全等三角形知识点归纳
初中数学全等三角形知识点
初中数学全等三角形知识点(一)、基本概念1、“全等”的理解全等的图形需要满意:(1)外形相同的图形;(2)大小相等的图形; 即能够完全重合的两个图形叫全等形。
同样我们把能够完全重合的两个三角形叫做全等三角形。
2、全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等;3、全等三角形的判定方法(1)三边对应相等的两个三角形全等。
(2)两角和它们的夹边对应相等的两个三角形全等。
(3)两角和其中一角的对边对应相等的两个三角形全等。
(4)两边和它们的夹角对应相等的两个三角形全等。
(5)斜边和一条直角边对应相等的两个直角三角形全等。
4、角平分线的'性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上(二)敏捷运用定理证明两个三角形全等,需要依据已知条件与结论,仔细分析图形,精确无误的确定对应边及对应角;去分析已具有的条件和还缺少的条件,并会将其他一些条件转化为所需的条件,从而使问题得到解决。
运用定理证明三角形全等时要留意以下几点。
1、判定两个三角形全等的定理中,需要具备三个条件,且至少要有一组边对应相等,因此在查找全等的条件时,总是先查找边相等的可能性。
2、要擅长发觉和利用隐含的等量元素,如公共角、公共边、对顶角等。
3、要擅长敏捷选择适当的方法判定两个三角形全等。
(1)已知条件中有两角对应相等,可找:①夹边相等(ASA)②任一组等角的对边相等(AAS)(2)已知条件中有两边对应相等,可找①夹角相等(SAS)②第三组边也相等(SSS)(3)已知条件中有一边一角对应相等,可找①任一组角相等(AAS 或ASA)②夹等角的另一组边相等(SAS)三、疑点、易错点1、对全等三角形书写的错误在书写全等三角形时肯定要把表示对应顶点的字母写在对应的位置上。
切记不要弄错。
2、对全等三角形判定方法理解错误;3、利用角平分线的性质证题时,要克服多数同学习惯于用全等证明的思维定势的消极影响。
全等三角形知识点总结
一、知识框架:全等三角形二、知识概念:1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.(注意对应的顶点写在对应的位置上)⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.夹边就是三角形中相邻两角的公共边,夹角就是三角形中有公共端点的两边所成的角。
两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,一个三角形经过平移、翻折、旋转可以得到它的全等形。
2.全等三角形的性质和表示性质:(1):全等三角形的对应边相等、对应角相等。
(2):全等三角形的周长相等、面积相等。
(3):全等三角形的对应边上的对应中线、角平分线、高线分别相等。
表示:全等用符号“竺”表示,读作“全等于”。
如^ABC^ADEF,读作“三角形ABC 全等于三角形DEF”注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。
3.全等三角形的判定定理:⑴边边边(SSS):三边对应相等的两个三角形全等.⑵边角边(SAS ):两边和它们的夹角对应相等的两个三角形全等.⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等.⑷角角边(AAS ):两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等. (只适用于两个直角三角形)4、学习全等三角形应注意以下几个问题:(1):要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2) :表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3):“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4):时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”5、全等变换只改变图形的位置,二不改变其形状大小的图形变换叫做全等变换。
八年级数学上册《全等三角形》知识点梳理
千里之行,始于足下。
八年级数学上册《全等三角形》知识点梳理
1. 什么是全等三角形?
- 全等三角形指的是两个三角形的对应边长相等,对应角度也相等的三角形。
2. 全等三角形的性质和判定方法有哪些?
- 全等三角形的性质包括:对应边长相等,对应角度相等,对应线段相等,对应角平分线相等。
- 判定两个三角形全等的方法有:SSS 判定法(边边边)、SAS 判定法
(边角边)、ASA 判定法(角边角)和 HL 判定法(斜边直角边)。
3. 全等三角形的基本性质有哪些?
- 对应的边相等:若两个三角形全等,则它们的对应边长相等。
- 对应的角度相等:若两个三角形全等,则它们的对应角度相等。
- 对应的线段相等:若两个三角形的对应边相等,它们的对应线段(如中线、高线、角平分线等)也相等。
4. 如何应用全等三角形解题?
- 利用全等三角形的性质可以在图形中推导出其他线段和角度的长度或关系,从而解决各种三角形的问题。
第1页/共2页
锲而不舍,金石可镂。
- 典型的应用包括求角度的大小、线段长度的关系、面积的比较等。
5. 如何证明两个三角形全等?
- 根据要证明的条件选择合适的判定方法(SSS、SAS、ASA 或 HL)。
- 使用已知条件和全等三角形的性质,逐步推导出两个三角形的对应边长和对应角度相等。
- 利用已知条件的等式和全等三角形的性质,一步一步证明两个三角形全等。
注意:以上为八年级数学上册《全等三角形》的知识点梳理,具体内容可能与教材有所差异,建议参考教材进行学习。
第十二章全等三角形知识点归纳
第十二章 全等三角形一、知识要点1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;即能够完全重合的两个图形叫全等形。
同样我们把能够完全重合的两个三角形叫做全等三角形。
当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边; (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角; (3)有公共边的,公共边一定是对应边; (4)有公共角的,角一定是对应角; (5)有对顶角的,对顶角一定是对应角; 2、全等三角形的判定和性质3、证题的思路:(A S A )(A A S )⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎧⎪⎪⎧⎪⎪⎨⎨⎪⎨⎪⎪⎪⎪⎪⎩⎩⎪⎪⎧⎨⎪⎩⎪⎪⎩找夹角已知两边找直角找另一边边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一边(SAS)(HL)(SSS) (AAS)(SAS)(ASA)(AAS) 4、应注意的问题(1)要正确区分“对应边”与“对边”、“对应角”与“对角”的不同含义;(2)符号“≌”表示的双重含义:①“∽”表示形状相同;②“=”表示大小相等; (3)表示两个三角形全等时,表示对应的顶点的字母要写在相对应的位置上; (4)要正确区分判定三角形全等的结论的不同含义;(5)要记住“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等.5、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等 判定:到一个角的两边距离相等的点在这个角平分线上 6、全等三角形问题中常见的辅助线的作法 (1)连接法(连接公共边构造三角形全等); (2)延长法(延长至相交、倍长中线)(3)截长补短法(适合于证明线段的和、差等问题)(4)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线 二、考点解密(1)常见全等的判定和性质考察1、已知△ABD ≌△CDB ,AB 与CD 是对应边,那么AD= ,∠A= ;2、如图,已知△ABE ≌△DCE ,AE=2cm ,BE=1.5cm ,∠A=25°∠B=48°;那么DE= cm ,EC= cm ,∠C= 度;∠D= 度;CBAFE DC B A第2小题 第3小题 第4小题3、如图,△ABC ≌△DBC ,∠A=800,∠ABC=300,则∠DCB= 度; 4、如图,已知,∠ABC =∠DEF ,AB =DE ,要说明△ABC ≌△DEF ,(1)若以“SAS ”为依据,还须添加的一个条件为 ;(2)若以“ASA ”为依据,还须添加的一个条件为 ;(3)若以“AAS ”为依据,还须添加的一个条件为 ;5.已知△ABC ≌△DEF ,△DEF 的周长为32 cm ,DE =9 cm ,EF =12 cm 则AB =____________,BC =____________,AC =____________.6.一个三角形的三边为2、5、x ,另一个三角形的三边为y 、2、6,若这两个三角形全等,则x +y =__________.7.下列命题中正确的是( )①全等三角形对应边相等; ②三个角对应相等的两个三角形全等; ③三边对应相等的两三角形全等;④有两边对应相等的两三角形全等。
全等三角形的知识点总结
全等三角形的知识点总结判定公理三角形全等的条件:1、全等三角形的对应角相等。
2、全等三角形的对应边相等3、全等三角形的对应顶点相等。
4、全等三角形的对应边上的高对应相等。
5、全等三角形的对应角平分线相等。
6、全等三角形的对应中线相等。
7、全等三角形面积相等。
8、全等三角形周长相等。
9、全等三角形可以完全重合。
三角形全等的方法:1、三边对应相等的两个三角形全等。
(SSS)2、两边和它们的夹角对应相等的两个三角形全等。
(SAS)3、两角和它们的夹边对应相等的两个三角形全等。
(ASA)4、有两角及其一角的对边对应相等的两个三角形全等(AAS)5、斜边和一条直角边对应相等的两个直角三角形全等。
(HL)性质要验证全等三角形,不需验证所有边及所有角也对应地相同。
以下判定,是由三个对应的部分组成,即全等三角形可透过以下定义来判定:S.S.S. (Side-Side-Side)(边、边、边):各三角形的三条边的长度都对应地相等的话,该两个三角形就是全等。
S.A.S. (Side-Angle-Side)(边、角、边):各三角形的其中两条边的长度都对应地相等,且两条边夹着的角都对应地相等的话,该两个三角形就是全等。
A.S.A. (Angle-Side-Angle)(角、边、角):各三角形的其中两个角都对应地相等,且两个角夹着的边都对应地相等的话,该两个三角形就是全等。
A.A.S. (Angle-Angle-Side)(角、角、边):各三角形的其中两个角都对应地相等,且没有被两个角夹着的边都对应地相等的`话,该两个三角形就是全等。
R.H.S. / H.L. (Right Angle-Hypotenuse-Side)(直角、斜边、边):各三角形的直角、斜边及另外一条边都对应地相等的话,该两个三角形就是全等。
但并非运用任何三个相等的部分便能判定三角形是否全等。
以下的判定同样是运用两个三角形的三个相等的部分,但不能判定全等三角形:A.A.A. (Angle-Angle-Angle)(角、角、角):各三角形的任何三个角都对应地相等,但这并不能判定全等三角形,但则可判定相似三角形。
初中数学全等三角形知识点
( 3) 已知条件中有一边一角对应相等, 可找
①任一组角相等 (AAS 或 ASA) ②夹等角的另一组边相等 (SAS)
轴对称知识梳理
一、基本概念
1. 轴对称图形
如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对
称图形,这条直线就叫做对称轴 . 折叠后重合的点是对应点,叫做对称点 .
全等三角形 知识总结
一、知识网络
全等形
性质 对应角相等 对应边相等
全等三角形
边边边 边角边 判定 角边角 角角边
SSS SAS ASA AAS
斜边、直角边 HL
作图 角平分线
性质与判定定理
二、基础知识梳理
(一)、基本概念
应用
1、 “全等 ”的理解 全等的图形必须满足: ( 1)形状相同的图形; ( 2)大小相等的图形; 即能够完全重合的两个图形叫全等形。同样我们把能够完全重合的两个三角形叫做 全等三角形。
2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。
3、要善于灵活选择适当的方法判定两个三角形全等。 ( 1) 已知条件中有两角对应相等, 可找:
①夹边相等( ASA )②任一组等角的对边相等 (AAS)
( 2) 已知条件中有两边对应相等, 可找
①夹角相等 (SAS) ②第三组边也相等 (SSS)
.
( 3)等边三角形每边上的中线、高和该边所对内角的平分线互相重合
.
三、有关判定
1. 与一条线段两个端点距离相等的点,在这条线段的垂直平分线上
.
2. 如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等
边”) .
3. 三个角都相等的三角形是等边三角形 .
全等三角形的知识点归纳
全等三角形的知识点归纳1.全等三角形的定义:如果两个三角形的对应的边相等,对应的角也相等,则这两个三角形是全等三角形。
2.全等三角形的符号表示:通常使用三个粗体字母表示全等三角形,例如△ABC≌△DEF,表示△ABC全等于△DEF。
3.全等三角形的性质:a.边-边-边(SSS)全等:如果两个三角形的三条边相等,则这两个三角形全等。
b.顶角-底角-顶角(ASA)全等:如果两个三角形中两个顶角和它们的夹边相等,则这两个三角形全等。
c.底边-底角-底边(SAS)全等:如果两个三角形中两条底边和它们夹的角相等,则这两个三角形全等。
d.直角-直角-斜边(RHS)全等:如果两个直角三角形的一个直角和斜边相等,则这两个直角三角形全等。
e.角-边-角(AAS)全等:如果两个三角形中两个夹角和它们的夹边相等,则这两个三角形全等。
f.边-角-边(ASA)全等:如果两个三角形中一条边和夹角相等,另一条边和夹角的夹边相等,且夹角不是直角,则这两个三角形全等。
4.全等三角形的性质推论:a.如果两个三角形是全等的,则它们对应的边和角是一一对应的。
b.全等三角形的一边等于另一个全等三角形的一边,一角等于另一个全等三角形的一角。
c.全等三角形的对应边和对应角是相等的。
d.全等三角形的对应边平行。
e.全等三角形的对应边垂直。
f.全等三角形的对应角相等。
g.如果一个角等于一个角,两边分别等于两边,那么两个三角形可能全等,也可能不全等。
5.全等三角形的判定方法:a.SSS判定法:如果两个三角形的三条边分别相等,则这两个三角形全等。
b.SAS判定法:如果两个三角形的两条边和夹角相等,则这两个三角形全等。
c.ASA判定法:如果两个三角形的两个夹角和一条边相等,则这两个三角形全等。
d.RHS判定法:如果两个直角三角形的一个直角和斜边相等,则这两个直角三角形全等。
6.全等三角形的性质应用:a.利用全等三角形的性质,可以证明两个三角形的各边之比相等。
全等三角形知识点
全等三角形知识点1.全等三角形的定义:两个三角形ABC和DEF,如果边AB和边DE对应相等,边AC和边DF对应相等,且∠BAC和∠EDF对应相等,那么称三角形ABC与三角形DEF全等。
2.全等三角形的性质:(1)全等三角形的任意两边对应的角也相等,即∠ABC=∠DEF,∠ACB=∠DFE。
(2)全等三角形的任意两角对应的边也相等,即AB=DE,AC=DF。
(3)全等三角形的任意一边对应的两角也相等,即∠B=∠E,∠C=∠F。
(4)全等三角形的相等角的对边也相等,即BC=EF。
(5)全等三角形的相等边的对角也相等,即∠A=∠D。
3.全等三角形的判定方法:(1)SSS判定法:若两个三角形的三边分别对应相等,则两个三角形全等。
(2)SAS判定法:若两个三角形的两边和夹角对应相等,则两个三角形全等。
(3)ASA判定法:若两个三角形的两角和夹边对应相等,则两个三角形全等。
(4)AAS判定法:若两个三角形的两角和非夹边对应相等,则两个三角形全等。
4.全等三角形的推论:(1)全等三角形的对应边的中点连线平行且等于对应边的中点连线。
(2)全等三角形的对应角的角平分线相交于一点且平分角相等。
(3)全等三角形的高线和中线分别平行(且等于),中点线和中线相等。
(4)全等三角形的内角和相等。
(5)全等三角形的周长相等。
(6)全等三角形的面积相等。
5.全等三角形的应用:(1)在计算中,通过判断两个三角形是否全等,可以求出其他未知量。
(2)在建筑和工程设计中,通过全等三角形的性质可以测量和确定物体的高度和距离。
(3)在制图和绘画中,可以利用全等三角形的性质来进行放缩和比例调整。
(4)在几何证明中,全等三角形是基础的推理和证明工具,常用于证明其他几何命题。
全等三角形是几何学中重要的基本概念,掌握全等三角形的性质和判定方法对于理解研究几何学具有重要意义。
在学习和应用中,需要注意掌握全等三角形的各种推论,灵活运用全等三角形的性质解决问题。
全等三角形的知识点梳理
全等三角形的知识点梳理全等三角形一、结构梳理概念:全等:两个能够完全重合的图形称为全等图形,全等图形的形状和大小都相同。
全等三角形特征:形:能够完全重合的两个三角形叫全等三角形。
特例全等三角形。
全等三角形条件。
画三角形。
二、知识梳理一)概念梳理1.全等图形:两个能够完全重合的图形称为全等图形,全等图形的形状和大小都相同。
2.全等三角形:能够完全重合的两个三角形叫全等三角形。
符号“≌”表示图形大小和形状都相等。
二)性质与判定梳理1.全等图形性质:全等多边形的对应边、对应角分别相等。
全等三角形的对应边、对应角分别相等。
2.全等三角形的判定:判断两个三角形全等的方法有:1)三边对应相等的两个三角形全等,XXX为:SSS;2)两角和它们的夹边对应相等的两个三角形全等,XXX 为:ASA;3)两角和其中一角的对边对应相等的两个三角形全等,XXX为:AAS;4)两边和它们的夹角对应相等的两个三角形全等,XXX 为:SAS。
若是直角三角形,则还有斜边、直角边公理(HL)。
判断三角形全等的基本思路:要判定两个三角形全等,需要知道这两个三角形分别有三个元素(其中至少一个元素是边)对应相等,这样就可以利用题目中的已知边(角)去迅速准确地确定要补充的边(角),从而得到判定两个三角形全等的思路。
例如:已知两边,找另一边:SSS。
已知边为角的对边,找任一角:AAS。
已知两角,找任一边:ASA。
已知一边一角,找这条边上的对角:AAS。
边就是角的一条边,找该角的另一边:SAS。
找两角的夹边:ASA。
何格式错误,删除明显有问题的段落,改写如下。
学会辨认全等三角形的对应元素是很重要的。
方法是先找出全等三角形的对应顶点,再确定对应角和对应边。
例如,如果已知△ABC≌EFD,则A与E、B与F、C与D对应,因此三角形的边AB与EF、BC与FD、AC与ED对应。
对应边所夹的角就是对应角。
此外,还有如下规律:(1)全等三角形的公共边是对应边,公共角是对应角,对顶角是对应角;(2)全等三角形的两个对应角所夹的边是对应边,两条对应边所夹的角是对应角。
全等三角形知识点梳理
第十二章全等三角形2018.9 杨1. 全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.对 应边相等。
2. 全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.对 应角相等。
证明三角形全等基本思路:严誓筝三边[555)C1J <已知两边找夹角 (曲L 找是否有虫希(HL)找这边的另一个邻角(竺引 找这个馬的另找这边曲对角(AAS)三角形全等的判定(1)三边分别相等的两个三角形全等,简写成边边边或1. 如图,AB= AD, C 吐 CD 求证:(1) △ ABC^^ ADC (2) / B =/D. 证明:⑴连接AC 在厶ABC 与△ ADC 中,•••△ ABC^A ADC(SSS)(2) ABC^A ADC 「•/ B =/ D.2. 已知在四边形 ABCD 中, AB 二CD,AD 二BC,求证 AD//BCAD 做辅助线,连接—AC ,利用SSS 证明全等,得到/ DAC h ACB 从而证明平行 BC 三角形全等的判定.(2) 两边和它们的夹角分别相等的两个三角形全等 (可以简写成“边角边”或SAS ).两边和其中一边的对角对应相等的两个三角形不一定全等1. 如图,将两个一大、一小的等腰直角三角尺拼接 (A ,B, D 三点共线,AB= CB EB= DB,Z ABO / EBD= 90° ),连接 AE, CD 试确定 AE 与 CD 的关 系,并证明你的结论.:已知一边一 估):已知两角-找两角的夹边M5A) 找夹边处的任意边(V 】找一角Lui)己知菊是宜矗.«—iftrh-L)解:结论:AE= CD, AE± CD.证明:延长AE交CD于尸,在厶ABE与厶CBD中,•••△ ABE^A CBD SA$,二AE= CD, / EAB=Z DCB•••/ DC聊/ CD* 90°, •••/ EAB^Z CD* 90 ° ,•••/AFD* 90 ° ,二AE± CD.2.在厶ABC^H A CDE中,CA=CB,CD=CE, ACB ZDCE=90 , AE与BD交与点F(1)求证:△ ACE^A BCD (2)求证:AE± BD1,利用SAS证明全等,AC=BCDC=ECBCD Z ACE2,全等得到角相等Z CAE Z DCBZ CAB+Z EAB+Z ABC=90Z DC Z EAB+Z ABC=90三角形全等的判定(3)两角和它们的夹边分别对应相等的两个三角形全等,简称角边角或ASA两个角和其中一个角的对边分别相等的两个三角形全等,简称角角边或AAS求证:三角形一边的两端点到这边的中线或中线延长线的距离相等.求证:BE* CF.如图,ADABC的中线,且CF丄AD于点F, BE丄AD,交AD的延长线于点E,证法1:••• ADABC的中线,二BD*CD.v BE!AD, CF丄AD, •••Z BED=ZCFD= 90 ° .在厶BED与厶CFD中•••△ BED^A CFD AAS , • BE* CF.证法2:VS△ ABD* AD* BE CF,且S A ABD*S A ACd(等底同高的两个三角形面积相等),• AD- BE= AD- CE •- BE* CF.三角形全等的判定⑷斜边和一条直角边分别对应相等的两个直角三角形全等,简称“斜边、直角边”或“ HL'.如图,E , F分别为线段AC上的两点,且DEL AC于点E , BF丄AC于点F,若BD交AC于点M.求证:BM* DM ME= MF.证明:••• AE= CF, • AE^ EF* CF+ EF「. AF* CE. 在Rt △ABF与Rt△ CDE中•Rt△ ABF^Rt△ CDEHD ,•BF* DE.v DEL A C BF L A C•Z DEI*Z BFI* 90° .在厶BFM与厶DEM中• △ BFM^A DEM AAS ,••• BW DM MB MF.角的平分线的性质角平分线的性质:角的平分线上的点到角的两边的距离相等.文字命题的证明方法:a.明确命题中的已知和求证;b.根据题意,画出图形,并用数学符号表示已知和求证;c.经过分析,找出由已知推出要证的结论的途径,写出证明过程. 方法总结:(1)角平分线的性质是证明线段相等的另一途径.(2)在已知角平分线的条件下,也可想到翻折构造全等的方法.角平分线的性质是证线段相等的常用方法之一,角平分线的性质与判定通常是交叉使用,作角的平分线或过角的平分线上一点作角两边的垂线段是常用的辅助线.1.在厶ABC中,人。
全等三角形知识点总结
全等三角形知识点总结一、全等三角形的定义1. 全等三角形的定义:如果两个三角形的三个对应角完全相等,那么这两个三角形就是全等的。
当且仅当两个三角形的对应边长都相等时,这两个三角形才是全等的。
2. 全等三角形的性质:a. 全等三角形的对应角相等,对应边相等。
b. 如果两个三角形是全等的,那么它们的内部三角形也全等。
二、全等三角形的判定定理1. SSS判定定理:如果两个三角形的三条边分别相等,那么这两个三角形是全等的。
2. SAS判定定理:如果两个三角形的两边及夹角分别相等,则这两个三角形是全等的。
3. ASA判定定理:如果两个三角形的两个角及夹边分别相等,则这两个三角形是全等的。
4. AAS判定定理:如果两个三角形有一对对应角相等,并且两个对应边分别相等,则这两个三角形是全等的。
5. RHS判定定理:如果两个直角三角形的两条直角边分别相等,则这两个直角三角形是全等的。
三、全等三角形的性质1. 全等三角形的对应边相等,对应角相等。
2. 全等三角形的内部三角形也是全等的。
3. 全等三角形的每个角的顶点到对边的距离也相等。
四、全等三角形的应用1. 在几何证明中,可以利用全等三角形的性质证明两个三角形相等。
2. 在计算中,可以利用全等三角形的性质求解未知边长和角度。
3. 在工程建设和日常生活中,可以利用全等三角形的性质进行测量和设计。
五、全等三角形的相关定理1. 全等三角形的相关定理包括:全等三角形的辅助线定理、全等三角形的平行线定理、全等三角形的垂直平分线定理等。
六、全等三角形的证明方法1. 证明两个三角形全等的一般步骤包括:1)找出两个三角形的对应角、对应边;2)通过对应边和对应角的关系来进行判定,通常使用SSS、SAS、ASA、AAS等定理。
七、全等三角形的应用举例1. 利用全等三角形的性质证明两个三角形全等。
2. 利用全等三角形的性质求解未知边长和角度。
3. 利用全等三角形的性质进行测量和设计。
总的来说,全等三角形是我们学习几何时必须掌握的重要知识点,它在证明、计算、测量和设计中都有广泛的应用。
八年级数学上册“第十二章全等三角形”必背知识点
八年级数学上册“第十二章全等三角形”必背知识点一、全等三角形的基本概念1. 全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。
2. 对应边和对应角:全等三角形中互相重合的边和角分别称为对应边和对应角。
3. 对应顶点:全等三角形中互相重合的顶点称为对应顶点。
二、全等三角形的性质1. 对应边相等:全等三角形的对应边相等。
2. 对应角相等:全等三角形的对应角相等。
3. 其他性质:全等三角形的周长和面积也相等;对应边上的高、中线、角平分线分别相等;对应角的三角函数值相等。
三、全等三角形的判定定理全等三角形的判定定理是本章的核心内容,主要包括以下几种:1. SSS(边边边):三边分别相等的两个三角形全等。
2. SAS(边角边):两边和它们的夹角分别相等的两个三角形全等。
3. ASA(角边角):两角和它们的夹边分别相等的两个三角形全等。
4. AAS(角角边):两个角和其中一个角的对边分别相等的两个三角形全等。
5. HL(直角三角形的斜边、直角边):在直角三角形中,斜边和一条直角边分别相等的两个直角三角形全等。
四、找全等三角形的方法1. 从结论出发:看要证明相等的两条线段 (或角)分别在哪两个可能全等的三角形中。
2. 从已知条件出发:看已知条件可以确定哪两个三角形相等。
3. 综合考虑:从条件和结论综合考虑,看它们能一同确定哪两个三角形全等。
4. 添加辅助线:若上述方法均不行,可考虑添加辅助线,构造全等三角形。
五、角平分线的性质1. 性质定理:角平分线上的点到角的两边的距离相等。
2. 逆定理:角的内部到角的两边距离相等的点在角的平分线上。
六、注意事项1. 在应用判定定理时,必须注意对应边和对应角的对应关系,不能随意搭配。
2. 证明两个三角形全等时,必须明确写出判定定理的依据,并写出完整的证明过程。
3. 注意区分全等三角形和相似三角形的判定条件,不要混淆。
通过掌握以上知识点,可以更好地理解和应用全等三角形的相关概念和性质,解决与全等三角形相关的问题。
全等三角形知识点总结
全等三角形知识点总结全等三角形是指具有相同形状和大小的三角形。
当两个三角形的对应边长、对应角度均相等时,它们就是全等三角形。
全等三角形的性质和应用十分重要,在几何学和实际问题的解决中都有广泛的应用。
本文将对全等三角形的知识点进行总结,旨在帮助读者系统地了解和掌握全等三角形的相关概念、性质和应用。
一、全等三角形的定义及判定全等三角形的定义:当两个三角形的对应边长、对应角度均相等时,它们就是全等三角形。
全等三角形的判定:1. SSS判定法:如果两个三角形的三边分别相等,则这两个三角形全等。
2. SAS判定法:如果两个三角形的两边和夹角分别相等,则这两个三角形全等。
3. ASA判定法:如果两个三角形的两角和夹边分别相等,则这两个三角形全等。
4. AAS判定法:如果两个三角形的两角和对边分别相等,则这两个三角形全等。
二、全等三角形的性质1. 对应边相等性质:全等三角形的对应边相等,即对应边的长度相等。
2. 对应角相等性质:全等三角形的对应角相等,即对应角的度数相等。
3. 对称性质:全等三角形是对称的,即一个全等三角形的三个顶点可以与另一个全等三角形的三个顶点按照一定的顺序对应。
4. 任意两边夹角相等性质:全等三角形的任意两边夹角相等。
5. 垂直角性质:两个全等三角形的对应边相等,对应边落在同一直线上,对应边相互垂直。
三、全等三角形的应用1. 相似三角形的判定:如果两个三角形的对应角度相等,但对应边长不全等,则这两个三角形是相似的,我们可以通过全等三角形的判定法来判断两个三角形是否相似。
2. 数学问题中的运用:全等三角形的性质可以应用于解决各种数学问题,例如计算直角三角形的边长、解决三角恒等式等。
3. 工程测量与建模:全等三角形的性质在测量和建模中有广泛的应用,可以通过已知的全等三角形关系来计算未知的长度或角度。
4. 图形的构造:全等三角形的判定法可以用于图形的构造,例如根据给定的边长和角度构造相应的全等三角形。
全等三角形知识点总结 全等三角形复习知识点
全等三角形知识点总结全等三角形复习知识点全等三角形知识点总结一:全等三角形:能够完全重合的两个三角形,叫做全等三角形.对应边:能重合的边叫对应边。
对应角:能重合的角叫对应角。
全等三角形知识点总结二:全等三角形表示法①用符号写出一个三角形的名称②写出全等符号≌③再用符号写出另一个三角形的名称④如≌△ABC≌△DEF 只有一种对应方式。
(AD ,BE, CF)⑤注意:对应顶点的字母一定要对应。
说明; △ABC全等于△DEF (A点有三种对应方式,A D,AE,AF)全等变换形式:①平移型:②翻折型:③旋转型:全等三角形知识点总结三:全等三角形性质(1)全等三角形的对应边相等;(2)全等三角形的对应角相等;(3)全等三角形的对应中线、对应角平分线、对应高相等;(4)全等三角形的面积相等,周长相等.全等三角形知识点总结四:判定两个三角形全等的依据(1) 边边边公理(SSS):三条边对应相等的两个三角形全等(2) 边角边公理(SAS):两边及其夹角对应相等的两个三角形全等;(3) 角边角公理(ASA):两角及其夹边对应相等的两个三角形全等;(4) (角边角公理的推论(AAS):两角和其中一角的对边对应相等的两个三角形全等;(5)斜边、直角边公理(HL):斜边和一直角边对应相等的两个三角形全等. 全等三角形知识点总结五全等三角形对应边对应角找法①、对应角所对的边是对应边;对应边所对的角是对应角。
②、公共边是对应边;公共角(对顶角)是对应角。
③、相等的边是对应边;相等的是对应角。
④、最大(小)边与最大(小)边是对应边;最大(小)角与最大(小)角是对应角。
⑤、对应角所夹的边是对应边;对应边所夹的角是对应角。
角平分线性质定理:角平分线上的点到这个角两边的距离相等。
角平分线判定定理: 角的内部到角两边的距离相等的点在这个角的平分线上。
“全等三角形知识点总结全等三角形复习知识点”。
全等三角形知识点总结及复习
全等三角形知识点总结及复习一、知识网络并击『对应角相等 性质彳[对应边相等 '边边边 SSS彳 边角边 SAS判定J 角边角 ASA角角边 AAS [斜边、直角边 HL r作图角平分线性质与判定定理二、基础知识梳理 (一)、基本概念⑵大小相等的图形;即能够完全重合的两个图形叫全等形。
同样我们把能够完全重合的 两个三角形叫做全等三角形。
全等三角形定义:能够完全重合的两个三角形称为全等三角形。
(注:全等三角形是相似三角形中的特殊情况)当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重 合的边叫做对应边,互相重合的角叫做对应角。
由此,可以得出:全等三角形的对应边相等,对应角相等。
(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是 对应边;1、“全等”的理解全等的图形必须满足:(1)形状相同的图形;全等形 > 全等三角形(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;(3)有公共边的,公共边一定是对应边;(4)有公共角的,角一定是对应角;(5)有对顶角的,对顶角一定是对应角;2 、全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等;3、全等三角形的判定方法(1)三边对应相等的两个三角形全等。
(2)两角和它们的夹边对应相等的两个三角形全等。
(3)两角和其中一角的对边对应相等的两个三角形全等。
(4)两边和它们的夹角对应相等的两个三角形全等。
(5)斜边和一条直角边对应相等的两个直角三角形全等。
4、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上(二)灵活运用定理1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。
2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。
3、要善于灵活选择适当的方法判定两个三角形全等。
全等三角形知识点总结及复习
全等三角形知识点总结及复习一、知识网络⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪→⇒⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎩⎧⎨⎩对应角相等性质对应边相等边边边 SSS 全等形全等三角形应用边角边 SAS 判定角边角 ASA 角角边 AAS 斜边、直角边 HL 作图 角平分线性质与判定定理二、基础知识梳理 (一)、基本概念1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;即能够完全重合的两个图形叫全等形。
同样我们把能够完全重合的两个三角形叫做全等三角形。
全等三角形定义 :能够完全重合的两个三角形称为全等三角形。
(注:全等三角形是相似三角形中的特殊情况)当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
由此,可以得出:全等三角形的对应边相等,对应角相等。
(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边; (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角; (3)有公共边的,公共边一定是对应边;(4)有公共角的,角一定是对应角;(5)有对顶角的,对顶角一定是对应角;2、全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等;3、全等三角形的判定方法(1)三边对应相等的两个三角形全等。
(2)两角和它们的夹边对应相等的两个三角形全等。
(3)两角和其中一角的对边对应相等的两个三角形全等。
(4)两边和它们的夹角对应相等的两个三角形全等。
(5)斜边和一条直角边对应相等的两个直角三角形全等。
4、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上(二)灵活运用定理1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。
2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。
3、要善于灵活选择适当的方法判定两个三角形全等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《全等三角形》知识点归纳
知识点结构梳理
1.全等形:能够完全重合的两个图形叫做全等形。
2.全等三角形:
定义:能够完全重合的两个三角形叫做全等三角形。
表示方法:△ABC全等于△DEF ()
全等三角形的性质:全等三角形的对应边相等
全等三角形的对应角相等
3.三角形全等的判定:
1 边边边 (SAS) :三边对应相等的两个三角形全等。
2 角边角(SAS):两边和它们的夹角对应相等的两个三角形全等。
3 角边角(ASA):两边和他们的夹角对应相等的两个三角形全等。
角角边(AAS):两个角和其中的一个叫的对边对应相等的两个三角形全等。
4 斜边,直角边(HL):斜边和直角边对应相等的两个三角形全等。
4.角的平分线的性质
角的平分线的性质:角的平分线上的点到角的两边的距离相等。
角的平分线的判定:角的内部到角的两边的距离相等的点
在角的平分线上。
二、小结。