01πx d xB.⎠⎛01π(x )2d xC.⎠⎛01x x d xD.⎠⎛019π(x )2d x例52. 已知x 为实数,[x ]表示不超过实数x 的最大整数,则函数f (x )=x -[x ]在R 上为( )A .奇函数B .偶函数C .增函数D .周期函数例53.我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点A(-2,3)且法向量为n=(4,-1)的直线(点法式)方程为4×(x+2)+(-1)×(y-3)=0,化简得4x-y+11=0.类比以上方法,在空间直角坐标系中,经过点B(1,2,3)且法向量为m=(-1,-2,1)的平面(点法式)方程为___________.五、数学文化与三角函数例54. 第24届国际数学家大会会标是以我国古代数学家赵爽的弦图为基础进行设计的.如图,会标是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.如果小正方形的面积为1,大正方形的面积为25,直角三角形中较大的锐角为θ,那么tan ⎝⎛⎭⎫θ+π4=________.例55. 秦九韶是我国南宋著名数学家,在他的著作《数书九章》中有己知三边求三角形面积的方法:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上以小斜幂乘大斜幂减上,余四约之,为实一为从陽,开平方得积.”如果把以上这段文字写成公式就是S =,,a b c 是ABC 的内角,,A B C 的对边为.若sin 2sin cos C A B =,且222b c +=,则ABC 面积S 的最大值为________.例56. “数摺聚清风,一捻生秋意”是宋朝朱翌描写折扇的诗句,折扇出入怀袖,扇面书画,扇骨雕琢,是文人雅士的宠物,所以又有“怀袖雅物”的别号.如图是折扇的示意图,A 为OB 的中点,若在整个扇形区域内随机取一点,则此点取自扇面(扇环)部分的概率是( )A .14B .12C .34D .58例57.《九章算术》是我国古代著名数学经典.其中对勾股定理的论述比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深一寸,锯道长一尺.问这块圆柱形木料的直径是多少?长为1丈的圆柱形木材部分镶嵌在墙体中,截面图如图所示(阴影部分为镶嵌在墙体内的部分).已知弦1AB=尺,弓形高π≈,=寸, 3.14CD=寸,估算该木材镶嵌在墙中的体积约为( )(注:1丈101=尺1005sin22.5≈)13A.600立方寸B.610立方寸C.620立方寸D.633立方寸例58.赵爽是我国古代数学家大约在公元222年,他为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形由4个全等的直角三角形再加上中间的一个小正方形组成)类比“赵爽弦图”,可构造如图所示的图形,它是由3个全等的三角形与中间一个小等边三角形拼成的一个较大的等边三角形,设AD AB ACλμ=+,若2+=_________.=,则可以推出λμDF AF例59.干支纪年历法(农历),是屹立于世界民族之林的科学历法之一,与国际公历历法并存.黄帝时期,就有了使用六十花甲子的干支纪年历法.干支是天干和地支的总称,把干支顺序相配正好六十为一周期,周而复始,循环记录.甲、乙、丙、丁、戊、己、庚、辛、壬、癸十个符号叫天干;子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥十二个。
高中数学 数学文化综合测试 新人教A版选修4
高中数学数学文化综合测试新人教A版选修4 数学是人类文化的重要组成部分。
数学是人类社会进步的产物,也是推动社会发展的动力。
通过在高中阶段数学文化的学习,学生将初步了解数学科学与人类社会发展之间的相互作用,体会数学的科学价值、应用价值、人文价值,开阔视野,寻求数学进步的历史轨迹,激发对于数学创新原动力的认识,受到优秀文化的熏陶,领会数学的美学价值,从而提高自身的文化素养和创新意识。
要求1. 数学文化应尽可能有机地结合高中数学课程的内容,选择介绍一些对数学发展起重大作用的历史事件和人物,反映数学在人类社会进步、人类文明发展中的作用,同时也反映社会发展对数学发展的促进作用。
2. 学生通过数学文化的学习,了解人类社会发展与数学发展的相互作用,认识数学发生、发展的必然规律;了解人类从数学的角度认识客观世界的过程;发展求知、求实、勇于探索的情感和态度;体会数学的系统性、严密性、应用的广泛性,了解数学真理的相对性;提高学习数学的兴趣。
3. 以下选题供参考。
(1)数的产生与发展;(2)欧几里得《几何原本》与公理化思想;(3)平面解析几何的产生与数形结合的思想;(4)微积分与极限思想;(5)非欧几何与相对论问题;(6)拓扑学的产生;(7)二进制与计算机;(8)计算的复杂性;(9)广告中的数据与可靠性;(10)商标设计与几何图形;(11)黄金分割引出的数学问题;(12)艺术中的数学;(13)无限与悖论;(14)电视与图像压缩;(15)CT扫描中的数学——拉东变换;(16)军事与数学;(17)金融中的数学;(18)海岸线与分形;(19)系统的可靠性。
说明与建议1. 应当采取多样化的教学方式。
例如,教师可以在教授数学知识时介绍有关的背景文化;可以作专题演讲;也可以鼓励和指导学生就某个专题查找、阅读、收集资料文献,在此基础上,编写一些形式丰富的数学小作文、科普报告,并组织学生进行交流。
2. 教师应结合有关内容有意识地强调数学的科学价值、文化价值、美学价值。
数学文化考试答案分
数学文化考试答案分————————————————————————————————作者:————————————————————————————————日期:•《数学文化》期末考试(20)成绩:99.0分一、单选题(题数:50,共 50.0 分)1单因子构件凑成法进一步被华罗庚以及他的一些学生发展,成为()。
(1.0分)1.0分•A、“孙子—华原则”•B、“华罗庚原则”•C、“罗庚原则”•D、“孙子原则”我的答案:A2实数的“势”称为()。
(1.0分)1.0分•A、自然统势•B、循环统势•C、连续统势•D、自然统势我的答案:C3贝克莱主教对牛顿微积分理论的责难,是集中在对公式中()的争论上。
(1.0分)1.0分•A、g•B、t•C、ΔS•D、Δt我的答案:D4下列哪个故事与”物不知数“的题目类似?()(1.0分)1.0分•A、牟合方盖•B、丁谓施工•C、韩信点兵•D、田忌赛马我的答案:C5下列是对称的数学公式的是()。
(1.0分)1.0分•A、欧拉函数•B、薛定谔方程式•C、拉格朗日中值定理•D、海伦公式我的答案:D6在解决“哥尼斯堡七桥问题”时,数学家先做的第一步是()。
(1.0分)1.0分•A、分析•B、概括•C、推理•D、抽象我的答案:D7哥德尔来自哪个国家?()(1.0分)1.0分•A、法国•B、德国•C、奥地利•D、瑞士我的答案:C8类比是一种()推理。
(1.0分)1.0分•A、逻辑•B、合情•C、归纳•D、假言我的答案:B9如果要推广斐波那契数列,最应该关注的是数列的()。
(1.0分)1.0分•A、表达公式•B、递推关系•C、第一项•D、第二项我的答案:B10“中国剩余定理”即()的方法。
(1.0分)1.0分•A、大衍求一术•B、辗转相除法•C、四元术•D、更相减损术我的答案:A11在欧洲,三次方程的求根公式是由哪个国家的数学家探索到的?()(1.0分)1.0分•A、德国•B、英国•C、法国•D、意大利我的答案:D12第24届“国际数学家大会”会议的图标,与()有关。
(精选试题附答案)高中数学选修一真题
(名师选题)(精选试题附答案)高中数学选修一真题单选题1、点(1,2)关于直线x+y−2=0的对称点是()A.(1,0)B.(0,1)C.(0,−1)D.(2,1)答案:B分析:设出对称点,根据对称关系列出式子即可求解.解:设点A(1,2)关于直线x+y−2=0的对称点是B(a,b),则有{b−2a−1=1a+1 2+b+22−2=0,解得a=0,b=1,故点(1,2)关于直线x+y−2=0的对称点是(0,1). 故选:B.小提示:方法点睛:关于轴对称问题:(1)点A(a,b)关于直线Ax+By+C=0的对称点A′(m,n),则有{n−bm−a×(−AB)=−1A⋅a+m2+B⋅b+n2+C=0;(2)直线关于直线的对称可转化为点关于直线的对称问题来解决.2、直线y=x−1过抛物线C:y2=2px(p>0)的焦点F,且与C交于A、B两点,则|AB|=()A.6B.8C.2D.4答案:B分析:联立直线与抛物线的方程,根据抛物线的焦点坐标,结合焦点弦长公式求解即可因为抛物线C:y2=2px(p>0)的焦点坐标为F(p2,0),又直线y =x −1过抛物线C:y 2=2px(p >0)的焦点F ,所以p =2,抛物线C 的方程为y 2=4x ,由{y =x −1y 2=4x,得x 2−6x +1=0,所以x A +x B =6,所以|AB |=x A +x B +p =6+2=8. 故选:B3、如果AB >0且BC <0,那么直线Ax +By +C =0不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限 答案:C分析:通过直线经过的点来判断象限.由AB >0且BC <0,可得A,B 同号,B,C 异号,所以A,C 也是异号; 令x =0,得y =−CB >0;令y =0,得x =−CA >0; 所以直线Ax +By +C =0不经过第三象限. 故选:C.4、已知正四面体ABCD ,M 为BC 中点,N 为AD 中点,则直线BN 与直线DM 所成角的余弦值为( ) A .16B .23C .√2121D .4√2121答案:B分析:利用空间向量的线性运算性质,结合空间向量夹角公式进行求解即可. 设该正面体的棱长为1,因为M 为BC 中点,N 为AD 中点, 所以|BN⃑⃑⃑⃑⃑⃑ |=|DM ⃑⃑⃑⃑⃑⃑ |=√12−(12×1)2=√32, 因为M 为BC 中点,N 为AD 中点, 所以有BN ⃑⃑⃑⃑⃑⃑ =BA ⃑⃑⃑⃑⃑ +AN ⃑⃑⃑⃑⃑⃑ =−AB ⃑⃑⃑⃑⃑ +12AD ⃑⃑⃑⃑⃑ , DM ⃑⃑⃑⃑⃑⃑ =DB ⃑⃑⃑⃑⃑⃑ +BM ⃑⃑⃑⃑⃑⃑ =DA ⃑⃑⃑⃑⃑ +AB⃑⃑⃑⃑⃑ +12BC ⃑⃑⃑⃑⃑ =−AD ⃑⃑⃑⃑⃑ +AB ⃑⃑⃑⃑⃑ +12(AC ⃑⃑⃑⃑⃑ −AB ⃑⃑⃑⃑⃑ )=−AD ⃑⃑⃑⃑⃑ +12AB ⃑⃑⃑⃑⃑ +12AC ⃑⃑⃑⃑⃑ , BN⃑⃑⃑⃑⃑⃑ ⋅DM ⃑⃑⃑⃑⃑⃑ =(−AB ⃑⃑⃑⃑⃑ +12AD ⃑⃑⃑⃑⃑ )(−AD⃑⃑⃑⃑⃑ +12AB ⃑⃑⃑⃑⃑ +12AC ⃑⃑⃑⃑⃑ )=AB ⃑⃑⃑⃑⃑ ⋅AD ⃑⃑⃑⃑⃑ −12AB ⃑⃑⃑⃑⃑ 2−12AB ⃑⃑⃑⃑⃑ ⋅AC ⃑⃑⃑⃑⃑ −12AD ⃑⃑⃑⃑⃑ 2+14AB ⃑⃑⃑⃑⃑ ⋅AD ⃑⃑⃑⃑⃑ +14AC ⃑⃑⃑⃑⃑ ⋅AD ⃑⃑⃑⃑⃑ =1×1×12−12×12−12×1×1×12−12×12+14×1×1×12+14×1×1×12=−12,cos〈BN⃑⃑⃑⃑⃑⃑ ,DM ⃑⃑⃑⃑⃑⃑ 〉=BN⃑⃑⃑⃑⃑⃑ ⋅DM ⃑⃑⃑⃑⃑⃑⃑ |BN⃑⃑⃑⃑⃑⃑ |⋅|DM ⃑⃑⃑⃑⃑⃑⃑ |=−12√32×√32=−23,根据异面直线所成角的定义可知直线BN 与直线DM 所成角的余弦值为23, 故选:B5、若圆C 1:x 2+y 2−2ay =0(a >0)与圆C 2:x 2+y 2−4x +3=0相外切,则a 的值为( ) A .12B .23C .1D .32 答案:D分析:确定出两圆的圆心和半径,然后由两圆的位置关系建立方程求解即可.由x 2+y 2−2ay =0(a >0)可得x 2+(y −a )2=a 2,所以圆C 1的圆心为(0,a ),半径为a , 由x 2+y 2−4x +3=0可得(x −2)2+y 2=1,所以圆C 2的圆心为(2,0),半径为1, 因为两圆相外切,所以√4+a 2=a +1,解得a =32, 故选:D6、在直角坐标平面内,与点A(0,3)距离为2,且与点B(4,0)距离为3的直线共有( ) A .1条B .2条C .3条D .4条 答案:C分析:根据直线是否存在斜率,分类讨论,利用点到直线距离公式进行求解即可. 当直线不存在斜率时,设为x =a ,由题意可知:|a −0|=2且|a −4|=3, 没有实数a 使得两个式子同时成立;当直线存在斜率时,设直线方程为:y =kx +b ⇒kx −y +b =0,点A(0,3)到该直线的距离为2,所以有√k 2+(−1)2=2(1),点B(4,0)到该直线的距离为3,所以有√k 2+(−1)2=3(2),由(1)(2)得:b =8k +9或b =9−8k 5,当b =8k +9时,代入(1)中,得15k 2+24k +8=0,该方程的判别式Δ=242−4×15×8=96>0,该方程有两个不相等的实数根, 当b =9−8k 5时,代入(1)中,得9k 2−24k +16=0,该方程的判别式Δ=(−24)2−4×9×16=0,该方程有两个相等的实数根, 所以这样的直线共有三条, 故选:C.小提示:关键点睛:本题的关键是解方程组.7、已知点P 是抛物线y 2=2x 上的动点,点P 在y 轴上的射影是M ,点A(72,4),则|PA |+|PM |的最小值是( ) A .5B .92C .4D .32答案:B分析:先根据抛物线的方程求得焦点坐标和准线方程,延长PM 交准线于H 点推断出|PA |=|PH |,进而表示出|PM |,问题转化为求|PF |+|PA |的最小值,由三角形两边长大于第三边得到|PF |+|PA |的最小值,则|PA |+|PM |的最小值可得.依题意可知焦点F (12,0),准线 x =−12,延长PM 交准线于H 点.则|PF |=|PH |,∴|PM |=|PH |−12=|PF |−12∴|PM |+|PA |=|PF |+|PA |−12,∴要使|PM |+|PA |当且仅当|PF |+|PA |最小. 由三角形两边长大于第三边可知,|PF |+|PA |≥|FA |,① 当P 与线段AF 与抛物线的交点P 0重合时取到最小值,.由A(72,4),可得|FA|=√(72−12)2+42=5.则所求为(|PM|+|PA|)min=5−12=92.故选:B.8、已知椭圆C1:x2a12+y2b12=1(a1>b1>0)与双曲线C2:x2a22−y2b22=1(a2>0,b2>0)有公共焦点F1,F2,且两条曲线在第一象限的交点为P.若△PF1F2是以PF1为底边的等腰三角形,曲线C1,C2的离心率分别为e1和e2,则1 e1−1e2=()A.1B.2C.3D.4答案:B分析:设曲线C1,C2的焦距为2c,则可得|PF2|=|F1F2|=2c,然后结合椭圆和双曲线的定义可求出a1,a2,c的关系,变形后可得结果.设曲线C1,C2的焦距为2c.△PF1F2是以PF1为底边的等腰三角形,则|PF2|=|F1F2|=2c.由点P在第一象限,知|PF1|=2a1−|PF2|=2a2+|PF2|,即2a1−2c=2a2+2c,即a1−a2=2c,即1e1−1e2=2.故选:B9、已知直线斜率为k,且−1≤k≤√3,那么倾斜角α的取值范围是()A.[0,π3]∪[π2,3π4)B.[0,π3]∪[3π4,π)C.[0,π6]∪[π2,3π4)D.[0,π6]∪[3π4,π)答案:B分析:根据直线斜率的取值范围,以及斜率和倾斜角的对应关系,求得倾斜角α的取值范围. 解:直线l的斜率为k,且−1≤k≤√3,∴−1≤tanα≤√3,α∈[0,π).∴α∈[0,π3]∪[3π4,π).故选:B.10、已知圆O1:x2+y2=4,圆O2:x2+y2−2mx−2my−4=0(m≠0),则同时与圆O1和圆O2相切的直线有()A.4条B.2条C.1条D.0条答案:B分析:利用已知条件判断圆O1与圆O2的关系,进而可以求解.由O1:x2+y2=4,得圆O1(0,0),半径为r1=2,由O2:x2+y2−2mx−2my−4=0(m≠0),得O2(m,m),半径为r2=12√(−2m)2+(−2m)2−4×(−4)=√2m2+4所以|O1O2|=√(m−0)2+(m−0)2=√2m2>0,|r2−r1|=√2m2+4−2>0,r1+r2=2+√2m2+4,所以|r2−r1|<|O1O2|<r1+r2,所以圆O1与圆O2相交,所以圆O1与圆O2有两条公共的切线.故选:B.填空题11、已知向量a =(3,1),b ⃑ =(1,0),c =a +kb ⃑ .若a ⊥c ,则k =________. 答案:−103.分析:利用向量的坐标运算法则求得向量c ⃗的坐标,利用向量的数量积为零求得k 的值 ∵a ⃗=(3,1),b ⃑⃗=(1,0),∴c ⃗=a ⃗+kb ⃑⃗=(3+k,1), ∵a ⃗⊥c ⃗,∴a ⃗⋅c ⃗=3(3+k )+1×1=0,解得k =−103,所以答案是:−103.小提示:本题考查平面向量的坐标运算,平面向量垂直的条件,属基础题,利用平面向量p ⃗=(x 1,y 1),q ⃗=(x 2,y 2)垂直的充分必要条件是其数量积x 1x 2+y 1y 2=0.12、设双曲线x 2a 2−y 2b 2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,左,右顶点分别为A ,B ,以AB 为直径的圆与双曲线的渐近线在第一象限的交点为P ,若△PAF 2为等腰三角形,则直线PF 2的倾斜角的大小为________. 答案:5π6##150∘分析:由题意求得点P 的坐标,再根据△PAF 2为等腰三角形,得到x P =c−a 2,从而得到a ,b ,c 的关系,再利用斜率公式求解.解:以AB 为直径的圆的方程为x 2+y 2=a 2, 双曲线过第一象限的渐近线方程为y =ba x .由{x 2+y 2=a 2y =ba x,得P (a 2c ,ab c ). 由△PAF 2为等腰三角形,得点P 在线段AF 2的中垂线上,即x P =c−a 2.由a 2c =c−a 2,得c 2−ac −2a 2=0,即e 2−e −2=0,得e =2,所以c =2a .而b =√c 2−a 2=√3a ,则k PB=abca2c−c=−ab=−√33,故直线PE2倾斜角为5π6,所以答案是:5π6.13、已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,点P(x1,y1),Q(-x1,−y1)在椭圆C上,其中x1>0,y1>0,若|PQ|=2|OF2|,|QF1PF1|≥√33,则椭圆C的离心率的取值范围为_____.答案:(√22,√3−1]分析:设PF1=n,PF2=m,由已知得到mn的范围,再由椭圆的定义得到n,m间的关系,代入、换元,求出e 的范围.设PF1=n,PF2=m,由x1>0,y1>0,知m<n,因为P,Q在椭圆C上,|PQ|=2|OF2|,所以四边形PF1QF2为矩形,QF1=PF2;由|QF1||PF1|≥√33,可得√33≤mn<1,由椭圆的定义可得m+n=2a,n2+m2=4c2①,平方相减可得mn=2(a2-c2)②,由①②得4c 22(a2−c2)=m2+n2mn=mn+nm;令t=mn +nm,令v=mn ∈[√33,1),所以t=v+1v ∈(2,4√33],即2<4c22(a2−c2)≤4√33,所以a2-c2<c2≤2√33(a2-c2),所以1-e2<e2≤2√33(1-e2),所以12<e 2≤4−2√3,解得√22<e ≤√3−1.所以答案是:(√22,√3−1] .14、已知向量n =(2,0,1)为平面α的法向量,点A(−1,2,1)在α内,则点P(1,2,2)到平面α的距离为________________ 答案:√5分析:把点到平面距离问题转化为向量数量积问题求解. 解: PA⃑⃑⃑⃑⃑⃑ =(−2,0,−1),点P 到平面α的距离为|n ⃑⃑⃑⃑ ⋅PA ⃑⃑⃑⃑⃑ ||n⃑⃗|=√5=√5.所以答案是:√5.15、已知直线kx −y +2k =0与直线x +ky −2=0相交于点P ,点A (4,0),O 为坐标原点,则tan∠OAP 的最大值为_____________. 答案:√33##13√3 分析:根据给定条件,求出点P 的轨迹,结合图形利用几何意义求解作答. 直线kx −y +2k =0恒过定点M(−2,0),直线x +ky −2=0恒过定点N(2,0), 显然直线kx −y +2k =0与直线x +ky −2=0垂直,当k ≠0时,PM ⊥PN , 点P 在以MN 为直径的圆x 2+y 2=4(除点M ,N 外)上,当k =0时,点P(2,0), 因此,点P 的轨迹是以原点O 为圆心,2为半径的圆(除点M(−2,0)外),如图,观察图形知,点A 在圆O :x 2+y 2=4(x ≠−2)外,当直线AP 与圆O 相切时,∠OAP 为锐角且最大,tan∠OAP 最大,所以(tan∠OAP)max=√42−22=√33.所以答案是:√33解答题16、已知圆C:x2+y2−4x−2y+m=0与直线l:3x−4y−7=0相交于M,N两点且|MN|=2√3;(1)求m的值;(2)过点P作圆C的切线,切点为Q,再过P作圆C′:(x+2)2+(y+2)2=1的切线,切点为R,若|PQ|=|PR|,求|OP|的最小值(其中O为坐标原点).答案:(1)m=1;(2)35.分析:(1)写出圆C的圆心坐标,半径,利用半径、半弦、弦心距的关系列式求解即得;(2)设点P(x,y),借助切线长定理探求出点P的轨迹即可作答.(1)C:(x−2)2+(y−1)2=5−m>0的圆心C(2,1),半径R=√5−m,圆心到直线距离l的距离d=√32+42=1,则弦MN长|MN|=2√R2−d2=2√5−m−1=2√3,得m=1,所以m的值为1;(2)由(1)知圆C的圆心C(2,1),半径R=2,设P(x,y),由切线的性质得|PQ|=√|PC|2−R2=√(x−2)2+(y−1)2−4,圆C′:(x+2)2+(y+2)2=1的圆心C′(−2,−2),半径r=1,同理:|PR|=√|PC′|2−r2=√(x+2)2+(y+2)2−1,而|PQ|=|PR|,即√(x−2)2+(y−1)2−4=√(x+2)2+(y+2)2−1,化简得到:4x+3y+3=0,又点C(2,1)到直线4x+3y+3=0距离为145>2,点C′(−2,−2)到直线4x+3y+3=0距离为115>1,即直线4x+3y+3=0与两圆都无公共点,点P的轨迹为直线4x+3y+3=0,所以|OP|最小值即为原点到直线4x+3y+3=0距离d=√42+32=35.17、已知定点F1(−4,0)、F2(4,0)和动点M(x,y).(1)再从条件①、条件②这两个条件中选择一个作为已知,求:动点M的轨迹及其方程.条件①:|MF1|+|MF2|=12条件②:|MF1|+|MF2|=8(2)|MF1|+|MF2|=2a(a>0),求:动点M的轨迹及其方程.答案:(1)答案见解析;(2)答案见解析.分析:(1)根据不同的选择,结合椭圆的定义,即可求得动点M的轨迹及其方程;(2)对a的取值范围进行分类讨论,结合不同情况求得对应的轨迹及方程即可.(1)选择条件①:|MF1|+|MF2|=12,因为12>|F1F2|=8,故点M的轨迹是以F1,F2为焦点的椭圆,设其方程为x2a2+y2b2=1(a>b>0),则c=4,a=6,b2=a2−c2=20,故其方程为:x236+y220=1.即选择条件①,点M的轨迹是椭圆,其方程为x 236+y220=1;选择条件②:|MF1|+|MF2|=8,因为8=|F1F2|,故点M的轨迹是线段F1F2,其方程为y=0,(−4≤x≤4).(2)因为|MF1|+|MF2|=2a(a>0),当0<a<4时,此时动点M不存在,没有轨迹和方程;当a=4时,此时2a=|F1F2|,由(1)可知,此时动点M的轨迹是线段F1F2,其方程为y=0,(−4≤x≤4);当a>4时,此时2a>|F1F2|,此时点M的轨迹是以F1,F2为焦点的椭圆,其方程为x2a2+y2a2−16=1.综上所述:当0<a<4时,动点M没有轨迹和方程;当a=4时,动点M的轨迹是线段F1F2,其方程为y=0,(−4≤x≤4);当a>4时,动点M的轨迹是以F1,F2为焦点的椭圆,其方程为x2a2+y2a2−16=1.18、已知△ABC的顶点B(5,1),AB边上的高所在的直线方程为x−2y−5=0.(1)求直线AB的方程;(2)在两个条件中任选一个,补充在下面问题中.①角A的平分线所在直线方程为x+2y−13=0②BC边上的中线所在的直线方程为2x−y−5=0______,求直线AC的方程.答案:(1)2x+y−11=0;(2)若选①:直线AC的方程为2x−11y+49=0;若选②:直线AC的方程为6x−5y−9=0.分析:(1)由两直线垂直时,其斜率间的关系求得直线AB的斜率为k,再由直线的点斜式方程可求得答案;(2)若选①:由{2x+y−11=0x+2y−13=0,求得点A(3,5),再求得点B关于x+2y−13=0的对称点B′(x0,y0),由此可求得直线AC的方程;若选②:由{2x+y−11=02x−y−5=0,求得点A(4,3),设点C(x1,y1),由BC的中点在直线2x−y−5=0上,和点C 在直线x−2y−5=0上,求得点C(−1,−3),由此可求得直线AC的方程.(1)解:因为AB边上的高所在的直线方程为x−2y−5=0,所以直线AB的斜率为k=−2,又因为△ABC的顶点B(5,1),所以直线AB的方程为:y−1=−2(x−5),所以直线AB的方程为:2x+y−11=0;(2)解:若选①:角A的平分线所在直线方程为x+2y−13=0,由{2x+y−11=0x+2y−13=0,解得{x=3y=5,所以点A(3,5),设点B 关于x +2y −13=0的对称点B ′(x 0,y 0),则{y 0−1x 0−5×(−12)=−1x 0+52+2×y 0+12−13=0 ,解得{x 0=375y 0=295,所以B ′(375,295),又点B ′(375,295)在直线AC 上,所以k AC =5−2953−375=211, 所以直线AC 的方程为y −5=211(x −3),所以直线AC 的方程为2x −11y +49=0;若选②:BC 边上的中线所在的直线方程为2x −y −5=0,由{2x +y −11=02x −y −5=0,解得{x =4y =3 ,所以点A(4,3), 设点C(x 1,y 1),则BC 的中点在直线2x −y −5=0上,所以2×5+x 12−1+y 12−5=0,即2x 1−y 1−1=0,所以点C 在直线2x −y −1=0上,又点C 在直线x −2y −5=0上,由{x −2y −5=02x −y −1=0解得{x =−1y =−3 ,即C(−1,−3), 所以k AC =−3−3−1−4=65, 所以直线AC 的方程为y −3=65(x −4),所以直线AC 的方程为6x −5y −9=0.19、求适合下列条件的双曲线的标准方程:(1)经过点(√6,0),(3,2);(2)焦点为(0,−5),(0,5),经过点(4√33,2√3); (3)a =b ,经过点(3,−1);(4)经过(3,−4√2)和(94,5)两点.答案:(1)x 26−y 28=1; (2)y 29−x 216=1;(3)x 28−y 28=1; (4)y 216−x 29=1.分析:(1)根据题意,由双曲线经过点(√6,0),分析可得双曲线的焦点为x 轴上,且a =√6,设双曲线的标准方程为:x 26−y 2b 2=1,将点(3,2)代入计算可得b 2的值,将b 2的值代入双曲线的方程,即可得答案;(2)根据题意,分析可得双曲线的焦点在y 轴上,且c =5,由双曲线的定义计算可得a 的值,结合双曲线的几何性质可得b 2的值,将a 2、b 2的值代入双曲线的方程,即可得答案.(3)根据题意,设双曲线的方程为:x 2−y 2=t ,将点(3,−1)代入其中计算可得t 的值,即可得双曲线的方程,变形为标准方程即可得答案;(4)根据题意,设双曲线的方程为mx 2−ny 2=1,将(3,−4√2)和(94,5)两点坐标代入双曲线方程可得{9m −32n =18116m −25n =1 ,解可得:m 、n 的值,将m 、n 的值代入双曲线方程即可得答案.(1)根据题意,双曲线经过点(√6,0),则双曲线的焦点在x 轴上,且a =√6,设双曲线的标准方程为:x 26−y 2b 2=1,双曲线经过(3,2),则有96−4b 2=1,解可得b 2=8,则双曲线的标准方程为:x 26−y 28=1;(2)根据题意,焦点为(0,−5),(0,5),则双曲线的焦点在y 轴上,且c =5,∵双曲线过点(4√33,2√3),故根据双曲线的定义可知: 2a =|√(4√33)2+(2√3+5)2−√(4√33)2+(2√3−5)2|=6,则a =3,则b 2=c 2−a 2=16,则双曲线的标准方程为:y 29−x 216=1;(3)根据题意,双曲线中a =b ,设双曲线的方程为:x 2−y 2=t , 又由双曲线经过点(3,−1),则有t = 32−(−1)2=8, 则双曲线的方程为x 2−y 2=8,则双曲线的标准方程为:x 28−y 28=1; (4)根据题意,设双曲线的方程为mx 2−ny 2=1(mn >0),双曲线经过(3,−4√2)和(94,5)两点,则有{9m −32n =18116m −25n =1 , 解可得:m =−19,n =−116,则双曲线的标准方程为:y 216−x 29=1.。
数学文化考试答案
一、单选题(题数:40,共40.0分)1拓扑学是数学的一个分支,是()引出来的。
(1.0分)1.0分A、阿基米德B、罗素C、欧拉D、华罗庚正确答案:C我的答案:C2在(),第一次数学危机得到了真正解决。
(1.0分)1.0分A、17世纪B、18世纪C、19世纪D、16世纪正确答案:C我的答案:C3运用9个平面,空间可以分为()部分。
(1.0分)1.0分A、64B、93C、130D、42正确答案:C我的答案:C4第一次用计算机证明数学定理发生在1972年,主要是证明()。
(1.0分)1.0分A、多边形内角和B、哥尼斯堡七桥问题C、勾股定理D、四色问题正确答案:D我的答案:D5子集N的对称集合S(N)不是一个普通集合,它是一个具有()的集合。
(1.0分)1.0分A、常数结构B、有理数结构C、代数结构D、玄数结构正确答案:C我的答案:C6数学发展史上一共有()次危机,都是数学的基本部分收到了质疑;但每一次危机,都引发了数学的思想解放。
()(1.0分)1.0分A、一B、二C、三D、四正确答案:C我的答案:C7第一次数学危机是由()提出的。
(1.0分)1.0分A、牛顿学派B、毕达哥拉斯学派内部C、贝克莱大主教D、阿基米德正确答案:B我的答案:B8哥德尔是哪一国家的?()(1.0分)1.0分A、德国B、奥地利C、瑞士D、法国正确答案:B我的答案:B9数学让人受益终身的精华是()。
(1.0分)1.0分A、数学思维B、数学知识C、数学素养D、数学分数正确答案:C我的答案:C10自然数集是()的真子集,但是却能和它一一对应。
(1.0分)1.0分A、有理数集B、无理数集C、实数集D、素数集正确答案:A我的答案:A11数学的起源时期指的是(),这一时期人类建立了自然数的概念,认识了简单的几何图形;但算数和几何尚未分开。
(1.0分)1.0分A、远古-公元前5世纪B、远古-原始社会C、远古-公元5世纪D、远古到公元元年正确答案:A我的答案:A12“把未知的问题转化为已知的问题;把待解决的问题归结为已解决的问题,从而解决问题。
小学数学文化素养试卷答案
一、选择题(每题2分,共20分)1. 下列哪个数是质数?A. 15B. 17C. 18D. 20答案:B2. 以下哪个图形是轴对称图形?A. 长方形B. 正方形C. 平行四边形D. 梯形答案:B3. 下列哪个算式的结果是偶数?A. 7 + 3B. 6 × 5C. 9 - 2D. 8 ÷ 4答案:B4. 下列哪个数既是奇数又是质数?A. 3B. 4C. 5D. 6答案:A5. 下列哪个几何图形的周长和面积相等?A. 正方形B. 长方形C. 等腰三角形D. 梯形答案:A6. 下列哪个数是三位数的平方根?A. 10B. 100C. 1000D. 10000答案:B7. 下列哪个算式的结果是2.5?A. 1.25 × 2B. 1.25 ÷ 0.5C. 1.25 + 0.5D. 1.25 - 0.5答案:B8. 下列哪个图形是立体图形?A. 平面图形B. 线段D. 体积答案:D9. 下列哪个数是分数?A. 0.5B. 1.5C. 2.5D. 3.5答案:A10. 下列哪个数是百分数?A. 50B. 50%C. 0.5D. 0.05答案:B二、填空题(每题2分,共20分)11. 一个正方形的边长是3厘米,它的周长是______厘米。
答案:1212. 5个苹果比3个苹果多______个。
答案:213. 2/3的分数单位是______。
答案:1/314. 下列数中,最大的数是______。
15. 一个长方形的面积是24平方厘米,长是6厘米,它的宽是______厘米。
答案:416. 100%等于______。
答案:117. 一个圆的半径是4厘米,它的周长是______厘米。
答案:25.1218. 下列算式中,结果最小的是______。
答案:1/419. 一个数加上它的2倍,结果是12,这个数是______。
答案:420. 下列数中,最小的数是______。
答案:-5三、简答题(每题5分,共20分)21. 简述分数的意义。
数学文化题目及解答
数学文化题目及解答数学文化题目及解答(一)1、毕达哥拉斯学派发现第一个不能被整数比的数是根号二2、数学是研究现实世界中的数量关系和空间形式:恩格斯3、四色猜想的提出者:英国人古德里4、不属于数学起源的河谷地带:密西西比河5、平面图形对称中用到的三种运动:平移折叠旋转7、现代数学起源于:19世纪20年8、相容的体系一定是不完全的,得出这个结论的是:哥德尔第一定理9、高等数学的研究范围不包括:常量10、反证法是依据逻辑学中的:排中律11、被称为理发师悖论的悖论是:罗素悖论12:、上海路佳明发现的元朝玉桂:1986年13、1993年,经哥德尔证明,把“连续统假设”加紧急合论的zf 系统中是相容的,不会导致矛盾:康托集合论14、被积函数不连续,其定积分也可能存在的理论的提出者:黎曼15、根据两个事物之间的相同或相拟之处,推知她们在其他方面也有可能相同或相拟的推理方法:类比16、极限理论的创立者:柯西18、.下列不属于黄金分割点的是(C)A.印堂 B. 膝盖 C.鼻子D都不对19、5个平面分空间,最多可分为(C)A22 B25 C26 D2820、.S(N)中任意两个元素,相继作用的结果仍保持N整体不变,仍在S(N)中,称之为S(N)中的运算满足(B)A幺元律B封闭率C结合律D都不对21、南开大学每年出的杂志,收录数学文化课的学生优秀读书报告:数学之美22、下列公式中不对称的是(A)A.勾股定理B海伦定理C正玄定理D都不对23、为了庆祝毕达哥拉斯定理的发现,当时的毕达哥拉斯学派宰了什么:牛24、《几何学》的作者是:笛卡尔25、直角三角形的两直角边的平方和等于斜边的平方这一定理在西方叫做毕达哥拉斯定理26、1820-1870年是现代数学的(C)A.形成阶段 B.繁荣阶段 C.酝酿阶段 D.衰落阶段27、下列不属于形式的公理化方法在逻辑上所要满足的要求的是:客观性28、数学文化这个词最早出现于(C)A.1986 B. 1974 C.1990 D.199629、大多数植物的花瓣数都符合(C)A.黄金分割 B.素数分割C裴波那契数列 D.都不对1、保持平面上任意两点间距离不变的运动是保距变换:对2、父女关系与夫妻关系是一种对称关系:不是,错3、之有数学专业的人在需要数学素养:错4、不懂数学的人也可以搞社会学:错5、数学的研究对象和具体的自然科学的研究对象很不一样,具有、、、:对6、近代数学时期是公元17世纪到19世纪,和工业革命、天文、航天业的发展有关。
高中数学文化选题(解析版)
数学文化选题一、选择题1.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现在有一根金箠,一头粗,一头细,在粗的一端截下1尺,重4斤;在细的一端截下1尺,重2斤,问依次每一尺各重多少斤?”根据上题的已知条件,若金箠由粗到细是均匀变化的,中间3尺的重量为A. 6斤B. 9斤C. 10斤D. 12斤【答案】B【解析】试题分析:此问题是一个等差数列,设首项为,则,∴中间尺的重量为斤.故选:B.学科&网2.“珠算之父”程大位是我国明代伟大数学家,他的应用数学巨著《算法统综》的问世,标志着我国的算法由筹算到珠算转变的完成.程大位在《算法统综》中常以诗歌的形式呈现数学问题,其中有一首“竹筒容米”问题:“家有九节竹一茎,为因盛米不均平,下头三节三升九,上梢四节贮三升,唯有中间两节竹,要将米数次第盛,若有先生能算法,也教算得到天明.”([注释]三升九:3.9升.次第盛:盛米容积依次相差同一数量.)用你所学的数学知识求得中间两节的容积为A. 1.9升B. 2.1升C. 2.2升D. 2.3升【答案】B3.中国古代名词“刍童”原来是草堆的意思,古代用它作为长方棱台(上、下底面均为矩形额棱台)的专用术语.关于“刍童”体积计算的描述,《九章算术》注曰:“倍上表,下表从之.亦倍下表,上表从之,各以其广乘之,并,以高若深乘之,皆六面一.”其计算方法是:将上底面的长乘二,与下底面的长相加,再与上底面的宽相乘;将下底面的长乘二,与上底面的长相加,再与下底面的宽相乘;把这两个数值相加,与高相乘,再取其六分之一,以此算法,现有上下底面为相似矩形的棱台,相似比为,高为3,且上底面的周长为6,则该棱台的体积的最大值是A. 14B. 56C.D. 63【答案】C4.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有邹亮,下广三丈,茅四仗,无广;高一丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的锲体,下底面宽仗长仗;上棱长仗,高一丈,问它的体积是多少?”已知丈为尺,现将该锲体的三视图给出右图所示,齐总网格纸小正方形的边长1丈,则该锲体的体积为A. 立方尺B. 立方尺C. 立方尺D. 立方尺【答案】A5.我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大创举.这个伟大创举与我国古老的算法—“辗转相除法”实质一样.如图的程序框图即源于“辗转相除法”,当输入时,输出的A. 6B. 9C. 12D. 18【答案】D【解析】试题分析:模拟程序框图的运行过程,如下;a=6102,b=2016,执行循环体,r=54,a=2016,b=54,不满足退出循环的条件,执行循环体,r=18,a=54,b=18,不满足退出循环的条件,执行循环体,r=0,a=18,b=0,满足退出循环的条件r=0,退出循环,输出a的值为18. 学科&网6.《九章算术》是我国古代的数字名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各德几何.”其意思为“已知五人分5钱,两人所得与三人所得相同,且每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,所得为A. 钱B. 钱C. 钱D. 钱【答案】A7.我国古代著名的思想家庄子在《庄子·天下篇》中说:“一尺之棰,日取其半,万世不竭.”用现代语言叙述为:一尺长的木棒,每日取其一半,永远也取不完. 这样,每日剩下的部分都是前一日的一半. 如果把“一尺之棰”看成单位“”,那么剩下的部分所成的数列的通项公式为A. B. C. D.【答案】C【解析】由“一尺长的木棒,每日取其一半.”可知每天剩下的木棒构成一个首相为1,公比为的等比数列.所以该数列的通项公式为.故选C.8.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式为:弧田面积=1/2(弦矢+矢2).弧田(如图),由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为,半径等于4米的弧田.按照上述方法计算出弧田的面积约为A. 6平方米B. 9平方米C. 12平方米D. 15平方米[来源学科网ZXXK]【答案】B9.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”则该人最后一天走的路程为A. 24里B. 12里C. 6里D. 3里【答案】C【解析】试题分析:记每天走的路程里数为,易知是公比的等比数列,,,故选C. 学科&网10.《张丘建算经》卷上第22题为“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈.”其意思为:现有一善于织布的女子,从第2天开始,每天比前一天多织相同量的布,第1天织了5尺布,现在一月(按30天计算)共织390尺布,记该女子一月中的第n天所织布的尺数为a n,则a14+a15+a16+a17的值为A. 55B. 52C. 39D. 26【答案】B11.吴敬《九章算法比类大全》中描述:远望巍巍塔七层,红灯向下成培增,共灯三百八十一,请问塔顶几盏灯?A. B. C. D.【答案】C【解析】根据“红灯向下成培增”可得该塔每层的灯从上到下构成一个等比数列,公比为2,其中.由等比数列的前n项和公式可得.故选C.12.公元263年左右,我国数学家刘徽发现,当圆内接多边形的边数无限增加时,多边形面积可无限逼近圆的面积,由此创立了割圆术,利用割圆术刘徽得到了圆周率精确到小数点后面两位的近似值3.14,这就是著名的徽率.如图是利用刘徽的割圆术设计的程序框图,则输出的n值为(参考数据:,,)[来源:]A. B. C. D.【答案】B13.远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.下图所示的是一位母亲记录的孩子自出生后的天数,在从右向左依次排列的不同绳子上打结,满七进一,根据图示可知,孩子已经出生的天数A. 336B. 510C. 1326D. 3603【答案】B【解析】试题分析:由题意满七进一,可得该图示为七进制数, 化为十进制数为,故选B.14.欧拉公式(为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,表示的复数在复平面中位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B15. 《九章算术》是我国古代的数学巨著,其卷第五“商功”有如下的问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈.问积几何?”意思为:“今有底面为矩形的屋脊形状的多面体(如图)”,下底面宽丈,长丈,上棱丈,.与平面的距离为1丈,问它的体积是A. 4立方丈B. 5立方丈C. 6立方丈D. 8立方丈【答案】B【解析】延长EF、FE分别到H、G,且|FH|=|EG|=1,则该几何体为直三棱柱,三棱锥F-BCH的体积为,三棱柱的体积为,所以所求体积为.故选B.16.中国传统文化中很多内容体现了数学的“对称美”.如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分体现了相互转化、对称统一的形式美、和谐美.给出定义:能够将圆O的周长和面积同时平分的函数称为这个圆的“优美函数”.给出下列命题:①对于任意一个圆O,其“优美函数”有无数个;②函数可以是某个圆的“优美函数”;③正弦函数可以同时是无数个圆的“优美函数”;④函数是“优美函数”的充要条件为函数的图象是中心对称图形.其中正确的有A. ①③B. ①③④C. ②③D. ①④【答案】A17.《数书九章》中对已知三角形三边长求三角形的面积的求法填补了我国传统数学的一个空白,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水平,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实.一为从隅,开平方得积.”若把以上这段文字写成公式,即.现有周长为的满足,试用以上给出的公式求得的面积为A. B. C. D.【答案】A二、填空题18.埃及数学中有一个独特现象:除用一个单独的符号表示以外,其它分数都要写成若干个单分数和的形式.例如可以这样理解:假定有两个面包,要平均分给5个人,如果每人,不够,每人,余,再将这分成5份,每人得,这样每人分得.形如的分数的分解:按此规律,____________;____________.【答案】(1). ;(2).19.鲁班锁是中国传统的智力玩具,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称.从外表上看,六根等长的正四棱柱体分成三组,经榫卯起来,如图3,若正四棱柱体的高为,底面正方形的边长为,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积的最小值为__________.(容器壁的厚度忽略不计)【答案】20.现介绍祖暅原理求球体体积公式的做法:可构造一个底面半径和高都与球半径相等的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,用这样一个几何体与半球应用祖暅原理(图1),即可求得球的体积公式.请研究和理解球的体积公式求法的基础上,解答以下问题:已知椭圆的标准方程为,将此椭圆绕y轴旋转一周后,得一橄榄状的几何体(图2),其体积等于______.[来源:]【答案】【解析】椭圆的长半轴为5,短半轴为2,现构造一个底面半径为2,高为5的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,根据祖暅原理得出椭球的体积V=2(V圆柱﹣V圆锥)=2(π×22×5﹣)=.[来源学科网Z.X.X.K]21.艾萨克·牛顿(1643年1月4日----1727年3月31日)英国皇家学会会长,英国著名物理学家,同时在数学上也有许多杰出贡献,牛顿用“作切线”的方法求函数零点时给出一个数列:满足,我们把该数列称为牛顿数列.如果函数有两个零点1,2,数列为牛顿数列,设,已知,则的通项公式__________.【答案】22.公元前3世纪,古希腊欧几里得在《几何原本》里提出:“球的体积(V )与它的直径(D )的立方成正比”,此即3V kD =,欧几里得未给出k 的值.17世纪日本数学家们对求球的体积的方法还不了解,他们将体积公式3V kD =中的常数k 称为“立圆率”或“玉积率”.类似地,对于等边圆柱(轴截面是正方形的圆柱)、正方体也可利用公式3V kD =求体积(在等边圆柱中, D 表示底面圆的直径;在正方体中, D 表示棱长).假设运用次体积公式求得球(直径为a )、等边圆柱(底面积的直径为a )、正方体(棱长为a )的“玉积率”分别为1k 、2k 、3k ,那么123::k k k =__________.【答案】::164ππ【解析】 由题意得,球的体积为333114433266a V R a k ππππ⎛⎫===⇒= ⎪⎝⎭; 、等边圆柱的体积为22322244a V R a a a k ππππ⎛⎫===⇒= ⎪⎝⎭;学科&网正方体的体积3321V a k =⇒=,所以123::::164k k k ππ=[来源学科网].。
小学教师数学文化考试卷及答案
进城考试小学数学文化考试卷及答案答案说明:本卷共有六个大题,25个小题,全卷满分120分,考试时间120分钟一、选择题(本大题共10小题,每小题3分,共30分)1.下列事件中是必然事件的是( )A.2008年10月1日北京是晴天B.小明买了一张福利彩票能中奖C.小李打靶一定能打中十环D.将一块石头扔到水里,石头会下沉。
2.若20x ++=,则xy 的值为( )A .8-B .6-C .5D .63.如图,下列选项中不是正六棱柱三视图的是( )4.已知{}n a 是等差数列,124a a +=,7828a a +=,则该数列前10项和10S 等于( )A .64B .100C .110D .1205.如图是一张简易活动餐桌,现测得OA=OB=30cm , OC=OD=50cm ,现要求桌面离地面的高度为40cm ,那么 两条桌腿的张角∠COD 的大小应为 ( )A .100°;B .120°;C .135°;D .150°.6.如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是( ) A.k >14-B.k >14-且0k ≠ C.k <14-D.14k ≥-且k ≠7.函数14)y x =+≤≤的反函数是( ) A .2(1)(13)y x x =-≤≤B .2(1)(04)y x x =-≤≤C .21(13)y x x =-≤≤D .21(04)y x x =-≤≤8.王师傅在楼顶上的点A 处测得楼前一棵树CD 的顶端C 的俯角为60 o , 又知水平距离BD=10m ,楼高AB=24 m ,则树高CD 为( ) A .()31024-m B .⎪⎪⎭⎫⎝⎛-331024m C .()3524-m D .9m9.若圆C 的半径为1,圆心在第一象限,且与直线430x y -=和x 轴相切,则该圆的标准方程是( )A .227(3)13x y ⎛⎫-+-= ⎪⎝⎭B .22(2)(1)1xy -+-=C .22(1)(3)1x y -+-=D .223(1)12x y ⎛⎫-+-= ⎪⎝⎭10.以正方形ABCD 的BC 边为直径作半圆O ,过点D 作直线切半圆于点F ,交AB 边于点E ,则ΔADE 和直角梯形EBCD 周长之比为( )A .B .C .D .16题A. 3:4B. 4:5C. 5:6D.6:7二、填空题(本大题共有6小题,每题3分,共18分)11.在抗震救灾过程中,共产党员充分发挥了先锋模范作用,截止5月28日17时,全国党员已缴纳特殊党费26.84亿元,用科学记数法表示为 元(结果保留两个有效数字). 12.(1)1lim2n a n n a∞++=+→,则a = .13.已知圆锥的底面直径为4cm ,其母线长为3cm ,则它的侧面积为2cm.14.一幅图案.在某个顶点处由三个边长相等的正多边形镶嵌而成.其中的两个分别是正方形和正六边形,则第三个正多边形的边数是 .15.设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ .16.如图,直线2y kx =- (k >0)与双曲线xk y =在第一象限内的交点面积为R ,与x 轴的交点为P ,与y 轴的交点为Q ;作RM ⊥x 轴于 点M ,若△OPQ 与△PRM 的面积是4:1,则=k .三、(本大题共3小题,第17小题6分,第18、19小题7分,共20分) 17.已知2x =-,求的值2121(1)x x x x-+-÷18. 解不等式组⎪⎩⎪⎨⎧+<-≤--212235)1(21x x x ,并把解集在数轴上表示出来.19.如图,在棱长为2的正方体ABCD-A 1B 1C 1D 1中,E 是BC 1的中点,求直线DE 与平面ABCD 所成角的大小(结果用反三角函数表示)四、(本大题共2小题,每小题8分,共16分)A 1 B20.设椭圆2222:1(0)x y C a b ab+=>>过点M ,且有一个焦点为1(0)F ,求椭圆C 的方程.21.振兴中学某班的学生对本校学生会倡导的“抗震救灾,众志成城”自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据.下图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3︰4︰5︰8︰6,又知此次调查中捐款25元和30元的学生一共42人.(1)他们一共调查了多少人?(2)这组数据的众数、中位数各是多少?(3)若该校共有1560名学生,估计全校学生捐款多少元?五、(本大题共2小题,第22小题8分,第23小题9分,共17分)22.已知:正方形A B C D 中,45MAN ∠= ,M A N ∠绕点A 顺时针旋转,它的两边分别交C B D C ,(或它们的延长线)于点M N ,.当M A N ∠绕点A 旋转到B M D N =时(如图1),易证BM D N M N +=.(1)当M A N ∠绕点A 旋转到B M D N ≠时(如图2),线段BM D N ,和M N 之间有怎样的数量关系?写出猜想,并加以证明.(2)当M A N ∠绕点A 旋转到如图3的位置时,线段BM D N ,和M N 之间又有怎样的数量关系?请直接写出你的猜想./元 B BMBCNCNCNM 图1图2图3A AADDD报考学校: 学科: 考号:23.已知函数()2sincos442x x x f x =+.(1)求函数()f x 的最小正周期及最值; (2)令π()3g x f x ⎛⎫=+⎪⎝⎭,判断函数()g x 的奇偶性,并说明理由.六、(本大题共2小题,第24小题9分,第25小题10分, 共19分)24.设函数323()(1)1,32a f x x x a x a =-+++其中为实数。
新高考题型:数学文化(精选100题)-数学附答案
“ 4 − 78 ”,1周角等于 6000 密位,记作1周角= 60 − 00 ,1直角= 15 − 00 .如果一个
半径为 2 的扇形,它的面积为 7 π ,则其圆心角用密位制表示为( ) 6
A.12 − 50
B.17 − 50
C. 21− 00
D. 35 − 00
2.天干地支纪年法源于中国,中国自古便有十天干与十二地支,十天干即甲、乙、
10
5
15
过剩近似值,即 27 < e < 41 ,若每次都取最简分数,那么第二次用“调日法”后可得 e 10 15
的近似分数为( )
68
A.
25
41
B.
15
27
C.
10
14
D.
5
6.如图,洛书(古称龟书),是阴阳五行术数之源.在古代传说中有神龟出于洛水,其 甲壳上有此图像,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五 方白圈皆阳数,四角黑点为阴数.若从四个阴数和五个阳数中随机选取 3 个数,则选取 的 3 个数之和为奇数的方法数为( )
半球时取正值,直射南半球时取负值).设第 x 天时太阳直射点的纬度值为 y, 该科研小 组通过对数据的整理和分析.得到 y 与 x 近似满足 y = 23.4392911sin0.01720279x .则
每 400 年中,要使这 400 年与 400 个回归年所含的天数最为接近.应设定闰年的个数为
(精确到1)( )
A.30
B.40
C.44
D.70
7.《掷铁饼者》取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子
在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦
数学文化作业答案(全正确答案)
1数学的研究对象是()A、物质B、物质的运动C、自然界D、以上都不对2一门学科,成功运用()才能走向成熟。
D、数学3研究对象不是物质或者物质运动形态的科学是()C、数学4数学素养对于文科生并不重要正确答案:×5通俗地说数学素养就是有条理地理性思维,周密地思考,求证,简洁,清晰,准确地表达。
正确答案:√6一个人不识字可以生活,不识数同样可以生活正确答案:×7数学文化中的文化是指狭义的文化正确答案:×8在我国数学文化最早是哪一年提出的?A、1990.09数学文化这个词最早出现于:B、1990.010数学文化这门课2002年被评为国家精品课程。
正确答案:×11“数学文化”中的文化是指广义文化。
正确答案:√12下列不属于开设数学文化课,学生收获的是:B、提高数学能力13以下不属于数学文化的侠义意思的是:A、数学思想B、数学精神C、数学方法D、数学教育14数学是和其他的自然学科在同一个层次上的科学。
正确答案:×15数学的研究可以用到不同的自然科学。
正确答案:√16对数学文化中文化一词的界定,更倾向于广义的解释。
()正确答案:×17数学文化的研究对象是人。
正确答案:√18大学生素质文化教育这个词是何时提出来的D、上世纪九十年代19何时首推建立32个“国家大学生素质文化教育基地”C、1999年20数学文化一词在中国最早何时出现?A、1990年1数学素养不包括()A、从数学的角度看问题B、控制问题中的因素C、有条理地理性思考D、解决问题时的逻辑能力2数学素养不是与生俱来的,是在学习和实践中培养的正确答案:√3数学训练能提高一个人的A、推理能力B、抽象能力C、分析和创造能力D、以上都正确4企业招考员工的题和数学推理往往有关正确答案:√5下面哪一项不是通过学习数学文化得到的?A、了解思想B、引起兴趣C、学会方法D、解题方法6数学素养的高低决定一个人工作的成效正确答案:√7数学不仅是一些知识还是一种素质(素养)。
尔雅通识数学文化考试答案
《数学文化》期末考试( 20 )一、单选题 (题数:50,共 50.0 分)1 《算法统综》的作者是()。
1.0 分A、秦九韶B、李冶C、刘徽D、程大位正确答案: D 我的答案: D2 在解决哥“尼斯堡七桥问题” 时,数学家先做的第一步是( )。
1.0 分 A、分析 B、概括 C、推理 D、抽象正确答案: D 我的答案: D3 有理数系具有稠密性,却不具有( )。
1.0 分 A、区间性 B、连续性 C、无限性 D、对称性勾股定理 C、正确答案: B 我的答案: B4 第 24 届“国际数学家大会”会议的图标,与()有关。
1.0 分 A、费马猜想 B、勾股定理 C、哥德巴赫猜想 D、算术基本定理正确答案: B 我的答案: B5 点线图上的点,如果奇结点是()个,就不可能得到一笔画。
1.0 分A、 .0B、 1.0C、 2.0D、 3.0正确答案: D 我的答案: D6 “阿基里斯追不上乌龟”这一悖论的含义,与下列哪句话类似?() 0.0 分 A、有限段长度的和,可能是无限的 B、有限段时间的和,可能是无限的 C、《静静的顿河》 C、冰冻三尺,非一日之寒 D、一尺之锤,日取其半,万世不竭正确答案: D 我的答案: B7 下列哪部作品的作者,因为数学研究方法的帮助,洗清了剽窃别人作品的罪名? ( ) 1.0 分 A、《安娜·卡列尼娜》 B、《静静的顿河》 C、《战争与和平》 D、《复活》正确答案: B 我的答案: B8 在探讨黄金比与斐波那契数列的联系时,需要将黄金比化为连分数去求黄金比的近似值,这时要运用()的思路。
1.0 分 A、勾股定理 B、递归 C 、迭代 D、化归正确答案: C 我的答案: C9 “没有数学,我们无法看透哲学的深度,没有哲学,人们也无法看透数学的深度”,这句话出自()。
1.0 分A、 ProclusB 、 Immanuel Kant C 、 C.B.Allendoerfer D 、 Demollins正确答案: D 我的答案: D 10 类比是一种()推理。
数学文化考试答案
一、单选题(题数:40,共40.0分)1拓扑学是数学的一个分支,是()引出来的。
(1.0分)1.0分A、阿基米德B、罗素C、欧拉D、华罗庚正确答案:C我的答案:C2在(),第一次数学危机得到了真正解决。
(1.0分)1.0分A、17世纪B、18世纪C、19世纪D、16世纪正确答案:C我的答案:C3运用9个平面,空间可以分为()部分。
(1.0分)1.0分A、64B、93C、130D、42正确答案:C我的答案:C4第一次用计算机证明数学定理发生在1972年,主要是证明()。
(1.0分)1.0分A、多边形内角和B、哥尼斯堡七桥问题C、勾股定理D、四色问题正确答案:D我的答案:D5子集N的对称集合S(N)不是一个普通集合,它是一个具有()的集合。
(1.0分)1.0分A、常数结构B、有理数结构C、代数结构D、玄数结构正确答案:C我的答案:C6数学发展史上一共有()次危机,都是数学的基本部分收到了质疑;但每一次危机,都引发了数学的思想解放。
()(1.0分)1.0分A、一B、二C、三D、四正确答案:C我的答案:C7第一次数学危机是由()提出的。
(1.0分)1.0分A、牛顿学派B、毕达哥拉斯学派内部C、贝克莱大主教D、阿基米德正确答案:B我的答案:B8哥德尔是哪一国家的?()(1.0分)1.0分A、德国B、奥地利C、瑞士D、法国正确答案:B我的答案:B9数学让人受益终身的精华是()。
(1.0分)1.0分A、数学思维B、数学知识C、数学素养D、数学分数正确答案:C我的答案:C10自然数集是()的真子集,但是却能和它一一对应。
(1.0分)1.0分A、有理数集B、无理数集C、实数集D、素数集正确答案:A我的答案:A11数学的起源时期指的是(),这一时期人类建立了自然数的概念,认识了简单的几何图形;但算数和几何尚未分开。
(1.0分)1.0分A、远古-公元前5世纪B、远古-原始社会C、远古-公元5世纪D、远古到公元元年正确答案:A我的答案:A12“把未知的问题转化为已知的问题;把待解决的问题归结为已解决的问题,从而解决问题。
数学文化作业答案(全正确答案)-图文
数学文化作业答案(全正确答案)-图文1数学的研究对象是()A、物质B、物质的运动C、自然界D、以上都不对2一门学科,成功运用()才能走向成熟。
D、数学3研究对象不是物质或者物质运动形态的科学是()C、数学4数学素养对于文科生并不重要正确答案:某5通俗地说数学素养就是有条理地理性思维,周密地思考,求证,简洁,清晰,准确地表达。
正确答案:√6一个人不识字可以生活,不识数同样可以生活正确答案:某7数学文化中的文化是指狭义的文化正确答案:某8在我国数学文化最早是哪一年提出的?A、1990.09数学文化这个词最早出现于:B、1990.0 10数学文化这门课2002年被评为国家精品课程。
正确答案:某11“数学文化”中的文化是指广义文化。
正确答案:√12下列不属于开设数学文化课,学生收获的是:B、提高数学能力13以下不属于数学文化的侠义意思的是:A、数学思想B、数学精神C、数学方法D、数学教育14数学是和其他的自然学科在同一个层次上的科学。
正确答案:某15数学的研究可以用到不同的自然科学。
正确答案:√16对数学文化中文化一词的界定,更倾向于广义的解释。
()正确答案:某17数学文化的研究对象是人。
正确答案:√18大学生素质文化教育这个词是何时提出来的D、上世纪九十年代19何时首推建立32个“国家大学生素质文化教育基地”C、1999年20数学文化一词在中国最早何时出现?A、1990年1数学素养不包括()A、从数学的角度看问题B、控制问题中的因素C、有条理地理性思考D、解决问题时的逻辑能力2数学素养不是与生俱来的,是在学习和实践中培养的正确答案:√3数学训练能提高一个人的A、推理能力B、抽象能力C、分析和创造能力D、以上都正确4企业招考员工的题和数学推理往往有关正确答案:√5下面哪一项不是通过学习数学文化得到的?A、了解思想B、引起兴趣C、学会方法D、解题方法6数学素养的高低决定一个人工作的成效正确答案:√7数学不仅是一些知识还是一种素质(素养)。
2020 年文化素质数学答案与解析
2020 年重庆市高等职业教育分类考试文化素质测试(数学)答案及解析一、选择题:1.由并集的概念可得,A ∪B={-1,0,1},选D2. 把对数式log a 8=3化为指数式得:a 3=8=23,∴a=2,选B3.不等式│2x+1|<3变为:-3<2x+1<3,解得:-2<x<1,所以选A4.由诱导公式,sin()sin 33ππ-=-=-,所以选A 。
5.二次函数的图像是抛物线,且二次项系数a=1>0,所以抛物线开口向上,又对称轴方程为:112212b x a -=-=-=⨯,所以函数在区间1[,)2+∞上是增函数,选D 。
6.由余弦定理有:2222223cos22a c b B ac +-===,所以∠B=4π,选B 。
7.由不等式的基本性质,选A8.分两步:第一步,从5男生中任选2人,有C 52=10种不同的选法;第二步,从3女生中任选1人,有C 31=3种不同的选法;由分步计数原理,共有10×3=30种不同的选法,所以选C 。
9.∵f(x)为奇函数,∴f(-x)=-f(x); ∵g(x)为偶函数,∴g(-x)=g(x);∴f(-x)g(-x)=-f(x)g(x),即f(x)g(x)为奇函数,所以选C 。
10.由题意,右焦点为知焦点在x 轴上,且c =∴a 2-b 2=5,所以排除选项B ,A ,C ,故选D 。
二.解答题11.解:(1)由等比数列通项公式得,a 2=a 1q, 即1182a =⋅,解得a 1=16 817811116()28a a q -∴==⨯=(2)等比数列前n 项公式为:1116(1)(1)1232(1)11212n n n n a q S q --===--- 由题意,S k =31,即132(1)312k -=,解得k=5 12.解::(1)在方程4x -3y +12=0中,当y=0时,x=-3;x=0时,y=4故 A 、B 的坐标分别为(-3,0)、(0,4)。