2019届高三数学一轮复习目录(理科)
2019-2020年高考数学一轮总复习第五章数列5.3等比数列及其前n项和课时跟踪检测理
2019-2020年高考数学一轮总复习第五章数列5.3等比数列及其前n 项和课时跟踪检测理[课 时 跟 踪 检 测][基 础 达 标]1.已知数列{a n }为等比数列,若a 4+a 6=10,则a 7(a 1+2a 3)+a 3a 9的值为( ) A .10 B .20 C .100D .200解析:a 7(a 1+2a 3)+a 3a 9=a 7a 1+2a 7a 3+a 3a 9=a 24+2a 4a 6+a 26=(a 4+a 6)2=102=100. 答案:C2.设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A.18 B .-18C.578D .558解析:因为a 7+a 8+a 9=S 9-S 6,且S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以8(S 9-S 6)=1,即S 9-S 6=18.所以a 7+a 8+a 9=18.答案:A3.已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *),且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是( )A .-5B .-15C .5D .15解析:∵log 3a n +1=log 3a n +1,∴a n +1=3a n . ∴数列{a n }是公比q =3的等比数列. ∵a 5+a 7+a 9=q 3(a 2+a 4+a 6),∴log 13(a 5+a 7+a 9)=log 13(9×33)=log 1335=-5.答案:A4.(xx 届太原一模)在单调递减的等比数列{a n }中,若a 3=1,a 2+a 4=52,则a 1=( )A .2B .4 C. 2D .2 2解析:在等比数列{a n }中,a 2a 4=a 23=1,又a 2+a 4=52,数列{a n }为递减数列,所以a 2=2,a 4=12,所以q 2=a 4a 2=14,所以q =12,a 1=a 2q=4.答案:B5.(xx 届莱芜模拟)已知数列{a n },{b n }满足a 1=b 1=3,a n +1-a n =b n +1b n=3,n ∈N *,若数列{c n }满足c n =ba n ,则c 2 017=( )A .92 016B .272 016C .92 017D .272 017解析:由已知条件知{a n }是首项为3,公差为3的等差数列,数列{b n }是首项为3,公比为3的等比数列,所以a n =3n ,b n =3n. 又c n =ba n =33n, 所以c 2 017=33×2 017=272 017.答案:D6.(xx 届海口市调研测试)设S n 为等比数列{a n }的前n 项和,a 2-8a 5=0,则S 8S 4的值为( )A.12 B .1716 C .2D .17解析:设{a n }的公比为q ,依题意得a 5a 2=18=q 3,因此q =12.注意到a 5+a 6+a 7+a 8=q 4(a 1+a 2+a 3+a 4),即有S 8-S 4=q 4S 4,因此S 8=(q 4+1)S 4,S 8S 4=q 4+1=1716,选B.答案:B7.(xx 届衡阳模拟)在等比数列{a n }中,a 1=2,前n 项和为S n ,若数列{a n +1}也是等比数列,则S n =( )A .2n +1-2 B .3n C .2nD .3n-1解析:因为数列{a n }为等比数列,a 1=2,设其公比为q ,则a n =2qn -1,因为数列{a n +1}也是等比数列,所以(a n +1+1)2=(a n +1)(a n +2+1)⇒a 2n +1+2a n +1=a n a n +2+a n +a n +2⇒a n +a n+2=2a n +1⇒a n (1+q 2-2q )=0⇒q =1,即a n =2,所以S n =2n ,故选C.答案:C8.(xx 届广州市五校联考)已知数列{a n }的首项a 1=2,数列{b n }为等比数列,且b n =a n +1a n,若b 10b 11=2,则a 21=( )A .29B .210C .211D .212解析:由b n =a n +1a n ,且a 1=2,得b 1=a 2a 1=a 22,a 2=2b 1;b 2=a 3a 2,a 3=a 2b 2=2b 1b 2;b 3=a 4a 3,a 4=a 3b 3=2b 1b 2b 3;…;a n =2b 1b 2b 3…b n -1,所以a 21=2b 1b 2b 3…b 20,又{b n }为等比数列,所以a 21=2(b 1b 20)(b 2b 19)…(b 10b 11)=2(b 10b 11)10=211. 答案:C9.由正数组成的等比数列{a n }满足a 3a 8=32,则log 2a 1+log 2a 2+…+log 2a 10=________. 解析:log 2a 1+log 2a 2+…+log 2a 10=log 2(a 1a 10)·(a 2a 9)·…·(a 5a 6)=log 2(a 3a 8)5=log 2225=25.答案:2510.设S n 为等比数列{a n }的前n 项和.若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________. 解析:因为3S 1,2S 2,S 3成等差数列,所以4S 2=3S 1+S 3,即4(a 1+a 2)=3a 1+a 1+a 2+a 3.化简得a 3a 2=3,即等比数列{a n }的公比q =3,故a n =1×3n -1=3n -1.答案:3n -111.(xx 届南昌模拟)已知公比不为1的等比数列{a n }的首项a 1=12,前n 项和为S n ,且a 4+S 4,a 5+S 5,a 6+S 6成等差数列.(1)求等比数列{a n }的通项公式;(2)对n ∈N *,在a n 与a n +1之间插入3n 个数,使这3n+2个数成等差数列,记插入的这3n个数的和为b n ,求数列{b n }的前n 项和T n .解:(1)因为a 4+S 4,a 5+S 5,a 6+S 6成等差数列, 所以a 5+S 5-a 4-S 4=a 6+S 6-a 5-S 5, 即2a 6-3a 5+a 4=0, 所以2q 2-3q +1=0, 因为q ≠1, 所以q =12,所以等比数列{a n }的通项公式为a n =12n .(2)b n =a n +a n +12·3n=34⎝ ⎛⎭⎪⎫32n ,T n =34×32-⎝ ⎛⎭⎪⎫32n +11-32=94⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫32n -1.12.设数列{a n }的前n 项和为S n (n ∈N *).已知a 1=1,a 2=32,a 3=54,且当n ≥2时,4S n+2+5S n =8S n +1+S n -1. (1)求a 4的值;(2)证明:⎩⎨⎧⎭⎬⎫a n +1-12a n 为等比数列.解:(1)当n =2时,4S 4+5S 2=8S 3+S 1,即4⎝ ⎛⎭⎪⎫1+32+54+a 4+5⎝ ⎛⎭⎪⎫1+32=81+32+54+1,解得a 4=78.(2)证明:由4S n +2+5S n =8S n +1+S n -1(n ≥2), 得4S n +2-4S n +1+S n -S n -1=4S n +1-4S n (n ≥2), 即4a n +2+a n =4a n +1(n ≥2).∵4a 3+a 1=4×54+1=6=4a 2符合上式,∴4a n +2+a n =4a n +1(n ≥1), ∴a n +2-12a n +1a n +1-12a n=4a n +2-2a n +14a n +1-2a n=4a n +1-a n -2a n +14a n +1-2a n =2a n +1-a n 22a n +1-a n =12,∴数列⎩⎨⎧⎭⎬⎫a n +1-12a n 是以a 2-12a 1=1为首项,12为公比的等比数列.[能 力 提 升]1.若{a n }是正项递增等比数列,T n 表示其前n 项之积,且T 10=T 20,则当T n 取最小值时,n 的值为________.解析:T 10=T 20⇒a 11…a 20=1⇒(a 15a 16)5=1⇒a 15a 16=1,又{a n }是正项递增等比数列,所以0<a 1<a 2<…<a 14<a 15<1<a 16<a 17<…,因此当T n 取最小值时,n 的值为15.答案:152.(xx 届山西吕梁质检)已知数列2,8,4,12,…,该数列的特点是从第2项起,每一项都等于它的前后两项之积,则这个数列的前2 018项之积T 2 018等于________.解析:数列2,8,4,12,…,该数列的特点是从第2项起,每一项都等于它的前后两项之积,这个数列的前8项分别为2,8,4,12,18,14,2,8,易得从第7项起,数字重复出现,所以此数列为周期数列,且周期为6,前6项积为2×8×4×12×18×14=1.又因为2 018=336×6+2,所以这个数列的前2 018项之积T 2 018=1336×2×8=16. 答案:163.已知数列{a n }满足a 1=5,a 2=5,a n +1=a n +6a n -1(n ≥2). (1)求证:{a n +1+2a n }是等比数列; (2)求数列{a n }的通项公式.解:(1)证明:∵a n +1=a n +6a n -1(n ≥2), ∴a n +1+2a n =3a n +6a n -1=3(a n +2a n -1)(n ≥2). ∵a 1=5,a 2=5,∴a 2+2a 1=15, ∴a n +2a n -1≠0(n ≥2),∴a n +1+2a na n +2a n -1=3(n ≥2),∴数列{a n +1+2a n }是以15为首项,3为公比的等比数列. (2)由(1)得a n +1+2a n =15×3n -1=5×3n,则a n +1=-2a n +5×3n, ∴a n +1-3n +1=-2(a n -3n).又∵a 1-3=2,∴a n -3n≠0,∴{a n -3n}是以2为首项,-2为公比的等比数列. ∴a n -3n=2×(-2)n -1,即a n =2×(-2)n -1+3n.2019-2020年高考数学一轮总复习第五章数列5.4数列求和课时跟踪检测理[课 时 跟 踪 检 测][基 础 达 标]1.已知数列{a n }是等差数列,a 1=tan225°,a 5=13a 1,设S n 为数列{(-1)na n }的前n 项和,则S 2 014=( )A .2 015B .-2 015C .3 021D .-3 022解析:由题知a 1=tan(180°+45°)=1,∴a 5=13 ∴d =a 5-a 15-1=124=3. ∴a n =1+3(n -1)=3n -2. 设b n =(-1)na n =(-1)n(3n -2),∴S 2 014=(-1+4)+(-7+10)+…+(-6 037+6 040)=3×1 007=3 021.故选C. 答案:C2.设{a n }是公差不为零的等差数列,a 2=2,且a 1,a 3,a 9成等比数列,则数列{a n }的前n 项和S n =( )A.n 24+7n 4 B .n 22+3n 2C.n 24+3n4D .n 22+n2解析:设等差数列{a n }的公差为d ,则 由a 23=a 1a 9得(a 2+d )2=(a 2-d )(a 2+7d ), 代入a 2=2,解得d =1或d =0(舍). ∴a n =2+(n -2)×1=n , ∴S n =a 1+a n n2=1+n n 2=n 22+n 2.故选D. 答案:D3.等比数列{a n }的前n 项和为S n ,已知a 2a 3=2a 1,且a 4与2a 7的等差中项为54,则S 5=( )A .29B .31C .33D .36解析:设等比数列{a n }的公比为q 则a 21q 3=2a 1,①a 1q 3+2a 1q 6=52,②解得a 1=16,q =12,∴S 5=a 11-q 51-q=31,故选B.答案:B4.已知等比数列{a n }的各项均为正数,a 1=1,公比为q ;等差数列{b n }中,b 1=3,且{b n }的前n 项和为S n ,a 3+S 3=27,q =S 2a 2.(1)求{a n }与{b n }的通项公式;(2)设数列{c n }满足c n =32S n ,求{c n }的前n 项和T n .解:(1)设数列{b n }的公差为d , ∵a 3+S 3=27,q =S 2a 2,∴⎩⎪⎨⎪⎧q 2+3d =18,6+d =q 2.求得q =3,d =3,∴a n =3n -1,b n =3n .(2)由题意得S n =n 3+3n2,c n =32S n =32×23×1n n +1=1n -1n +1. ∴T n =1-12+12-13+13-14+…+1n -1n +1=1-1n +1=nn +1.5.(xx 届广州综合测试)已知数列{a n }是等比数列,a 2=4,a 3+2是a 2和a 4的等差中项. (1)求数列{a n }的通项公式;(2)设b n =2log 2a n -1,求数列{a n b n }的前n 项和T n . 解:(1)设数列{a n }的公比为q , 因为a 2=4,所以a 3=4q ,a 4=4q 2. 因为a 3+2是a 2和a 4的等差中项, 所以2(a 3+2)=a 2+a 4, 化简得q 2-2q =0. 因为公比q ≠0,所以q =2. 所以a n =a 2qn -2=4×2n -2=2n (n ∈N *).(2)因为a n =2n,所以b n =2log 2a n -1=2n -1, 所以a n b n =(2n -1)2n,则T n =1×2+3×22+5×23+…+(2n -3)2n -1+(2n -1)2n,①2T n =1×22+3×23+5×24+…+(2n -3)2n+(2n -1)·2n +1.②由①-②得,-T n =2+2×22+2×23+…+2×2n -(2n -1)2n +1=2+2×41-2n -11-2-(2n -1)2n +1=-6-(2n -3)2n +1,所以T n =6+(2n -3)2n +1.6.S n 为数列{a n }的前n 项和,已知a n >0,a 2n +2a n =4S n +3. (1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和.解:(1)由a 2n +2a n =4S n +3,① 可知a 2n +1+2a n +1=4S n +1+3.②②-①,得a 2n +1-a 2n +2(a n +1-a n )=4a n +1, 即2(a n +1+a n )=a 2n +1-a 2n =(a n +1+a n )(a n +1-a n ). 由a n >0,得a n +1-a n =2.又a 21+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3. 所以{a n }是首项为3,公差为2的等差数列, 通项公式为a n =2n +1. (2)由a n =2n +1可知b n =1a n a n +1=12n +12n +3=12⎝ ⎛⎭⎪⎫12n +1-12n +3.设数列{b n }的前n 项和为T n ,则T n =b 1+b 2+…+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫12n +1-12n +3=n32n +3.7.已知数列{a n }与{b n }满足a n +1-a n =2(b n +1-b n )(n ∈N *). (1)若a 1=1,b n =3n +5,求数列{a n }的通项公式;(2)若a 1=6,b n =2n(n ∈N *)且λa n >2n +n +2λ对一切n ∈N *恒成立, 求实数λ的取值范围.解:(1)因为a n +1-a n =2(b n +1-b n ),b n =3n +5, 所以a n +1-a n =2(b n +1-b n )=2(3n +8-3n -5)=6, 所以{a n }是等差数列,首项为1,公差为6, 即a n =6n -5. (2)因为b n =2n, 所以a n +1-a n =2(2n +1-2n )=2n +1,当n ≥2时,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n +2n -1+…+22+6=2n +1+2,当n =1时,a 1=6,符合上式,所以a n =2n +1+2,由λa n >2n+n +2λ得λ>2n+n 2n +1=12+n 2n +1,令f (n )=12+n 2n +1,因为f (n +1)-f (n )=n +12n +2-n 2n +1=1-n 2n +2≤0, 所以12+n2n +1在n ≥1时单调递减,所以当n =1,2时,2n+n 2n +1取最大值34,故λ的取值范围为⎝ ⎛⎭⎪⎫34,+∞. [能 力 提 升]1.已知数列{a n }的首项为a 1=1,前n 项和为S n ,且数列⎩⎨⎧⎭⎬⎫S n n 是公差为2的等差数列.(1)求数列{a n }的通项公式;(2)若b n =(-1)na n ,求数列{b n }的前n 项和T n . 解:(1)由已知得S n n=1+(n -1)×2=2n -1, 所以S n =2n 2-n , 当n ≥2时,a n =S n -S n -1=2n 2-n -[2(n -1)2-(n -1)]=4n -3. a 1=1=4×1-3,所以a n =4n -3,n ∈N *.(2)由(1)可得b n =(-1)na n =(-1)n(4n -3). 当n 为偶数时,T n =(-1+5)+(-9+13)+…+[-(4n -7)+(4n -3)]=4×n2=2n ,当n 为奇数时,n +1为偶数,T n =T n +1-b n +1=2(n +1)-(4n +1)=-2n +1,综上,T n =⎩⎪⎨⎪⎧2n ,n =2k ,k ∈N *,-2n +1,n =2k -1,k ∈N *.2.在数列{a n }中,已知a n >1,a 1=1+3,且a n +1-a n =2a n +1+a n -2,记b n =(a n -1)2,n ∈N *.(1)求数列{b n }的通项公式;(2)设数列{b n }的前n 项和为S n ,证明:13≤1S 1+1S 2+1S 3+…+1S n <34.解:(1)因为a n +1-a n =2a n +1+a n -2,所以a 2n +1-a 2n -2a n +1+2a n =2, 即(a n +1-1)2-(a n -1)2=2. 又b n =(a n -1)2,n ∈N *,所以b n +1-b n =2,数列{b n }是以b 1=(1+3-1)2=3为首项,2为公差的等差数列, 故b n =2n +1,n ∈N *. (2)证明:由(1)得S n =n 3+2n +12=n (n +2),所以1S n =1nn +2=12⎝ ⎛⎭⎪⎫1n -1n +2,n ∈N *, 所以1S 1+1S 2+1S 3+…+1S n=12⎝ ⎛⎭⎪⎫1-13+12-14+13-15+…+1n -1n +2=12⎝ ⎛⎭⎪⎫32-1n +1-1n +2=34-12⎝ ⎛⎭⎪⎫1n +1+1n +2<34.记T n =1S 1+1S 2+1S 3+…+1S n,因为1S n>0,n ∈N *,所以T n 单调递增.故T n ≥T 1=1S 1=13.综上13≤1S 1+1S 2+…+1S n <34.3.已知各项均为正数的数列{a n }的前n 项和为S n ,且满足a 2n +a n =2S n . (1)求数列{a n }的通项公式; (2)求证:S n2<S 1+S 2+…+S n <S n +1-12.解:(1)因为当n ∈N *时,a 2n +a n =2S n , 故当n >1时,a 2n -1+a n -1=2S n -1,两式相减得,a 2n -a 2n -1+a n -a n -1=2S n -2S n -1=2a n , 即(a n +a n -1)(a n -a n -1)=a n +a n -1.因为a n >0,所以a n +a n -1>0,所以当n >1时,a n -a n -1=1.又当n =1时,a 21+a 1=2S 1=2a 1,得a 1=1, 所以数列{a n }是以1为首项,1为公差的等差数列, 所以a n =n .(2)证明:由(1)及等差数列的前n 项和公式知S n =n n +12,所以S n = n n +12>n 22=n2, 所以S 1+S 2+…+S n >12+22+…+n 2= 1+2+…+n 2=S n 2. 又S n = n n +12<n +122=n +12, 所以S 1+S 2+…+S n <22+32+…+n +12=1+2+…+n +12-12=S n +1-12, 所以S n2<S 1+S 2+…+S n <S n +1-12.。
高考一轮数学复习理科课件(人教版)第3课时 等比数列
第六章 数列
高考调研
高三数学(新课标版·理)
题型三 等比数列的判定与证明
例 3 (2011·天津文)已知数列{an}与{bn}满足 bn+1an+bnan +1=(-2)n+1,bn=3+-2 1n-1,n∈N*,且 a1=2.
设 cn=a2n+1-a2n-1,n∈N*,证明{cn}是等比数列.
第六章 数列
高考调研
高三数学(新课标版·理)
aq1=13, 解方程组1-a1 q=-12,
得aq1==31,, ⇒n=4
∴a2n=a1·q2n-1=1·32n-1=32n-1=37.
【答案】 37
第六章 数列
高考调研
高三数学(新课标版·理)
探究 1 (1)等比数列的通项公式 an=a1qn-1 及前 n 项 和公式 Sn=a111--qqn=a11--aqnq(q≠1)共涉及五个量 a1,an, q,n,Sn,知其三就能求另二,体现了方程思想的应用.
高考调研
高三数学(新课标版·理)
第六章 数列
第六章 数列
高考调研
高三数学(新课标版·理)
第3课时 等比数列
第六章 数列
高考调研
高三数学(新课标版·理)
2012·考纲下载
1.理解等比数列的概念. 2.掌握等比数列的通项公式与前 n 项和公式. 3.能在具体的问题情境中识别数列的等比关系,并 能用有关知识解决相应的问题. 4.了解等比数列与指数函数的关系.
2.(2012·大连模拟)在等比数列{an}中,a1+a2=30, a3+a4=60,则 a7+a8=________.
答案 240
第六章 数列
高考调研
高三数学(新课标版·理)
3.如果-1,a,b,c,-9 成等比数列,那么( ) A.b=3,ac=9 B.b=-3,ac=9 C.b=3,ac=-9 D.b=-3,ac=-9
高三数学理科一轮复习试卷详解
高三数学理科一轮复习试卷详解第1页共14页高三单元滚动检测卷数学考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上.3.本次考试时间120分钟,满分150分.4.请在密封线内作答,保持试卷清洁完整.单元检测四三角函数、解三角形第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.(湖北重点中学第三次月考)已知角α的终边上一点的坐标为(sin 5π6,cos 5π6),则角α的最小正值为( )A.5π6B.5π3C.11π6D.2π32.(河南中原名校高三期中)已知sin 2α=-2425,α∈(-π4,0),则sin α+cos α等于( ) A .-15B.15 C .-75 D.753.(广西贵港市模拟)已知sin(π3-x )=35,则cos(x +π6 )等于( ) A .-35B .-45 C.45 D.354.一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时( )A .5海里B .53海里第2页共14页C .10海里D .103海里5.(安庆市大观区模拟)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a b =b +3c a,sin C =23sin B ,则tan A 等于( )A. 3B .1 C.33 D .-36.已知函数f (x )=A sin(ωx +φ)(x ∈R ,A 0,ω0,|φ|π2 )的图象(部分)如图所示,则ω,φ分别为( )A .ω=π,φ=π3B .ω=2π,φ=π3C .ω=π,φ=π6D .ω=2π,φ=π67.(泉州模拟)在△ABC 中,若B =60°,AB =2,AC =23,则△ABC 的面积为( )A. 3 B .2 3C.233D.4338.(湖北省教学合作联考)将函数y =3sin 2x -cos 2x 的图象向右平移π4个单位长度,所得图象对应的函数g (x )( )A .有最大值,最大值为3+1B .对称轴方程是x =7π12+k π,k ∈Z C .是周期函数,周期T =π2D .在区间[π12,7π12]上单调递增9.已知函数f (x )=sin 4(ωx +π4)-cos 4(ωx +π4)(ω0)在区间[-π3,π4]上的最小值为-32,则ω的值为( )A.34B.12第3页共14页C .1 D.3210.(龙泉中学模拟)关于函数f (x )=sin(2x -π4),有下列命题:①其表达式可写成f (x )=cos(2x +π4);②直线x =-π8是f (x )图象的一条对称轴;③f (x )的图象可由g (x )=sin 2x 的图象向右平移π4个单位得到;④存在α∈(0,π),使f (x +α)=f (x +3α)恒成立.其中真命题的序号是( )A .②③B .①②C .②④D .③④11.(徐州质检)已知P 1(x 1,y 1),P 2(x 2,y 2)是以原点O 为圆心的单位圆上的两点,∠P 1OP 2=θ(θ为钝角).若sin(θ+π4)=35,则x 1x 2+y 1y 2的值为( ) A.55B .-1010C .-210 D.1010 12.(上饶模拟)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知cos A -3cos C cos B =3c -a b,则sin C sin A的值为( ) A .2 B.13C .2 3D .3第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知α为第二象限角,则cos α1+tan 2α+sin α1+1tan 2α=________. 14.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知b -c =14a,2sin B =3sin C ,则cos A 的值为________.第4页共14页15.(陕西改编)如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ????π6x +φ+k ,据此函数可知,这段时间水深(单位:m)的最大值为________.16.(湖南师大附中月考)将函数f (x )=sin x +cos x 的图象向左平移φ(φ0)个单位长度,所得图象关于原点对称,则φ的最小值为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)(惠州第三次考试)已知函数f (x )=A sin(ωx +φ),x ∈R (其中A 0,ω0,-π2φπ2),其部分图象如图所示.(1)求函数f (x )的解析式;(2)已知横坐标分别为-1,1,5的三点M ,N ,P 都在函数f (x )的图象上,求sin ∠MNP 的值.18.(12分)(北京)已知函数f (x )=2sin x 2cos x 2-2sin 2x 2. (1)求f (x )的最小正周期;(2)求f (x )在区间[-π,0]上的最小值.19.(12分)(醴陵一中模拟)在△ABC 中,已知A =π4,cos B =255.第5页共14页(1)求cos C 的值;(2)若BC =25,D 为AB 的中点,求CD 的长.20.(12分)已知函数f (x )=sin 2x cos φ+cos 2x sin φ(|φ|π2),且函数y =f (2x +π4)的图象关于直线x =7π24对称.(1)求φ的值;(2)若π3α5π12,且f (α)=45,求cos 4α的值;(3)若0θπ8时,不等式f (θ)+f (θ+π4 )|m -4|恒成立,试求实数m 的取值范围.第6页共14页21.(12分)(广雅中学模拟)已知函数f (x )=A sin(ωx +φ)(A 0,ω0,0φπ),x ∈R 的最大值是1,最小正周期是2π,其图象经过点M (0,1).(1)求f (x )的解析式;(2)设A 、B 、C 为△ABC 的三个内角,且f (A )=35,f (B )=513,求f (C )的值.22.(12分)(河北正定中学月考)已知向量a =(2sin(ωx +2π3),2),b =(2cos ωx ,0)(ω0),函数f (x )=a b 的图象与直线y =-2+3的相邻两个交点之间的距离为π.(1)求函数f (x )在[0,2π]上的单调递增区间;(2)将函数f (x )的图象向右平移π12个单位,得到函数y =g (x )的图象.若y =g (x )在[0,b ](b 0)上至少含有10个零点,求b 的最小值.第7页共14页答案解析1.B2.B [∵α∈(-π4,0),∴sin α+cos α0,∴(sin α+cos α)2=1+sin 2α=125,∴sin α+cos α=15,故选B.] 3.D [cos(x +π6)=cos[π2-(π3-x )]=sin(π3-x )=35.故选D.] 4.C [如图,依题意有∠BAC =60°,∠BAD =75°,所以∠CAD =∠CDA =15°,从而CD =CA =10.在Rt △ABC 中,得AB =5,于是这艘船的速度是50.5=10(海里/小时).] 5.C [由sin C =23sin B ,变形得:sin C sin B=23,利用正弦定理化简得:sin C sin B =c b=23,即c =23b ,由a b =b +3c a,整理得:a 2-b 2=3bc ,∴cos A =b 2+c 2-a 22bc =-3bc +c 22bc=-3bc +23bc 2bc =32,∴A =30°,则tan A =33,故选C.]6.C [由函数的图象可得A =2,根据14T =142πω=56-13=12,求得ω=π. 再由五点法作图可得π×56+φ=π,第8页共14页解得φ=π6,故选C.]7.B [∵在△ABC 中,B =60°,AB =2,AC =23,∴由正弦定理AC sin B =AB sin C得:sin C =AB sin B AC =2×3223=12,∴C =30°,∴A =90°,则S △ABC =12AB AC sin A =23,故选B.]8.D [化简函数得y =3sin 2x -cos 2x =2sin(2x -π6),所以g (x )=2sin(2x -2π3)易求最大值是2,周期是π,由2x -2π3=π2+k π(k ∈Z ),得对称轴方程是x =7π12+k π2(k ∈Z ).根据正弦函数的单调递增区间可得-π2+2k π≤2x -2π3≤π2+2k π(k ∈Z )?π12+k π≤x ≤7π12+k π(k ∈Z ),故选D.] 9.B [f (x )=sin 4(ωx +π4)-cos 4(ωx +π4) =[sin 2(ωx +π4)-cos 2(ωx +π4)][sin 2(ωx +π4)+cos 2(ωx +π4)] =sin 2(ωx +π4)-cos 2(ωx +π4) =-cos(2ωx +π2)=sin 2ωx ,所以2ωx ∈[-2π3ω,π2ω],所以满足-2π3ω≥-π2且-2π3ω=-π3的ω=12 ,故选B.] 10.C [f (x )=sin(2x -π4)=22(sin 2x -cos 2x ).①f (x )=cos(2x +π4)=22(cos 2x -sin 2x ).与原函数不是同一个函数,①错误.②x =-π8时,f (x )=sin[2×(-π8)-π4]=sin(-π2)=-1,函数取得最小值,所以直线x =-π8是f (x )图象的一条对称轴,第9页共14页②正确.③将g (x )=sin 2x 的图象向右平移π4个单位得到图象对应的解析式是y =sin 2(x -π4 )=sin(2x -π2)=-cos 2x ,与f (x )不是同一个函数,③错误.④取α=π2,f (x +α)=f (x +π2)=sin[2(x +π2)-π4]=sin(2x +3π4),f (x +3α)=f (x +3π2)=sin[2(x +3π2)-π4]=sin(2x +3π-π4)=sin(2x +2π+π-π4)=sin(2x +3π4),所以存在α=π2∈(0,π),使f (x +α)=f (x +3α)恒成立,④正确.故选C.]11.C [因为x 1x 2+y 1y 2=OP 1→OP 2→=cos θ,所以cos θ=cos(θ+π4-π4)=22[cos(θ+π4)+sin(θ+π4)].因为θ∈(π2,π),θ+π4∈(3π4,5π4),所以cos(θ+π4)=-45,cos θ=-210.故选C.] 12.D [由正弦定理a sin A =b sin B =c sin C,得cos A -3cos C cos B =3c -a b =3sin C -sin A sin B,即(cos A -3cos C )sin B =(3sin C -sin A )cos B ,化简可得,sin(A +B )=3sin(B +C ),又知A +B +C =π,所以sin C =3sin A ,因此sin C sin A=3.] 13.0解析原式=cos αsin 2α+cos 2αcos 2α+sin αsin 2α+cos 2αsin 2α=cos α1|cos α|+sin α1|sin α|,因为α是第二象限角,所以sin α0,cos α0,所以cos α1|cos α|+sin α1|sin α|=-1+1=0,即原式等于0. 14.-14解析∵2sin B =3sin C ,∴2b =3c ,∴b =32c .第10页共14页代入b -c =14a 得a =2c ,由余弦定理,得cos A =b 2+c 2-a 22bc =-14. 15.8解析由题干图易得y min =k -3=2,则k =5.∴y max =k +3=8.16.3π4解析函数y =sin x +cos x =2sin(x +π4),根据图象平移规律可得平移后图象对应的函数解析式为y =2sin(x +π4+φ),又所得函数图象关于原点对称,∴π4+φ=k π(k ∈Z ),∴φ=k π-π4(k ∈Z ),当k =1时,φ取最小值为3π4. 17.解(1)由图可知,A =1,最小正周期T =4×2=8,所以T =2πω=8,ω=π4. 又f (1)=sin(π4+φ)=1,且-π2φπ2,所以-π4π4+φ3π4,π4+φ=π2,φ=π4. 所以f (x )=sin(π4x +π4).(2)因为f (-1)=sin[π4×(-1+1)]=0,f (1)=sin[π4×(1+1)]=1,f (5)=sin[π4×(5+1)]=-1,所以M (-1,0),N (1,1),P (5,-1),|MN |=5,|MP |=37,|PN |=20,从而cos ∠MNP =5+20-3725×20=-35,由∠MNP ∈(0,π),第11页共14页得sin ∠MNP =1-cos 2∠MNP =45 . 18.解(1)因为f (x )=22sin x -22(1-cos x ) =sin ????x +π4-22,所以f (x )的最小正周期为2π.(2)因为-π≤x ≤0,所以-3π4≤x +π4≤π4. 当x +π4=-π2,即x =-3π4时,f (x )取得最小值.所以f (x )在区间[-π,0]上的最小值为f ????-3π4=-1-22. 19.解(1)∵cos B =255且B ∈(0,π),∴sin B =1-cos 2B =55,cos C =cos(π-A -B )=cos(3π4-B )=cos 3π4cos B +sin 3π4sin B =-*****+2255=-1010. (2)由(1)可得sin C =1-cos 2C =1-(-1010)2=*****,由正弦定理得BC sin A =AB sin C,即2522=AB 31010,解得AB =6.在△BCD 中,CD 2=(25)2+32-2×3×25×255=5,所以CD =5.20.解(1)f (x )=sin(2x +φ),则y =f (2x +π4)=sin(4x +π2+φ)=cos(4x +φ).又y =cos x 的图象的对称轴为x =k π(k ∈Z ),第12页共14页令4x +φ=k π(k ∈Z ),将x =7π24代入可得φ=k π-7π6(k ∈Z ),而|φ|π2,故φ=-π6. (2)由f (α)=45可得sin(2α-π6)=45,而π22α-π62π3,故cos(2α-π6)=-35,故sin 2α=sin[(2α-π6)+π6]=43-310,故cos 4α=1-2sin 22α=243-750. (3)f (θ)+f (θ+π4)=sin(2θ-π6)+cos(2θ-π6) =2sin(2θ+π12),因为0θπ8,所以π122θ+π12π3,故f (θ)+f (θ+π4)2×32=62,故只需|m -4|≥62,即m ≤4-62或m ≥4+62,即实数m 的取值范围是(-∞,4-62]∪[4+62,+∞).21.解(1)因为函数f (x )的最大值是1,且A 0,所以A =1.因为函数f (x )的最小正周期是2π,且ω0,所以T =2πω=2π,解得ω=1,所以f (x )=sin(x +φ).因为函数f (x )的图象过点M (0,1),所以sin φ=1.因为0φπ,所以φ=π2. 所以f (x )=sin(x +π2)=cos x . (2)由(1)得f (x )=cos x ,第13页共14页所以f (A )=cos A =35,f (B )=cos B =513. 因为A ,B ∈(0,π),所以sin A =1-cos 2A =45,sin B =1-cos 2B =1213 . 因为A ,B ,C 为△ABC 的三个内角,所以cos C =cos(π-(A +B ))=-cos(A +B ),所以f (C )=cos C =-cos(A +B )=-(cos A cos B -sin A sin B )=-(35×513-45×1213)=3365. 22.解(1)函数f (x )=a b =4sin(ωx +2π3)cos ωx =[4×(-12)sin ωx +4×32cos ωx ]cos ωx =23cos 2ωx -sin 2ωx=3(1+cos 2ωx )-sin 2ωx=2cos(2ωx +π6)+3,由题意得T =π,∴2π2ω=π,∴ω=1,故f (x )=2cos(2x +π6)+3. 令2k π-π≤2x +π6≤2k π(k ∈Z ),得k π-7π12≤x ≤k π-π12(k ∈Z ),∴y =2cos(2x +π6)+3的单调递增区间为[k π-7π12,k π-π12](k ∈Z ).当k =1时,函数的单调递增区间为[5π12,11π12 ].当k =2时,函数的单调递增区间为[17π12,23π12].∴函数f (x )在[0,2π]上的单调递增区间为[5π12,11π12],[17π12,23π12].(2)将函数f (x )的图象向右平移π12个单位,得到函数y =g (x )=2cos 2x +3的图象.令g (x )=0,得x =k π+5π12或x =k π+7π12,k ∈Z ,第14页共14页∴函数g (x )在每个周期内恰好有两个零点,若y =g (x )在[0,b ](b 0)上至少含有10个零点,则b 不小于第10个零点的横坐标即可,∴b 的最小值为4π+7π12=55π12.。
2019届高考理科数学一轮复习学案:第19讲 函数y=Asin(ωx+φ)的图像
第19讲函数y=A sin(ωx+φ)的图像及三角函数模型的简单应用课前双击巩固1.y=A sin(ωx+φ)的有关概念振幅周期频率相位初相y=A sin(ωx+φ)(A>0,ω>0),x∈[0,+∞)AT=f==2.用五点法画y=A sin(ωx+φ)一个周期内的简图时,要找五个特征点,如下表所示:xωx+φy=A sin(ωx+φ)0A0-A03.函数y=sin x的图像经变换得到y=A sin(ωx+φ)的图像的步骤图3-19-1题组一常识题1.[教材改编]函数y=sin x的图像上所有点的横坐标不变,纵坐标伸长为原来的2倍得到的图像对应的函数解析式是.2.[教材改编]某函数的图像向右平移个单位长度后得到的图像对应的函数解析式是y=sin,则原函数的解析式是.3.[教材改编]若函数f(x)=sinωx(0<ω<2)在区间0,上单调递增,在区间,上单调递减,则ω=.4.[教材改编]已知简谐运动f(x)=2sin x+φ的图像经过点(0,1),则该简谐运动的初相φ为.题组二常错题◆索引:图像平移多少单位长度容易搞错;不能正确理解三角函数图像对称性的特征;三角函数的单调区间把握不准导致出错;确定不了函数解析式中φ的值.5.为得到函数y=cos的图像,只需将函数y=sin2x的图像向平移个单位长度.6.设ω>0,若函数f(x)=sin cos在区间上单调递增,则ω的取值范围是.7.若f(x)=2sin(ωx+φ)+m对任意实数t都有f=f,且f=-3,则实数m=.8.已知函数f(x)=sin(ωx+φ)ω>0,|φ|<的部分图像如图3-19-2所示,则φ=.图3-19-2课堂考点探究探究点一函数y=A sin(ωx+φ)的图像变换1(1)[2016·全国卷Ⅰ]将函数y=2sin2x+的图像向右平移个周期后,所得图像对应的函数为()A.y=2sin2x+B.y=2sin2x+C.y=2sin2x-D.y=2sin2x-(2)[2018·安徽江南十校联考]函数y=cos2x的图像可以由函数y=sin2x的图像经过平移而得到,这一平移过程可以是()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度[总结反思]由y=sin x的图像变换到y=A sin(ωx+φ)的图像,两种变换中平移的量的区别:先平移再伸缩,平移的量是|φ|个单位长度;而先伸缩再平移,平移的量是(ω>0)个单位长度.特别提醒:平移变换和伸缩变换都是针对x而言,即x本身加减多少值,而不是依赖于ωx 加减多少值.式题(1)[2017·雅安三诊]把函数y=sin x的图像上所有点的横坐标都缩小到原来的一半,纵坐标保持不变,再把图像向右平移个单位长度,所得图像的函数解析式为()A.y=sinB.y=sinC.y=sinD.y=sin(2)为了得到函数y=sin3x+cos3x的图像,可以将函数y=cos3x的图像()A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度探究点二函数y=A sin(ωx+φ)的图像与解析式2(1)[2017·马鞍山三模]已知函数y=A sin(ωx+φ)(A>0,ω>0,-π<φ<0)的部分图像如图3-19-3所示,则φ=.图3-19-3(2)已知函数f(x)=M sin(ωx+φ)M>0,|φ|<的部分图像如图3-19-4所示,其中A(2,3)(点A为图像的一个最高点),B-,0,则函数f(x)=.图3-19-4[总结反思]利用图像求函数y=A sin(ωx+φ)(A>0,ω>0)的解析式主要从以下三个方面考虑:(1)根据最大值或最小值求出A的值.(2)根据周期求出ω的值.(3)根据函数图像上的某一特殊点求出φ的值.式题已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|<π)的部分图像如图3-19-5所示,且A,1,B(π,-1),则φ值为.图3-19-5探究点三函数y=A sin(ωx+φ)的图像与性质3(1)[2017·惠州模拟]已知函数f(x)=sin(ωx+φ)(ω>0,-π<φ<0)的最小正周期是π,将函数f(x)的图像向左平移个单位长度后所得图像过点P(0,1),则函数f(x)=sin(ωx+φ) ()A.在区间上单调递减B.在区间上单调递增C.在区间上单调递减D.在区间上单调递增(2)[2017·西宁二模]函数y=cos(ωx+φ)(ω>0,0<φ<π)为奇函数,该函数的部分图像如图3-19-6所示,A,B分别为最高点与最低点,且|AB|=2,则该函数图像的一条对称轴为()图3-19-6A.x=B.x=-C.x=2D.x=1[总结反思]求y=A sin(ωx+φ)+B(A>0,ω>0)的解析式的一般步骤.(1)求A,B.确定函数的最大值M和最小值m,则A=,B=.(2)求ω.确定函数的周期T,则ω=.(3)求φ.常用方法如下:①代入法:把图像上的一个已知点代入(此时要注意该点在上升区间上还是在下降区间上)或把图像的最高点或最低点代入.②五点法:确定φ值时,往往以寻找“五点法”中的特殊点作为突破口.式题[2017·长安一中质检]已知函数f(x)=2sin(ωx+φ)ω>0,|φ|<的部分图像如图3-19-7所示,若f(0)=,且·=-8,B,C分别为最高点与最低点.(1)求函数f(x)的单调递增区间;(2)若将f(x)的图像向左平移个单位长度,得到函数g(x)的图像,求函数g(x)在区间0,上的最大值和最小值.图3-19-7探究点四三角函数模型的简单应用4有一个半径为4m的水轮(如图3-19-8),水轮的圆心O距离水面2m,已知水轮逆时针转动,且每分钟转动4圈,当水轮上的点P从水中浮现(即到达图中点P)时开始计时.(1)将点P距离水面的高度h(m)表示为时间t(s)的函数;(2)在水轮转动一圈的过程中,有多长时间点P距水面的高度超过4m.图3-19-8[总结反思](1)解三角函数模型应用题的关键是求出函数解析式,可以根据给出的已知条件确定模型f(x)=A sin(ωx+φ)+k中的待定系数.(2)把实际问题“翻译”为函数f(x)所满足的条件,通过数学运算得到相关结论,最后把数学结论“翻译”为实际问题的答案.式题某城市一年中12个月的月平均气温与月份的关系可近似地用函数y=a+A cos(x-6)(x=1,2,3,…,12)来表示,已知6月份的月平均气温最高,为28℃,12月份的月平均气温最低,为18℃,则10月份的月平均气温为℃.。
2019届高三数学一轮复习:第46讲 直线的倾斜角与斜率、直线的方程
对值相等,则直线 l 的方程为
.
[答案] x-y+1=0 或 x-y-1=0
[解析] 设直线 l 在两坐标轴上的
截距分别为 a,b,则 ab = -1, 解得 a = b,
a b
= =
-1,或 1
a b
= =
1-1, ,故直线
l
的方程
为 x-y+1=0 或 x-y-1=0.
2019年8月10日
遇上你是缘分,愿您生活愉快,身体健康,学业有成,金榜 题名!
,0
,
结合图形与 a>0,12×������������++���1���× 1 +
������ ������
=12⇒(a+b)2=a(a+1)>0⇒a=1���-���22������ .
∵a>0,∴1���-���22������>0⇒b<12,当 a=0 时,极限位
置易得 b=1- 22,故答案为 B.
不含直线 x=x1(x1≠x2)
和直线 y=y1(y1≠y2)
不含垂直于坐标轴
和过原点的直线
平面内所有直线都适
Ax+By+C=0(A2+B2≠0)
用
2019年8月10日
遇上你是缘分,愿您生活愉快,身体健康,学业有成,金榜 题名!
9
课前双基巩固
常用结论
直线的倾斜角 α 和斜率 k 之间的对应关系:
α
[解析] 因为直线 AB 的斜率为 -42--11=-1,所以 k=tan α =-1,所以 α=135°,即直线 AB 的倾斜角为 135°.
2019年8月10日
遇上你是缘分,愿您生活愉快,身体健康,学业有成,金榜 题名!
【导与练】(新课标)2019届高三数学一轮复习 第7篇 柱、锥、台、球学案 理
第 44课时 柱 锥 台 球课前预习案1.理解空间几何体的结构特征.2.知道斜高、侧棱、高、母线的定义,并会有关计算. 3.掌握柱、锥、球的体积、表面积计算方法.1.棱柱:(1)定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
棱柱⎪⎩⎪⎨⎧−−−−→−−−−−→−−−−−−→−正棱柱直棱柱斜棱柱底面是正多边形侧棱垂直于底面侧棱不垂直于底面 四棱柱平行六面体直平行六面体长方体正四棱柱正方体。
(2)性质:①侧面都是平行四边形; ②两底面是全等多边形; ③平行于底面的截面和底面全等;对角面是平行四边形;④长方体一条对角线长的平方等于一个顶点上三条棱的长的平方和。
(3)面积:ch S =直棱柱侧(c 是底面周长,h 是高)(4)体积:S Sh V 侧面棱柱21==(S 为底面积,h 为高) 2.棱锥:(1)定义:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面围成的几何体叫做棱锥; 正棱锥:底面是正多边形,并且顶点在底面内的射影是底面中心,这样的棱锥叫正棱锥; (2)性质:①平行于底面的截面和底面相似,截面的边长和底面的对应边边长的比等于截得的棱锥的高与原棱锥的高的比; 它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;②正棱锥性质:各侧面都是全等的等腰三角形;通过四个直角三角形POH Rt ∆,POB Rt ∆,PBH Rt ∆,BOH Rt ∆实现边,高,斜高间的换算 (3)面积:正棱锥侧S '21ch S =正棱锥(c 为底周长,'h 为斜高) (4)体积:Sh V 31=棱锥(S 为底面积,h 为高)3.圆柱、圆锥、圆台分别以矩形的_____、直角三角形的___________、直角梯形_______________所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体分别叫作圆柱、圆锥、圆台. 4.棱台(1)定义:用一个_______________的平面去截棱锥,底面与截面之间的部分叫作棱台.(2)正棱台:用_______截得的棱台叫作正棱台.正棱台的侧面是全等的等腰梯形,它的高叫作正棱台的斜高.棱长都相等底面是正方形底面是矩形 侧棱垂直于底面 底面是平行四边形 A B CD PO H(3)分类:三棱台、四棱台、五棱台、…5.球(1)定义:①球面:半圆以它的直径为旋转轴,旋转所成的曲面。
高考数学一轮复习 考点50 椭圆必刷题 理(含解析)-人教版高三全册数学试题
考点50 椭圆1.(市昌平区2019届高三5月综合练习二模理)嫦娥四号月球探测器于2018年12月8日搭载长征三号乙运载火箭在某某卫星发射中心发射.12日下午4点43分左右,嫦娥四号顺利进入了以月球球心为一个焦点的椭圆形轨道,如图中轨道③所示,其近月点与月球表面距离为100公里,远月点与月球表面距离为400公里.已知月球的直径为3476公里,则该椭圆形轨道的离心率约为A.125B.340C.18D.35【答案】B 【解析】如下图,F为月球的球心,月球半径为:12×3476=1738,依题意,|AF|=100+1738=1838,|BF|=400+1738=2138. 2a=1838+2138,a=1988,a+c=2138,c=2138-1988=150,椭圆的离心率为:1503198840cea==≈,选B.2.(某某省实验中学等四校2019届高三联合考试理)已知椭圆C :22221x y a b+=,()0a b >>的左、右焦点分别为1F ,2F ,M 为椭圆上异于长轴端点的一点,12MF F ∆的内心为I ,直线MI 交x 轴于点E ,若2MI IE=,则椭圆C 的离心率是( )A .22B .12C .32D .13【答案】B 【解析】解:12MF F ∆的内心为I ,连接1IF 和2IF , 可得1IF 为12MF F ∠的平分线,即有11MF MI F EIE=,22MF MI F EIE=,可得12122MF MF MI F E F E IE===,即有1212222MF MF aF EEF c===, 即有12e =, 故选:B .3.(某某2019届高三高考一模试卷数学理)以椭圆的两个焦点为直径的端点的圆与椭圆交于四个不同的点,顺次连接这四个点和两个焦点恰好组成一个正六边形,那么这个椭圆的离心率为( )A .32-B .31-C .22D .32【答案】B 【解析】解:设椭圆的两个焦点为1F ,2F ,圆与椭圆交于A ,B ,C ,D 四个不同的点, 设122F F c =,则1DF c =,23DF c =. 椭圆定义,得122||||3a DF DF c c =+=+, 所以23131c e a ===-+, 故选:B .4.(某某省某某市高级中学2019届高三适应性考试(6月)数学理)在平面直角坐标系xOy 中,已知点, A F分别为椭圆2222:1(0)x y C a b a b+=>>的右顶点和右焦点,过坐标原点O 的直线交椭圆C 于,P Q 两点,线段AP 的中点为M ,若, , Q F M 三点共线,则椭圆C 的离心率为( ) A .13B .23C .83D .32或83【答案】A 【解析】 如图设()()0000,,,P x y Q x y --,又(,0),(,0)A a F c ,00,22x a y M +⎛⎫∴ ⎪⎝⎭,,,Q F M 三点共线,MF QF k k =000022y y x a c x c -∴=++-, 即00002y y c x x a c=++-, 002c x x a c ∴+=+-,3a c ∴=,13c e a ∴==,故选A. 5.(某某省某某市2019届高三全真模拟考试数学理)已知1F 、2F 分别是椭圆()2222:10x y C a b a b+=>>的左、右焦点,点A 是1F 关于直线bx ay ab +=的对称点,且2AF x ⊥轴,则椭圆C 的离心率为_________.【解析】1F 、2F 分别是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,点A 是1F 关于直线bx ay ab +=的对称点,且2AF x ⊥轴,可得2AF 的方程为x c =,1AF 的方程()a y x c b =+,可得2(,)acA c b, 1AF 的中点为(0,)acb ,代入直线bx ay ab +=,可得:222ac b c a ==-,1c e a=<, 可得210e e --=,解得12e =.6.(某某省某某市2018-2019学年高二5月质量检测(期末)数学(理)已知F 是椭圆()222210x y a b a b+=>>的右焦点,A 是椭圆短轴的一个端点,直线AF 与椭圆另一交点为B ,且2AF FB =,则椭圆的离心率为______.【答案】33【解析】设()0,A b -,(),0F c ,作BC y ⊥轴,垂足为C ,如下图所示:则:22AF b c a =+=由2AF FB =得:23AF c ABBC==32BC c ∴=,即:32B x c = 由椭圆的焦半径公式可知:B BF a ex =-232B AF a ac c a ex FBa a ∴===--⋅,整理可得:223a c =213e ∴=,即3e =本题正确结果:337.(某某省某某市2019届高三第三次教学质量检测数学理)如图是数学家Germinal Dandelin 用来证明一个平面截圆锥得到的截口曲线是椭圆的模型(称为“Dandelin 双球”);在圆锥内放两个大小不同的小球,使得它们分别与圆锥的侧面、截面相切,设图中球1O ,球2O 的半径分别为3和1,球心距离128OO =,截面分别与球1O ,球2O 切于点E ,F ,(E ,F 是截口椭圆的焦点),则此椭圆的离心率等于______.25【解析】如图,圆锥面与其内切球1O ,2O 分别相切与B,A ,连接12,O B O A 则1O BAB ,2O A AB ,过1O 作12O D O A 垂直于D ,连接12,O F O E ,EF 交12O O 于点C设圆锥母线与轴的夹角为α ,截面与轴的夹角为β 在12Rt O O D 中,2312DO ,22182215O D11221515cos84O O O D 128O O = 218CO O C21EO CFO C11218O C O CO E O F 解得1=2O C 222211213CFO FO C即13cos2CF O C则椭圆的离心率3cos 252cos 5154e8.(某某省某某市师X 大学某某市附属中学2019届高三第四次模拟考试)已知椭圆()2222:10x y E a b a b+=>>与y 轴正半轴交于点(3M ,离心率为12.直线l 经过点()(),00P t t a <<和点()0,1Q .且与椭图E 交于A 、B 两点(点A 在第二象限). (1)求椭圆E 的标准方程; (2)若AP PB λ=,当230t <≤时,求λ的取值X 围. 【答案】(1)22143x y +=(2)35λ⎛+∈ ⎝⎦【解析】解析:(1).由题意,12c e a ==且3b =2a =,所以椭圆E 的标准方程为22143x y +=.(2).因为直线l 经过点()(),00P t t a <<和点()0,1Q ,所以直线l 的斜率为1t -,设1:1l y x t=-+,将其代入椭圆方程22143x y +=中,消去x 得()22223463120t y t y t +-+-=,当∆>0时,设()11,A x y 、()22,B x y ,则2122634t y y t +=+……①,212231234t y y t -=+……②因为AP PB λ=,所以()()1122,,t x y x t y λ--=-,所以12y y λ=-……③ 联立①②③,消去1y 、2y ,整理得()222124141t λλ⎛⎫=+- ⎪⎝⎭-.当0t <≤时,()[)2221241412,1t λλ⎛⎫=+-∈+∞ ⎪⎝⎭-,解351,2λ⎫⎛+∈⎪ ⎪ ⎣⎭⎝⎦由()2122261034t y y y t λ+=-=>+且20y <,故1λ>,所以λ⎛∈ ⎝⎦. 9.(某某省威海市2019届高三二模考试数学理)在直角坐标系xOy 中,设椭圆2222:1(0)x y C a b a b+=>>的左焦点为1F ,短轴的两个端点分别为,A B ,且160AF B ∠=︒,点1)2在C 上. (Ⅰ)求椭圆C 的方程;(Ⅱ)若直线:(0)l y kx m k =+>与椭圆C 和圆O 分别相切于P ,Q 两点,当OPQ ∆面积取得最大值时,求直线l 的方程.【答案】(Ⅰ) 2214x y +=.(Ⅱ) y x =【解析】(Ⅰ)由160AF B ∠=︒,可得2a b =,①由椭圆C经过点1)2,得2231144b b+=,② 由①②得224,1a b ==,所以椭圆C 的方程为2214x y +=.(Ⅱ)由2214x y y kx m ⎧+=⎪⎨⎪=+⎩消去y 整理得()222148440k x kmx m +++-=(*),由直线l 与椭圆相切得,()()222264161140k m m k ∆=--+=,整理得2241m k =+,故方程(*)化为2228160m x kmx k ++=,即2(4)0mx k +=, 解得4kx m-=, 设()11,P x y ,则124414km k x k m--==+,故111y kx m m =+=, 因此41(,)k P m m-. 又直线:(0)l y kx m k =+>与圆O相切,可得||OQ =所以||PQ ==所以1||||2OPQS PQ OQ ∆=⋅= 将2241m k =+式代入上式可得OPQS ∆===21321k k =⋅+3112k k=⋅+, 由0k >得12k k+≥,所以313124OPQ S k k∆=⋅≤+,当且仅当1k =时等号成立,即1k =时OPQ S ∆取得最大值.由22415m k =+=,得5m =±, 所以直线l 的方程为5y x =±.10.(某某省日照市2019届高三5月校际联合考试数学理)如图,已知椭圆()222210x y E a b a b +=:>>,()4,0A 是长轴的一个端点,弦BC 过椭圆的中心O ,且213213cos OA CA OC OB BC BA 〈〉=-=-,,.(1)求椭圆E 的方程.(2)过椭圆E 右焦点F 的直线,交椭圆E 于11,A B 两点,交直线8x =于点M ,判定直线11,,CA CM CB 的斜率是否依次构成等差数列?请说明理由.【答案】(1)2211612x y +=;(2)是,理由见详解. 【解析】 (1)由2OC OB BC BA -=-,得2B A C C =,即2O A C C =,所以AOC ∆是等腰三角形, 又4a OA ==,∴点C 的横坐标为2;又213cos OACA 〈〉=,, 设点C 的纵坐标为C y 222132C y =+,解得3C y =±, 应取(2,3)C ,又点C 在椭圆上,∴22222314b +=,解得212b =,∴所求椭圆的方程为2211612x y +=;(2)由题意知椭圆的右焦点为(2,0)F ,(2,3)C , 由题意可知直线11,,CA CM CB 的斜率存在, 设直线11A B 的方程为(2)y k x =-,代入椭圆2211612x y +=并整理,得2222(34)1616480k x k x k +-+-=;设11(,)A x y ,22(,)B x y ,直线11,,CA CM CB 的斜率分别为123,,k k k ,则有21221634k x x k+=+,2122164834k x x k -=+, 可知M 的坐标为(8,6)M k ;∴()()12121312122323332222k x k x y y k k x x x x ------+=+=+---- 1212124232142()x x k k x x x x +-=-•=-+-+,又263222182k k k -=•=--; 所以1322k k k +=,即直线11,,CA CM CB 的斜率成等差数列.11.(某某市某某区2019届高三一模数学理)已知椭圆C :22221(0)x y a b a b +=>>过点()2,1,且离心率为(Ⅰ)求椭圆C 的方程;(Ⅱ)若过原点的直线1l 与椭圆C 交于P 、Q 两点,且在直线2:0l x y -+=上存在点M ,使得MPQ 为等边三角形,求直线1l 的方程。
2019届高考理科数学一轮复习专题演练:专题2.3基本初等函数(含解析)
专题2.3基本初等函数【三年咼考】4 2 11. 【2019高考新课标3理数】已知a =2空,b=45, c=25',则( )(A) b ::: a :::c ( B) a ::: b ::: c (C) b :::c ... a(D) c ... a::: b【答案】A4 2 2 1 2 2【解析】因为a= 23=4345= b,c = 253= 53• 43= a,所以b :.a ::: c,故选A.5 b a2. 【2019 高考浙江理数】已知a>b>1.若log a b+log b a=—, a =b ,贝U a= , b=.2 --- ----------【答案】4 2【强忻】设log/三匕则r Al,因为F —==斗n r = 2 n 口■扩,因此扌三扩=> 卩=户=>2&=罗nb三2卫=4.3. [2019高考上海理数】已知点(3,9)在函数f(x)=1,a x的图像上,贝Uf (x)的反函数f」(x) = _________ .【答案】log2(x -1)【解析】将点(3,9)带入函数f x = 1 • a x的解析式得a = 2,所以f x =1 2x,用y表示x 得x = log2(y -1),所以f x = log2(x -1).4. [2019高考天津理数】已知函数f (x) = x (4^3)x 3a,^ 0,( a>0,且a z 1)在R[log a(x+1) + 1,x^0上单调递减,且关于x的方程I f(x)戶2 -x恰好有两个不相等的实数解,则a的取值范围是( )2 23 1 2 3 1 2 3(A) (0, ] (B) [―,—] ( C) [―,]_{ —} (D)[―,)【」{—}3 34 3 3 4 3 3 4【答案】C的实数解,可皿闰-S 扫弓又a = -B 寸』抛物线p = F+(4o —3找+%与直线 41 j 3=2-工相切,也符合题童…I 实数立的去范围是[-f -]U{-},故选C3 3 45.【2019高考上海理数】已知 a ・R ,函数f(x) =log 2(〕 a).x(1)当a = 5时,解不等式f (x) • 0 ;(2)若关于x 的方程f (x) - log?" -4)x • 2a - 5] =0的解集中恰好有一个元素,求a 的取 值范围;1(3)设a ■ 0,若对任意t [^,1],函数f (x)在区间[t,t 1]上的最大值与最小值的差不超过1,求a 的取值范围. 【解析】(1)由log 2 1 50,得1 5 1,解得x l x丿 x\(2) 1 a 二 a -4 x 2a -5, a —4 x 2a — 5 x -1 =0,当 a = 4 时,x = -1,经检x1验,满足题意.当a = 3时,x^ x 2 - -1,经检验,满足题意.当a = 3且a = 4时,x^a — 4x^ -1,x 广x 2. x 1是原方程的解当且仅当丄• a • 0 ,即a 2 ; x 2是原方程的解当且仅1当一,a ・0,即a 1 •于是满足题意的a ・1,2 1.综上,a 的取值范围为1,2 1U :3,4?.x2【解析】宙/■&)在丘上递减可知由方程|/(x)|=2 3 4-工恰好有两个不相等,所以f x 在0, •::上单调递减•函数 f x 在区间lt,t 1 1上的最大值与最小值分别为 f t ,f t -f t 1 二呃 J a-log2 丄a <1 即at2 a 1 t-1-0, It +1 丿对任意-1,1 成立.因为a 0,所以函数y=a「am在区间1,1上单调递增,1 3 1 3 12 2t 时,y有最小值—a ,由一a 0,得a .故a的取值范围为,■::.2 4 2 4 23 IL36. 【2019高考四川,理8】设a,b都是不等于1的正数,则“ 3a. 3b. 3 ”是“log a 3 :::log b 3 ”的()(A)充要条件(B)充分不必要条件(C必要不充分条件(D)既不充分也不必要条件【答案】B【解析】若3">3*>3,则Q—从而有1昭/<嗨异,故为充耸条件一若106,3<lo gi3不一定有比如4 =丄上二务从而3J>3*>3不成立”故选B37. 【2019高考北京,理7】如图,函数f x的图象为折线ACB,则不等式f x > log2 x 1的解集是()A. 〈x|—1:::x w 0? B .〈x|—1 w x w 1? C.〈x|—1:::x < 1 D .〈x | —1 ::: x < 2【答案】C【解析】如图所示,把函数y二log2x的图象向左平移一个单位得到y二log 2(x 1)的图象x - 1时两图象相交,不等式的解为-1 :::x < 1,用集合表示解集选C8. 【2019高考天津,理7】已知定义在R上的函数f x =2x^ -1 (m为实数)为偶函数,记 a = f (log °.53),b = f (log ? 5 ),c = f (2m ),则 a,b,c 的大小关系为()(A ) a ::: b ::: c (B ) a ::: c ::: b (C ) c ::: a ::: b (D ) c ::: b ::: a 【答案】C【解析】因为函数f x i ;=2x R _1为偶函数,所以m = o ,即f x i ; = 2x -1,所以b = f log ? 5 二 2log 25 一1 = 4,c 二 f 2m 二 f (0) = 2。
【导与练】(新课标)2019届高三数学一轮复习 第6篇 均值不等式学案 理
第八课时 均值不等式课前预习案1.利用均值不等式证明其他不等式2.利用均值不等式求最值1.几个重要不等式:①,、)(222222R b a b a ab ab b a ∈+≤⇔≥+当且仅当a = b 时,“=”号成立; ②,、)(222+∈⎪⎭⎫ ⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“相等”;② 熟悉一个重要的不等式链:ba 112+2a b+≤≤222b a +。
2、函数()(0)bf x ax a b x=+>、图象及性质 (1)函数()0)(>+=b a xbax x f 、图象如图: (2)函数()0)(>+=b a xbax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab ;②单调递增区间:(,-∞,)+∞;单调递减区间:,[0)1.已知a >0,b >0,a+b=2,则14y a b=+的最小值是( ) A .72B .4C . 92D .52.若,a b R ∈,且0ab >,则下列不等式中,恒成立的是( )A .222a b ab +> B.a b +≥C .11a b +> D .2b a a b +≥ ]课堂探究案考点1 利用基本不等式、均值不等式求最值【典例1】 (1)已知x >0,y >0,且2x +y =1,则1x +1y的最小值为________;(2)当x >0时, f(x)=2xx 2+1的最大值为________.【变式1】(1)已知x >1,则f(x)=x +1x -1的最小值为________.(2)已知0<x <25,则y =2x -5x 2的最大值为________.【变式2】已知2()log (2)f x x =-,若实数,m n 满足()(2)3f m f n +=,则m n + 的最小值是 .考点2 利用基本不等式、均值不等式证明不等式【典例2】 已知a >0,b >0,c >0,求证:bc a +ca b +abc≥a+b +c.【变式3】 已知a >0,b >0,c >0,且a +b +c =1.求证:1a +1b +1c≥9.考点3 解决恒成立问题【典例3】若对任意x >0,xx +3x +1≤a 恒成立,则a 的取值范围是________.【变式4】已知x >0,y >0,xy =x +2y ,若xy≥m-2恒成立,则实数m 的最大值是________.1.【2018高考浙江文9】若正数x ,y 满足x+3y=5xy ,则3x+4y 的最小值是A.245 B. 285C.5D.6 2. 【2018高考陕西文10】小王从甲地到乙地的时速分别为a 和b (a<b ),其全程的平均时速为v ,则 ( )2a b + D.v=2a b+ 3.【(2019年高考福建理】下列不等式一定成立的是( )A .21lg()lg (0)4x x x +>> B .1sin 2(,)sin x x k k Z xπ+≥≠∈ C .212||()x x x R +≥∈D .211()1x R x >∈+ 4. 若实数b a ,满足2=+b a ,则ba 33+的最小值是( )(A)18 (B)6 (C)32 (D)432 5.y x x x R =++∈2254()的最小值为 。
2019届高考数学一轮复习第十章统计与统计案例第一节随机抽样课件理49
A.08
B.07 C.02
D.01
[听前试做]
(1)选项 A、B 不是简单随机抽样,因
为抽取的个体间的间隔是固定的;选项 C 不是简单随 机抽样,因为总体的个体有明显的层次;选项 D 是简 单随机抽样. (2)由题意知前 5 个个体的编号为 08,02,14,07,01.
答案:(1)D (2)D
(1)一个抽样试验能否用抽签法,关键看两点:一是抽签是 否方便;二是号签是否易搅匀.一般地,当总体容量和样本容 量都较小时可用抽签法. (2)在使用随机数表时,如遇到三位数或四位数时,可从选 择的随机数表中的某行某列的数字计起,每三个或四个作为一 个单位,自左向右选取,有超过总体号码或出现重复号码的数 字舍去.
[听前试做 ]
(1)设该样本中的老年教师人数为 x ,由题意及
x 320 分层抽样的特点得 = ,故 x =180. 900 1 600 x 45 (2)设男生抽取 x 人,则有 = , 900 900-400 解得 x =25.
答案:(1)C
(2)25
进行分层抽样的相关计算时,常利用以下关系式巧解: 样本容量n 该层抽取的个体数 (1) = ; 总体的个数N 该层的个体数 (2) 总体中某两层的个体数之比=样本中这两层抽取的个 体数之比.
考纲要求: 1.理解随机抽样的必要性和重要性. 2.会用简单随机抽样方法从总体中抽取样本,了解分 层抽样和系统抽样.
1.简单随机抽样 (1)定义:设一个总体含有 N 个个体,从中 逐个不放回地 抽取 n 个个体作为样本(n≤N),如果每次抽取时总体内的各个 个体被抽到的机会都 相等 ,就把这种抽样方法叫做简单随机 抽样.
角度二:求样本容量 [典题 4] (1)(2016· 东北三校联考)某工厂生产甲、乙、丙
高三数学一轮总结复习目录
高三数学一轮总结复习目录理科数学 -模拟试题分类目录1第一章会合与常用逻辑用语1.1 会合的观点与运算专题 1 会合的含义与表示、会合间的基本关系专题 2 会合的基本运算专题 3 与会合有关的新观点问题1.2 命题及其关系、充要条件专题 1 四种命题及其关系、命题真假的判断专题 2 充足条件和必需条件专题 3 充足、必需条件的应用与研究(利用关系或条件求解参数范围问题)1.3 简单的逻辑联络词、全称量词与存在量词专题 1 含有简单逻辑联络词的命题的真假专题 2 全称命题、特称命题的真假判断专题 3 含有一个量词的命题的否认专题 4 利用逻辑联络词求参数范围第二章函数2.1 函数及其表示专题 1 函数的定义域专题 2 函数的值域专题 3 函数的分析式专题 4 分段函数2.2 函数的单一性与最值专题 1 确立函数的单一性(或单一区间)专题 2 函数的最值专题 3 单一性的应用2.3 函数的奇偶性与周期性专题 1 奇偶性的判断专题 2 奇偶性的应用专题 3 周期性及其应用2.4 指数与指数函数专题 1 指数幂的运算专题 2 指数函数的图象及应用专题 3 指数函数的性质及应用2.5 对数与对数函数专题 1 对数的运算专题 2 对数函数的图象及应用专题 3 对数函数的性质及应用2.6 幂函数与二次函数专题 1 幂函数的图象与性质专题 2 二次函数的图象与性质2.7 函数的图像专题 1 函数图象的辨别专题 2 函数图象的变换专题 3 函数图象的应用2.8 函数与方程专题 1 函数零点所在区间的判断专题 2 函数零点、方程根的个数专题 3 函数零点的综合应用2.9 函数的应用专题 1 一次函数与二次函数模型专题 2 分段函数模型2专题 3 指数型、对数型函数模型第三章导数及其应用3.1 导数的观点及运算专题 1 导数的观点与几何意义专题 2 导数的运算3.2 导数与函数的单一性、极值、最值专题 1 导数与函数的单一性专题 2 导数与函数的极值专题 3 导数与函数的最值3.3 导数的综合应用专题 1 利用导数解决生活中的优化问题专题 2 利用导数研究函数的零点或方程的根专题 3 利用导数解决不等式的有关问题3.4 定积分与微积分基本定理专题 1 定积分的计算专题 2 利用定积分求平面图形的面积专题 4 定积分在物理中的应用第四章三角函数、解三角形4.1 三角函数的观点、同角三角函数的基本关系及引诱公式专题 1 三角函数的观点专题 2 同角三角函数的基本关系专题 3 引诱公式4.2 三角函数的图像与性质专题 1 三角函数的定义域、值域、最值专题 2 三角函数的单一性专题 3 三角函数的奇偶性、周期性和对称性4.3 函数 y = A sin(wx +j ) 的图像及应用专题 1 三角函数的图象与变换专题 2 函数 y=Asin( ωx+φ ) 图象及性质的应用4.4 两角和与差的正弦、余弦与正切公式专题 1 非特别角的三角函数式的化简、求值专题 2 含条件的求值、求角问题专题 3 两角和与差公式的应用4.5 三角恒等变换专题 1 三角函数式的化简、求值专题 2 给角求值与给值求角专题 3 三角变换的综合问题4.6 解三角形专题 1 利用正弦定理、余弦定理解三角形专题 2 判断三角形的形状专题 3 丈量距离、高度及角度问题专题 4 与平面向量、不等式等综合的三角形问题第五章平面向量5.1 平面向量的观点及线性运算专题 1 平面向量的线性运算及几何意义专题 2 向量共线定理及应用专题 3 平面向量基本定理的应用5.2 平面向量基本定理及向量的坐标表示专题 1 平面向量基本定理的应用3专题 2 平面向量的坐标运算专题 3 平面向量共线的坐标表示5.3 平面向量的数目积专题 1 平面向量数目积的运算专题 2 平面向量数目积的性质专题 3 平面向量数目积的应用5.4 平面向量的应用专题 1 平面向量在几何中的应用专题 2 平面向量在物理中的应用专题 3 平面向量在三角函数中的应用专题 4 平面向量在分析几何中的应用第六章数列6.1 数列的观点与表示专题 1 数列的观点专题 2 数列的通项公式6.2 等差数列及其前 n 项和专题 1 等差数列的观点与运算专题 2 等差数列的性质专题 3 等差数列前 n 项和公式与最值6.3 等比数列及其前 n 项和专题 1 等比数列的观点与运算专题 2 等比数列的性质专题 3 等比数列前 n 项和公式6.4 数列乞降专题 1 分组乞降与并项乞降专题 2 错位相减乞降专题 3 裂项相消乞降6.5 数列的综合应用专题 1 数列与不等式相联合问题专题 2 数列与函数相联合问题专题 3 数列中的研究性问题第七章不等式推理与证明7.1 不等关系与一元二次不等式专题 1 不等式的性质及应用专题 2 一元二次不等式的解法专题 3 一元二次不等式恒建立问题7.2 二元一次不等式(组)与简单的线性规划问题专题 1 二元一次不等式(组)表示的平面地区问题专题 2 与目标函数有关的最值问题专题 3 线性规划的实质应用7.3 基本不等式及其应用专题 1 利用基本不等式求最值专题 2 利用基本不等式证明不等式专题 3 基本不等式的实质应用7.4 合情推理与演绎推理专题 1 概括推理专题 2 类比推理专题 3 演绎推理7.5 直接证明与间接证明专题 1 综合法4专题 2 剖析法专题 3 反证法7.6 数学概括法专题 1 用数学概括法证明等式专题 2 用数学概括法证明不等式专题 3 概括-猜想-证明第八章立体几何8.1 空间几何体的构造及其三视图和直观图专题 1 空间几何体的构造专题 2 三视图与直观图8.2 空间几何体的表面积与体积专题 1 空间几何体的表面积专题 2 空间几何体的体积专题 3 组合体的“接”“切”综合问题8.3 空间点、直线、平面之间的地点关系专题 1 平面的基天性质及应用专题 2 空间两条直线的地点关系专题 3 异面直线所成的角8.4 直线、平面平行的判断与性质专题 1 线面平行、面面平行基本问题专题 2 直线与平面平行的判断与性质专题 3 平面与平面平行的判断与性质8.5 直线、平面垂直的判断与性质专题 1 垂直关系的基本问题专题 2 直线与平面垂直的判断与性质专题 3 平面与平面垂直的判断与性质专题 4 空间中的距离问题专题 5 平行与垂直的综合问题(折叠、研究类)8.6 空间向量及其运算专题 1 空间向量的线性运算专题 2 共线定理、共面定理的应用专题 3 空间向量的数目积及其应用8.7 空间几何中的向量方法专题 1 利用空间向量证明平行、垂直专题 2 利用空间向量解决研究性问题专题 3 利用空间向量求空间角第九章分析几何9.1 直线的倾斜角、斜率与直线的方程专题 1 直线的倾斜角与斜率专题 2 直线的方程9.2 点与直线、两条直线的地点关系专题 1 两条直线的平行与垂直专题 2 直线的交点问题专题 3 距离公式专题 4 对称问题9.3 圆的方程专题 1 求圆的方程专题 2 与圆有关的轨迹问题专题 3 与圆有关的最值问题59.4 直线与圆、圆与圆的地点关系专题 1 直线与圆的地点关系专题 2 圆与圆的地点关系专题 3 圆的切线与弦长问题专题 4 空间直角坐标系9.5 椭圆专题 1 椭圆的定义及标准方程专题 2 椭圆的几何性质专题 3 直线与椭圆的地点关系9.6 双曲线专题 1 双曲线的定义与标准方程专题 2 双曲线的几何性质9.7 抛物线专题 1 抛物线的定义与标准方程专题 2 抛物线的几何性质专题 3 直线与抛物线的地点关系9.8 直线与圆锥曲线专题 1 轨迹与轨迹方程专题 2 圆锥曲线中的范围、最值问题专题 3 圆锥曲线中的定值、定点问题专题 4 圆锥曲线中的存在、研究性问题第十章统计与统计事例10.1 随机抽样专题 1 简单随机抽样专题 2 系统抽样专题 3 分层抽样10.2 用样本预计整体专题 1 频次散布直方图专题 2 茎叶图专题 3 样本的数字特点专题 4 用样本预计整体10.3 变量间的有关关系、统计事例专题 1 有关关系的判断专题 2 回归方程的求法及回归剖析专题 3 独立性查验第十一章计数原理11.1 分类加法计数原理与分步乘法计数原理专题 1 分类加法计数原理专题 2 分步乘法计数原理专题 3 两个计数原理的综合应用11.2 摆列与组合专题 1 摆列问题专题 2 组合问题专题 3 摆列、组合的综合应用11.3 二项式定理专题 1 通项及其应用专题 2 二项式系数的性质与各项系数和专题 3 二项式定理的应用第十二章概率与统计612.1 随机事件的概率专题 1 事件的关系专题 2 随机事件的频次与概率专题 3 互斥事件、对峙事件12.2 古典概型与几何概型专题 1 古典概型的概率专题 2 古典概型与其余知识的交汇(平面向量、直线、圆、函数等)专题 3 几何概型在不一样测度中的概率专题 4 生活中的几何概型问题12.3 失散型随机变量及其散布列专题 1 失散型随机变量的散布列的性质专题 2 求失散型随机变量的散布列专题 3 超几何散布12.4 失散型随机变量的均值与方差专题 1 简单的均值、方差问题专题 2 失散型随机变量的均值与方差专题 3 均值与方差在决议中的应用12.5 二项散布与正态散布专题 1 条件概率专题 2 互相独立事件同时发生的概率专题 3 独立重复试验与二项散布专题 4 正态散布下的概率第十三章算法初步、复数13.1 算法与程序框图专题 1 次序构造专题 2 条件构造专题 3 循环构造13.2 基本算法语句专题 1 输入、输出和赋值语句专题 2 条件语句专题 3 循环语句13.3 复数专题 1 复数的有关观点专题 2 复数的几何意义专题 3 复数的代数运算第十四章选修模块14.1 几何证明选讲专题 1 平行线分线段成比率定理专题 2 相像三角形的判断与性质专题 3 直角三角形的射影定理专题 4 圆周角、弦切角及圆的切线专题 5 圆内接四边形的判断及性质专题 6 圆的切线的性质与判断专题 7 与圆有关的比率线段14.2 坐标系与参数方程专题 1 极坐标与直角坐标的互化专题 2 直角坐标方程与极坐标方程的互化专题 3 曲线的极坐标方程的求解专题 4 曲线的参数方程的求解专题 5 参数方程与一般方程的互化7专题 6 极坐标方程与参数方程的应用14.3 不等式选讲专题 1 含绝对值不等式的解法专题 2 绝对值三角不等式的应用专题 3 含绝对值不等式的问题专题 4 不等式的证明8。
2019届高三理科数学第一轮复习《外接球的体积和表面积》教案
专题复习:几何体的外接球问题一.教学目标:1.能熟悉掌握几何体外接球问题的补形法,求几何体的外接球表面积和体积。
2.利用球定义和性质确定几何体外接球的球心位置及半径,并构造直角三角计算。
二、教学重点:几何体外接球问题的补形法和确定球心,构造直角三角计算。
三、教学难点:运用空间想象能力分析几何体从而求解几何体外接球半径。
四、教学过程: 环节1.真题感悟; 1、(2017年广州调研文12题)如图,网格纸上正方形小格的边长为1,图中粗线画出的是某三棱锥的三视图,则该三棱锥的外接球的表面积为A .112π B .6π C .11π D .12π2、一个所有棱长均为1的正四棱锥的顶点与底面的四个顶点均在某个球的球面上,则此球的体积为( )A.8B .23π C .2πD .23π 题型一:墙角模型(三条线两个垂直,不找球心的位置即可求出球半径)——补全法图2图3图形特点:1、三棱锥的一个面是直角三角形,第四个顶点在这个面上的正投影与直角三角形顶点重合或者与三个顶点构成一个长方形;2、三棱锥相对的棱长相等如图4。
方法:找三条两两垂直的线段,直接用公式2222)2(c b a R ++=,即2222c b a R ++=,求出R 题型二确定球心位置:1.三棱锥中两个面互相垂直,且这两个三角形中公共边对的一个角是直角,则外接球的球心与另一个三角形的外接圆圆心重合。
2.三棱锥中有两个三角形是直角三角形且这两个直角三角形斜边重合,则球心与斜边重点重合。
题型三边垂面模型(一条边垂直于一个平面)——构造法: 1. 解题步骤:第一步:将ABC ∆画在小圆面上,A 为小圆直径的一个端点,作小圆的直径AD ,连接PD ,则PD 必过球心O ; 第二步:1O 为ABC ∆的外心,所以⊥1OO 平面ABC ,算出小圆1O 的半径rD O =1(三角形的外接圆直径算法:利用正弦定理,得r C c B b A a 2sin sin sin ===),PA OO 211=; 第三步:利用勾股定理求三棱锥的外接球半径:①222)2()2(r PA R +=⇔22)2(2r PA R +=;②2122OO r R +=⇔212OO r R +=题型四、锥体的内切球问题——题设:三棱锥ABC P -是任意三棱锥,? 4 图5求其的内切球半径——方法:等体积法,即内切球球心与四个面构成的四个三棱锥的体积之和相等r=P ABCV S -3表。
2019届高三数学(理)第一轮复习教学进度表
第四章:平面向量、数系的扩充与复数引入
1.平面向量的概念及线性运算
2.平面向量的基本定理及坐标表示
3.平面向量的数量积与平面向量的应用举例
4.数系的扩充与复数的引入
7
第十二周
(11.19-11.25)
第五章:数列
1.数列的概念与简单表示法及通项公式
2.等差数列及其前n项和
7
7
第二周
(09.10-09.16)
第二章:
函数、导数及其应用
(国庆节)
1.函数及其表示,定义域与值域
2.函数的单调性与最值
3.函数的奇偶性与周期性
7
第三周
(09.17-09.23)
4.函数的图象
5. 二次函数与幂函数
6.指数与指数函数
7
第四周
(09.24-09.30)
7.对数与对数函数
8.函数与方程
2019届高三数学(理)第一轮复习教学进度表
第一轮的复习要以基础知识、基本技能、基本方法为主,争取在3月31日前完成第一轮复习。
时间
教材章节
教学内容
课时
备注
第一周
(09.03-09.09)
第一章:
集合与常用逻辑用语
1.集合的概念及其基本运算
2.命题及关系、充分条件与必要条件
3.简单的逻辑联结词、全称量词与存在量词
第十三周
(11.26-12.02)
3.等比数列及其前n项和
4.数列求和
7
第十四周
(12.03-12.09)
第六章:
不等式、推理与证明
1.不等关系与不等式与一元二次不等式及其解法
2.二元一次不定式(组)与简单的线性规划问题
高考数学一轮复习 考点32 数列的综合问题必刷题 理(含解析)-人教版高三全册数学试题
考点32 数列的综合问题1.(市房山区2019年高考第一次模拟测试理)《九章算术》中有如下问题:今有蒲生一日,长三尺,莞生一日,长1尺.蒲生日自半,莞生日自倍.问几何日而长等?意思是:今有蒲第一天长高3尺,莞第一天长高1尺,以后蒲每天长高前一天的一半,莞每天长高前一天的2倍.若蒲、莞长度相等,则所需时间为()(结果精确到0.1.参考数据:lg2=0.3010,lg3=0.4771.)A.天B.天C.天D.天【答案】C【解析】设蒲的长度组成等比数列{a n},其a1=3,公比为,其前n项和为A n,则A n=.莞的长度组成等比数列{b n},其b1=1,公比为2,其前n项和为B n.则B n,由题意可得:,整理得:2n+=7,解得2n=6,或2n=1(舍去).∴n=≈2.6.∴估计2.6日蒲、莞长度相等.故选:C.2.(某某乌鲁木齐市2018届高三第三次诊断性测验)已知数列,满足,,,则数列的前10项的和为A.B.C.D.【答案】D【解析】由a n +1﹣a n 2,所以数列{a n }是等差数列,且公差是2,{b n }是等比数列,且公比是2. 又因为=1,所以a n =+(n ﹣1)d =2n ﹣1. 所以b 2n ﹣1=•22n ﹣2=22n ﹣2.设,所以=22n ﹣2,所以4,所以数列{∁n }是等比数列,且公比为4,首项为1.由等比数列的前n 项和的公式得:其前10项的和为(410﹣1).故选:D .3.(某某省“皖南八校”2018届高三第三次(4月)联考)删去正整数数列 中的所有完全平方数,得到一个新数列,这个数列的第2018项是( ) A .B .C .D .【答案】B 【解析】由题意可得,这些数可以写为:,第个平方数与第个平方数之间有个正整数,而数列共有项,去掉个平方数后,还剩余个数,所以去掉平方数后第项应在后的第个数,即是原来数列的第项,即为,故选B.4.(华大新高考联盟2018届高三上学期11月教学质量测评理)已知等比数列{}n a 的前n 项和为n S ,,则42S S =( ) A .2 B .3C .4D .5【答案】B 【解析】由可得312a a =,所以22q =,又因为,所以选B.5.(某某省2017届高三高考冲刺预测卷六理)最近各大城市美食街火爆热开,某美食店特定在2017年元旦期间举行特大优惠活动,凡消费达到88元以上者,可获得一次抽奖机会.已知抽奖工具是一个圆面转盘,被分为6个扇形块,分别记为1,2,3,4,5,6,其面积成公比为3的等比数列(即扇形块2是扇形块1面积的3倍),指针箭头指在最小的1区域内时,就中“一等奖”,则一次抽奖抽中一等奖的概率是( ) A .140B .1121C .1364D .11093【答案】C 【解析】由题意,可设1,2,3,4,5,6 扇形区域的面积分别为,则由几何概型得,消费88 元以上者抽中一等奖的概率,故选C.6.(某某省钟祥市2019届高三高考第一次模拟考试理)对于实数x ,[x]表示不超过x 的最大整数,已知正数列{a n }满足S n =12(a n n 1a +),n ∈N*,其中S n 为数列{a n }的前n 项的和,则[]=______.【答案】20 【解析】由题可知0n S >,当1n >时,化简可得,当所以数列2{}n S 是以首项和公差都是1的等差数列,即又1n >时,记一方面另一方面所以2021S << 即[]20S = 故答案为207.(市某某区2019届高三第一次(3月)综合练习一模)天坛公园是明、清两代皇帝“祭天”“祈谷”的场所.天坛公园中的圜丘台共有三层(如图1所示),上层坛的中心是一块呈圆形的某某石板,从中心向外围以扇面形石(如图2所示).上层坛从第一环至第九环共有九环,中层坛从第十环至第十八环共有九环,下层坛从第十九环至第二十七环共有九环;第一环的扇面形石有9块,从第二环起,每环的扇面形石块数比前一环多9块,则第二十七环的扇面形石块数是______;上、中、下三层坛所有的扇面形石块数是_______.【答案】2433402 【解析】第一环的扇面形石有9块,从第二环起,每环的扇面形石块数比前一环多9块, 则依题意得:每环的扇面形石块数是一个以9为首项,9为公差的等差数列, 所以,a n =9+(n -1)×9=9n , 所以,a 27=9×27=243, 前27项和为:=3402.8.(某某省某某师大附中2018届高三高考考前模拟考试)在数列{a n }中,若a 4=1,a 12=5,且任意连续三项的和都是15,则a 2018=______. 【答案】9【解析】分析:将a n +a n+1+a n+2=15中n 换为n+1,可得数列{a n }是周期为3的数列.求出a 2,a 1,即可得到a 2018 详解:由题意可得a n +a n+1+a n+2=15,将n 换为a n+1+a n+2+a n+3=15,可得a n+3=a n ,可得数列{a n 是周期为3的数列.故,由a n +a n+1+a n+2=15,n 取1可得,故,故答案为9.9.(某某省武昌2018届元月调研考试)对任一实数序列,定义新序列,它的第项为,假设序列的所有项都是,且,则__________. 【答案】100. 【解析】 设序列的首项为,则序列,则它的第n 项为,因此序列A 的第项,则是关于的二次多项式,其中的系数为,因为,所以必有,故。
2019届高三数学一轮复习:第31讲 数列求和
第31讲 PART 5
数列求和
教学参考│课前双基巩固│课堂考点探究│教师备用例题
你是我今生最美的相遇遇上你是我的缘
1
考试说明
1.掌握等差数列、等比数列的前n项和公式. 2.掌握一般数列求和的几种常见的方法.
2019年7月10日
你是我今生最美的相遇遇上你是我的缘
2
教学参考
考情分析
������ =1
������
证: ∑
������ =1
1 ������������
<21������
2.
证明:(1)由题意得���������2��� =anan+1,有 cn=���������2��� +1-���������2��� =an+1an+2-anan+1=2dan+1, 因此 cn+1-cn=2d(an+2-an+1)=2d2,所以{cn}是等差
数列.
(2)Tn=(-������12+������22)+(-������32+������42)+…+(-������22������-1+������22������ )=2
d(a2+a4+…+a2n)=2d·������(������
2
+������2������ 2
)=2d2n(n+1),
1.[2017·天津卷] 已知{an}为等差数列, 前 n 项和为 Sn(n∈N*),{bn}是首项为 2 的等比数列,且公比大于 0,b2+b3=12,b3=a4-2a1,S11=11b4. (1)求{an}和{bn}的通项公式; (2)求数列{a2nb2n-1}的前 n 项和(n∈ N*).
2019届高考数学(理)一轮复习讲练测:专题6.2 等差数列及其前n项和(测)(解析版)
班级__________ 姓名_____________ 学号___________ 得分__________一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的.)1.【浙江省高三第一次五校联考】在等差数列{}n a 中,53a =,62a =-,则348a a a ++等于( )A. 1B. 2C. 3D. 4 【答案】C. 【解析】试题分析:∵等差数列{}n a ,∴3847561a a a a a a +=+=+=,∴3483a a a ++=.2.【辽宁省沈阳市东北育才学校高三八模】等差数列{}n a 中,564a a +=,则10122log (222)a a a ⋅= ( )A.10B.20C.40D.22log 5+ 【答案】B 【解析】 试题分析:因为10121056125()54222222a a a a a a a a ++++⨯⋅⋅⋅===,所以10125422log (222)log 220.a a a ⨯⋅⋅⋅==选B.3. 数列{}n a 为等差数列,满足242010a a a +++=,则数列{}n a 前21项的和等于( )A .212B .21C .42D .84 【答案】B 【解析】4.各项均为正数的等差数列}{n a 中,4936a a =,则前12项和12S 的最小值为( ) (A )78 (B )48 (C )60 (D )72 【答案】D 【解析】试题分析:因为112124912()6()722a a S a a +==+≥=,当且仅当496a a ==时取等号,所以12S 的最小值为72,选D.5.【改编题】已知n S 是等差数列{}n a 的前n 项和,则=-nnn S S S 32( ) A. 30 B. 3 C. 300 D. 31 【答案】D【解析】因为)(2)(231212n n n n n a a n a a n S S +=+=-+,)(23313n n a a nS +=,所以3132=-n n n S S S .6.【改编题】已知n S 是公差d 不为零的等差数列}{n a 的前n 项和,且83S S =,k S S =7(7≠k ),则k 的值为( )A. 3B.4C.5D.6 【答案】B【解析】依题意,83S S =可知d a d a 2883311+=+,即d a 51-=,由k S S =7得d k k ka d a 2)1(2)17(7711-+=-⨯+,将d a 51-=代入化简得028112=+-k k , 解得4=k 或7-=k (舍去),选B.7.【2019新课标I 学易大联考二】已知数列{}n a 的前n 项和n S 满足21(1)22n n nS n S n n +-+=+*()n N ∈,13a =,则数列{}n a 的通项n a =( )A .41n -B .21n +C .3nD .2n +【命题意图】本题考查数列前n 项和n S 与通项n a 间的关系、等差数列通项公式等基础知识,意在考查学生的逻辑思维能力、运算求解能力,以及转化思想的应用. 【答案】A8.【2019新课标II 学易大联考一】《九章算术》有这样一个问题:今有女子善织,日增等尺,七日织二十一尺,第二日、第五日、第八日所织之和为十五尺,问第十日所织尺数为( ) A .6 B .9 C .12 D .15【命题意图】本题主要考查等差数列的通项公式与前n 项和公式,是基础题. 【答案】D【解析】由题知该女每天所织尺数等差数列,设为{}n a ,n S 是其前n 项和,则7S =177()2a a +=47a =21,所以4a =3,因为258a a a ++=53a =15,所以5a =5,所以公差54d a a =-=2,所以10a =55a d +=15,故选D.9.某企业为节能减排,用9万元购进一台新设备用于生产. 第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加2万元,该设备每年生产的收入均为11万元. 设该设备使用了()n n N *∈年后,盈利总额达到最大值(盈利额等于收入减去成本),则n 等于( ) A.4 B.5 C.6 D.7 【答案】A【解析】设该设备第()n n N *∈的营运费用为n a 万元,则数列{}n a 是以2为首项,以2为公差的等差数列,则2n a n =,则该设备到第()n n N *∈年的营运费用总和为12242n a a a n +++=+++=()2222n n n n +=+,设第()n n N *∈的盈利总额为nS 万元,则()22119109n S n n n n n =-+-=-+-()2516n =--+,因此,当5n =时,n S 取最大值16,故选B.10.【原创题】已知等差数列}{n a 中,59914,90a a S +==, 则12a 的值是( ) A . 15 B .12-C .32-D .32【答案】B11.【原创题】已知等差数列765)1()1()1(53}{x x x n a a n n +++++-=,则,的展开式中4x 项的系数是数列}{n a 中的 ( )A .第9项B .第10项C .第19项D .第20项 【答案】D .【解析】由二项式定理得567(1)(1)(1)x x x +++++的展开式中4x 项的系数为44456776551555123C C C ⨯⨯++=++=⨯⨯,由3555n -=,得20n =,故选D .12.【2019浙江理6】如图所示,点列{}{},n n A B 分别在某锐角的两边上,且1n n A A +=12n n A A ++,2n n A A +≠,n ∈*N ,112n n n n B B B B +++=,2n n B B +≠,n ∈*N (P Q≠表示点P 与点Q 不重合).若n n n d A B =,n S 为1n n n A B B +△的面积,则( ).S nB 1B 2B nB 3B n+1A n+1A 3A nS 1S 2A 2A 1••••••••••••••••••A. {}n S 是等差数列B.2{}n S 是等差数列 C.{}n d 是等差数列 D.2{}n d 是等差数列【答案】A .【解析】设点n A 到对面直线的距离为n h ,则112n n n n+S h B B =. 由题目中条件可知1n n B B +的长度为定值,则1212n n S h B B =.那么我们需要知道n h 的关系式,过点1A 作垂直得到初始距离1h ,那么1,n A A 和两个垂足构成了直角梯形,那11tan n n h h A A θ=+⋅,其中θ为两条线的夹角,那么11121(tan )2n n S h A A B B θ=+⋅.由题目中条件知112n n n n A A A A +++=,则()1121n A A n A A =-.所以()1121211tan 2n S h n A A B B θ=⎡+-⋅⎤⎣⎦,其中θ为定值,所以n S 为等差数列.故选A. 二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.【2019江苏8】已知{}n a 是等差数列,n S 是其前n 项和.若2123a a +=-,510S =,则9a 的值是 .【答案】20【解析】设公差为d ,则由题意可得()2111351010a a d a d ⎧++=-⎪⎨+=⎪⎩,解得143a d =-⎧⎨=⎩,则948320a =-+⨯=.14.【2019北京理12】已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则6S =__________.【答案】615.如图,有一个形如六边形的点阵,它的中心是一个点(算第..1.层.),第2层每边有两个点,第3层每边有三个点,依次类推.(1) 试问第n 层()2n N n *∈≥且的点数为___________个; (2) 如果一个六边形点阵共有169个点,那么它一共有_____层.【答案】(1)()61n -;(2)8.16.【2019届江苏省盐城市高三第三次模拟考试】设n S 是等差数列{}n a 的前n 项和,若数列{}n a 满足2n n a S An Bn C +=++且0A >,则1B C A+-的最小值为 .【答案】【解析】试题分析:令1(1)n a a n d =+-,则1(1)2n n n S na d -=+, 又2n n a S An Bn C +=++ 所以2211(1)22d da n d na n n An Bn C +-++-=++ 即得2d A =,12dB a =+,1C a d =- 所以11122322d d B C a a d A d d +-=++-+=+因为0A >,所以0d >232d d +≥=232d d =即d =所以1B C A+-的最小值为故答案为三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.【2019届广东省惠州市高三第一次调研考试】(本题10分)已知{}n a 为等差数列,且满足138a a +=,2412a a +=.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)记{}n a 的前n 项和为n S ,若31,,k k a a S +成等比数列,求正整数k 的值. 【答案】(Ⅰ)2n a n =;(Ⅱ)2k = 【解析】18.【2019届宁夏银川一中高三上学期第一次月考】等差数列{}n a 中,13a =,前n 项和为n S ,等比数列{}n b 各项均为正数,11b =,且2212b S +=,{}n b 的公比22S q b = (1)求n a 与n b ;(2)求nS S S 11121+++ . 【答案】(1)n n a n 3)1(33=-+=,13-=n n b (2)23(1)n nS n =+【解析】19.【2019全国甲理17】n S 为等差数列{}n a 的前n 项和,且11a =,728S =.记[]lg n n b a =,其中[]x 表示不超过的最大整数,如[]0.90=,[]lg991=. (1)求1b ,11b ,101b ;(2)求数列{}n b 的前1000项和. 【答案】(1)0,1,2;(2)1893. 【解析】20.【江苏省盐城市高三第三次模拟考试】设函数21()1+f x px qx=+(其中220p q +≠),且存在无穷数列{}n a ,使得函数在其定义域内还可以表示为212()1n n f x a x a x a x =+++++.(1)求2a (用,p q 表示); (2)当1,1p q =-=-时,令12n n n n a b a a ++=,设数列{}n b 的前n 项和为n S ,求证:32n S <;(3)若数列{}n a 是公差不为零的等差数列,求{}n a 的通项公式. 【答案】(1)22a p q =-;(2)证明见解析;(3)1n a n =+. 【解析】试题分析:(1) 由21()1+f x px qx=+,得2212(1)(1)1n n px qx a x a x a x +++++++=,可利用展开式含未知量的系数为0,求得2a ;(2)由已知求出数列前两项,再由(3)nx n ≥的系数为0得到数列的递推式,代入12n n n n a b a a ++=后利用裂项相消法求得数列{}n b 的前n 项和为n S ,放大后证得32n S <; (3)由(2)120n n n a pa qa --++=,因数列{}n a 是等差数列,所以1220n n n a a a ---+=,所以12(2+)(1)n n p a q a --=-对一切3n ≥都成立,然后排出数列为常数列的情况,再结合数列的前两项即可得数列{}n a 的通项公式.21.【2019年山西高三四校联考】(本小题满分12分)在等差数列}{n a 中,11,552==a a ,数列}{n b 的前n 项和n n a n S +=2. (Ⅰ)求数列}{n a ,}{n b 的通项公式;(Ⅱ)求数列⎩⎨⎧⎭⎬⎫+11n n b b 的前n 项和n T .【答案】(I )12+=n a n ,⎩⎨⎧≥+==)2(,12)1(,4n n n b n ;(II ))32(2016+-=n n T n .(2)n=1时,2011211==b b T , n ≥2时,)321121(21)32)(12(111+-+=++=+n n n n b b n n , 所以 )32(201615101201)32151(21201)32112191717151(21201+-=+-+=+-+=+-+++-+-+=n n n n n n n T n n=1仍然适合上式, …………(10分) 综上,)32(201615101201+-=+-+=n n n n T n ………… (12分) 22.【2019年江西师大附中高三二模】(本小题满分12分)在公比为2的等比数列{}n a 中,2a 与5a 的等差中项是.(Ⅰ)求1a 的值;(Ⅱ)若函数1sin 4y a x πφ⎛⎫=+ ⎪⎝⎭,φπ<,的一部分图像如图所示,()11,M a -,()13,N a -为图像上的两点,设MPN β∠=,其中P 与坐标原点O 重合,πβ<<0,求()tan φβ-的值.【答案】(I );(II)32-+.【解析】 (Ⅱ)∵点在函数的图像上,∴,又∵,∴ -------------7分 如图,连接MN ,在中,由余弦定理得1a ()11,M a -1sin 4y a x πφ⎛⎫=+ ⎪⎝⎭sin 14πφ⎛⎫-+= ⎪⎝⎭φπ<34φπ=MPN ∆。
高三数学一轮复习第一次检测考试试题 理(含解析)
——————————教育资源共享步入知识海洋————————2019高三一轮复习第一次检测考试数学(理科)试题一、选择题(共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A={x∈N|x2+2x﹣3≤0},则集合A的真子集个数为()A. 3B. 4C. 31D. 32【答案】A【解析】【分析】求出集合,由此能求出集合A的真子集的个数.【详解】由题集合,∴集合A的真子集个数为.故选:A.【点睛】本题考查集合真子集的个数的求法,考查真子集等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.2.命题:“,”的否定为A. ,B. ,C. ,D. ,【答案】C【解析】特称命题的否定是全称命题,特称命题“”的否定为全称命题:,故选C.3.若,则()A. B. C. D.【答案】B【解析】分析:先对两边取对数,求出的值,再根据对数的换底公式和运算性质计算,即可求出答案.详解:,,故选B.点睛:本题考查指对互化,对数的换底公式和运算性质,属于基础题.4.设,则等于()A. B. C. 1 D.【答案】D【解析】【分析】原积分化为根据定积分的计算法则计算即可【详解】由题故选:D.【点睛】本题考查了定积分的计算,关键是求出原函数,属于基础题,5.已知曲线f(x)=lnx+在点(1,f(1))处的切线的倾斜角为,则a的值为()A. 1B. ﹣4C. ﹣D. ﹣1【答案】D【解析】分析:求导,利用函数f(x)在x=1处的倾斜角为得f′(1)=﹣1,由此可求a的值.详解: 函数(x>0)的导数,∵函数f(x)在x=1处的倾斜角为∴f′(1)=﹣1,∴1+=﹣1,∴a=﹣1.故选:D.点睛:求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点及斜率,其求法为:设是曲线上的一点,则以的切点的切线方程为:.若曲线在点的切线平行于轴(即导数不存在)时,由切线定义知,切线方程为.6.已知偶函数f(x)在[0,+∞)单调递增,若f(2)=﹣2,则满足f(x﹣1)≥﹣2的x的取值范围是()A. (﹣∞,﹣1)∪(3,+∞)B. (﹣∞,﹣1]∪[3,+∞)C. [﹣1,﹣3]D. (﹣∞,﹣2]∪[2,+∞)【答案】B【解析】【分析】根据题意,结合函数的奇偶性与单调性分析可得若,即有,可得,解可得的取值范围,即可得答案.【详解】根据题意,偶函数在单调递增,且,可得,若,即有,可得,解可得:即的取值范围是;故选:B.【点睛】本题考查函数的单调性与奇偶性的综合应用,关键是利用函数的奇偶性与单调性转化原不等式.7.已知定义在R上的奇函数f(x)满足f(x+2)=﹣f(x),若f(﹣1)>﹣2,f(﹣7)=,则实数a的取值范围为()A. B. (﹣2,1) C. D.【答案】C【解析】【分析】由是定义在上的奇函数,且满足,求出函数的周期,由此能求出实数的取值范围.【详解】∵是定义在上的奇函数,且满足,,函数的周期为4,则又,即,即解得故选C.【点睛】本题考查函数的周期性和奇偶性的应用,是基础题.解题时要认真审题,仔细解答.8.若函数f(x)=a x﹣a﹣x(a>0且a≠1)在R上为减函数,则函数y=log a(|x|﹣1)的图象可以是()A. B. C. D.【答案】C【解析】【分析】由函数在上为减函数,由此求得的范围,结合的解析式.再根据对数函数的图象特征,得出结论.【详解】由函数在上为减函数,故.函数是偶函数,定义域为函数的图象,时是把函数的图象向右平移1个单位得到的,故选:C.【点睛】本题主要考查函数的奇偶性和单调性的应用,对数函数的图象特征,函数图象的平移规律,属于中档题.9.已知函数f(x)是定义域为R的周期为3的奇函数,且当x∈(0,1.5)时f(x)=ln(x2﹣x+1),则方程f(x)= 0在区间[0,6]上的解的个数是()A. 5B. 7C. 9D. 11【答案】C【解析】【分析】要求方程在区间上的解的个数,根据函数是定义域为的周期为3的奇函数,且当时,可得一个周期内函数零点的个数,根据周期性进行分析不难得到结论.【详解】∵时,令,则,解得,又∵是定义域为的的奇函数,∴在区间上,,又∵函数是周期为3的周期函数则方程在区间的解有0,1,1.5,2,3,4,4.5,5,6共9个故选:D.【点睛】本题考查函数零点个数的判断,考查函数的奇偶性,周期性的应用,属中档题. 10.点P在边长为1的正方形ABCD的边上运动,M是CD的中点,则当P沿A﹣B﹣C﹣M运动时,点P经过的路程x与△APM的面积y的函数y=f(x)的图象的形状大致是图中的()A. B. C. D.【答案】A【解析】【分析】随着点P的位置的不同,讨论三种情形即在AB上,在BC上,以及在CM上分别建立面积的函数,分段画出图象即可.【详解】根据题意得,分段函数图象分段画即可,故选:A.【点睛】本题主要考查了分段函数的图象,分段函数问题,应切实理解分段函数的含义,把握分段解决的策略.11.对于任意x∈R,函数f(x)满足f(2﹣x)=﹣f(x),且当x≥1时,函数f(x)=lnx,若a=f(2﹣0.3),b=f(log3π),c=f(﹣)则a,b,c大小关系是()A. b>a>cB. b>c>aC. c>a>bD. c>b>a【答案】A【解析】【分析】由判断函数关于点对称,根据时是单调增函数,判断在定义域上单调递增;再由自变量的大小判断函数值的大小.【详解】对于任意函数满足,∴函数关于点对称,当时,是单调增函数,∴在定义域上是单调增函数;由∴∴b>a>c.故选:A.【点睛】本题主要考查了与函数有关的命题真假判断问题,涉及函数的单调性与对称性问题,是中档题.12.设函数f'(x)是函数f(x)(x∈R)的导函数,已知f'(x)<f(x),且f'(x)=f'(4﹣x),f(4)=0,f(2)=1,则使得f(x)﹣2e x<0成立的x的取值范围是()A. (﹣2,+∞) B. (0,+∞) C. (1,+∞) D. (4,+∞)【答案】B【解析】【分析】构造函数,利用的导数判断函数的单调性,求出不等式的解集即可.【详解】设则即函数在上单调递减,因为,即导函数关于直线对称,所以函数是中心对称图形,且对称中心,由于,即函数过点,其关于点(的对称点(也在函数上,所以有,所以而不等式即即所以故使得不等式成立的的取值范围是故选:B.【点睛】本题考查了利用导数判断函数的单调性,并由函数的单调性和对称性解不等式的应用问题,属中档题.二、填空题(共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上.)13.已知命题p:“存在x∈R,使”,若“非p”是假命题,则实数m的取值范围是_____.【答案】【解析】试题分析:非p即:“对任意x∈R, 4x+2x+1+m0”,如果“非p”是假命题,即m-4x-2x+1,而令t=,y===,,所以m<0,故答案为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019届高三第一轮复习《原创与经典》(苏教版)
(理科)
第一章集合常用逻辑用语推理与证明
第1课时集合的概念、集合间的基本关系
第2课时集合的基本运算
第3课时命题及其关系、充分条件与必要条件
第4课时简单的逻辑联结词、全称量词与存在量词
第5课时合情推理与演泽推理
第6课时直接证明与间接证明
第7课时数学归纳法
第二章不等式
第8课时不等关系与不等式
第9课时一元二次不等式及其解法
第10课时二元一次不等式(组)与简单的线性规划问题
第11课时基本不等式及其应用
第12课时不等式的综合应用
第三章函数的概念与基本初等函数
第13课时函数的概念及其表示
第14课时函数的定义域与值域
第15课时函数的单调性与最值
第16课时函数的奇偶性与周期性9
第17课时二次函数与幂函数
第18课时指数与指数函数
第19课时对数与对数函数
第20课时函数的图象
第21课时函数与方程
第22课时函数模型及其应用
第四章 导数
第23课时 导数的概念及其运算(含复合函数的导数)
第24课时 利用导数研究函数的单调性与极值
第25课时 函数的最值、导数在实际问题中的应用
第五章 三角函数 第26课时
任意角、弧度制及任意角的三角函数 第27课时
同角三角函数的基本关系式与诱导公式 第28课时
两角和与差的正弦、余弦和正切公式 第29课时
二倍角的三角函数 第30课时
三角函数的图象和性质 第31课时
函数sin()y A x ωϕ=+的图象及其应用 第32课时
正弦定理、余弦定理 第33课时
解三角形的综合应用
第六章 平面向量 第34课时
平面向量的概念及其线性运算 第35课时
平面向量的基本定理及坐标表示 第36课时
平面向量的数量积 第37课时
平面向量的综合应用
第七章 数 列 第38课时
数列的概念及其简单表示法 第39课时
等差数列 第40课时
等比数列 第41课时
数列的求和 第42课时
等差数列与等比数列的综合应用 第八章 立体几何初步 第43课时
平面的基本性质及空间两条直线的位置关系
第44课时直线、平面平行的判定与性质
第45课时直线、平面垂直的判定与性质
第46课时空间几何体的表面积与体积
第47课时空间向量的应用——空间线面关系的判定
第48课时空间向量的应用——空间的角的计算
第九章平面解析几何
第49课时直线的方程
第50课时两直线的位置关系与点到直线的距离
第51课时圆的方程
第52课时直线与圆、圆与圆的位置关系
第53课时椭圆
第54课时双曲线、抛物线
第55课时曲线与方程
第56课时直线与圆锥曲线的位置关系
第57课时圆锥曲线的综合应用
第十章复数、算法、统计与概率
第58课时抽样方法、用样本估计总体
第59课时随机事件及其概率
第60课时古典概型
第61课时几何概型互斥事件
第62课时算法的含义及流程图
第63课时复数
第十一章计数原理、随机变量及其分布第64课时分类计数原理与分步计数原理
第65课时排列与组合
第66课时二项式定理
第67课时离散型随机变量及其概率分布
第68课时事件的独立性及二项分布
第69课时离散型随机变量的均值与方差
第十二章选修4系列
第70课时选修4-1 《几何证明选讲》相似三角形的进一步认识
第71课时选修4-1 《几何证明选讲》圆的进一步认识
第72课时选修4-2 《矩阵与变换》平面变换、变换的复合与矩阵的乘法第73课时选修4-2 《矩阵与变换》逆变换与逆矩阵、矩阵的特征值与特征向量
第74课时选修4-4《参数方程与极坐标》极坐标系
第75课时选修4-4《参数方程与极坐标》参数方程
第76课时选修4-5《不等式选讲》绝对值的不等式
第77课时选修4-5《不等式选讲》不等式的证明。