第二章--自由基聚合.

合集下载

第2章_自由基聚合-2

第2章_自由基聚合-2
形成一种自由基, 无诱
导分解; 比较稳定,能单独安全保存; 分解时有N2逸出;偶氮化合物易于离解的动力正是在于 生成了高度稳定的N2,而非由于存在弱键。
2、有机过氧类引发剂
最简单的过氧化物:过氧化氢。活化能较高,20kJ/mol, 一般不单独用作引发剂。
HO OH 2 HO 过氧化氢分子中一个氢原子被有机基团取代,称为“氢过 氧化物”,两个氢原子被取代,称为“过氧化物”。均可用作自 由基聚合引发剂。
C O O C
O [2 C O + CO2 ]
[2
+ 2 CO2 ]
+ 笼蔽效应与单体、溶剂、体系黏度等因素均有关。
[
2 CO2 ]
笼蔽效应所引起的引发剂效率降低的程度取决于自由 基的扩散、引发、副反应三者的相对速率。
(1)引发剂本身的影响:偶氮类引发剂(如AIBN)一 般无诱导分解,而过氧类引发剂(如BPO)易发生诱导分 解,使f 值下降。 单体的活性:若单体具有较高的活性,能迅速与自由基 作用,引发增长,因此引发剂效率较高;若单体的活性 较低,对自由基的捕捉能力较弱,为诱导分解创造条件, 则引发剂效率低。 表2 AIBN引发不同烯类单体的引发剂效率f (%)
S2O82
组成氧化—还原体系后,分解活化能大大降低。 例如: 过氧化氢:220kJ/mol;过氧化氢+亚铁盐:40kJ/mol 过硫酸钾:140kJ/mol;过硫酸钾+亚铁盐:50kJ/mol 异丙苯过氧化氢:125kJ/mol;异丙苯过氧化氢+亚铁 盐:50kJ/mol 还原剂用量一般应较氧化剂少,否则还原剂进一步与自 由基反应,使活性消失。
R N R R N R + +
O
O [

高分子化学——自由基聚合

高分子化学——自由基聚合

2) 共轭效应
带有共轭体系的烯类如苯乙烯、甲基苯乙烯、丁 二烯及异戊二烯,π— π共轭, 易诱导极化 (polarization),能按三种机理进行聚合。
CH2 CH
CH3 CH2 C
CH2 CH CH CH2
可进行三种历程的聚合
具有共轭体系的烯类单体 p电子云流动性大,易诱导极化,可随进攻试剂性质的不 同而取不同的电子云流向,可进行多种机理的聚合反应。
△ G(free energy difference)<0
动力学可能性(kinetics feasibility) a.烯类单体:单烯类、双烯类 2 单体种类 b.含羰基-C=O化合物:醛、酮、酸 c.杂环化合物 d.炔烃
a.含
C C
的烯类单体
CH2 CH Cl
(讨论重点)
CH CH CH2
CH2 CH
• 许多带吸电子基团的烯类单体,如丙烯腈
(acrylonitrile)、丙烯酸酯类(acrylate)能
同时进行阴离子聚合和自由基聚合。
• 若基团的吸电子倾向过强,如硝基乙烯
(nitroethylene)等,只能阴离子聚合而难
以进行自由基聚合。
不少单体既能阴离子聚合,又能自由基聚合,但如果 取代基吸电性太强,δ+ 过大,则只能阴离子聚合
e.g:
δ R + CH2 CH CN
+
H RCH2 C C N
H RCH2 C C N
二.乙烯基单体对聚合方式的选择 自由基?阳离子?阴离子? 乙烯基单体中的取代基Y(substituent)的 种类、性质、数量和极性决定了单体对活性种 的选择性。
CH2=CH Y
从有机化学的角度来定性分析取代基的电 子效应及位阻效应对聚合机理的选择。

高分子化学-第二章 自由基聚合

高分子化学-第二章  自由基聚合
均增加,由于链转移速率常数值较小,对应的活化能 较大,受温度的影响比较显著,这可通过Arrhenius方 程可看出:
(4)
对于氯乙烯单体的聚合,向氯乙烯链转移常数CM与温 度有如下指数关系:
(5) 转移活化能和增长活化能的差值30.5kJ/mol,为正值,表明 温度升高,CM值增加,聚合度降低。
由于氯乙烯的CM值较大,聚氯乙烯的分子量可由温度控制, 与引发剂的用量基本无关;聚合速率由引发剂浓度控制。
阻聚剂会导致聚合反应存在诱导期,但在诱导期过后, 不会改变聚合速率。
缓聚剂并不会使聚合反应完全停止,不会导致诱导期, 只会减慢聚合反应速率。
但有些化合物兼有阻聚作用与缓聚作用,即在一定的反 应阶段充当阻聚剂,产生诱导期,反应一段时间后其阻 聚作用消失,转而成为缓聚剂,使聚合反应速率减慢。

I II
(i) O2
R + O2
ROO
RH R
(低活性) 高温
ROOH
ROOR 高温
RO + OH 2RO
引发聚合
(20)
因此氧在低温时(<100oC)为阻聚剂。高温时则可作引发剂。
ii、链转移型阻聚剂
主要有1,1-二苯基-2-三硝基苯肼(DPPH)、芳 胺、酚类等。
• DPPH
DPPH分子能够化学计量地消灭一个自由基,素有 自由基扑捉剂之称。
i、引发剂转移常数CI的第一种求法: 对式(6) 进行一定的重排,可得到下式:
(7)
以上式左边对Rp作图,可由直线斜率求出CI 。 i i 、引发剂转移常数CI的第二种求法:
将式(6)改写为下式: (8)
以上式左边对[I]/[M]作图,从直线斜率可求出CI,由截距 求出CM 。

高分子科学导论第二章

高分子科学导论第二章

24
第二章 自由基聚合
歧化终止:链自由基夺取另一个自由基上的氢原子或其 他原子而相互终止的反应。此时生成的高分子只有一端为引 发剂碎片,另一端为饱和或不饱和结构,两者各半,聚合度 与链自由基中的单元数相同。
CH2 CH + X CH X CH2 CH2 CH2 + CH X X CH2
25
第二章 自由基聚合
链引发
I R* + M
R* RM* RM2* RM3*
链增长
RM* + M RM2* + M
RMn-1* + M
链终止
RMn* 死聚合物
RMn*
聚合过程中有时还会发生链转移反应,但不是必须经过 的基元反应。
2
第二章 自由基聚合
引发剂分解成活性中心时,共价键有两种裂解形式:均 裂和异裂。 均裂的结果产生两个自由基;异裂的结果形成阴离子和 阳离子。
C O C O
5
ቤተ መጻሕፍቲ ባይዱ
第二章 自由基聚合
烯类单体的碳—碳双键既可均裂,也可异裂,因此可进 行自由基聚合或阴、阳离子聚合,取决于取代基的诱导效应 和共轭效应。 乙烯分子中无取代基,结构对称,因此无诱导效应和共 轭效应。只能在高温高压下进行自由基聚合,得到低密度聚 乙烯。在配位聚合引发体系引发下也可进行常温低压配位聚 合,得到高密度聚乙烯。
卤素原子既有诱导效应(吸电子),又有共轭效应(推 电子),但两者均较弱,因此既不能进行阴离子聚合,也不 能进行阳离子聚合,只能进行自由基聚合。如氯乙烯、氟乙 烯、四氟乙烯均只能按自由基聚合机理进行。 除了少数含有很强吸电子基团的单体(如偏二腈乙烯、 硝基乙烯)只能进行阴离子聚合外,大部分含吸电子基团的 单体均可进行自由基聚合。 含有共轭双键的烯类单体,如苯乙烯、α-苯乙烯、丁二 烯、异戊二烯等,因电子云流动性大,容易诱导极化,因此 既可进行自由基聚合,也可进行阴、阳离子聚合。

第二章 自由基聚合

第二章 自由基聚合

A
δ_
CH2=CH
Y
ACH2 C Y
43
c 取代基为吸电基团(electron-withdrawing substituent)
如腈基、羰基、酯基、羧基、醛基、酮基等
使双键电子云密度降低,并使阴离子增长种共轭稳定
B
δ+
CH2=CH
Y
BCH 2 C Y
44
2) 共轭效应
带有共轭体系的烯类如苯乙烯、甲基苯乙烯、 丁二烯及异戊二烯,π— π共轭, 易诱导极化 (polarization),能按三种机理进行聚合。
16
sp 杂化的四个价键
17
18
这种几个电子轨道重新组成复杂的电子轨道的现 象叫做原子轨道的杂化,在杂化过程中形成的新 轨道叫做杂化轨道 当碳原子与四个相同的原子或原子团相互结合时, 形成的夹角是109°28 。 见示意图
19
20
21
在图7[ 杂化轨道重叠示意图 中示出三个碳原子的四个 杂化的原子轨道,用这四个轨道形成C -C 和C -C 两 个键 这里C 原子右边的轨道(用虚线表示)与 C 原 子轨道重叠, 而C 原子左边的轨道(用实线表示)与 C 原子的轨道重叠。
△ G(free energy difference)<0 • 动力学可能性(kinetics feasibility)
2 单体种类
烯类单体:单烯类、双烯类
含羰基-C=O化合物:醛、酮、酸
杂环化合物:环乙烷、呋喃、吡咯、噻吩
38
碳碳双键: 既可均裂也可异裂,可以进行自由基聚合 或离子聚合(ionic polymerization)
化学键
温故而知新
化学键:在原子结合成分子时,相邻的原子之间 强烈的相互作用.

高分子化学 自由基聚合

高分子化学 自由基聚合
- ln c(I) c(I)0
0 0.075 0
0.2 0.0660 0.133
0.7 0.0484 0.443
1.2 0.0334 0.813
1.7 0.0228 1.196
c(I) 以- ln ~ t作图 c(I)0
kd = 1.85× 10-4 s-1
t1/ 2 = 1.04h
4
⒋ 苯乙烯进行自由基聚合其终止方式为偶合终止; • 60℃甲基丙烯酸甲酯进行自由基聚合其终止方式为歧化终 止为主(表2.7,偶合终止和歧化终止的百分率分别为15%和85%); • 氯乙烯进行自由基聚合其终止方式为向单体转移终止 (表214)。 • 烯类单体进行自由基聚合,其终止方式与单体结构有关、 与聚合温度有关,最后由实验确定。 • ⒌ 自由基聚合时,转化率、相对分子质量随时间的变化有 何特征?与机理有何关系? • 自由基聚合时,聚合物的相对分子质量与时间关系不大。 • 这是因为链增长反应使聚合物的相对分子质量增加,而链 增长反应的活化能很低(Ep约20~34kJ/mol)链增长反应的速 率很高,生成一个相对分子质量为几万至几十万的大分子的时 间非常短只需要0.01S~几秒的时间,是瞬间完成的,延长时间 对聚合物的相对分子质量关系不大,如图2.7。
•⑦ CH2= C(CH3) 2 阳离子聚合 •⑧ CH2=C(CN)(COOR) 阴离子聚合 •⑨ CH2=CH-CH= CH2 自由基聚合、阳离子聚合和 • 阴离子聚合. •⑩ CH2=C(CH3)-CH= CH2 自由基聚合、阳离子聚合和 • 阴离子聚合. •(11) CH2 =CH 只能进行配位阴离子聚合 • CH3
第二章 自由基聚合
• ⒈ 在连锁聚合反应的单体中,单体上的取代基的电子效应 和空间效应对单体聚合能力产生影响。 • ⑴ 对于单取代的烯类单体,只考虑电子效应不必考虑取代 基的空间效应。 • ⑵ 对于同碳二元取代的烯类单体除 1,1-二苯基乙烯外,只 考虑电子效应,不必考虑取代基的空间效应。 • ⑶ 对于非同碳二元取代、三元取代、四元取代的烯类单体 只考虑取代基的空间效应,不必考虑电子效应,由于空间位阻, 一般不能聚合。 • 氟代乙烯例外,不管氟代的位置和数量都能进行自由基聚 合。 • ⒉ 题中能进行自由基聚合的单体是 • CF2=CFCl 1 • CH2=C(CH3)(COOCH3)

二章-自由基聚合(终稿)

二章-自由基聚合(终稿)

第二章自由基聚合2.1 学习目の(1)熟悉各种能进行连锁聚合の单体の结构特点;(2)了解连锁聚合反应热力学。

(3)掌握自由基聚合机理。

(4)熟悉自由基聚合常用の引发剂以及引发剂分解动力学。

(5)了解各种类型の引发反应。

(6)掌握自由基聚合反应动力学。

(7)掌握聚合度の计算方法。

(8)熟悉各种链转移反应及其对聚合度の影响。

(9)熟悉自动加速过程。

(10)了解自由基聚合中の阻聚和缓聚作用及机理。

(11)了解速率常数の测定和计算。

(12)熟悉自由基聚合の相对分子质量の控制、分布及影响因素。

(13)了解自由基聚合の反应特征。

2.2 内容提要2.2.1 判断某种化合物能否进行聚合反应一、可进行连锁聚合单体の结构特点主要涉及能够作为聚合反应单体の烯烃の基本条件,以及单体结构与聚合反应类型之间の关系。

具体而言,首先从烯烃取代基所造成位阻大小の角度判断其能否进行聚合,然后再从取代基电负性和共轭性の角度判断其能够进行哪一种或哪几种类型の聚合反应。

1. 取代基の数目、位置、大小决定烯烃能否进行聚合(1)一取代烯烃原则上都能够进行聚合反应。

(2)对于1,1-二取代の烯类单体,一般都能按取代基の性质进行相应机理の聚合。

并且由于结构上更不对称,极化程度增加,更易聚合。

但两个取代基都是体积较大の芳基时,只能形成二聚体。

(3)1,2-双取代の烯类单体,结构对称,极化程度低,加上位阻效应,一般不能均聚或只能形成二聚体。

(4)三取代和四取代乙烯一般不能聚合,但氟代乙烯却是例外,不论氟代の数目和位置如何,均易聚合,这是氟の原子半径较小の缘故。

综上所述,一取代和1,1-二取代乙烯等无位阻障碍の取代烯烃,是连锁聚合单体の两种主要类型。

其它情况必须特别注意判断,除氟取代以外一般都无法进行均聚合反应。

2. 取代基の电负性和共轭性决定烯烃の聚合反应类型按照聚合反应活性中心の不同,连锁聚合反应通常包括自由基型、阴离子型、阳离子型和配位离子型等四种聚合反应类型。

第二章自由基聚合

第二章自由基聚合

2.3.2 自由基聚合反应的特征
1、由链引发、增长、终止、转移等基元反应组成 特征为:慢引发、快增长、速终止。 引发速率最小,是控制总聚合速率的关键。
2、链增长反应使聚合度增加
反应混合物中仅由单体和聚合物组成 聚合度变化小。
自由基聚合过程中分子量 与时间的关系
3、对分子量的影响 凝胶效应将使分子量增大。
2
CH3 2C +N2 CN
AIBN一般在45~65℃ 下使用;它分解后形成的异丁腈自由 基是碳自由基,缺乏脱氢能力,故不能作接枝聚合的引发剂。
2、有机过氧类引发剂
代表物:过氧化二苯甲酰(BPO) BPO中O—O键部分的电子云密度大而相互排斥,容 易断裂,通常在60~80℃ 分解。
★ 均裂成苯甲酸基自由基,有单体存在时,即引发聚合; ★ 无单体存在时,进一步分解成苯基自由基,并析出CO2 但分解不完全。
弱键的离解能一般为100~170kJ/mol
常用的引发剂有:偶氮化合物、有机过氧化合物、无机盐 过氧化合物和氧化-还原引发体系等。
2.4.1.1 引发剂的种类
1、偶氮类引发剂
几乎全部为一级反应,只形成一种自由 基,无诱导分解; 比较稳定,能单独安全保存;
代表物:偶氮二异丁腈(AIBN)
CH3 2C N N C CH3 CN CN
自由基聚合过程中转化率与时间的关系
4、少量(0.01%~0.1%)阻聚剂足以使自由基聚合反应终止。
2.4 链引发反应
自由基聚合反应的首要条件是:在聚合体系中产生自由基, 常用方法是在聚合体系中引入引发剂,其次是采用热、光 和高能辐射等方法。
2.4.1 引发剂和引发作用
引发剂:分子结构上具有弱键,容易分解成自由基。

第二章自由基聚合

第二章自由基聚合

3、光敏间接引发剂:
间接光敏剂吸收光后,本身并不直接形 成自由基,而是将吸收的光能传递给单体或引 发剂而引发聚合。 例如: 二苯甲酮和荧光素、曙红等染料是常用 的间接光敏剂。
2.4.4
辐射聚合
辐射聚合:以高能辐射线引发单体聚合。 辐射引发的特点: 吸收无选择性,穿透力强,可以进行固相聚合。 辐射聚合和光引发聚合的共同点: a、可在较低的温度下进行, b、温度对聚合速率影响较小, c、聚合物中无引发剂残基。
引发剂分解速率常数与温度关系遵循 Arrhenius经验公式:
2.4.1.3
引发剂效率
定义:引发聚合部分的引发剂占引发剂分解或消 耗总量的分率,以f表示。
消耗引发剂的副反应有:
⑴诱导分解
诱导分解实际上是自由基向引发剂的转移反应, P74
⑵笼蔽效应伴副反应
聚合体系中引发剂浓度很低,引发剂分 子处于单体或溶剂“笼子”包围之中。笼子 内的引发剂分解成初级自由基以后,必须扩 散出“笼子“,才能引发单体聚合。 自由基在笼子内的平均寿命很短,约 10-11~10-9s。 如来不及扩散出来,就可能发 生副反应,形成稳定分子,消耗了引发剂。 因此,须考虑扩散、引发、副反应三者的相 对速率。
2、链增长
在链引发阶段形成的单体自由基,仍具有 活性,能打开第二个烯类分子的键,形成新 的自由基。新自由基活性并不衰减。
3、链终止
终止反应有偶合终止和歧化终止两种方式。 偶合终止:两链自由基的独电子相互结合 成共价键的终止反应。 歧化终止:某链自由基夺取另一自由基的 氢原子或其他原子的终止反应
4、链转移
聚合后期 —— 聚合速率逐渐转慢,最后,当
转化率到达 90-95% 以后,速率变得很小,即 可结束反应。

第二章自由基聚合

第二章自由基聚合

第二章 自由基聚合2-1 引言1.连锁聚合的基元反应链引发 R I 2→* **RM M R →+链增长 *2*RM M RM →+ *3*2RM M RM →+︰ ︰()**1n m RM M RM →+-链终止 *n RM → 聚合物分子2.连锁聚合的类型⎩⎨⎧异裂均裂θ:B A :B A R R R +→→∙∙⊕|2|⎪⎪⎩⎪⎪⎨⎧∙⊕配位离子θBAR 配位聚合阴离子聚合阳离子聚合自由基聚合 以上占聚合物总产量的%60 2-2连锁聚合的单体⎪⎪⎩⎪⎪⎨⎧动力学热力学适当的引发剂0〈∆G 等杂环作物羰基化合物烯类共轭二烯类单体类型T ⎪⎩⎪⎨⎧P19表2-1醛、酮中羰基π键异裂后,具有类似离子的特征,可由离子引发聚合::||-+--→=-O C O C乙烯基单体碳—碳π键既可均裂,又可异裂,可进行自由基聚合或离子聚合:--+−→←=−→←∙-∙:||||||||||||C C C C C C1. 取代基电子效应的影响∙-∙−→←=−→←-⊕Θ||||||||||||:C C C C C Cπ键断裂方向⎪⎩⎪⎨⎧⎩⎨⎧活性种的性质外因改变双键电子密度共轭诱导取代基的电子效应内因: : ① 无取代基 CH CH 22=nCH 2=CHatm 43( CH 2---CH 2 )N ( CH 2---CH 2 )N② 取代基是供电基团 R-、 RO-、 、 、 例:CH 2=CH-∴ 唯有1,1-双烷基烯烃才能进行阳离子聚合注: 同一体系中,同时存在两种效应,往往共轭效应占主导地位。

结合有利于阳离子的进攻和Y CH CH −−←=-2δ此外,供电基团可使阳离子增长种共轭稳定 如:乙烯基烷基醚③ 取代基是吸电子基团 -CN 、 例:卤原子的诱导效应是吸电子,而共轭效应却有供电性,但两者较弱,只能进行自由基聚合注:Ⅰ 此类也可进行自由基聚合,独电子基易和带有吸电子基团双键上电子云密度低的单体结合。

丙烯腈、丙烯酸酯等Ⅱ 取代基吸电子能力很强时,只可进行阴离子聚合偏二腈乙烯 硝基乙烯 ④ 取代基是共轭基团如; 苯乙烯、甲基苯乙烯-α 、丁二烯 、异戊二烯 可进行三种聚合,π电子流动性较大,易诱导极化。

高分子化学-第二章 自由基聚合

高分子化学-第二章 自由基聚合
10
一、 聚合的可能性
• 主要取决于双键上取代基的空间 效应
11
1.单烯烃 : CXY=CMN
(1)一取代( CH2=CHX)
可均聚合
12
(2)二取代
(CH2=CXY、CHX=CHY) (a)1,1——二取代:一般不考虑空 间位阻效应,可均聚合。
注意:CH2=C(Ar)2只能形成二聚体
13
(b)1,2——二取代
RM·(放热,快反应)
(2) R· + M
引发剂分解活化能:105~150 KJ· mol—1
链引发定义:
23
R· + CH2=CHCl
O=
C—O—O—C 2
O= R· O= C—O· H R—CH2—C· Cl
24
二、链增长

RM·+M
M
链增长定义:
M RM2 · ……
RM x·
25
• 链增长反应是放热反应,反应的活 化能较低(21—33KJ· mol-1)。
• 链转移反应前后,自由基的数目未变。
31
1. 向单体转移
· ~~CH2-CH + CH2=CH Cl Cl
· ~~CH=CH + CH3-CH Cl Cl
• 注意CH2=CHCl单体
32
2. 向溶剂或链转移剂转移
X ~~CH2CH · + YS X ~~CH2CHY + S ·
• 溶剂:
• 链转移剂:有较强的链转移能力的化合
• 自由基聚合在工业上不仅处于领先地位, 在理论上也较完善。
7
第二节 烯类单体对聚合机理的选择性
8
1.解决哪些物质可进行连锁聚合?

高分子化学第二章自由基聚合

高分子化学第二章自由基聚合
第二章 自由基聚合
按反应机理 连锁聚合 自由基聚合 阳离子聚合 阴离子聚合
聚合反应
逐步聚合
自由基聚合的产物占聚合物总产量60%以上
自由基聚合的理论研究比较成熟完善
根据活性中心不同,连锁聚合反应又分为:
自由基聚合:活性中心为自由基 阳离子聚合:活性中心为阳离子 阴离子聚合:活性中心为阴离子 配位离子聚合:活性中心为配位离子
C=O C O
• 碳碳双键: 既可均裂也可异裂,可以进行自由基聚合或离子 聚合(ionic polymerization)
C
C
C= C
C
C
1. 电子效应(electron effect)
可分为诱导效应(induction effect)和共轭效应 共轭效应是指两个以上双键(或三键)以单 (resonance effect) 1)诱导效应—取代基的推、吸电子性 a
• 若基团的吸电子倾向过强,如硝基乙烯
(nitroethylene)等,只能阴离子聚合而难
以进行自由基聚合。
不少单体既能阴离子聚合,又能自由基聚合,但如果 取代基吸电性太强,δ+ 过大,则只能阴离子聚合
CN
e.g:
CH2 C
CH2 CH NO2
CN ,
只能阴离子聚合
卤原子,它的诱导效应是吸电
子,但P — π 共轭效应却有供 电性,但两者均较弱,所以 VC(vinyl chloride)只能自由 基聚合。 总之:当诱导效应与共轭效应共存时, 且作用方向相反时,往往是共轭效应起 主导作用,决定单体的聚合方式。
从诱导效应: 烷氧基具有吸电子性,但氧上未共用电子对能和 双键形成 P-π共轭,却使双键电子云密度增加。
共轭效应占主导地位,所以可以进行阳离子聚合。

第二章 自由基聚合及其应用

第二章 自由基聚合及其应用

产品分子量 的控制因素
PS
PS在生物医药中的应用
培养皿、试剂盒等
1.2.3. HIPS的合成工艺和聚合 物结构特点
(溶液)本体法
橡胶 苯乙烯


本体预聚
本体聚合
挤条造粒
产品
本体-悬浮法
橡胶 溶 解 苯乙烯 引发剂 水、分散剂 悬浮聚合 干燥造粒
本体预聚
产品
粘度-转化率图和在HIPS胶粒形态制造中其构造改变的现象
橡胶相状态
在HIPS中有大量包裹着PS的橡胶颗粒,这样 可使橡胶相体积增加10%-40%。 橡胶中包藏物的存在对橡胶起到增强作用, 而这种被增强的橡胶颗粒又对PS基体起更有 效的增韧作用,一般来说,在橡胶含量相同 的情况下,橡胶相体积越大对HIPS增韧效果 越好,但包藏量为橡胶量两倍左右较为适宜。
熟化处理:
目的是加速单体的反应并驱除残余单体,使 聚合物中残余单体的量降至1%以下。
今后发展方向
残余单体含量高 改进办法:采用负离子聚合方法。 分子量控制
资 料
美国诺瓦公司开发出水发泡聚苯乙烯新工艺 据海外媒体报道,美国诺瓦(Nova)化学 品公司和塑料加工设备企业TeubertMa schineubau公司日前共同开发了利用 水生产发泡聚苯乙烯(EPS)的新工艺。这种 工艺是将淀粉混配到EPS颗粒内,通过吸收水 使EPS发泡以制取成品,解决常规EPS的戊 烷逸散污染 问题。
橡胶颗粒的大小
HIPS中橡胶的粒径通常为1-5m。 橡胶的粒径不能小于裂缝的宽度,否则橡胶颗粒嵌 入裂缝中而起不到增韧作用。 橡胶粒径过大,则颗粒数减少,与裂缝相遇到几率 减少,同样也难于发挥良好的增韧作用。 大粒径橡胶颗粒对终止开裂有良好效果,而小粒径 橡胶颗粒能够有效地诱发和终止银纹。 因此,扩大橡胶颗粒粒径分布有利于提高HIPS的冲 击强度。 橡胶粒径大小及分布主要取决于聚合时的搅拌强度 以及橡胶浓度。

第二章 自由基聚合

第二章 自由基聚合

(i)单体的活性:若单体具有较高的活性,能迅速与自 由基作用,引发增长,因此引发剂效率较高;若单体的 活性较低,对自由基的捕捉能力较弱,为诱导分解创造 条件,则引发剂效率低。
表2 AIBN引发不同烯类单体的引发剂效率f (%)
(ii)单体浓度:当单体浓度(10-1~10mol/L)比自由基浓 度(10-7~10-9mol/L)大得多时,引发剂自由基一旦逸出笼 外,与单体的反应将占优势;但当单体浓度较低时,f值随 单体浓度([M])的增加而迅速增大,达到定值。
(二)链增长
反应特征:放热反应,烯类单体聚合热约55~95 kJ/mol;增长活化能低,约20~34kJ/mol,增长速 4 率极高,增长速率常数约102~10L/(mol .s) ,在 0.01~几秒钟内,就可以使聚合度达到数千,甚至上 万。
实验证明,由于电子效应和空间位阻效应双重因素, 都促使反应以头-尾连接为主;但还不能做到序列结构 上的绝对规整性,所对应的聚合物往往是无定型的。
(5)
若还原剂过量: (6)
(1)油溶性氧化-还原引发体系 氧化剂:氢过氧化物、过氧化二烷基、过氧化二酰基; 还原剂:叔胺、环烷酸盐、硫醇、有机金属化合物 (Al(C2H5)3、B(C2H5)3等)。 如BPO与N,N-二甲基苯胺引发体系: (7)
ф—苯基 该氧化-还原引发体系较单纯的BPO引发剂具有大的多 的分解速率常数。
由于Ed为正值,从式(11)可知,随温度升高, kd增大。
(三)引发剂效率
在聚合体系中,使用引发剂的目的是引发单体进行 聚合反应,但多数情况下,引发剂分解后,只有部分用 来引发单体聚合,还有一部分引发剂由于诱导分解和/或 笼蔽效应伴随的副反应而损耗,因此,需引入引发剂效 率的概念。 引发剂效率(f)— 引发聚合的部分引发剂占引发剂分解或消 耗总量的分率。

高分子化学自由基聚合

高分子化学自由基聚合
稳态时: Ri =Rt
重要的速率方程
• ln [M]0 /[M] =kp (fkd/kt)1/2[I]1/2 t
• 适用于稳态条件下 • [M]0为开始加入的浓度;[M] 为 t 时刻的浓度;[I]:
为引发剂浓度,常作常数处理; [M]0 /[M] :转化 率。
关于聚合度
• 歧化终止:Xn=v • 偶合终止: Xn=2v • 以上两种方式终止时:
Xn C D 2
分子量和链转移反应
引入链转移常数:链转移速率常数 与链 增长速率常数之比, C = ktr/kp。
1
[I]
[S] 1
= CM + CI + CS +
Xn0
[M] [M] Xn
链转移常数:链转移速率常数与链 增长速率常数之 比, C = ktr/kp。它表明链转移反应发生的难易,C 越大,链转移反应越易发生,该化合物的链转移能 力越大。
链引发:引发速率最小(慢引发) 链增长:强放热,活化能低,增长速率极
高(快增长) 链终止:自由基失去活性中心(速终止) 链转移:生成新的自由基(易转移)
基元反应速率方程
链引发:
Ri = 2fkd[I]
链增长(相当于整个反应的总速率):
Rp = -d[M]/dt =kp[M][M•]
链终止:
Rt = 2kt[M•]2
高分子化学 第二章 自由基聚合
自由基反应存在的三种 物质
• 引发剂:具有活性中心 • 单体
• 聚合物:其大小与活性中 心的寿命有关
几种基本的聚合反应
• 自由基聚合:大多数带吸电子基的烯 类单体
• 阳离子聚合:带给电子集团的烯类单 体
• 阴离子聚合:带吸电子集团的烯类单 体

高分子化学-2(自由基聚合)

高分子化学-2(自由基聚合)

.
( 1)
水溶性氧化还原引发体系
常用的氧化剂:过氧化氢、过硫酸盐、氢过氧化物、Cu2+,Ag+, Fe3+ 无机还原剂:Fe2+,HSO3-,SO32常用的还原剂 有机还原剂:醇、胺、草酸、葡萄糖 如:无机-无机氧化还原引发体系
HO-OH + Fe2+
RO-OH + Fe2+
-.
Fe3+ +
Fe3+ +
温度升高,H-H连接形式的结构增加
怎样来合成H-H结构的聚合物?
-(CH2-CH=CH-CH2)- Cl2
n
Cl Cl -(CH2-CH-CH-CH2)n
H-H结构PVC
H2 -(CH2-C=C-CH2)n
-(CH2-CH-CH-CH2)n
H-H结构PS
(3) 链转移 ( Chain transfer) 在自由基聚合反应中,链自由基可能从单体、溶剂、 引发剂等低分子或大分子上夺取一个原子而终止,并使这 些失去原子的分子成为自由基,继续新链的增长,使聚合 反应继续下去,这一反应称链转移反应 可分为三种情况 a. 向单体的链转移
单体 转化率 聚合物
时间
(5) 少量阻聚剂(0.01-0.1%)足以使自由基聚合反应 终止
四、 链引发反应
1、引发剂和引发作用
(一)怎样的物质才能被选用作引发剂 分子结构上有弱键,易分解成自由基化合物
在聚合温度下(40-100º C),键离解能100-170KJ/mol,仅具有O-O, S-S,N-O键的一些化合物具备这一要求。 热分解型引发剂 引发剂类型 氧化还原型引发剂 低温游离基型引发剂:有机过氧化物和烷基金属 化物组合

第二章-自由基聚合-2

第二章-自由基聚合-2

动力学链长与引发速率的关系:

Rp Ri k
p 1/ 2

[M ]
1/ 2 Ri
M

(2k t )
Ri 2k t
1 2
在相同及单体浓度相等的情况下,动力学链
长与 k p 有关,即与单体性质有关。
kt
1/ 2
若为引发剂引发,则 :

kp 2 ( fk d k t )
聚合速率为零。
特点:曲线不通过原点。
若体系纯度高,无阻聚杂质,则无诱导期。
可通过精制单体、反应釜内通过N2除O2等,消除或
减少杂质,缩短或消除诱导期。
• 聚合初期
诱导期后,C在10~20%以下的阶段。
特点:聚合速率不随t而变化(C~t曲线几乎呈直线)。 • 聚合中期 C达10~20%以上的阶段。 聚合速率逐渐增加,出现自动加速现象,也称加速阶 段。
E=83KJ/mol
• E为正值:温度升高,速率常数增大; • E值越大,温度对聚合速率影响就越显著。 热引发:聚合活化能约80~96KJ/mol,与引 发剂引发相当。
光与辐射引发:活化能很低(约20KJ/mol), T对聚合速率影响小,可以在较低温度下进行。
高分子化学参考书
1.高分子化学丛书 自由基聚合 共聚合原理 接枝、嵌段、交替共聚 合 2.聚合反应原理 [美] G.奥迪安著 科学出版社 Principles of Polymerization George Odian 2nd Ed.
离子型聚合
本体聚合 悬浮聚合 乳液聚合 开环聚合 定向聚合 缩合聚合
5. 自动加速现象(auto-acceleration effect)
R p [I ]

高分子化学课件;第二章自由基聚合

高分子化学课件;第二章自由基聚合
• 动力学链长(ν):每个活性种从引发阶段 到终止阶段所消耗的单体分子数。
• 无链转移时,ν= Rp/ Ri 因为稳态时Rt =Ri
n 得到 = kp[Байду номын сангаас]/2(fktkd[I])1/2
对比
• 速率方程 R p = kp[M] (fkd/kt)1/2[I]1/2 • 动力学链长 n = kp[M]/2(fktkd[I])1/2
CM CI CS分别表示向单体,向引发剂,向溶剂的链转移常数。
其中,转化率= [M]0 /[M]
PS:凝胶效应的动力学解释
• 自动加速作用:随着反应进行,kt下降明显; Kp不变,Kd不变,因此(kp/kt1/2)显著增大, 聚合反应速率不降反升。
• 影响:1.使聚合反应速率显著上升外 2.聚合产物分子量显著增加
• 减缓自动加速作用:提高温度,使用良溶剂
动力学链长(ν)和聚合度
速率方程
根据假设 3、稳态,有Ri = Rt 代入链增长速率方程得
Rp = kp[M] (fkd/kt)1/2[I]1/2
“平方根定则”:聚合反应速率与引发剂浓 度[I]的平方根成正比,与单体浓度[M]一次 方成正比,可作为自由基聚合的判据。
聚合总速率
上式积分得: ln [M]0 /[M] =kp (fkd/kt)1/2[I]1/2 t
• 无链转移反应时, ν=平均每条增长链所含 的单体单元数
• 当发生歧化终止时, Xn = n • 当发生偶合终止时, Xn = 2n

兼有两种方式终止时,
n
Xn C D
2
链转移反应对聚合度的影响
得到:
1
[I]
[S]
= CM + CI + CS +
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 自由基聚合 习题参考答案1.举例说明自由基聚合时取代基的位阻效应、共轭效应、电负性、氢键和溶剂化对单体聚合热的影响。

解答:以结构最简单的聚乙烯为标准,其聚合热为-88.8kJ/mol 。

位阻效应:单体的位阻效应加大,聚合放热下降。

如异丁烯,其聚合热为-54kJ/mol 。

这是因为单体的取代基在空间伸展范围大,而成链后,伸展范围小,键角压缩,需贮藏一定能量。

共轭效应:单体的共轭效应加大,聚合放热下降。

如丁二烯,其聚合热为-73kJ/mol 。

这是因为聚合后,单体原有的共轭作用下降,稳定性下降,需用一定能量。

电负性:单体带强电负性取代基,聚合放热上升。

如四氟乙烯,其聚合热为-154.8kJ/mol 。

这是因为碳-氟键能大,氟原子半径小。

氢键和溶剂化:单体的氢键和溶剂化大于聚合物的,聚合放热下降。

如丙烯酸,其聚合热为-67kJ/mol 。

这是单体间氢键作用大的原因。

2.比较下列单体的聚合反应热的大小并解释其原因:乙烯、丙烯、异丁烯、苯乙烯、α-甲基苯乙烯、 氯乙烯、四氟乙烯。

解答:3.什么是聚合上限温度、平衡单体浓度?根据表3-3数据计算丁二烯、苯乙烯40℃、80℃自由基聚合时的平衡单体浓度。

解答:聚合上限温度:当聚合和解聚处于平衡状态时,△G = 0,则△H = T △S 。

这时的反应温度称为聚合上限温度(ceiling temperature ),记为T c 。

一般规定平衡单体浓度为1mol/L 时的平衡温度为聚合的上限温度。

平衡单体浓度:链增长和解聚达平衡时体系的单体浓度,一般取标准状态。

丁二烯:⎪⎪⎭⎫ ⎝⎛-=O cO e ΔS T ΔH R 1ln[M] (1)40℃(313K ),△H = -73.7KJ/mol ,△S = -85.8J/mol ,R = 8.314 [M]e = 1.52×10-8mol/L(2)80℃ [M]e = 3.77×10-7mol/L苯乙烯:(1)40℃(313K ),△H = -69.9KJ/mol ,△S = -104.7J/mol ,R = 8.314[M]e = 6.36×10-7mol/L(2)80℃ [M]e = 1.33×10-5mol/L4.α-甲基苯乙烯在0℃可以聚合,升温至66℃后不能聚合,但进一步加大反应压力,该单体又可以发生聚合。

请说明其原因。

解答:(1)在标准状态:eOOc Rln[M]ΔSΔH T +=△H = -35.2KJ/mol ,△S = -103.8J/mol ,R = 8.314T c = 339k = 66℃所以0℃可以聚合;升温至66℃,达T c,故不能聚合。

(2)PV = nRT V近似不变,P加大,T下降,可聚。

5.什么是自由基聚合、阳离子聚合和阴离子聚合?解答:自由基聚合:活性中心为自由基的聚合反应。

阴离子聚合:活性中心为阴离子(带负电荷)的聚合反应。

阳离子聚合:活性中心为阳离子(带正电荷)的聚合反应。

6.下列单体适合于何种机理聚合:自由基聚合,阳离子聚合或阴离子聚合?并说明理由。

CH2=CHCl,CH2=CCl2,CH2=CHCN,CH2=C(CN)2,CH2=CHCH3,CH2=C(CH3)2,CH2=CHC6H5,CF2=CF2,CH2=C(CN)COOR,CH2=C(CH3)-CH=CH2。

解答:7.根据表2-4,说明下列单体工业化所选择反应历程的原因CH2=CH2,CH2=CHCH3,CH2=CHCl,CH2=CHC6H5,CH2=CHCN,CH2=CHOCOCH3,CH2=CHCOOCH3,CH2=C(CH3)2,CH2=CH-OR,CH2=CH-CH=CH2,CH2=C(CH3)-CH=CH28.对下列实验现象进行讨论:(1)共轭效应使烯类单体的聚合热降低而使缺类单体的聚合热增高。

(2)乙烯、乙烯的一元取代物、乙烯的1,1-二元取代物一般都能聚合,但乙烯的1,2-取代物除个别外一般不能聚合。

(3)大部分烯类单体能按自由基机理聚合,只有少部分单体能按离子型机理聚合。

(4)带有π-π共轭体系的单体可以按自由基、阳离子和阴离子机理进行聚合。

解答:(1)主要为以下原因:①对烯类单体而言,聚合包含有一个π键的断裂,两个σ键的生成。

打开一个双键所需能量为609.2 kJ/mol,形成一个单键放出的能量为-351.7 kJ/mol,总的能量变化为:△H = 2Eσ- Eπ= 2×(-351.7)—(-609.2) = -94.2 kJ/mol对炔类单体而言,聚合包含有一个三键的断裂,一个π键和两个σ键的生成。

打开一个三键所需能量为812 kJ/mol,形成一个双键放出能量为-609.2 kJ/mol,一个单键放出的能量为-351.7 kJ/mol,总的能量变化为:△H = 2Eσ+Eπ-E三键= 2×(-351.7)+(-609.2) - (-812)= -500.6 kJ/mol相比乙烯聚合,乙炔聚合放热要多的多。

②对取代烯烃而言,聚合后无双键,共轭作用明显下降,聚合放热减少;对取代炔烃而言,聚合后还存在双键,共轭作用变化不明显,聚合放热变化不大。

(2)乙烯、乙烯的一元取代物、乙烯的1,1-二元取代物:总体看这类单体空间位阻小电效应较大,故查聚合;但乙烯的1,2-取代物空间位阻大,电效应因互抵而下降,故除个别外一般不能聚合。

(3)一般取代基电效应弱的只能自由基聚合,如:VC、V AC;有带强吸(供)电子取代基的单体可进行阴(阳)离子聚合,如:CH2=C(CN)COOR(烷基乙烯基醚);处于中间的带较强吸(供)电子取代基的单体可进行阴(阳)离子聚合和自由基聚合,如:MMA;故从目前可进行聚合的单体看,能进行自由基聚合的单体要多一些。

(4)带有π-π共轭体系的单体,如苯乙烯、丁二烯、异戊二烯等,不管形成什么样的活性中心,均存在较明显的共轭结构,这种共轭作用可稳定各种活性中心,一方面利于活性中心的形成,另一方面活性中心还有足够的活性以引发下一个单体,故可多种机理聚合。

9.判断下列烯类单体能否进行自由基聚合,并说明理由。

CH2=C(C6H5)2,ClCH=CHCl,CH2=C(CH3)C2H5,CH3CH=CHCH3,CH2=C(CH3)COOCH3,CH2=CHOCOCH3,CH3CH=CHCOOCH3。

解答:10.丙烯为什么不采用自由基聚合机理进行聚合。

解答:丙烯自由基聚合,活性中心易生成稳定的烯丙基自由基,使聚合反应停止。

~~~CH 2·CHCH 3 + CH 2 = CHCH 3 → ~~~CH 2CH 2CH 3 + CH 2=CH ·CH 2 ·CH 2CH=CH 211.以偶氧氮二异丁腈为引发剂,写出苯乙烯80℃自由基聚合历程中各基元反应。

解答:引发剂分解:(CH 3) 2C —N=N —C(CH) 2 2(CH 3) 2 C· + N 2↑| | | CN CN CN形成单体自由基:(CH 3) 2 C· + CH 2=CH → (CH 3) 2 C-CH 2-HC·| | | |CN C 6H 5 CN C 6H 5 链增长:(CH 3) 2 C-CH 2-HC· + CH 2=CH → → → ~~~~CH 2-HC ·| | | |CN C 6H 5 C 6H 5 C 6H 5链终止:2 ~~~~CH 2-HC · → ~~~~CH 2-HC-CH-CH 2~~~~| | | C 6H 5 H 5 C 6 C 6H 511.回答下列问题:(1)在自由基聚合中为什么聚合物链中单体单元大部分按头尾方式连接? (2)自由基聚合k t >>k p ,但仍然可以得到高分子量聚合物?解答:(1) 主要原因:① 于从活性链端结构分析,当取代基与自由基位于同一碳上时,取代基的电效应有利于活性中心的稳定;② 如要形成头-头结构,两单体的取代基处于相邻碳上,空间位阻加大;③ 单体取代基使其双键电荷分布向与取代基相连的碳上移动,使活性中心易向单体电荷少的碳进攻。

(2) ]M M][[K R p P ⋅= 2t t ][M k R ⋅=自由基聚合中虽然存在k t >>k p ,但自由基浓度很低[M ·]=10-7 ~ -9 mol/L ,而单体浓度则高达101 ~ -1 mol/L ,故聚合反应以生成高分子量聚合物为主。

13.将数均聚合度为1700的聚醋酸乙烯酯水解成聚乙烯醇。

采用高碘酸氧化聚乙烯醇中的1,2-二醇键,得到新的聚乙烯醇的数均聚合度为200。

计算聚醋酸乙烯酯中头-头结构及头尾结构的百分数。

解答:原理:~~~~CH —CH~~~~ + H 5IO 6 → ~~~~CHO + OHC~~~~~ (邢其毅 P403) | | OH OH1700 / 200 = 8.5 8.5 / 1700 = 0.5%80O C14.写出苯乙烯、醋酸乙烯酯和甲基丙烯酸甲酯60℃自由基聚合的双基终止反应式,分析三种单体聚合双基终止方式不同的原因。

解答:苯乙烯:可抽取的α-H少,活性中心与苯环间存在强的共轭,取代基为一苯环,空间位阻较小,偶合终止。

2 ~~~~CH2-HC ·→~~~~CH2-HC-CH-CH2~~~~| | |C6H5 H5 C6 C6H5醋酸乙烯酯:活性中心共聚作用弱,歧化终止。

2 ~~~~CH2-HC ·→~~~~CH2-CH2 + ~~~~CH2=CH| | |OCOCH3 OCOCH3 OCOCH3甲基丙烯酸甲酯:有三个抽取的α-H,有二个取代基,空间位阻较大,利于歧化终止;另一方面活性中心存在较强的共轭,利于偶合终止,故两种终止均存在。

CH3 CH3 CH3| | |2 ~~~~CH2-C ·→~~~~CH2-C —CH-CH2~~~~| | |COOCH3 CH3OOC COOCH3CH3 CH2| ||→~~~~CH2-CH + ~~~~CH2-C| |COOCH3 COOCH315.以H2C CCH3CH3HO N NH2CCCH3CH3OH为引发剂分别使苯乙烯、甲基丙烯酸甲酯在65℃下聚合,然会将其聚合产物分别与甲苯二异氰酸酯反应,发现前者的相对分子质量增加了数倍,而后者的相对分子质量只增加一倍,请说明其原因。

解答:引发剂分解后,一端带有-OH,引发苯乙烯聚合,最后发生偶合终止,所形成的大分子链两端均带-OH,而-OH可与-OCN发生加成反应,反应的结果是产物相对分子质量增加了数倍。

而引发MMA聚合,,大部分发生歧化终止,只在大分子链一端带-OH,反应的结果是产物相对分子质量只增加一倍。

相关文档
最新文档