七年级数学重点题目答案与解析

合集下载

(完整版)苏教版七年级下册期末数学重点初中题目(比较难)及解析

(完整版)苏教版七年级下册期末数学重点初中题目(比较难)及解析

(完整版)苏教版七年级下册期末数学重点初中题目(比较难)及解析一、选择题1.下列运算正确的是()A.(3x2)2=6x4B.(x3)2=x9C.3x2﹣x=2x D.x2•x3=x5答案:D解析:D【分析】根据整式的乘法以及乘方等运算,对选项逐个判断即可.【详解】解:A.(3x2)2=9x4,故本选项不合题意;B.(x3)2=x6,故本选项不合题意;C.3x2与﹣x不是同类项,所以不能合并,故本选项不合题意;D.x2•x3=x5,故本选项符合题意;故选:D.【点睛】此题主要考查了整式的乘法和乘方等运算,熟练掌握整式的性质及相关运算是解题的关键.2.如图,∠1和∠2是同位角的是()A.B.C.D.答案:A解析:A【分析】根据同位角的定义,逐一判断选项,即可.【详解】解:A. ∠1和∠2是同位角,故该选项符合题意;B. ∠1和∠2不是同位角,故该选项不符合题意;C. ∠1和∠2不是同位角,故该选项不符合题意;D. ∠1和∠2不是同位角,故该选项不符合题意,故选 A.【点睛】本题主要考查同位角的定义,掌握“两条直角被第三条直线所截,在两条直线的同侧,在第三条直线的同旁的两个角,叫做同位角”,是解题的关键.3.已知方程组135x y ax y a+=-⎧⎨-=+⎩的解x为正数,y为非负数,给出下列结论:①-1<a≤1;②当a =-53时,x =y ;③当a =-2时,方程组的解也是方程x +y =5+a 的解.其中正确的是( )A .①②B .②③C .①③D .①②③ 答案:B解析:B【解析】解:解方程组得:x =3+a ,y =-2-2a .∵x 为正数,y 为非负数,∴3+a >0,-2-2a ≥0,解得:-3<a ≤-1,故①错误;当a =53-时,x =54333-=,y =542233-+⨯=,∴x =y ,故②正确; 当a =-2时,x =3+(-2)=1,y =-2+4=2,x +y =3=5+(-2)=3,故③正确.故选B .点睛:本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.4.若多项式29216x mx -+是一个完全平方式,则m 的值为( )A .24±B .12±C .24D .12答案:B解析:B【分析】利用完全平方公式的结构特征判断即可.【详解】解:∵29216x mx -+是一个完全平方式∴()2229216324x mx x mx -+=-+ ∴()22292163492416x mx x x x -+=±=±+ ∴224m =±∴12m =±故选B .【点睛】本题主要考查完全平方公式,熟练掌握公式是解题的关键.5.若关于x 的不等式0521x m x -<⎧⎨-≤⎩的整数解有且只有4个,则m 的取值范围是( ) A .56m ≤≤ B .56m << C .56m ≤< D .56m <≤ 答案:D解析:D【分析】分别求出不等式组中不等式的解集,利用取解集的方法表示出不等式的解集,根据解集中整数解有4个,即可得到m 的取值范围.【详解】解:0521x m x -<⎧⎨-≤⎩解得2x m x <⎧⎨≥⎩,即2x m ≤<, 根据题意不等式组有且只有4个整数解,即x 的取值为2,3,4,5;从而m 的取值范围为56m <≤,故选:D .【点睛】此题考查了一元一次不等式组的整数解,表示出不等式的解集,根据题意找出整数解是解本题的关键.6.给出下列四个命题,①多边形的外角和小于内角和;②如果a >b ,那么(a +b )(a -b )>0;③两直线平行,同位角相等;④如果a ,b 是实数,那么0()1a b +=,其中真命题的个数为( )A .1B .2C .3D .4答案:A解析:A【分析】根据多边形的内角和、不等式的性质、平行线的性质和零指数幂判断即可.【详解】解:①多边形的外角和不一定小于内角和,四边形的内角和等于外角和,原命题是假命题;②如果0>a >b ,那么(a +b )(a -b )<0,原命题是假命题;③两直线平行,同位角相等,是真命题;④如果a ,b 是实数,且a +b ≠0,那么(a +b )0=1,原命题是假命题.故选:A .【点睛】本题考查了命题与定理的知识,解题的关键是了解多边形的内角和、不等式的性质、平行线的性质和零指数幂,难度较小.7.填在下面各小正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是( )A .224B .168C .212D .132答案:C解析:C【分析】先根据第一行两个数之间的规律求出阴影小正方形中的数,再根据四个数之间的规律即可得.【详解】观察第一行小正方形中的两个数可知,第二个数减去第一个数的差为4,则阴影小正方形中的数为12416+=,由题意可知,各小正方形中的四个数满足如下等式:8240=⨯-,22462=⨯-,44684=⨯-,则141612212m =⨯-=,故选:C .【点睛】本题考查了整式的数字类规律探索,依据题意,正确发现规律是解题关键.8.如图,AD 是△ABC 的中线,DE 是△ADC 的高线,AB=3,AC=5,DE=2,点D 到AB 的距离是( )A .2B .53C .65D .103答案:D解析:D【详解】分析:作DF ⊥AB 于点F ,先由AD 是△ABC 的中线可得S △ABD =S △ACD ,然后根据面积法即可求出DF 的长,详解:作DF ⊥AB 于点F ,∵AD 是△ABC 的中线,∴S △ABD =S △ACD ,∴1122AB DF AC DE ⋅=⋅, ∴3DF =5×2,∴DF =103. 故选D.作点睛:本题考查了三角形中线的性质和面积法求线段的长,由中线的性质得出S △ABD =S △ACD是解答本题的关键.二、填空题9.计算:2a3•3a2=______.解析:6a5【解析】【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.【详解】解:2a3•3a2=6a5.故答案为:6a5.【点睛】本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.10.命题“三角形的三个内角中至少有两个锐角”是_____(填“真命题”或“假命题”).解析:真命题【分析】根据三角形内角和为180°进行判断即可.【详解】∵三角形内角和为180°,∴三角形的三个内角中至少有两个锐角,是真命题;故答案为真命题.【点睛】本题考查命题与定理.判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.11.如图,在七边形ABCDEFG中,AB、ED的延长线交于点O,若∠1、∠2、∠3、∠4的外角和等于225°,则∠BOD=______°.答案:A解析:45【分析】依据七边形AOEFG的外角和为360°,即可得到∠AOE的邻补角的度数,进而得出∠BOD的度数.【详解】解:∵五边形AOEFG的外角和为360°,且∠1、∠2、∠3、∠4对应的邻补角和等于225°,∴∠AOE的邻补角为360°-225°=135°,∴∠BOD=180°-135°=45°,故答案为:45.【点睛】本题主要考查了多边形的内角与外角,掌握多边形的外角和等于360度是解题的关键. 12.若当17x =时,代数式3235685x x x -+的结果为0,那么将3235585x x x -+分解因式的结果为______解析:()()1735x x x --【解析】【分析】先根据因式分解的意义和已知设3235685x x x -+=x(x-17)(3x+a),利用多项式乘以多项式的法则进行计算,列方程组可得结论.【详解】当x =17时,代数式3x 3-56x 2+85x 的结果为0设3235685x x x -+=x(x-17)(3x+a)3235685x x x -+=x(3x 2-51x+ax-17a)∴x(3x 2-56x+85)=x(3x 2-51x+ax-17a),-51561785a a +=-⎧⎨-=⎩解得:a=-5,∴3235685x x x -+=x(x-17)(3x-5),故答案为: ()()1735x x x --.【点睛】本题主要考查了十字相乘法分解因式和提公因式,关键是理解和掌握分解因式和整式的乘法是互逆运算.13.如果关于x ,y 的二元一次方程组25232x y x y k +=⎧⎨+=-⎩的解满足4x y +>,则k 的取值范围为_______________.解析:k >3【分析】先把方程组的两个方程相加求出x +y =k +1,再解不等式即可解答.【详解】解:由方程组解得:x +y =k +1,由x +y >4,得:k +1>4,解得:k >3.则k 的取值范围为k >3;故答案为:k >3.【点睛】本题考查了二元一次方程组的解和一元一次不等式,解决本题的关键是解二元一次方程组.14.夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的长方形荷塘上架设小桥(图中虚线),若荷塘周长为900m ,且桥宽忽略不计,则小桥的总长为_______m .解析:450【分析】根据图形得出荷塘中小桥的总长为矩形的长与宽的和,进而得出答案.【详解】解:∵荷塘周长为900m ,∴小桥总长为:900÷2=450(m ).故答案为:450.【点睛】此题主要考查了生活中的平移现象,得出荷塘中小桥的总长为矩形的长与宽的和是解题的关键.15.三角形的三边长分别为3、8、x ,则x 的取值范围是__________.答案:【分析】根据三角形的三边关系定理得出8-3<x <3+8,求出即可.【详解】解:∵三角形的三边长分别为3,x ,8,∴8-3<x <3+8,即5<x <11,故答案为:.【点睛】本题考查了解析:511x <<【分析】根据三角形的三边关系定理得出8-3<x <3+8,求出即可.【详解】解:∵三角形的三边长分别为3,x ,8,∴8-3<x <3+8,即5<x <11,故答案为:511x <<.【点睛】本题考查了三角形的三边关系定理,能熟记三角形的三边关系定理的内容是解此题的关键,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.16.如图,在ABC 中,点D 是BC 边上中点,点E 是DC 边上中点.若2ADE S =△,则ABC S =____________.答案:8【分析】三角形的中线平分三角形的面积,先得出△AEC 的面积,再得出△ABD 的面积,最后得出△ABC 的面积【详解】∵点E 是DC 的中点∴,∴∵点D 是AC 的中点∴,∴故答案为:8【点睛解析:8【分析】三角形的中线平分三角形的面积,先得出△AEC 的面积,再得出△ABD 的面积,最后得出△ABC 的面积【详解】∵点E 是DC 的中点∴2AEC ADE SS ==,∴4ADC S = ∵点D 是AC 的中点 ∴4ABD ADC S S ==,∴8ABCS = 故答案为:8【点睛】本题考查三角形中线与面积的关系,三角形的中线将三角形分为2个同高等底的小三角形,故这2个小三角形的面积相等.17.计算:(1)01113()16()422-⨯-(2)322(48)42(2)ab a b ab a a b -÷+-答案:(1)1;(2)【分析】(1)通过零指数幂和负整数指数幂的运算性质可相应计算得.(2)通过整式运算性质,多项式除以单项式和单项式乘以多项式可计算得.【详解】(1) 原式.(2) 原式解析:(1)1;(2)2244b ab a -+【分析】(1)通过零指数幂和负整数指数幂的运算性质可相应计算得.(2)通过整式运算性质,多项式除以单项式和单项式乘以多项式可计算得.【详解】(1) 原式3142=⨯-+1=.(2) 原式22242b ab a ab =-+-2244b ab a =-+.【点睛】本题考查实数的运算性质及整式的运算,熟练掌握其运算法则及技巧是解题的关键. 18.因式分解(1)2(2)(2)m a m a -+- (2)()222224a b a b +- 答案:(1);(2)【分析】(1)利用提公因式法分解即可;(2)利用平方差公式以及完全平方公式分解.【详解】解:(1)===;(2)==【点睛】本题考查了因式分解,解题的关键是要解析:(1)()()12m m a --;(2)()()22a b a b +- 【分析】(1)利用提公因式法分解即可;(2)利用平方差公式以及完全平方公式分解.【详解】解:(1)2(2)(2)m a m a -+-=()()222m a m a ---=()()22m m a -- =()()12m m a --;(2)()222224a b a b +- =()()222222a b ab a b ab +++-=()()22a b a b +-【点睛】本题考查了因式分解,解题的关键是要掌握分式分解的基本方法. 19.解方程组: (1)528x y x y =+⎧⎨-=⎩; (2)3410435x y x y +=⎧⎨-=⎩. 答案:(1);(2)【分析】(1)应用代入消元法,求出方程组的解是多少即可. (2)应用加减消元法,求出方程组的解是多少即可.【详解】解:(1),①代入②,可得:,解得,把代入①,解得,原解析:(1)32x y =⎧⎨=-⎩;(2)21x y =⎧⎨=⎩ 【分析】(1)应用代入消元法,求出方程组的解是多少即可.(2)应用加减消元法,求出方程组的解是多少即可.【详解】解:(1)528x y x y =+⎧⎨-=⎩①②, ①代入②,可得:2(5)8y y +-=,解得2y =-,把2y =-代入①,解得3x =,∴原方程组的解是32x y =⎧⎨=-⎩. (2)3410435x y x y +=⎧⎨-=⎩①②, ①3⨯+②4⨯,可得2550x =,解得2x =,把2x =代入①,解得1y =,∴原方程组的解是21x y =⎧⎨=⎩. 【点睛】此题主要考查了解二元一次方程组的方法,要熟练掌握,注意代入消元法和加减消元法的应用.20.已知不等式组3(21)283(1)12384x x x x -<+⎧⎪⎨+-+>-⎪⎩①②. (1)求此不等式组的解集,并写出它的整数解;(2)若上述整数解满足不等式62ax x a +≤-,化简11a a +--.答案:(1)不等式组的解集为,整数解为;(2)-2【分析】(1)先解不等式组的解集,再从解集中找出整数解即可.(2)根据题意求得,进而即可把化简.【详解】解:(1)由①得:,由②得:,∴不等解析:(1)不等式组的解集为71154<<x ,整数解为2x =;(2)-2 【分析】(1)先解不等式组的解集,再从解集中找出整数解即可.(2)根据题意求得1a -,进而即可把|1||1|a a +--化简.【详解】解:(1)由①得:114x <,由②得:75x >, ∴不等式组的解集为71154<<x , ∴不等式组的整数解为2x =.(2)把2x =代入不等式62ax x a +-,得:2622a a +-,解得:1a -,∴10a +,12a --,|1||1|(1)(1)a a a a ∴+--=-+--11a a =---+2=-.【点睛】本题考查了一元一次不等式组的解法以及不等式组的整数解,也考查了绝对值的性质,是基础知识要熟练掌握,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.三、解答题21.如图,直线AB 、CD 相交于点O ,OE AB ⊥,OE 平分COF ∠.(1)若140AOF ∠=︒,求EOF ∠的度数;(2)OB 是DOF ∠的角平分线吗?为什么?答案:(1);(2)是,见解析.【分析】(1)由,得∠AOE= 90°,故可求得∠EOF ;(2)欲证OB 是∠DOF 的角平分线,即证∠DOB=∠FOB ,因为∠AOC 与∠BOD 是对顶角,得∠AOC=∠B解析:(1)50︒;(2)是,见解析.【分析】(1)由OE AB ⊥,得∠AOE = 90°,故可求得∠EOF ;(2)欲证OB 是∠DOF 的角平分线,即证∠DOB =∠FOB ,因为∠AOC 与∠BOD 是对顶角,得∠AOC =∠BOD ,故证∠AOC =∠BOF 即可得出结果.【详解】(1)∵OE AB ⊥,∴90AOE ∠=︒.又∵140AOF ∠=︒,∴1409050EOF AOF AOE ∠=∠-∠=︒-︒=︒;(2)∵OE AB ⊥,∴90AOE BOE ∠=∠=︒.∵OE 平分COF ∠,∴COE FOE ∠=∠,∴AOE COE BOE FOE ∠-∠=∠-∠,∴AOC BOF ∠=∠,∵AOC DOB ∠=∠,∴DOB BOF ∠=∠,∴OB 平分DOF ∠.【点睛】本题主要考查垂直的定义、角平分线的定义、对顶角的性质以及角的和差关系,熟练掌握垂直的定义、角平分线的定义、对顶角的性质以及角的和差关系是解决本题的关键. 22.某数码专营店销售A ,B 两种品牌智能手机,这两种手机的进价和售价如表所示:(1)该店销售记录显示,三月份销售A 、B 两种手机共34部,且销售A 种手机的利润恰好是销售B 种手机利润的2倍,求该店三月份售出A 种手机和B 种手机各多少部?(2)根据市场调研,该店四月份计划购进这两种手机共40部,要求购进B 种手机数不低于A 种手机数的35,用于购买这两种手机的资金低于140000元,请通过计算设计所有可能的进货方案.答案:(1)该店三月份售出A 种手机24部,B 种手机10部;(2)共有5种进货方案,分别是A 种手机21部,B 种手机19部;A 种手机22部,B 种手机18部;A 种手机23部,B 种手机17部;A 种手机24部,B 种解析:(1)该店三月份售出A 种手机24部,B 种手机10部;(2)共有5种进货方案,分别是A 种手机21部,B 种手机19部;A 种手机22部,B 种手机18部;A 种手机23部,B 种手机17部;A 种手机24部,B 种手机16部;A 种手机25部,B 种手机15部【分析】(1)设该店三月份售出A 种手机x 部,B 种手机y 部,由“三月份销售A 、B 两种手机共34部,且销售A 种手机的利润恰好是销售B 种手机利润的2倍”列出方程组,可求解;(2)设A 种手机a 部,B 种手机(40﹣a )部,由“购进B 种手机数不低于A 种手机数的35,用于购买这两种手机的资金低于140000元”列出不等式组,即可求解. 【详解】解:(1)设该店三月份售出A 种手机x 部,B 种手机y 部,由题意可得:()()3438003300243003700x y x y+=⎧⎨-=⨯-⎩, 解得:2410x y =⎧⎨=⎩, 答:该店三月份售出A 种手机24部,B 种手机10部;(2)设A 种手机a 部,B 种手机(40﹣a )部, 由题意可得340533003700(40)140000a a a a ⎧-⎪⎨⎪+-<⎩, 解得:20<a≤25,∵a 为整数,∴a =21,22,23,24,25,∴共有5种进货方案,分别是A 种手机21部,B 种手机19部;A 种手机22部,B 种手机18部;A 种手机23部,B 种手机17部;A 种手机24部,B 种手机16部;A 种手机25部,B 种手机15部.【点睛】本题考查了一元一次不等式组解实际问题的运用,二元一次方程组解实际问题的运用,找准等量关系,正确列出二元一次方程组是解题的关键.23.已知关于x ,y 的方程组260250x y x y mx +-=⎧⎨-++=⎩ (1)请直接写出方程x +2y -6=0的所有正整数解;(2)若方程组的解满足x +y =0,求m 的值;(3)无论实数m 取何值时,方程x -2y +mx +5=0总有一个固定的解,求出这个解.(4)若方程组的解中x 恰为整数,m 也为整数,求m 的值.答案:(1), (2)m=(3)(4)【分析】(1)先对方程变形为x=6-2y ,然后可带入数值求解;(2)把已知的x+y=0和方程x+2y-6=0组合成方程组,求解方程组的解,然后代入方程x-2y+解析:(1)22x y =⎧⎨=⎩, 41x y =⎧⎨=⎩(2)m=136-(3)02.5x y =⎧⎨=⎩(4)1-3m =-或 【分析】(1)先对方程变形为x=6-2y ,然后可带入数值求解;(2)把已知的x+y=0和方程x+2y-6=0组合成方程组,求解方程组的解,然后代入方程x-2y+mx+5=0即可求m 的值;(3)方程整理后,根据无论m 如何变化,二元一次方程组总有一个固定的解,列出方程组,解方程组即可;(4)先把m 当做已知求出x 、y 的值,然后再根据整数解进行判断即可.【详解】(1)22x y =⎧⎨=⎩ 41x y =⎧⎨=⎩ (2)0260x y x y +=⎧⎨+-=⎩ 解得66x y =-⎧⎨=⎩ 把66x y =-⎧⎨=⎩代入250x y mx -++=,解得m=136- (3)02.5x y =⎧⎨=⎩ (4)260250x y x y mx +-=⎧⎨-++=⎩①② ①+②得:()2+1m x =解得12x m=+, ∵x 恰为整数,m 也为整数,∴2+m=1或2+m=-1,解得1-3m =-或24.(生活常识)射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等.如图 1,MN 是平面镜,若入射光线 AO 与水平镜面夹角为∠1,反射光线 OB 与水平镜面夹角为∠2,则∠1=∠2 .(现象解释)如图 2,有两块平面镜 OM ,ON ,且 OM ⊥ON ,入射光线 AB 经过两次反射,得到反射光线 CD .求证 AB ∥CD .(尝试探究)如图 3,有两块平面镜 OM ,ON ,且∠MON =55︒ ,入射光线 AB 经过两次反射,得到反射光线CD,光线AB 与CD 相交于点E,求∠BEC 的大小.(深入思考)如图 4,有两块平面镜OM,ON,且∠MON =α ,入射光线AB 经过两次反射,得到反射光线CD,光线AB 与CD 所在的直线相交于点E,∠BED=β , α 与β 之间满足的等量关系是 .(直接写出结果)答案:【现象解释】见解析;【尝试探究】BEC 70;【深入思考】2.【分析】[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠解析:【现象解释】见解析;【尝试探究】∠BEC = 70︒;【深入思考】β= 2α.【分析】[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠3+∠4=180°,即可得出∠DCB+∠ABC=180°,即可证得AB∥CD;[尝试探究]根据三角形内角和定理求得∠2+∠3=125°,根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用平角的定义得出∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,即可得出∠EBC+BCE=360°-250°=110°,根据三角形内角和定理即可得出∠BEC=180°-110°=70°;[深入思考]利用平角的定义得出∠ABC=180°-2∠2,∠BCD=180°-2∠3,利用外角的性质∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,而∠BOC=∠3-∠2=α,即可证得β=2α.【详解】[现象解释]如图2,∵OM⊥ON,∴∠CON=90°,∴∠2+∠3=90°∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=180°,∴∠DCB+∠ABC=180°,∴AB∥CD;【尝试探究】如图3,在△OBC中,∵∠COB=55°,∴∠2+∠3=125°,∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=250°,∵∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,∴∠EBC+BCE=360°-250°=110°,∴∠BEC=180°-110°=70°;【深入思考】如图4,β=2α,理由如下:∵∠1=∠2,∠3=∠4,∴∠ABC=180°-2∠2,∠BCD=180°-2∠3,∴∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,∵∠BOC=∠3-∠2=α,∴β=2α.【点睛】本题考查了平行线的判定,三角形外角的性质以及三角形内角和定理,熟练掌握三角形的性质是解题的关键.25.如图,直线MN∥GH,直线l1分别交直线MN、GH于A、B两点,直线l2分别交直线MN、GH于C、D两点,且直线l1、l2交于点E,点P是直线l2上不同于C、D、E点的动点.(1)如图①,当点P在线段CE上时,请直写出∠NAP、∠HBP、∠APB之间的数量关系:;(2)如图②,当点P在线段DE上时,(1)中的∠NAP、∠HBP、∠APB之间的数量关系还成立吗?如果成立,请说明成立的理由;如果不成立,请写出这三个角之间的数量关系,并说明理由.(3)如果点P在直线l2上且在C、D两点外侧运动时,其他条件不变,请直接写出∠NAP、∠HBP、∠APB之间的数量关系.答案:(1)∠APB=∠NAP+∠HBP;(2)见解析;(3)∠HBP=∠NAP+∠APB【分析】(1)过P点作PQ∥GH,根据平行线的性质即可求解;(2)过P点作PQ∥GH,根据平行线的性质即可求解析:(1)∠APB=∠NAP+∠HBP;(2)见解析;(3)∠HBP=∠NAP+∠APB【分析】(1)过P点作PQ∥GH,根据平行线的性质即可求解;(2)过P点作PQ∥GH,根据平行线的性质即可求解;(3)根据平行线的性质和三角形外角的性质即可求解.【详解】解:(1)如图①,过P点作PQ∥GH,∵MN∥GH,∴MN∥PQ∥GH,∴∠APQ=∠NAP,∠BPQ=∠HBP,∵∠APB=∠APQ+∠BPQ,∴∠APB=∠NAP+∠HBP,故答案为:∠APB=∠NAP+∠HBP;(2)如图②,过P点作PQ∥GH,∵MN∥GH,∴MN∥PQ∥GH,∴∠APQ+∠NAP=180°,∠BPQ+∠HBP=180°,∵∠APB=∠APQ+∠BPQ,∴∠APB=(180°﹣∠NAP)+(180°﹣∠HBP)=360°﹣(∠NAP+∠HBP);(3)如备用图,∵MN∥GH,∴∠PEN=∠HBP,∵∠PEN=∠NAP+∠APB,∴∠HBP=∠NAP+∠APB.故答案为:∠HBP=∠NAP+∠APB.【点睛】此题考查了平行公理的推论:平行于同一条直线的两直线平行,以及平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补,熟记定理是解题的关键.。

(完整版)苏教版七年级下册期末数学重点中学题目精选名校及答案解析

(完整版)苏教版七年级下册期末数学重点中学题目精选名校及答案解析

(完整版)苏教版七年级下册期末数学重点中学题目精选名校及答案解析一、选择题1.下列各式中,计算正确的是()A.(a3)2=a5B.a2+a3=a5C.( ab2)3=ab6D.a2•a3=a5答案:D解析:D【分析】直接利用积的乘方运算法则,合并同类项的法则,幂的乘方运算法则、同底数幂的乘法运算法则分别计算即可答案.【详解】解:A、(a3)2=a6,故此选项错误,不合题意;B、a2+a3,无法合并,故此选项错误,不合题意;C、(ab2)3=a3b6,故此选项错误,不合题意;D、a2•a3=a5,故此选项正确,符合题意.故选:D.【点睛】本题考查幂的乘方与积的乘方,合并同类项法则,同底数幂的乘法,解题关键是掌握相关运算法则.2.如图,直线AD,BE被直线BF和AC所截,则∠1的同位角和∠5的内错角分别是()A.∠2 和∠4 B.∠6和∠4 C.∠2 和∠6 D.∠6和∠3答案:A解析:A【分析】同位角:两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角;内错角:两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角,根据此定义即可得出答案.【详解】解:∵直线AD,BE被直线BF和AC所截,∴∠1与∠2是同位角,∠5与∠4是内错角,故选A.【点睛】本题考查的知识点是同位角和内错角的概念,解题关键是熟记内错角和同位角的定义.3.不等式x >3x +4的解集在数轴上表示正确的是( )A .B .C .D .答案:A解析:A【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【详解】解:移项,得:x ﹣3x >4,合并同类项,得:﹣2x >4,系数化为1,得:x <﹣2,故选:A .【点睛】本题主要考查了一元一次不等式的求解,准确计算是解题的关键.4.如图,4张边长分别为a 、b 的长方形纸片围成一个正方形,从中可以得到的等式是( )A .22()()a b a b a b +-=-B .222()2a b a ab b +=++C .222()2a b a ab b -=-+D .22()()4a b a b ab +--=答案:D解析:D【分析】假设大正方形的面积S 1,小正方形的面积S 2,则S 1-S 2=4个长方形面积.【详解】解:设大正方形的面积S 1,小正方形的面积S 2,大正方形的边长为a +b ,则大正方形面积S 1=(a +b )2,小正方形的边长为a -b ,则小正方形面积S 2=(a -b )2,四个长方形的面积为4ab ,∵S 1-S 2=4ab ,∴(a +b )2-(a -b )2=4ab ,故选:D .【点睛】本题主要考查通过正方形面积的计算,列出代数式,得出两个完全平方公式相减等于4ab 的正确性.难点在于小正方形边长的求解:用一个长方形的长a ,减去另一个长方形的宽b ,即a -b .5.对非负实数n “四舍五入”到个位的值记为x ,即:当n 为非负整数时,如果1122n x n -≤<+,则x n =.反之,当n 为非负整数时,如果x n =时,则1122n x n -≤<+,如00.480==,0.64=1.4931=,22=,3.5=4.124=,…若关于x 的不等式组2130x x a +≥-⎧⎨-〈〉<⎩的整数解恰有3个,则a 的范围() A .1.5≤a <2.5 B .0.5<a≤1.5 C .1.5<a≤2.5 D .0.5≤a <1.5 答案:D解析:D【分析】将〈a 〉看作一个字母,通过解不等式组以及不等式组的整数解即可求出a 的取值范围.【详解】解:解不等式组2130x x a +≥-⎧⎨-〈〉<⎩,解得:2x a -≤<, 由不等式组的整数解恰有3个得:01a <≤,故0.5 1.5a ≤<,故答案选D . 【点睛】此题主要考查了一元一次不等式组的应用以及新定义,根据题意正确理解<x>的意义是解题的关键.6.以下说法中:(1)多边形的外角和是360︒;(2)两条直线被第三条直线所截,内错角相等;(3)三角形的3个内角中,至少有2个角是锐角.其中真命题的个数为() A .0 B .1 C .2 D .3答案:C解析:C【解析】【分析】利用多边形的外角和定理、平行线的性质及三角形的内角和定理分别判断后即可确定正确的选项.【详解】解:(1)多边形的外角和是360°,正确,是真命题;(2)两条平行线被第三条直线所截,内错角相等,故错误,是假命题;(3)三角形的3个内角中,至少有2个角是锐角,正确,是真命题,真命题有2个,故选:C .【点睛】考查了命题与定理的知识,解题的关键是了解多边形的外角和定理、平行线的性质及三角形的内角和定理,难度不大.7.定义一种对正整数n 的“F 运算”:①当n 为奇数时,运算结果为3n +5;②当n 为偶数时,结果为2k n (其中k 是使2kn 为奇数的正整数),并且运算重复进行,例如,取n =26,则若n =898,则第2021次“F 运算”的结果是( )A .488B .1C .4D .8答案:B解析:B【分析】根据题意,可以写出前几次的运算结果,从而可以发现数字的变化特点,然后即可写出第2021次“F 运算”的结果.【详解】解:由题意可得,当n =898时,第一次输出的结果为449,第二次输出的结果为1352,第三次输出的结果为169,第四次输出的结果为512,第五次输出的结果为1,第六次输出的结果为8,第七次输出的结果为1,…,由上可得,从第五次开始,依次以1,8循环出现,∵(2021﹣4)÷2=2017÷2=1008…1,∴第2021次“F 运算”的结果是1,故选:B .【点睛】本题考查数字的变化类、有理数的混合运算,解答本题的关键是发现输出结果的变化特点,求出所求次数的结果.8.一个多边形截去一个角后,形成的另一个多边形的内角和是1620 ,则原来多边形的边数是( )A .11B .12C .11或12D .10或11或12 答案:D解析:D【分析】首先求出截角后的多边形边数,然后再求原来的多边形边数.【详解】解:设截角后的多边形边数为n ,则有:(n-2)×180°=1620°,解得:n=11,∴由下面的图可得原来的边数为10或11或12:故选D .【点睛】本题考查多边形的综合运用,熟练掌握多边形的内角和定理及多边形的剪拼是解题关键.二、填空题9.计算3223x y x ⋅的结果是______.解析:56x y【分析】直接利用单项式乘以单项式运算法则求出答案.【详解】解:532=623x y x x y ⋅,故答案为56x y .【点睛】此题主要考查了单项式乘以单项式,正确掌握运算法则是解题关键.10.命题“平面内,垂直于同一条直线的两条直线平行”是____命题(填写“真”或“假”). 解析:真【分析】根据平行线的判定方法判断即可.【详解】解:如图,a ⊥c ,b ⊥c ,则∠1=∠2=90°,∴a //b ,∴“平面内,垂直于同一条直线的两条直线平行”是真命题,故答案为:真.【点睛】本题考查了命题,平行线的判定等知识,解题的关键是熟练掌握平行线的判定方法,属于中考常考题型.11.一个n 边形的各内角都等于120︒,则边数n 是_______.解析:6【分析】首先求出外角度数,再用360°除以外角度数可得答案.【详解】解:∵n 边形的各内角都等于120°,∴每一个外角都等于180°-120°=60°,∴边数n =360°÷60°=6.故答案为:6.【点睛】此题主要考查了多边形的外角和定理,外角与相邻的内角的关系,关键是掌握各知识点的计算公式.12.已知224m n -=,则2202024m n -+=____________.解析:2012【分析】把224m n -=看作一个整体,进一步将原式分解代入求得答案即可.【详解】解:2202024m n -+=220202(m 2n)--∵224m n -=∴原式=2020-2×4=2012.故答案为2012.【点睛】此题考查因式分解的实际运用,整体代入是解决问题的关键.13.已知关于x ,y 的二元一次方程组235423x y a x y a +=⎧⎨+=+⎩满足0x y ->,则a 的取值范围是____.解析:1a >.【分析】根据题目中方程组的的特点,将两个方程作差,即可用含a 的代数式表示出x y -,再根据0x y ->,即可求得a 的取值范围,本题得以解决.【详解】解:235423x y a x y a +=⎧⎨+=+⎩①② ①-②,得33x y a -=-∵0x y ->∴330a ->,解得1a >,故答案为:1a >.【点睛】本题考查解一元一次不等式,二元一次方程组的解,熟悉相关性质是解答本题的关键. 14.如图,OC 是AOB ∠的角平分线,点P 是OC 上一点,PM OB ⊥于点M ,点N 是射线OA 上的一个动点,若6PM =,则PN 的最小值为______.答案:A解析:6【分析】根据垂线段最短可得PN ⊥OA 时,PN 最短,再根据角平分线上的点到角的两边的距离相等可得PM =PN ,从而得解.【详解】当PN ⊥OA 时,PN 的值最小,∵OC 平分∠AOB ,PM ⊥OB ,∴PM =PN ,∵PM =6,∴PN 的最小值为6.故答案为:6.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.15.已知三角形的两边分别为2和7,则第三边c 的取值范围是_______. 答案:【分析】利用“三角形的两边差小于第三边,三角形两边之和大于第三边”,可求出c 的取值范围.【详解】解:∵72=5,2+7=9,∴第三边c的取值范围为5<c<9.故答案为:5<c<9.【点解析:59<<c【分析】利用“三角形的两边差小于第三边,三角形两边之和大于第三边”,可求出c的取值范围.【详解】解:∵7-2=5,2+7=9,∴第三边c的取值范围为5<c<9.故答案为:5<c<9.【点睛】本题考查了三角形三边关系,牢记“三角形的两边差小于第三边,三角形两边之和大于第三边”是解题的关键.16.如图,BO是△ABC的中线,延长BO到D,使得OD=BO,连接AD.若△ABC的面积是8,则△ABD的面积等于___.答案:8【分析】根据三角形的面积被三角形的中线平分即可求解.【详解】解:∵BO是△ABC的中线,△ABC的面积是8,∴S△ABO=S△ABC=4,∵OD=BO,∴AO是△ABD的中线,∴S解析:8【分析】根据三角形的面积被三角形的中线平分即可求解.【详解】解:∵BO 是△ABC 的中线,△ABC 的面积是8,∴S △ABO =12S △ABC =4,∵OD =BO ,∴AO 是△ABD 的中线,∴S △ABD =2S △ABO =8,故答案为:8.【点睛】本题考查了三角形的中线,熟知三角形的面积被三角形的中线平分是解决本题的关键. 17.计算: (1)|﹣1|4+(﹣43)﹣2×(π﹣2021)0; (2)(2x 2y )2•(﹣7xy 2)÷(14x 4y 3);(3)20202﹣4040×2019+20192.答案:(1);(2);(3)1【分析】(1)先根据有理数的乘方,负整数指数幂,零指数幂进行计算,再求出答案即可;(2)先算乘方,再根据整式的乘除法则算乘除即可;(3)先根据平方差公式进行变形,再求解析:(1)9116;(2)2xy -;(3)1 【分析】(1)先根据有理数的乘方,负整数指数幂,零指数幂进行计算,再求出答案即可; (2)先算乘方,再根据整式的乘除法则算乘除即可;(3)先根据平方差公式进行变形,再求出答案即可.【详解】解:(1)2404|1|(2021)3π-⎛⎫-+-⨯- ⎪⎝⎭ 91116=+⨯ 9116=+ 9116=; (2)22243(2)(7)(14)x y xy x y ⋅-÷422434(7)(14)x y xy x y =⋅-÷2xy =-;(3)222020404020192019-⨯+2(20202019)=-21=1=.【点睛】本题考查了有理数的乘方,负整数指数幂,零指数幂,整式的混合运算,实数的混合运算,平方差公式等知识点,能综合运用知识点进行计算是解此题的关键.18.把下列各式分解因式;(1)22369a b ab ab -+;(2)()22214a a +-. 答案:(1);(2)【分析】(1)利用提公因式法分解因式即可;(2)利用平方差公式和完全平方公式分解因式即可.【详解】解:(1)=;(2)==.【点睛】本题考查因式分解、平方差公式、解析:(1)3(23)ab a b -+;(2)22(1)(1)a a -+【分析】(1)利用提公因式法分解因式即可;(2)利用平方差公式和完全平方公式分解因式即可.【详解】解:(1)22369a b ab ab -+=3(23)ab a b -+;(2)()22214a a +- =22(12)(12)a a a a +++-=22(1)(1)a a -+.【点睛】本题考查因式分解、平方差公式、完全平方公式,熟记公式,掌握分解因式的方法是解答的关键,注意分解要彻底.19.解方程组:(1)31 328x yx y+=-⎧⎨-=⎩.(2)2 23346x yx y⎧+=-⎪⎨⎪-=⎩.答案:(1);(2)【分析】(1)应用加减消元法,由①×2+②×3,消去y,求出x,即可得出答案;(2)应用加减消元法,由①×12+②,消去y,求出x,即可得出答案.【详解】解:(1),①×2解析:(1)21xy=⎧⎨=-⎩;(2)23xy=-⎧⎨=-⎩【分析】(1)应用加减消元法,由①×2+②×3,消去y,求出x,即可得出答案;(2)应用加减消元法,由①×12+②,消去y,求出x,即可得出答案.【详解】解:(1)31 328①②+=-⎧⎨-=⎩x yx y,①×2+②×3,得2x+9x=﹣2+24,解得x=2,把x=2代入②,得3×2﹣2y=8,解得y=﹣1,所以方程组的解为21xy=⎧⎨=-⎩;(2)223346①②⎧+=-⎪⎨⎪-=⎩x yx y,①×12+②,得6x+3x=﹣24+6解得x=﹣2,把x=﹣2代入②式,得3×(﹣2)﹣4y=6,解得y=﹣3,所以方程组得解为23xy=-⎧⎨=-⎩.【点睛】本题主要考查了解二元一次方程组,熟练掌握解二元一次方程组的解法——加减消元法和代入消元法,是解题的关键.20.解不等式组13(3)21134x x x x +≥-⎧⎪+-⎨->⎪⎩,并把解集在数轴上表示出来. 答案:不等式组的解集为,数轴上表示见解析【分析】先求出每个不等式的解,然后根据“同大取大,同小取小,大小小大中间找,大大小小找不到”得到解集,最后表示在数轴上即可.【详解】解:,解不等式①,得:解析:不等式组的解集为15x <≤,数轴上表示见解析【分析】先求出每个不等式的解,然后根据“同大取大,同小取小,大小小大中间找,大大小小找不到”得到解集,最后表示在数轴上即可.【详解】解:13(3)21134x x x x +≥-⎧⎪⎨+-->⎪⎩①②, 解不等式①,得:5x ≤,解不等式②,得:1x >,把不等式组的解集在数轴上表示出来,如图所示:∴不等式组的解集为15x <≤.【点睛】本题考查了解一元一次不等式组,能够正确求出每个不等式的解集是基础,熟练掌握取不等式组的解集是关键.三、解答题21.(1)填写下列空格:已知:如图,//,BE CF BE CF 、分别平分ABC ∠和BCD ∠.求证://AB CD .证明:BE CF 、分别平分ABC ∠和BCD ∠(已知),112∴∠=∠ ,122∠=∠ ,( ) //BE CF (已知)12,∴∠=∠( )1122ABC BCD ∴∠=∠ ABC BCD ∴∠=∠(等式的性质)//AB CD ∴( )(2)说出(1)的证明中运用了哪两个互逆的真命题.答案:(1);;角平分线的定义;两直线平行,内错角相等;等量代换;内错角相等,两直线平行;(2)“两直线平行,内错角相等”与“内错角相等,两直线平行”【分析】(1)根据平行线的性质,可得∠1=∠2,根解析:(1)ABC ;BCD ;角平分线的定义;两直线平行,内错角相等;等量代换;内错角相等,两直线平行;(2)“两直线平行,内错角相等”与“内错角相等,两直线平行”【分析】(1)根据平行线的性质,可得∠1=∠2,根据角平分线的定义,可得∠ABC =∠BCD ,再根据平行线的判定,即可得出AB ∥CD ;(2)在两个命题中,如果一个命题的结论和题干是另一个命题的题干和结论,则称它们为互逆命题.【详解】解:(1)∵BE 、CF 分别平分∠ABC 和∠BCD (已知)∴∠1=12∠ABC ,∠2=12∠BCD (角平分线的定义)∵BE ∥CF (已知)∴∠1=∠2(两直线平行,内错角相等) ∴12∠ABC =12∠BCD (等量代换) ∴∠ABC =∠BCD (等式的性质)∴AB ∥CD (内错角相等,两直线平行)故答案为:ABC ;BCD ;角平分线的定义;已知;两直线平行,内错角相等;等量代换;内错角相等,两直线平行;(2)两个互逆的真命题为:两直线平行,内错角相等;内错角相等,两直线平行.【点睛】本题考查的是平行线的判定与性质的运用,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系;平行线的性质是由平行关系来寻找角的数量关系.命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.22.小宇骑自行车从家出发前往地铁2号线的B 站,与此同时,一列地铁从A 站开往B 站.3分钟后,地铁到达B 站,此时小宇离B 站还有2400米.已知A 、B 两站间的距离和小宇家到B 站的距离恰好相等,这列地铁的平均速度是小宇骑车的平均速度的5倍. (1)求小宇骑车的平均速度(2)如果此时另有一列地铁需10分钟到达B 站,且小宇骑车到达B 站后还需2分钟才能走到地铁站台候车,那么他要想乘上这趟地铁,骑车的平均速度至少应提高多少?(假定这两列地铁的平均速度相同)答案:(1)小宇骑车的平均速度是米/分;(2)至少应提高米/分【分析】(1)设小明骑车的平均速度是x 米/分,、两站间的距离和小宇家到站的距离恰好相等,列出方程 3x+2400=3×5 x ,解方程即可得解析:(1)小宇骑车的平均速度是200米/分;(2)至少应提高100米/分【分析】(1)设小明骑车的平均速度是x 米/分,A 、B 两站间的距离和小宇家到B 站的距离恰好相等,列出方程 3x +2400=3×5 x ,解方程即可得解;(2)设小明的速度提高y 米/分,根据题意列出一元一次不等式(102)(200)2400y -⨯+≥,即可得出答案;【详解】解:(1)设小宇骑车的平均速度是x 米/分.根据题意,得3240035x x +=⨯解得200x =答:小宇骑车的平均速度是200米/分.(2)设小宇骑车的平均速度提高y 米/分.根据题意,得(102)(200)2400y -⨯+≥解得100y ≥.答:小宇骑车的平均速度至少应提高100米/分.【点睛】本题考查了一元一次方程的应用及一元一次不等式的应用,弄清题中的不等及相等关系是解本题的关键.23.如图,正方形ABCD 的边长是2厘米,E 为CD 的中点,Q 为正方形ABCD 边上的一个动点,动点Q 以每秒1厘米的速度从A 出发沿A B C D →→→运动,最终到达点D ,若点Q 运动时间为x 秒.(1)当1x =时,AQE S ∆= 平方厘米;当32x =时,AQE S ∆= 平方厘米; (2)在点Q 的运动路线上,当点Q 与点E 相距的路程不超过14厘米时,求x 的取值范围;(3)若AQE ∆的面积为13平方厘米,直接写出x 值. 答案:(1)1; (2) (3)【分析】(1)根据三角形的面积公式即可求解; (2)根据题意列出不等式组故可求解;(3)分Q 点在AB 上、BC 上和CD 上分别列出方程即可求解.【详解】(1)解析:(1)1;32 (2)192144x ≤≤ (3)11416,,333x x x === 【分析】(1)根据三角形的面积公式即可求解;(2)根据题意列出不等式组故可求解;(3)分Q 点在AB 上、BC 上和CD 上分别列出方程即可求解.【详解】(1)当1x =时,AQE S ∆=1122⨯⨯=1平方厘米; 当32x =时,AQE S ∆=13222⨯⨯=32平方厘米; 故答案为1;32; (2)解:根据题意,得154154x x ⎧-≤⎪⎪⎨⎪-≤⎪⎩ 解得192144x ≤≤,故x 的取值范围为192144x ≤≤; (3)当Q 点在AB 上时,依题意可得11223x ⨯⨯= 解得13x =; 当Q 点在BC 上时,依题意可得111122(2)2(4)1212223x x ⨯-⨯-⨯-⨯-⨯-⨯⨯= 解得193x =>6,不符合题意; 当Q 点在AB 上时,依题意可得()115223x ⨯-⨯=或()115223x ⨯-⨯= 解得143x =或163x =; ∴x 值为11416,,333x x x ===. 【点睛】此题主要考查不等式组与一元一次方程的应用,解题的关键是根据题意得到方程或不等式组进行求解.24.如图①所示,在三角形纸片中,,,将纸片的一角折叠,使点落在ABC 内的点处. (1)若,________.(2)如图①,若各个角度不确定,试猜想,2∠,A ∠之间的数量关系,直接写出结论.②当点落在四边形外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,A ∠,,2∠之间又存在什么关系?请说明.(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的和是________.答案:(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知,,可结合三角形内角和定理和折叠变换的性质求解; (2)①先根据折叠得:∠ADE=∠A′DE ,∠AED=∠A′解析:(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知,,可结合三角形内角和定理和折叠变换的性质求解;(2)①先根据折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,由两个平角∠AEB和∠ADC得:∠1+∠2等于360°与四个折叠角的差,化简得结果;②利用两次外角定理得出结论;(3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG)以及(∠C'DE+∠C'ED)和(∠A'HL+∠A'LH),再利用三角形的内角和定理即可求解.【详解】解:(1)∵,,∴∠A′=∠A=180°-(65°+70°)=45°,∴∠A′ED+∠A′DE =180°-∠A′=135°,∴∠2=360°-(∠C+∠B+∠1+∠A′ED+∠A′DE)=360°-310°=50°;(2)①,理由如下由折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,∵∠AEB+∠ADC=360°,∴∠1+∠2=360°-∠ADE-∠A′DE-∠AED-∠A′ED=360°-2∠ADE-2∠AED,∴∠1+∠2=2(180°-∠ADE-∠AED)=2∠A;②,理由如下:∵2∠是的一个外角∴.∵AFD∠是的一个外角∴又∵∴(3)如图由题意知,∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG)-(∠C'DE+∠C'ED)-(∠A'HL+∠A'LH)=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')又∵∠B=∠B',∠C=∠C',∠A=∠A',∠A+∠B+∠C=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.【点睛】题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.25.如图,直线MN∥GH,直线l1分别交直线MN、GH于A、B两点,直线l2分别交直线MN、GH于C、D两点,且直线l1、l2交于点E,点P是直线l2上不同于C、D、E点的动点.(1)如图①,当点P在线段CE上时,请直写出∠NAP、∠HBP、∠APB之间的数量关系:;(2)如图②,当点P在线段DE上时,(1)中的∠NAP、∠HBP、∠APB之间的数量关系还成立吗?如果成立,请说明成立的理由;如果不成立,请写出这三个角之间的数量关系,并说明理由.(3)如果点P在直线l2上且在C、D两点外侧运动时,其他条件不变,请直接写出∠NAP、∠HBP、∠APB之间的数量关系.答案:(1)∠APB=∠NAP+∠HBP;(2)见解析;(3)∠HBP=∠NAP+∠APB【分析】(1)过P点作PQ∥GH,根据平行线的性质即可求解;(2)过P点作PQ∥GH,根据平行线的性质即可求解析:(1)∠APB=∠NAP+∠HBP;(2)见解析;(3)∠HBP=∠NAP+∠APB【分析】(1)过P点作PQ∥GH,根据平行线的性质即可求解;(2)过P点作PQ∥GH,根据平行线的性质即可求解;(3)根据平行线的性质和三角形外角的性质即可求解.【详解】解:(1)如图①,过P点作PQ∥GH,∵MN∥GH,∴MN∥PQ∥GH,∴∠APQ=∠NAP,∠BPQ=∠HBP,∵∠APB=∠APQ+∠BPQ,∴∠APB=∠NAP+∠HBP,故答案为:∠APB=∠NAP+∠HBP;(2)如图②,过P点作PQ∥GH,∵MN∥GH,∴MN∥PQ∥GH,∴∠APQ+∠NAP=180°,∠BPQ+∠HBP=180°,∵∠APB=∠APQ+∠BPQ,∴∠APB=(180°﹣∠NAP)+(180°﹣∠HBP)=360°﹣(∠NAP+∠HBP);(3)如备用图,∵MN∥GH,∴∠PEN=∠HBP,∵∠PEN=∠NAP+∠APB,∴∠HBP=∠NAP+∠APB.故答案为:∠HBP=∠NAP+∠APB.【点睛】此题考查了平行公理的推论:平行于同一条直线的两直线平行,以及平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补,熟记定理是解题的关键.。

初一数学上下册重难点易错题目汇总(解析版)

初一数学上下册重难点易错题目汇总(解析版)

初一数学全册重难点知识点专项测试题汇总大全一、选择题1.己知a,b两数在数轴上对应的点如图所示,则等于()A.-aB.-bC.b-2aD.2a-b正确答案:B试题解析:【分析】本题考查了数轴和绝对值的概念.先根据数轴上两个数的大小关系,判断两个绝对值符号内的代数式的正负,再依据绝对值的定义,求出两个绝对值,并相加即可.【解答】解:由数轴可知:b<a<0,所以a-b>0,根据负数的绝对值等于它的相反数:原式=- =-b.故选B.2.当x=1,的值为2017,那么当x=-1,的值为()A.-2015B.-2016C.-2017D.2016正确答案:A试题解析:【分析】本题考察代数式的求值问题,重点是要将待求代数式转化,如本题当x=1时,代数式=p+q+1=2017;当x=-1时,-p-q+1=-(p+q)+1,这样就可以利用已知条件解答.【解答】解:当x=1时,代数式=p+q+1=2017,即p+q=2016,当x=-1时,-p-q+1=-(p+q)+1=-2016+1=-2015,故选A.3.若关于x的分式方程=2无解,则a的值是()A. -1B. 1C. ±1D. -2正确答案:A试题解析:解:∵=2,∴x+a=2(x-1).∵原方程无解,∴x-1=0,∴x=1.∴a+1=0,∴a=-1.故选A.分式方程无解是指这个解不是分式方程的解是化简的整式方程的解,也就是使分式方程的分母为0,可以根据增根的意义列出方程,求出a的值.本题考查分式方程的解,解题的关键是明确什么时候分式方程无解4.运动会上,七年级(1)班的小王、小张、小李三人一起进行百米赛跑(假定三人均为匀速直线运动).如果当小李到达终点时,小张距终点还有4米,小王距终点还有12米.那么当小张到达终点时,小王距终点还有几米?A. 8米B. 米C. 6米D. 米正确答案:B试题解析:【分析】本题考查了一元一次方程的应用,依据行程公式路程=速度×时间,找出相应的关系式建立方程是解题的关键,设小王距终点还有x米,小李到终点所用时间为t,根据小张再走4米的时间列出方程即可得到小王距离终点的距离.【解答】解:设小王距终点还有x米,小李到终点所用时间为t.,96(12-x)=88×4解得:,∴小王距终点还有米.故选B.5.有下列说法:①如果一个数的立方根等于它本身,那么它一定是1或0;②实数与数轴上的点一一对应;③近似数3.20万,该数精确到百位;④是分数;⑤近似数5.60所表示的准确数x的范围是:5.55≤x<5.65.其中正确的个数是()A.1B.2C.3D.4正确答案:B试题解析:【分析】本题考查实数的性质和近似数的性质.【解答】解:∵如果一个数的立方根等于它本身,那么它一定是±1或0,故①错误;∵实数与数轴上的点一一对应,故②正确;∵近似数3.20万,该数精确到百位,故③正确;∵是无理数,不是分数,故④错误;∵近似数5.60所表示的准确数x的范围是:5.595≤x<5.605,故⑤错误;故正确的有2个。

精品试题沪科版七年级数学下册第8章整式乘法与因式分解重点解析试题(含答案解析)

精品试题沪科版七年级数学下册第8章整式乘法与因式分解重点解析试题(含答案解析)

七年级数学下册第8章整式乘法与因式分解重点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列运算中,结果正确的是( )A .()325a a =B .()2236a a =C .623a a a ÷=D .235a a a ⋅=2、下列计算正确的是( )A .x 2•x 4=x 6B .a 0=1C .(2a )3=6a 3D .m 6÷m 2=m 3 3、下列各式运算正确的是( )A .22(2)4x x -=-B .325()x x =C .22323232xy x x y ⎛⎫⋅-=- ⎪⎝⎭D .0( 3.14)0π-=4、把多项式25x x m ++因式分解得()()2x n x +-,则常数m ,n 的值分别为( )A .14m =-,7n =B .14m ,7n =-C .14m ,7n =D .14m =-,7n =-5、下列运算正确的是( ).A .a 2•a 3=a 6B .a 3÷a =a 3C .(a 2)3=a 5D .(3a 2)2=9a 46、一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是( )A .2abB .abC .a 2﹣4b 2D .(a ﹣2b )27、如图,从边长为a 的正方形中去掉一个边长为b 的小正方形,然后将剩余部分剪后拼成一个长方形,上述操作能验证的等式是( )A .22()()a b a b a b +-=-B .222()2a b a ab b -=-+C .222()2a b a ab b +=++D .2()a ab a a b +=+ 8、下列计算正确的是( )A .a 3+a 3=a 6B .a 3•a 3=a 6C .a 3•a 3=2a 3D .a 3•a 3=a 99、下列计算正确的是( )A .532-=ab a bB .()224239a b a b -= C .()222a b a b -=- D .2222a b b a +=10、对于两个有理数a 、b ,定义一种新的运算:1b a b a ab ⊕=++,若20m ⊕=,则2m ⊕的值为( )A .32-B .3-C .0D .12- 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、随着2022年北京冬奥会的日益临近,人们越来越感受到冰雪运动的独特魅力,冬奥会周边及相关物品也不断带给人们惊喜,深受人们的喜爱.某玩具商购进甲、乙两款以冬奥会运动项目为主题的立体拼图,甲、乙两款拼图的数量比为9:2.已知销售每套甲款拼图的利润率为30%,销售每套乙款拼图的利润率为40%,当把所有拼图销售完毕,该玩具商得到的总利润率为34%.该玩具商又购进新的一批甲、乙两款拼图,两款拼图每套的进价与售价均与前一次相同;同时,该玩具商还购进一批丙款拼图,每套丙款拼图的进价为每套甲款拼图进价的2倍,并按进价提高35%进行销售.已知第二次购进的甲、乙、丙三款拼图的数量比为5:3:3,并且所有拼图全部销售完毕,则该玩具商在第二次销售中得到的总利润率为__________.2、若a +b =8,ab =-5,则()2a b -=___________3、本学期我们学习了“有理数的乘方”运算,知道乘方的结果叫做“幂”,下面介绍一种有关“幂”的新运算.定义:a m 与a n (a ≠0,m ,n 都是正整数)叫做同底数幂,同底数幂除法记作a m ÷a n .其中“同底数幂除法”运算法则中规定当m =n 时,a m ÷a n =a m ﹣n =a 0=1,根据“同底数幂除法”法则中的规定和你已经学过的知识,如果等式x 2x +4÷x x +7=1成立,则请写出满足等式成立的所有的x 的值 ______.4、引入新数i ,新数i 满足分配律、结合律、交换律,已知21i =-,则()()11i i +-=_____.5、计算下列各题:(1)3x x ⋅=______; (2)()3ab =______;(3)()42m =______; (4)63x x +=______. 三、解答题(5小题,每小题10分,共计50分)1、分解因式:322336---x xy x y .2、先化简,再求值:2(21)(21)(21)x x x +-+-,其中14x =-.3、计算:(1)(23ab 2﹣2ab )12⋅ab .(2)(x ﹣2y )3﹣(x 2﹣2xy +4y 2)(x +2y ).4、计算:(结果用幂的形式表示)3x 2•x 4﹣(﹣x 3)25、化简:(x ﹣2)2﹣x (x +4).-参考答案-一、单选题1、D【分析】根据幂的乘方,积的乘方运算法则,同底数幂的乘除法逐项分析判断即可【详解】解:A. ()326a a =,故该选项不正确,不符合题意; B. ()2239a a =,故该选项不正确,不符合题意;C. 624a a a ÷=,故该选项不正确,不符合题意;D. 235a a a ⋅=,故该选项正确,符合题意;故选D【点睛】本题考查了幂的乘方,积的乘方运算法则,同底数幂的乘除法,掌握以上运算法则是解题的关键.2、A【分析】根据零指数幂运算,同底数幂的乘法运算,积的乘方运算,同底数幂的除法运算法则求解即可.【详解】解:A、x2•x4=x6,故选项正确,符合题意;a=时,0a无意义,故选项错误,不符合题意;B、当0C、(2a)3=8a3,故选项错误,不符合题意;D、m6÷m2=m4,故选项错误,不符合题意.故选:A.【点睛】此题考查了零指数幂运算,同底数幂的乘法运算,积的乘方运算,同底数幂的除法运算法则,解题的关键是熟练掌握零指数幂运算,同底数幂的乘法运算,积的乘方运算,同底数幂的除法运算法则.3、C【分析】利用完全平方公式进行计算判断A,利用幂的乘方运算法则进行计算判断B,根据单项式乘单项式的运算法则进行计算判断C,根据零指数幂的运算法则进行计算判断D.【详解】解:A、原式244=-+,原计算错误,故此选项不符合题意;x xB、原式6x=,原计算错误,故此选项不符合题意;C、原式32=-,原计算正确,故此选项符合题意;3x yD、原式1=,原计算错误,故此选项不符合题意;故选:C.【点睛】本题考查整式的混合运算,掌握幂的乘方()m n mn a a =,完全平方公式222()2a b a ab b ±=±+的结构是解题关键.4、A【分析】根据因式分解是恒等式,展开比较系数即可.【详解】∵25x x m ++=()()2x n x +-,∴25x x m ++=2222(2)2x x nx n x n x n -+-=+--,∴n -2=5,m =-2n ,∴n =7,m =-14,故选A .【点睛】本题考查了因式分解,正确理解因式分解的恒等性是解题的关键.5、D【分析】分别根据同底数幂的乘法法则、同底数幂的除法法则、幂的乘方法则以及积的乘方法则逐一判断即可.【详解】解:A 、a 2•a 3= a 5≠a 6,故本选项不合题意;B 、a 3÷a = a 2≠a 3,故本选项不合题意;C 、(a 2)3= a 6≠a 5,故本选项不合题意;D 、(3a 2)2=9a 4,故本选项符合题意;故选:D .【点睛】本题考查了同底数幂的乘法,同底数幂的除法,幂的乘方,掌握运算法则正确计算是本题的解题关键.6、B【分析】设小正方形的边长为x ,大正方形的边长为y ,列方程求解,用大正方形的面积减去4个小正方形的面积即可.【详解】解:设小正方形的边长为x ,大正方形的边长为y ,则:22x y a y x b+=⎧⎨-=⎩ , 解得:42a b x a b y -⎧=⎪⎪⎨+⎪=⎪⎩, ∴阴影面积=(2a b +)2﹣4×(4a b -)22222224444a ab b a ab b ab ++-+=-==ab . 故选B【点睛】本题考查了整式的混合运算,求得大正方形的边长和小正方形的边长是解题的关键.7、A【分析】如图,两个正方形面积的差,通过将阴影部分面积转移,构造一个长为a b +,宽为-a b 的长方形,相同的面积用不同的表达式表示,从而可推导验证乘法公式中的平方差公式.解:如图,将大正方形的一边延长到a b +,另一边长表示成-a b 的形式变化前后面积相等由题意可知长方形面积为()()a b a b +-大正方形减去小正方形后的面积为22a b -故有22()()a b a b a b +-=-故选A.【点睛】本题主要考察了平方差公式.解题的关键在于对长方形的构造.8、B【分析】利用合并同类项的法则,同底数幂的乘法的法则对各项进行运算即可.【详解】解:A 、a 3+a 3=2a 3,故A 不符合题意;B 、a 3•a 3=a 6,故B 符合题意;C 、a 3•a 3=a 6,故C 不符合题意;D 、a 3•a 3=a 6,故D 不符合题意;【点睛】此题考查了整式的计算,正确掌握整式的合并同类项的法则,同底数幂的乘法的法则是解题的关键.9、B【分析】根据积的乘方、完全平方公式、同类项的合并等知识即可作出判断.【详解】解:选项A 与D ,相加的两项不是同类项,故不能相加,故错误;B 选项,根据积的乘方可得正确;D 选项,()2222a b a ab b -=-+,故错误;故选:B【点睛】本题考查了积的乘方、完全平方公式、同类项的合并,掌握它们是关键.10、D【分析】根据新定义的运算法则得到()210m +=,求解m 的值,再按照新定义对2m ⊕进行运算即可.【详解】 解: 1b a b a ab ⊕=++,∴ 22210m m m ⊕=++=,210m ,解得:1,m =-()()111=2122111.222m -⊕⊕-=+⨯-+=-=-∴ 故选D【点睛】本题考查的是新定义运算,完全平方公式的应用,负整数指数幂的含义,理解新定义,按照新定义的运算法则进行运算是解本题的关键.二、填空题1、36%【分析】设甲款拼图的成本为10a ,乙款拼图的成本为10b ,第一次购进两种甲款款拼图的数量为9k , 乙款拼图的数量为2k .根据销售每套甲款拼图的利润率为30%,可求甲款利润10a ×30%=3a ,根据销售每套乙款拼图的利润率为40%,可求乙款利润10b ×40%=4b ,根据该玩具商得到的总利润率为34%.得出3b a =.设第二次购进的甲、乙、丙三款拼图的数量分别为5,3,3m m m ,可得甲、乙、丙三种拼图的成本,利润,拼图数量如表所示:利用三种拼图总利润÷三种拼图总成本×100%得出总利润率即可.【详解】解:设甲款拼图的成本为10a ,乙款拼图的成本为10b ,第一次购进两种甲款款拼图的数量为9k , 乙款拼图的数量为2k .销售每套甲款拼图的利润率为30%,甲款利润10a ×30%=3a ,销售每套乙款拼图的利润率为40%,乙款利润10b ×40%=4b ,当把所有拼图销售完毕,该玩具商得到的总利润率为34%. ∴3942100%34%109102a k b k a k b k⋅+⋅⨯=⋅+⋅, 解得3b a =.第二次购进的甲、乙、丙三款拼图的数量分别为5,3,3m m m则甲、乙、丙三种拼图的成本,利润,拼图数量如表所示:∴第二次销售的总利润率3512373100%36% 105303203a m a m a ma m a m a m⋅+⋅+⋅=⨯=⋅+⋅+⋅.故答案为:36%.【点睛】本题考查二元一次方程,列代数式,整式的乘除混合运算,利润率=利润÷成本×100%,掌握列代数式,利润率=利润÷成本×100%,整式的乘除混合运算,根据利润率列二元一次方程是解题关键.2、84【分析】根据完全平方公式的变形即可求解.【详解】∵a+b=8,ab=-5∴()2a b-=()24a b ab+-=64-4×(-5)=84故答案为:84.【点睛】此题主要考查代数式求值,解题的关键是熟知完全平方公式的变形.3、1或-1或3【分析】根据已知分三种情况,底数是1或-1,及(2x +4)−(x +7)=0,再求出x 即可.【详解】有三种情况:①当x =1时,x 2x +4÷x x +7=16÷18=1,②当x =-1时,x 2x +4÷x x +7=(-1)2÷(-1)6=12÷16=1,③(2x +4)﹣(x +7)=0,解得:x =3,所以x =1或-1或3,故答案为:1或-1或3.【点睛】本题主要考查有理数的混合运算,同底数幂除法,解题的关键是掌握同底数幂的除法法则、分类讨论思想运用等知识点.4、2【分析】先根据平方差公式化简,再把21i =-代入计算即可.【详解】解:2(1)(1)11(1)2i i i =-=---=+.故答案为2.【点睛】本题考查了新定义运算及平方差公式,熟练掌握平方差公式是解答本题的关键.5、4x 33a b 8m ()331x x +【分析】(1)根据同底数幂相乘运算法则计算即可;(2)根据积的乘方的运算法则计算即可;(3)根据幂的乘方的运算法则计算即可;(3)根据提取公因式法因式分解即可.【详解】解:(1)34x x x ⋅=;(2)()333ab a b =;(3)()428m m =; (4)()63331x x x x +=+.故答案是:(1)4x ;(2)33a b ;(3)8m ;(4)()331x x +.【点睛】本题主要考查了同底数幂相乘、幂的乘方、积的乘方以及运用提取公因式法分解因式等知识点,灵活运用相关运算法则成为解答本题的关键.三、解答题1、()23x x y -+.【分析】综合利用提公因式法和完全平方公式进行因式分解即可得.【详解】解:原式()2232x x xy y =-++ ()23x x y =-+. 【点睛】本题考查了因式分解,熟练掌握因式分解的各方法是解题关键.2、42x +,1【分析】先根据完全平方公式和平方差公式将整式展开,进而合并同类项,最后将x 的值代入求解即可【详解】原式=()2244141x x x ++--=224414+1x x x ++-= 4 2.x + 当14x =-时,原式=12 1.-+=【点睛】本题考查了整式的乘法运算,化简求值,掌握乘法公式是解题的关键.3、(1)13a 2b 3﹣a 2b 2.(2)﹣6x 2y +12xy 2﹣16y 3【分析】(1)根据单项式乘多项式的法则求解即可;(2)根据乘法公式以及多项式乘多项式的法则展开,再合并求解即可.(1)解:(23ab 2﹣2ab )12⋅ab =23ab 2⋅12ab ﹣2ab ⋅12ab=13a2b3﹣a2b2.(2)解:(x﹣2y)3﹣(x2﹣2xy+4y2)(x+2y)=(x﹣2y)3﹣(x3+8y3)=x3﹣6x2y+12xy2﹣8y3﹣x3﹣8y3=﹣6x2y+12xy2﹣16y3.【点睛】本题考查了整式的乘法,熟练掌握整式乘法的运算法则以及乘法公式是解题的关键.4、2x6【分析】根据同底数幂的乘法和幂的乘方计算即可.【详解】解:3x2•x4-(-x3)2=3x6-x6=2x6.【点睛】本题考查了同底数幂的乘法和幂的乘方,掌握法则是解题的关键.5、4-8x.【分析】先根据完全平方公式,单项式乘多项式进行计算,再合并同类项即可.【详解】解:(x﹣2)2﹣x(x+4)=x2-4x+4-x2-4x=4-8x.【点睛】本题考查了整式的化简,能正确根据整式的运算法则进行化简是解此题的关键,注意运算顺序.。

2022年必考点解析沪教版七年级数学第二学期第十五章平面直角坐标系重点解析试卷(含答案解析)

2022年必考点解析沪教版七年级数学第二学期第十五章平面直角坐标系重点解析试卷(含答案解析)

七年级数学第二学期第十五章平面直角坐标系重点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、平面直角坐标系中,下列在第二象限的点是( )A .(1,0)B .(3,5)-C .(1,8)-D .(2,1)--2、如图,直角坐标平面xOy 内,动点P 按图中箭头所示方向依次运动,第1次从点(﹣1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,﹣2),…按这样的运动规律,动点P 第2021次运动到点( )A .(2020,﹣2)B .(2020,1)C .(2021,1)D .(2021,﹣2)3、根据下列表述,能够确定具体位置的是( )A .北偏东25°方向B .距学校800米处C .温州大剧院音乐厅8排D .东经20°北纬30°4、已知点A (n ,3)在y 轴上,则点B (n -1,n +1)在第()象限A .四B .三C .二D .一5、下列各点,在第一象限的是( )A .(2,1)-B .(2,1)-C .(2,1)D .(2,1)--6、在平面直角坐标系中,点P (-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限7、已知A (3,﹣2),B (1,0),把线段AB 平移至线段CD ,其中点A 、B 分别对应点C 、D ,若C (5,x ),D (y ,0),则x +y 的值是( )A .﹣1B .0C .1D .28、若点()2,1A a a -+在第一象限,则a 的取值范围是( )A .2a >B .1a 2-<<C .1a <D .无解9、如图,ABC 的顶点坐标为()3,6A -,()4,3B -,()1,3C -,若将ABC 绕点C 按顺时针方向旋转90°,再向左平移2个单位长度,得到A B C ''',则点A 的对应点A '的坐标是( ).A .()0,5B .()4,3C .()2,5D .()4,510、在平面直角坐标系中,点(2,﹣5)关于x 轴对称的点的坐标是( )A .(2,5)B .(﹣2,5)C .(﹣2,﹣5)D .(2,﹣5)第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若点(),5A n 与点()1,B m -关于原点对称,则n m +的值为______.2、平面直角坐标系中,点P (3,-4)到x 轴的距离是________.3、如图,平面直角坐标系中,11OA B 是边长为2的等边三角形,作221B A B 与11OA B 关于点1B 成中心对称,再作233B A B 与221B A B 于点2B 成中心对称,如此作下去,则202020212021B A B △的顶点2021A 的坐标是________.4、如图,已知点A (2,0),B (0,4),C (2,4),若在所给的网格中存在一点D ,使得CD 与AB 垂直且相等.(1)直接写出点D 的坐标______;(2)将直线AB 绕某一点旋转一定角度,使其与线段CD 重合,则这个旋转中心的坐标为______.5、线段AB =5,AB 平行于x 轴,A 在B 左边,若A 点坐标为(-1,3),则B 点坐标为_____.三、解答题(10小题,每小题5分,共计50分)1、在由边长为1个单位长度的小正方形组成的网格中建立如图所示平面直角坐标系,原点O 及ABC 的顶点都在格点上.(1)在图中作出DEF ,使得DEE 与ABC 关于x 轴对称;(2)写出D ,E 两点的坐标:D ,E .(3)求DEF 的面积.2、如图1所示,已知点()3,3P -,有以点P 为顶点的直角的两边分别与x 轴、y 轴相交于点,M N .(1)试说明PM PN =;(2)若点M 坐标为()0m ,,点N 坐标为()0,n ,请直接写出m 与n 之间的数量关系; (3)如图2所示,过点P 作线段AB ,交x 轴正半轴于点A ,交y 轴负半轴于点B ,使得点P 为AB 中点,且OA OB =,绕着顶点P 旋转直角MPN ∠,使得一边交x 轴正半轴于点M ,另一边交y 轴正半轴于点N ,此时,PM 和PN 是否还相等,请说明理由;(4)在(3)条件下,请直接写出PBN PAM S S -△△的值.3、如图所示的方格纸中,每个小正方形的边长都是1个单位长度,三角形ABC 的三个顶点都在小正方形的顶点上.(1)画出三角形ABC 向左平移4个单位长度后的三角形DEF (点D 、E 、F 与点A 、B 、C 对应),并画出以点E 为原点,DE 所在直线为x 轴,EF 所在直线为y 轴的平面直角坐标系;(2)在(1)的条件下,点D 坐标(﹣3,0),将三角形DEF 三个顶点的横坐标都减去2,纵坐标都加上3,分别得到点P 、Q 、M (点P 、Q 、M 与点D 、E 、F 对应),画出三角形PQM ,并直接写出点P 的坐标.4、如图,在平面直角坐标系中,已知ABC 的三个顶点的坐标分别为()3,5A -、()2,1B -、()1,3C -.(1)画出将ABC 关于点O 对称的图形111A B C △;(2)写出点1A 、1B 、1C 的坐标.5、在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,ABC 的顶点的坐标分别是()1,5A -,()1,0B -,()4,3C -.(1)求ABC 的面积;(2)在图中作出ABC 关于y 轴的对称图形111A B C △;(3)写出点1A ,1C 的坐标.6、如图,在平面直角坐标系中,已知A (1,4)、B (3,1)、C (3,5),△ABC 关于y 轴的对称图形为△A 1B 1C 1(1)请画出△ABC 关于y 轴对称图形△A 1B 1C 1,并写出三个顶点的坐标A 1( ), B 1( ),C 1( )(2)在y 轴上取点D ,使得△ABD 为等腰三角形,这样的点D 共有 个7、如图,在平面直角坐标系中,ABC 三个顶点的坐标为()2,3A 、()3,4B 、()4,1C .(1)在图中作出ABC 关于y 轴的对称图形A B C ''';(2)请直接写出点B '的坐标___________;(3)在x 轴上画出一点P 使PA PC +的值最小.8、在如图所示的正方形网格中建立平面直角坐标系,ABC 的顶点坐标分别为(5,2)A -,(3,1)B -,(1,5)C -,请按要求解答下列问题:(1)画出ABC 关于x 轴对称的111A B C △,并写出点A 的对应点1A 的坐标为( , );(2)平行于y 轴的直线l 经过(1,0),画出ABC 关于直线l 对称的图形222A B C △,并直接写出2A ( , ),2B ( , ),2C ( , );(3)仅用无刻度直尺作出ABC 的角平分线BD ,保留画图痕迹(不写画法).9、如图,在平面直角坐标系中,A (-1,5),B (-1,0),C (-4,3).(1)作出△ABC 关于y 轴的对称图形△A 'B 'C ';(2)写出点A ',B ',C '的坐标;(3)在y 轴上找一点P ,使PA +PC 的长最短.10、在平面直角坐标系中,ABC 的顶点坐标是(2,4)A 、(1,0)B 、(3,1)C .(1)画出ABC 绕点B 逆时针旋转90 的11A BC ;(2)画出ABC 关于点O 的中心对称图形222A B C △;(3)11A BC 可由222A B C △绕点M 旋转得,请写出点M 的坐标:________.-参考答案-一、单选题1、C【分析】由题意直接根据第二象限点的坐标特点,横坐标为负,纵坐标为正,进行分析即可得出答案.【详解】解:A 、点(1,0)在x 轴,故本选项不合题意;B 、点(3,-5)在第四象限,故本选项不合题意;C 、点(-1,8)在第二象限,故本选项符合题意;D 、点(-2,-1)在第三象限,故本选项不合题意;故选:C.【点睛】本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2、B【分析】观察图形可知,每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,用2021除以4,然后根据商和余数的情况确定运动后点的坐标即可.【详解】解:点P的运动规律是每运动四次向右平移四个单位,=⨯+,202150541∴动点P第2021次运动时向右505412021⨯+=个单位,∴点P此时坐标为(2020,1),故选:B.【点睛】本题主要考查平面直角坐标系下的规律探究题,解答时注意探究动点的运动规律,又要注意动点的坐标的象限符号.3、D【分析】根据确定位置的方法即可判断答案.【详解】A. 北偏东25°方向不能确定具体位置,缺少距离,故此选项错误;B. 距学校800米处不能确定具体位置,缺少方向,故此选项错误;C. 温州大剧院音乐厅8排不能确定具体位置,应具体到8排几号,故此选项错误;D. 东经20°北纬30°可以确定一点的位置,故此选项正确.故选:D.【点睛】本题考查确定位置的方法,掌握确定位置要具体到一点是解题的关键.4、C【分析】直接利用y轴上点的坐标特点得出n的值,进而得出答案.【详解】解:∵点A(n,3)在y轴上,∴n=0,则点B(n-1,n+1)为:(-1,1),在第二象限.故选:C.【点睛】本题主要考查了点的坐标,正确得出n的值是解题关键.5、C【分析】由题意根据各象限内点的坐标特征逐项进行分析判断即可.【详解】-在第四象限,故本选项不合题意;解:A、(2,1)-在第二象限,故本选项不合题意;B、(2,1)C、(2,1)在第一象限,故本选项符合题意;--在第三象限,故本选项不合题意;D、(2,1)故选:C.【点睛】本题考查各象限内点的坐标的符号特征,熟练掌握各象限内点的坐标的符号是解决问题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).6、B【分析】根据点横纵坐标的正负分析得到答案.【详解】解:点P(-2,3)在第二象限,故选:B.【点睛】此题考查了平面直角坐标系中各象限内点的坐标特点,熟记各象限内横纵坐标的正负是解题的关键.7、C【分析】由对应点坐标确定平移方向,再由平移得出x,y的值,即可计算x+y.【详解】∵A(3,﹣2),B(1,0)平移后的对应点C(5,x),D(y,0),∴平移方法为向右平移2个单位,∴x=﹣2,y=3,∴x+y=1,故选:C.【点睛】本题考查坐标的平移,掌握点坐标平移的性质是解题的关键,点坐标平移:横坐标左减右加,纵坐标下减上加.8、B【分析】由第一象限内的点的横纵坐标都为正数,可列不等式组2010a a ->⎧⎨+>⎩,再解不等式组即可得到答案. 【详解】 解: 点()2,1A a a -+在第一象限,2010a a ①②由①得:2,a <由②得:1,a12,a 故选B【点睛】本题考查的是根据点所在的象限求解字母的取值范围,掌握坐标系内点的坐标特点是解本题的关键.9、A【分析】画出旋转平移后的图形即可解决问题.【详解】解:旋转,平移后的图形如图所示,()0,5A ',故选:A【点睛】本题考查坐标与图形变化−旋转,解题的关键是理解题意,学会利用图象法解决问题.10、A【分析】根据平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),据此即可求得点A(2,﹣5)关于x轴对称的点的坐标.【详解】解:∵点(2,﹣5)关于x轴对称,∴对称的点的坐标是(2,5).故选:A.【点睛】本题主要考查了关于x轴对称点的性质,点P(x,y)关于x轴的对称点P′的坐标是(x,-y).二、填空题1、-4【分析】根据关于原点对称的点的横坐标和纵坐标都互为相反数解答.【详解】解:由点(),5A n 与点()1,B m -关于原点对称,可得n =1,5m =-,∴=15=4n m +--故答案为:﹣4.【点睛】本题考查了关于原点对称的点的坐标的特征:横坐标和纵坐标都互为相反数.2、4【分析】根据点的坐标表示方法得到点P (3,﹣4)到x 轴的距离是纵坐标的绝对值即|﹣4|,然后去绝对值即可.【详解】解:点P (3,-4)到x 轴的距离为|﹣4|=4.故答案为:4.【点睛】此题主要考查了点到坐标上的距离,正确掌握点的坐标性质是解题关键.3、(【分析】首先根据△11OA B 是边长为2的等边三角形,可得1A 的坐标为,1B 的坐标为(2,0);然后根据中心对称的性质,分别求出点2A 、3A 、4A 的坐标各是多少;最后总结出n A 的坐标的规律,求出21n A +的坐标是多少即可.【详解】 解:△11OA B 是边长为2的等边三角形,1A ∴的坐标为:,1B 的坐标为:(2,0),△221B A B 与△11OA B 关于点1B 成中心对称,∴点2A 与点1A 关于点1B 成中心对称,2213⨯-=,20⨯∴点2A 的坐标是:3(,,△233B A B 与△221B A B 关于点2B 成中心对称,∴点3A 与点2A 关于点2B 成中心对称,2435⨯-=,20(⨯-=∴点3A 的坐标是:,△344B A B 与△332B A B 关于点3B 成中心对称,∴点4A 与点3A 关于点3B 成中心对称,2657⨯-=,20⨯=∴点4A 的坐标是:(7,,⋯,1211=⨯-,3221=⨯-,5231=⨯-,7241=⨯-,⋯,n A ∴的横坐标是:21n -,21n A +的横坐标是:2(21)141n n +-=+,当n 为奇数时,n A n 为偶数时,n A 的纵坐标是:∴顶点21n A +∴△22121(n n n B A B n ++是正整数)的顶点21n A +的坐标是:(4n +,∴△202020212021B A B 的顶点2021A 的横坐标是:4101014041⨯+=故答案为:.【点睛】此题主要考查了中心对称的性质、坐标与图形性质、等边三角形的性质等知识;熟练掌握等边三角形的性质和中心对称的性质,分别判断出n A 的横坐标和纵坐标是解题的关键.4、()6,6 ()4,2或【分析】(1)观察坐标系即可得点D 坐标;(2)对应点连线段的垂直平分线的交点即为旋转中心.【详解】解:(1)观察图象可知,点D 的坐标为(6,6),故答案为:(6,6);(2)当点A 与C 对应,点B 与D 对应时,如图:此时旋转中心P的坐标为(4,2);当点A与D对应,点B与C对应时,如图:此时旋转中心P的坐标为(1,5);故答案为:(4,2)或(1,5).【点睛】本题考查坐标与图形变化−旋转,解题的关键是理解对应点连线段的垂直平分线的交点即为旋转中心.5、(4,3)【分析】由题意根据平行于x轴的直线上的点的纵坐标相等求出点B的纵坐标,进而依据A在B左边即可求出点B的坐标.【详解】解:∵AB∥x轴,A点坐标为(-1,3),∴点B的纵坐标为3,当A在B左边时,∵AB=5,∴点B的横坐标为-1+5=4,此时点B(4,3).故答案为:(4,3).【点睛】本题考查坐标与图形性质,主要利用了平行于x轴的直线上的点的纵坐标相等.三、解答题1、(1)见解析;(2)(﹣1,﹣4),(﹣4,1);(3)9.5【分析】(1)先找出点A、B、C关于x轴的对称点,然后依次连接即可得;(2)根据△DEF的位置,即可得出D,E两点的坐标;(3)依据割补法进行计算,使用长方形面积减去三个三角形面积即可得到△DEF的面积.【详解】解:(1)如图所示,△DEF即为所求;(2)由图可得,D (﹣1,﹣4),E (﹣4,1);故答案为:(﹣1,﹣4),(﹣4,1);(3)S SSSS =5×5−12×2×5−12×2×3−12×3×5=9.5,∴DEF ∆面积为9.5.【点睛】题目主要考查作轴对称图形,点在坐标系中的位置及利用割补法求三角形面积,熟练掌握轴对称图形的作法是解题关键.2、(1)见解析;(2)6m n -=;(3)相等,见解析;(4)9【分析】(1)过点P 作PG x ⊥轴于点G ,PH y ⊥轴于点H ,证明PGM PHN ∆≅∆即可得到结论;(2)3,3MG m NH n =-=--,由MG NH =可得结论;(3)连接OP ,根据题意可得45POA BAO ∠=∠=︒,OP AP =,从而得135PON PAM ∠=∠=︒,再证明OPN APM ∠=∠S 可得PON PAM ∆≅∆,进一步可得结论; (4)过点P 作PQ ⊥y 轴,得PQ =OQ =3,根据题意可得45PBO ∠=︒,故BQ =3,从而可求出9POB S ∆=,由(3)得PON PAM S S ∆∆=,从而可得=PBN PAM POB S S S -△△△【详解】解:(1)过点P 作PG x ⊥轴于点G ,PH y ⊥轴于点H ,∵点P 坐标为()3,3-∴3PG PH OH OG ====又∵90MPN GPH ∠=∠=︒∴GPM HPN ∠=∠∵90PGM PHN ∠=∠=︒∴PGM PHN ∆≅∆∴PM PN =(2)由(1)知PGM PHN ∆≅∆∴MG NH =∵点M 坐标为()0m ,,点N 坐标为()0,n ,且3OH OG == ∴33MG m NH n =-=--,∴33m n -=--∴6m n -=(3)相等,理由:连接OP ,如图,∵OA OB =,且90AOB ∠=︒,P 为中点∴OP BC ⊥,45BOP POA PBN PAO ∠=∠=∠=∠=︒∴135PON PAM ∠=∠=︒∵45POA PAO ∠=∠=︒∴OP PA =又∵90OPA MPN ∠=∠=︒∴OPN APM ∠=∠在PON ∆和PAM ∆中PON PAM OPN APM OP PA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴PON PAM ∆≅∆∴PM PN =(4)由(3)知PON PAM ∆≅∆∴PAM PON S S ∆∆=过点P 作PQ ⊥y 轴于点Q ,∵P (3,-3)∴PQ =OQ =3∵45PBO ∠=︒∴45BPQ ∠=︒∴3BQ PQ ==∴336BO BQ QO =+=+= ∴1163922POB S BO PQ ∆=⨯=⨯⨯= ∴=PBN PAM POB S S S -△△△=9【点睛】本题主要考查了坐标与图形的性质,全等三角形的判定与性质,等腰直角三角形的性质等知识,找出判定三角形全等的条件是解答本题的关键3、(1)见解析;(2)画图见解析,点P 的坐标为(-5,3)【分析】(1)根据平移的特点先找出D、E、F所在的位置,然后根据题意建立坐标系即可;(2)将三角形DEF三个顶点的横坐标都减去2,纵坐标都加上3,分别得到点P、Q、M,即点P可以看作是点D向左平移2个单位,向上平移3个单位得到的,由此求解即可.【详解】解:(1)如图所示,即为所求;(2)如图所示,△PQM即为所求;∵P是D(-3,0)横坐标减2,纵坐标加3得到的,∴点P的坐标为(-5,3).【点睛】本题主要考查了平移作图,根据平移方式确定点的坐标,解题的关键在于能够熟练掌握点坐标平移的特点.4、(1)见解析;(2)()13,5A -,()12,1B -,()11,3C -.【分析】(1)直接利用关于点O 对称的性质得出对应点位置,顺次连接各个对应点,即可;(2)根据对应点位置直接写出坐标,即可.【详解】解:(1)如图所示,(2)()13,5A -,()12,1B -,()11,3C -.【点睛】本题考查了利用中心对称变换在坐标系中作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.5、(1)152;(2)见解析;(3)A 1(1,5),C 1(4,3) 【分析】(1)根据三角形面积公式进行计算即可得;(2)ABC 可以由三个顶点的位置确定,只要能分别画出这三个顶点关于y 轴的对称点,连接这些对称点即可得111A B C △;(3)根据(2)即可写出.【详解】解:(1)1155322ABCS =⨯⨯= (2)如下图所示:(3)A1(1,5);C1(4,3)【点睛】本题考查了画轴对称图形,解题的关键是掌握画轴对称图形的方法.6、(1)见解析;-1,4 ;-3,1;-3,5;(2)5【分析】(1)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可得;(2)分AB为腰和AB为底分别求解可得.【详解】解:(1)如图所示,△A1B1C1即为所求.A1(-1,4);B1(-3,1);C1(-3,5);故答案为:-1,4 ;-3,1;-3,5;(2)以点A 为顶点、AB 为腰的等腰三角形ABD ,且点D 在y 轴上的有2个;以点B 为顶点,BA 为腰的等腰△ABD ,且点D 在y 轴上的有2个;以AB 为底边的等腰三角形,且点D 在y 轴上的点只有1个;所以这样的点D 共有5个,故答案为:5.【点睛】本题主要考查作图-轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质,并据此得出变换后的对应点.7、(1)见解析;(2)()3,4B '-;(3)见解析【分析】(1)根据题意得:点()2,3A 、()3,4B 、()4,1C 关于y 轴的对称的的对应点分别为()2,3A '-、()3,4B '-、()4,1C '-,再顺次连接,即可求解;(2)根据A B C '''和ABC 关于y 轴的对称图形,即可求解;(3)作点C 关于x 轴的对称点C '' ,连接AC '' 交x 轴于点P ,根据点C 与C '' 关于y 轴对称,可得''''PA PC PA PC AC +=+≥,即可求解.【详解】解:根据题意得:点()2,3A 、()3,4B 、()4,1C 关于y 轴的对称的的对应点分别为()2,3A '-、()3,4B '-、()4,1C '-,画出图形,如图所示:(2)点B '的坐标为()3,4B '-;(3)如图,作点C 关于x 轴的对称点C '' ,连接AC '' 交x 轴于点P ,则点P 即为所求,∵点C 与C '' 关于y 轴对称,∴PC PC ''= ,∴''''PA PC PA PC AC +=+≥,即当点,,C P A '' 三点共线时,PA PC +的值最小.【点睛】本题主要考查了坐标与图形,图形变换——轴对称,线段最短问题,熟练掌握若两点关于y 轴对称,则横坐标互为相反数,纵坐标不变;若两点关于x 轴对称,则横坐标不变,纵坐标互为相反数;两点间线段最短是解题的关键.8、(1)图见解析,(5,2)--;(2)图见解析,2(7,2)A ,2(5,1)B ,2(3,5)C ;(3)见解析【分析】(1)利用关于x 轴对称的点的坐标特征得到1A 、1B 、1C 的坐标,然后描点即可;(2)根据网格特点和对称的性质,分别作出A 、B 、C 关于直线l 的对称点2A 、2B 、2C ,然后写出它们的坐标;(3)把AB 绕A 点逆时针旋转90°得到AE ,连接BE 交AC 于D .【详解】解:(1)如图,111A B C △为所作,1(5,2)A --;(2)如图,222A B C △为所作,2(7,2)A ,2(5,1)B ,2(3,5)C ;(3)如图,BD 为所作.【点睛】本题考查了平面直角坐标系中点的坐标,画轴对称图形,解题的关键是正确写出点的坐标.9、(1)见解析;(2)A ′(1,5),B ′(1,0),C ′(4,3);(3)见解析【分析】(1)分别作出点A 、B 、C 关于y 轴的对称点,再收尾顺次连接即可得;(2)根据△A 'B 'C '各顶点的位置,写出其坐标即可;(3)连接PC ,则PC =PC ′,根据两点之间线段最短,可得PA +PC 的值最小.【详解】解:(1)如图所示,△A ′B ′C ′为所求作;(2)由图可得,A ′(1,5),B ′(1,0),C ′(4,3);(3)如图所示,连接AC ′,交y 轴于点P ,则点P 即为所求作.【点睛】本题主要考查了利用轴对称变换作图以及最短距离的问题,解题时注意:凡是涉及最短距离的问题,一般要考虑线段的性质定理,运用轴对称变换来解决,多数情况要作点关于某直线的对称点.关于y 轴对称的点,纵坐标相同,横坐标互为相反数.10、(1)画图见解析;(2)画图见解析;(3)0,1.M【分析】(1)分别确定,,A B C 绕B 逆时针旋转90 后的对应点11,,,A B C 再顺次连接11,,,A B C 从而可得答案;(2)分别确定,,A B C 关于原点对称的对称点222,,,A B C 再顺次连接222,,,A B C 从而可得答案;(3)如图,由2,B B ;12,C C 是旋转对应点,则2,B B 到旋转中心的距离相等,12,C C 到旋转中心的距离相等,可得线段212,BB C C 的垂直平分线的交点即为旋转中心M ,再根据M 在坐标系内的位置写出其坐标即可.【详解】解:(1)如图,11A BC 是所求作的三角形,(2)如图,222A B C △是所求作的三角形;(3)如图,2,B B ;12,C C 是旋转对应点,2,B B 到旋转中心的距离相等,12,C C 到旋转中心的距离相等,则线段212,BB C C 的垂直平分线的交点即为旋转中心M ,其坐标为:0,1.M【点睛】本题考查的是旋转作图,中心对称的作图,确定旋转中心,掌握旋转的性质是解本题的关键.。

人教版七年级下册数学重点知识点练习及答案解析——命题、定理及平移测试

人教版七年级下册数学重点知识点练习及答案解析——命题、定理及平移测试

人教版七年级下册数学重点知识点练习及答案解析——命题、定理及平移测试一、选择题(本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的)1.(2019·江苏初一月考)在以下现象中:①温度计中,液柱的上升或下降;②打气筒打气时,活塞的运动;③钟摆的摆动;④传送带上,瓶装饮料的移动,属于平移的是()A.①,②B.①,③C.②,③D.②,④【答案】D【解析】①温度计中液柱的上升或下降改变图形的大小,不属于平移;②打气筒打气时,活塞的运动属于平移;③钟摆的摆动是旋转,不属于平移;④传送带上瓶装饮料的移动符合平移的性质,属于平移,故选D.2.(2019·重庆市忠县拔山中学校初一期中)下列语句不是命题的是()A.熊猫没有翅膀B.点到直线的距离C.若|a|=|b| ,则a=b D.小明是七年级二班的学生【答案】B【解析】熊猫没有翅膀、若|a|=|b|,则a=b和小明是七年级(2)班的学生都是命题,而点到直线的距离为一个名称,它不是命题.故选B.3.(2019·浙江初一期中)如图,A,B,C,D中的哪幅图案可以通过图案①平移得到()A.B.C.D.【答案】D【解析】通过图案①平移得到必须与图案①完全相同,角度也必须相同,观察图形可知D可以通过图案①平移得到.故答案选:D.4.(2019·邓州市张村乡中学初一期末)下面给出的结论中,说法正确的有()①最大的负整数是﹣1;②在同一个平面内,经过一个已知点只能画一条直线和已知直线垂直;③当a≤0时,|a|=﹣a;④若a2=9,则a一定等于3;⑤邻补角的两条角平分线构成一个直角;⑥同旁内角相等,两直线平行.A.2个B.3个C.4个D.5个【答案】C【解析】①最大的负整数是﹣1,正确;②在同一个平面内,经过一个已知点只能画一条直线和已知直线垂直,正确;③当a≤0时,|a|=﹣a,正确;④若a2=9,则a=±3,错误;⑤邻补角的两条角平分线构成一个直角,正确;⑥同旁内角互补,两直线平行,错误.故选C.5.(2019·嵊州市谷来镇中学初二期中)在下列命题中,为真命题的是()A.两个锐角的和是锐角B.相等的角是对顶角C.同旁内角互补D.同角的补角相等【答案】D【解析】解:A、错误.两个锐角的和可能是锐角或直角或钝角;B、错误.相等的角不一定是对顶角;C、错误,两直线平行时同旁内角互补;D、正确.故选:D.6.(2019·河北初三期中)在图示的四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A.B.C.D..【答案】D【解析】解:A.可以通过轴对称变换得到;B.不能通过平移变换得到;C. 可以通过旋转得到;D. 可以通过平移变换得到,故选:D.7.(2019·上海市江宁学校初一期中)一辆汽车在笔直的公路上,两次拐弯后,仍在原来的方向上平行前进,则这两次拐弯的角度应是()A.第一次向左拐40°,第二次向右拐40°B.第一次向右拐40°,第二次向左拐140°C.第一次向左拐40°,第二次向左拐140°D.第一次向右拐40°,第二次向右拐140°【答案】A【解析】如图,第一次拐的角是∠1,第二次拐的角是∠2,由于平行前进,可以得到∠1=∠2.故选A.8.(2019·重庆市两江育才中学校初二开学考试)如图,已知直角△ABC中,∠B=90°,AB=8,BC=6,把斜边AC 分成n段,以每段为对角线作小长方形,则所有这些小长方形的周长的和是()A.14B.28C.14nD.28n【答案】B【解析】∵∠B=90°,AB=8,BC=6,且斜边AC平均分成n段,∴小矩形的长为ABn=8n,宽为BCn=6n,∴一个小矩形的周长为:2(86n n)=28n,∴这些小矩形的面积和是n•28n=28.故选:B.9.(2019·浙江初二期中)能说明命题“若|a|=|b|,则a=b”是假命题的反例为()A.a=2,b=-2B.a=1,b=0C.a=1,b=1D.a=-3,b= 1 3【答案】A【解析】解:若a,b互为相反数,则|a|=|b|,a≠b,命题“若|a|=|b|,则a=b”是假命题,则a ,b 互为相反数即可, a=2,b=-2时,a ,b 互为相反数,故答案为A.10.(2019·呼伦贝尔市海拉尔区铁路第三中学初一期末)将一副三角板按如图放置,则下列结论中,正确的有( ) ①∠1=∠3;②如果∠2=30°则有AC ∥DE ;③如果∠2=30°,则有BC ∥AD ;④如果∠2=30°,必有∠4=∠CA .①②③B .①②④C .③④D .①②③④【答案】B【解析】 解:∵∠1+∠2=90°,∠3+∠2=90°,∴∠1=∠3,①正确;∵∠2=30°,∴∠1=60°,又∵∠E =60°,∴∠1=∠E ,∴AC ∥DE ,②正确;∵∠2=30°,∴∠1+∠2+∠3=150°,又∵∠C =45°,∴BC 与AD 不平行,③错误;∵∠2=30°∴AC ∥DE ,∴∠4=∠C ,④正确.故选:B .11.(2019·浙江初二期中)能说明命题“若22a b =,则a b =”是假命题的一个反例可以是( )A .2,2a b ==-B .2,3a b ==C .2,2a b =-=-D .2,3a b =-=-【答案】A【解析】若22a b =,则a=b”是假命题的一个反例可以是a=2,b=-2.故选A.12.(2019·昆明市呈贡区实验学校初二期末)某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知//AB CD ,87BAE ∠=︒,121DCE ∠=︒,则E ∠的度数是( )A .28︒B .34︒C .46︒D .56︒【答案】B【解析】解:如图,延长DC 交AE 于F ,//AB CD Q ,87BAE ∠=︒,87CFE ∴∠=︒,又121DCE ∠=︒Q ,1218734E DCE CFE ∴∠=∠-∠=︒-︒=︒,故选:B .13.(2017·内蒙古初一期末)如图,将半径为2cm 的半圆水平向左平移2cm ,则半圆所扫过的面积(阴影部分)为( ).A .2cm πB .24cmC .2ππ⎛⎫- ⎪⎝⎭ cm 2D .2ππ⎛⎫+ ⎪⎝⎭cm 2【答案】B【解析】 根据图形可知阴影面积为:2×2=4;故选B.14.(2019·浙江初二月考)某校八年级四个班的代表队准备举行篮球赛.甲、乙、丙三位同学预测比赛的结果如下:甲说:“802班得冠军,804班得第三”;乙说:“801班得第四,803班得亚军”;丙说:“803班得第三,804班得冠军”赛后得知,三人都只猜对了一半,则得冠军的是( )A .801班B .802班C .803班D .804班【答案】B【解析】解:假设甲说的“802班得冠军”是正确的,那么丙说的“804班得冠军”是错误的,“803班得第三”就是正确的,那么乙说的“803班得亚军”是错误的,“801班得第四”是正确的,这样三人都猜对了一半,且没矛盾.故猜测是正确的.故选:B.二、填空题(本题共4个小题;每个小题3分,共12分,把正确答案填在横线上)15.(2018·浙江初二期中)把命题“在一个三角形中,等角对等边”改写成“如果……那么……”的形式为.【答案】如果在一个三角形中有两个角相等,那么这两个角所对的边也相等【解析】因为条件是:在同一个三角形中有两个角相等,结论为:这两个角所对的边也相等.所以改写后为:如果在同一个三角形中有两个角相等,那么这两个角所对的边也相等.16.(2019·上海尚德实验学校初一月考)如图,在长方形ABCD中,AB=7cm,BC=10cm,现将长方形ABCD向右平移3m,再向下平移4cm后到长方形A'B'C'D'的位置,A'B'交BC于点E,A'D'交DC于点F,那么长方形A'ECF 的周长为_____cm.【答案】20【解析】解:由题意得到BE=3cm,DF=4cm,∵AB=DC=7cm,BC=10cm,∴EC=BC-BE=10cm-3cm=7cm,FC=DC-DF=7cm-4cm=3cm,∴长方形A'ECF的周长=2×(7+3)=20(cm),故答案为20.17.(2019·山东初二期末)如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1=_____.134【答案】0【解析】如图,过E作EF∥AB,根据平行于同一直线的两直线互相平行,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC=44°,∠BAE=∠FEA,求出∠BAE=90°-44°=46°,即可求出∠1=180°-46°=134°.18.(2018·辽宁初二期末)如图,直线a∥b,△ABC是等边三角形,点A在直线a上,边BC在直线b上,把△ABC 沿BC方向平移BC的一半得到△A′B′C′(如图①);继续以上的平移得到图②,再继续以上的平移得到图③,…;请问在第100个图形中等边三角形的个数是___.【答案】301.【解析】∵△ABC是等边三角形,∴AB=BC=AC,∵A′B′∥AB,BB′=B′C=12 BC,∴B′O=12AB,CO=12AC,∴△B′OC是等边三角形,同理阴影的三角形都是等边三角形.观察图可得,第1个图形中大等边三角形有2个,小等边三角形有2个,第2个图形中大等边三角形有3个,小等边三角形有4个,第3个图形中大等边三角形有4个,小等边三角形有6个,…依次可得第n个图形中大等边三角形有n+1个,小等边三角形有2n个.故第100个图形中等边三角形的个数是:100+1+2×100=301.故答案是301.三、解答题(本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分)19.(2019·全国初二课时练习)下列句子中哪些是命题?(1)动物需要水;(2)玫瑰花是动物;(3)美丽的天空;(4)相等的角是对顶角;(5)负数都小于0;(6)你的作业做完了吗?【答案】(1)(2)(4)(5)是命题【解析】根据命题的定义(1)(2)(4)(5)都对一件事情做出了判断,因此属于命题,(3)“美丽的天空”不是判断语句,因此不是命题,(6)是疑问句,因此不是命题。

七年级上册数学重点题型以及标准答案

七年级上册数学重点题型以及标准答案

七年级上册数学的重点题型也是易错题型,小编整理了重点题型分为有理数、一元一次方程和角。

题型一:有理数下列说法正确的是()A.-|a|一定是负数:B.只有两个数相等时,它们的绝对值才相等:C.若|a|=|b|,则a与b互为相反数:D.若一个数小于它的绝对值,则这个数为负数解析:A、-|a|不一定是负数,当a为0时,结果还是0,故错误;B、互为相反数的两个数的绝对值也相等,故错误;C、a等于b时,|a|=|b|,故错误;D、若一个数小于它的绝对值,则这个数为负数,符合绝对值的性质,故正确,故选D。

题型二:一元一次方程甲、乙两班共有98人,若从甲班调3人到乙班,那么两班人数正好相等,设甲班原有人数为x人,可列出方程()A.98+x=x-3:B.98-x=x-3:C.98+x=x+3:D.(98-x)+3=x-3解析:从甲班调走3人,则甲班的人数为x-3:乙班原有98-x人,从甲班调来3人后,乙班的人数为(98-x)+3人。

两班人数正好相等,选择D。

题型三:角已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠AOC和∠COB的度数。

解析:因为∠AOB=90°,OE平分∠AOB,所以∠AOE=∠EOB=45°;又因为∠EOF=60°,所以∠BOF=∠EOF-∠BOE=60°-45°=15°;又因为OF平分∠BOC,所以∠BOF=∠COF=15°,所以∠COB=∠BOF+∠COF=15°+15°=30°。

∠AOC=∠AOB+BOC=90°+30°=120°。

以上为小编整理的七年级上册数学的一些重点题型以及解析,希望能帮到你。

难点详解华东师大版七年级数学下册第10章轴对称、平移与旋转重点解析试题(含详解)

难点详解华东师大版七年级数学下册第10章轴对称、平移与旋转重点解析试题(含详解)

七年级数学下册第10章轴对称、平移与旋转重点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下面的图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.2、出行安全,认识交通路标非常重要.下列是部分交通路标,其中是轴对称图形的是()A.B.C.D.3、如图1,北京2022年冬季奥林匹克运动会会徽(冬梦)主要由会徽图形、文字标志、奥林匹克五环标志三个部分组成,图形主体形似汉字“冬”的书法形态;如图2,冬残奥会会徽(飞跃)主要由会徽图形、文字标志、国际残奥委会标志三部分组成,图形主体形似汉字“飞”的书法字体.以下图案是会徽中的一部分,其中是轴对称图形的为().A.B.C.D.4、下面4个图形中,不是轴对称图形的是()A.B.C.D.5、如图,下列图形中,轴对称图形的个数是()A.1 B.2 C.3 D.46、下列各曲线是在平面直角坐标系xOy中根据不同的方程绘制而成的,其中是中心对称图形的是()A.B.C.D.7、以下四大通讯运营商的企业图标中,是轴对称图形的是()A.B.C.D.8、下列图形不是轴对称图形的是()A.B.C.D.9、下列宣传图案中,既中心对称图形又是轴对称图形的是()A.B.C.D.10、等边三角形、等腰三角形、矩形、菱形中既是轴对称图形,又是中心对称图形的个数是()A.2个B.3个C.4个D.5个第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、将长度为5cm的线段向上平移10cm,所得线段的长度是_______cm.2、如图的三角形纸片中,AB=7,AC=5,BC=6,沿过点C的直线折叠这个三角形,使点A落在BC 边上的点E处,折痕为CD,则△BED的周长为_________.3、在如图所示的图中补一个小正方形,使其成为轴对称图形,共有__________种补法.4、如图所示,把一个直角三角尺ACB 绕着30°角的顶点B 顺时针旋转,使得点A 落在CB 的延长线上的点E 处,则∠BDC 的度数为_____度.5、如图,在ABC 中,8AB ,将ABC 绕点B 按逆时针方向旋转30后得到11A BC ,则阴影部分面积为________.三、解答题(5小题,每小题10分,共计50分)1、如图,在正方形网格纸中,每个小正方形的边长均为1,ABC 的三个顶点都在格点上.(1)画出ABC 关于y 轴对称的'''A B C ;(2)点P 为y 轴上一动点,当PA PB +取得最小值时,点P 的坐标为________.2、新定义:如图①,已知AOB ∠,在AOB ∠内部画射线OC ,得到三个角,分别为AOC ∠、BOC ∠、AOB ∠.若这三个角中有一个角是另外一个角的2倍,则称射线OC 为AOB ∠的“幸运线”.(本题中所研究的角都是大于0°而小于180°的角.)【阅读理解】(1)角的平分线______这个角的“幸运线”;(填“是”或“不是”)【初步应用】(2)如图①,48AOB ∠=︒,射线OC 为AOB ∠的“幸运线”,则AOC ∠的度数为______;(直接写出答案)【解决问题】(3)如图②,已知50AOB ∠=︒,射线OM 从OA 出发,以每秒10°的速度绕O 点顺时针旋转,同时,射线ON 从OB 出发,以每秒15°的速度绕O 点顺时针旋转,设运动的时间为t 秒()05t <<.若OM 、ON 、OB 三条射线中,一条射线恰好是以另外两条射线为边的角的“幸运线”,求运动的时间t 的值.【实际运用】(4)周末,小丽帮妈妈到附近的“中通快递”网点取包裹,出家门时小丽看了看时钟,恰好是下午3点整,取好包裹回到家时,小丽再看了看时钟,还没有到下午3点半,但此时分针与时针恰好重合.问小丽帮妈妈取包裹用了多少分钟?3、在下面的方格纸中作图:(1)先画△ABC 关于直线l 1的对称图形△A 1B 1C 1,再画△A 1B 1C 1关于直线l 2的对称图形△A 2B 2C 2;(2)若△ABC 向右平移1格,则△A 2B 2C 2向____平移_____格.4、如图1,点O 为直线AB 上一点,将两个含60°角的三角板MON 和三角板OPQ 如图摆放,使三角板的一条直角边OM 、OP 在直线AB 上,其中60OMN POQ ∠=∠=︒.(1)将图1中的三角板OPQ 绕点O 按逆时针方向旋转至图2的位置,使得边OP 在MON ∠的内部且平分MON ∠,此时三角板OPQ 旋转的角度为______度;(2)三角板OPQ 在绕点O 按逆时针方向旋转时,若OP 在MON ∠的内部.试探究MOP ∠与NOQ ∠之间满足什么等量关系,并说明理由;(3)如图3,将图1中的三角板MON 绕点O 以每秒2°的速度按顺时针方向旋转,同时将三角板OPQ 绕点O 以每秒3°的速度按逆时针方向旋转,将射线OB 绕点O 以每秒5°的速度沿逆时针方向旋转,旋转后的射线OB 记为OE ,射线OC 平分MON ∠,射线OD 平分POQ ∠,当射线OC 、OD 重合时,射线OE 改为绕点O 以原速按顺时针方向旋转,在OC 与OD 第二次相遇前,当13COE ∠=︒时,直接写出旋转时间t 的值.5、在等边ABC 中,将线段AB 绕点A 顺时针旋转()0180αα︒<<︒得到线段AD .(1)若线段DA 的延长线与线段..BC 相交于点E (不与点B ,C 重合),写出满足条件的α的取值范围;(2)在(1)的条件下连接BD ,交CA 的延长线于点F .①依题意补全图形;②用等式表示线段AE ,AF ,CE 之间的数量关系,并证明.-参考答案-一、单选题1、D【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,是中心对称图形,故此选项不符合题意;B、不是轴对称图形,是中心对称图形,故此选项不符合题意;C、不是轴对称图形,是中心对称图形,故此选项不符合题意;D、是轴对称图形,不是中心对称图形,故此选项符合题意;故选:D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2、D【解析】【分析】根据轴对称图形的定义“沿一条直线折叠,直线两旁的部分能够完全重合的图形”选择即可.【详解】A.不是轴对称图形,故该选项不符合题意;B.不是轴对称图形,故该选项不符合题意;C.不是轴对称图形,故该选项不符合题意;D.是轴对称图形,故该选项符合题意.故选:D.【点睛】本题考查轴对称图形的识别,掌握轴对称图形的定义是解答本题的关键.3、B【解析】【分析】结合轴对称图形的概念求解即可.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.【详解】解:A.不是轴对称图形,本选项不符合题意;B.是轴对称图形,本选项符合题意;C.不是轴对称图形,本选项不符合题意;D.不是轴对称图形,本选项不符合题意.故选:B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4、D【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、矩形是轴对称图形,故本选项不符合题意;B、菱形是轴对称图形,故本选项不符合题意;C、正方形是轴对称图形,故本选项不符合题意;D、平行四边形不是轴对称图形,故本选项符合题意.故选:D.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5、B【解析】【分析】如果一个图形沿着某条直线对折,直线两旁的部分能够重合,则称这个图形是轴对称图形,这条直线叫做对称轴;根据轴对称图形的概念逐一分析即可判断.【详解】第一、三个图形是轴对称图形,第二、四个图形不是轴对称图形,故符合题意的有两个;故选:B【点睛】本题考查了轴对称图形的概念,掌握概念是关键.6、C【解析】【分析】利用中心对称图形的定义:旋转180 能与自身重合的图形即为中心对称图形,即可判断出答案.【详解】解:A、不是中心对称图形,故A错误.B、不是中心对称图形,故B错误.C、是中心对称图形,故C正确.D、不是中心对称图形,故D错误.故选:C.【点睛】本题主要是考查了中心对称图形的定义,熟练掌握中心对图形的定义,是解决该题的关键.7、D【解析】【分析】根据轴对称图形的定义(在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形)进行判断即可得.【详解】解:根据轴对称图形的定义判断可得:只有D选项符合题意,故选:D.【点睛】题目主要考查轴对称图形的判断,理解轴对称图形的定义是解题关键.8、D【解析】【详解】解:A、是轴对称图形,此项不符题意;B、是轴对称图形,此项不符题意;C、是轴对称图形,此项不符题意;D、不是轴对称图形,此项符合题意;故选:D.【点睛】本题考查了轴对称图形,熟记轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键.9、C【解析】【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A.是轴对称图形,不是中心对称图形,故本选项不合题意;B.不是轴对称图形,也不是中心对称图形,故本选项不合题意;C.既是轴对称图形,又是中心对称图形,故本选项符合题意;D.不是轴对称图形,也不是中心对称图形,故本选项不合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.10、A【解析】【分析】根据轴对称图形与中心对称图形的概念进行判断.【详解】解:矩形,菱形既是轴对称图形,也是中心对称图形,符合题意;等边三角形、等腰三角形是轴对称图形,不是中心对称图形,不符合题意;共2个既是轴对称图形又是中心对称图形.故选:A.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.(1)如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.(2)如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.二、填空题1、5【解析】【分析】根据平移的性质解答.【详解】解:将长度为5cm 的线段向上平移10cm ,所得线段的长度是5cm ,故答案为:5.【点睛】此题考查了平移的性质:平移前后的图形全等,熟记平移的性质是解题的关键.2、8【解析】【分析】由折叠可得:,5,AD ED AC AE ===再求解,BE 利用7,BD DE AD BD +=+=从而可得答案.【详解】解:由折叠可得:,5,AD ED AC CE ===6,BC =651,BE BC CE ∴=-=-=7,AB =7,AD BD ∴+=718,BDEC BD DE BE BD AD BE AB BE ∴=++=++=+=+=故答案为:8.【点睛】本题考查的是轴对称的性质,掌握“成轴对称的两个图形的对应边相等”是解本题的关键.3、4【解析】【分析】直接利用轴对称图形的性质得出符合题意的答案.【详解】解:如图所示:故答案为:4【点睛】本题考查的是利用轴对称设计图案,熟知轴对称的性质是解答此题的关键.4、15【解析】【分析】根据旋转的性质△ABC≌△EDB,BC=BD,求出∠CBD的度数,再求∠BDC的度数.【详解】解:根据旋转的性质△ABC≌△EDB,BC=BD,∴△CBD 是等腰三角形,∴∠BDC =∠BCD ,∵∠CBD =180°﹣∠DBE =180°﹣30°=150°,∴∠BDC =(180°﹣∠CBD )÷2=15°.故答案为15.【点睛】根据旋转的性质,确定各角之间的关系,利用已知条件把一个直角三角尺ACB 绕着30°角的顶点B 顺时针旋转求出即可.5、16【解析】【分析】根据旋转的性质得到△ABC ≌△A 1BC 1,A 1B =AB =8,所以△A 1BA 是等腰三角形,依据∠A 1BA =30°得到等腰三角形的面积,由图形可以知道1111A BA A BC ABC A BA S SS S S =+-=阴影,最终得到阴影部分的面积.【详解】解:∵在△ABC 中,AB =8,将△ABC 绕点B 按逆时针方向旋转30°后得到△A 1BC 1,∴△ABC ≌△A 1BC 1,∴A 1B =AB =8,∴△A 1BA 是等腰三角形,∠A 1BA =30°,过点A 1作1A D AB ⊥于点D∴11142A D AB == ∴1A BA S =12×8×4=16,又∵111A BA A BC ABC S S S S =+-阴影,11A BC ABC S S =△△,∴1A BA S S =阴影=16.故答案为:16.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.运用面积的和差关系解决不规则图形的面积是解决此题的关键.三、解答题1、 (1)见解析(2)(0,3)【解析】【分析】(1)利用关于y 轴对称的点的坐标得到A ′、B ′、C ′的坐标,然后描点即可;(2)连接BA ′交y 轴于P 点,根据两点之间线段最短可判断P 点满足条件,从而得到P 点坐标.【小题1】解:如图,△A 'B 'C '为所作;【小题2】如图,根据轴对称的性质可知,PA PB PA PB '+=+,连接BA ′交y 轴于P 点,此时点P 为所求作,P 点坐标为(0,3).故答案为:(0,3).【点睛】本题考查了作图-轴对称变换:几何图形都可看作是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.也考查了最短路径问题.2、(1)是;(2)16°或24°或32°;(3)2或207或54;(4)18011. 【解析】【分析】(1)根据幸运线定义即可求解;(2)分3种情况,根据幸运线定义得到方程求解即可;(3)根据幸运线定义得到方程求解即可;(4)利用时针1分钟走0.5︒,分针1分钟走6︒,可解答问题.【详解】解:(1)一个角的平分线是这个角的“幸运线”;故答案为:是;(2)①设∠AOC=x,则∠BOC=2x,由题意得,x+2x=48°,解得x=16°,②设∠AOC=x,则∠BOC=x,由题意得,x+x=48°,解得x=24°,③设∠AOC=x,则∠BOC=12x,由题意得,x+12x=48°,解得x=32°,故答案为:16°或24°或32°;(3)OB是射线OM与ON的幸运线,则∠BOM=12∠MON,即50-10t=12(50-10t+15t),解得t=2;∠BOM=13∠MON,即50-10t=13(50-10t+15t),解得t=207;∠BOM=23∠MON,即50-10t=23(50-10t+15t),解得t=54;故t的值是2或207或54;(4)时针1分钟走300.560︒=︒,分针1分钟走360660︒=︒,设小丽帮妈妈取包裹用了x分钟,则有0.5x+3×30=6x,解得:x=180 11.【点睛】本题考查了旋转的性质,幸运线定义,学生的阅读理解能力及知识的迁移能力.理解“幸运线”的定义是解题的关键.3、 (1)见解析(2)右,1【解析】【分析】(1)根据题意作出图形即可.(2)利用平移的性质解决问题即可.(1)如图,△A1B1C1,△A2B2C2即为所求作.(2)若△ABC向右平移1格,则△A2B2C2向右平移1格.故答案为:右,1.【点睛】本题考查了轴对称的性质,平移的性质,掌握轴对称与平移的性质是解题的关键.4、(1)135°(2)∠MOP-∠NOQ=30°,理由见解析(3)2273s或1363s.【解析】【分析】(1)先根据OP平分MON∠得到∠PON,然后求出∠BOP即可;(2)先根据题意可得∠MOP=90°-∠POQ, ∠NOQ=60°-∠POQ,然后作差即可;(3)先求出旋转前OC、OD的夹角,然后再求出OC与OD第一次和第二次相遇所需要的时间,再设在OC与OD第二次相遇前,当13COE∠=︒时,需要旋转时间为t,再分OE在OC的左侧和OE在OC的右侧两种情况解答即可.(1)解:∵OP平分∠MON∴∠PON=12∠MON=45°∴三角板OPQ旋转的角:∠BOP=∠PON+∠NOB=135°.故答案是135°(2)解:∠MOP-∠NOQ=30°,理由如下:∵∠MON=90°,∠POQ=60°∴∠MOP=90°-∠POQ, ∠NOQ=60°-∠POQ,∴∠MOP-∠NOQ=90°-∠POQ -(60°-∠POQ)=30°.(3)解:∵射线OC平分MON∠,射线OD平分POQ∠∴∠NOC=45°,∠POD=30°∴选择前OC与OD的夹角为∠COD=∠NOC+∠NOP+∠POD=165°∴OC 与OD 第一次相遇的时间为165°÷(2°+3°)=33秒,此时OB 旋转的角度为33×5°=165° ∴此时OC 与OE 的夹角165-(180-45-2×33)=96°OC 与OD 第二次相遇需要时间360°÷(3°+2°)=72秒设在OC 与OD 第二次相遇前,当13COE ∠=︒时,需要旋转时间为t①当OE 在OC 的左侧时,有(5°-2°)t =96°-13°,解得:t =2273s ②当OE 在OC 的右侧时,有(5°-2°)t =96°+13°,解得:t =1363s 然后,①②都是每隔360÷(5°-2°)=120秒,出现一次这种现象∵C 、D 第二次相遇需要时间72秒∴在OC 与OD 第二次相遇前,当13COE ∠=︒时,、旋转时间t 的值为2273s 或1363s .【点睛】本题主要考查了角平分线的定义、平角的定义、一元一次方程的应用等知识点,灵活运用相关知识成为解答本题的关键.5、(1)120180α︒<<︒;(2)①见解析;②AE =AF +CE ,证明见解析.【解析】【分析】(1)根据“线段DA 的延长线与线段BC 相交于点E ”可求解;(2)①根据要求画出图形,即可得出结论;②在AE 上截取AH =AF ,先证△AFD ≌△AHC ,再证∠CHE =∠HCE ,即可得出结果.(1)如图:AD 只能在锐角∠EAF 内旋转符合题意故α的取值范围为:120180α︒<<︒;(2)补全图形如下:(3)AE =AF +CE ,证明:在AE 上截取AH =AF ,由旋转可得:AB =AD ,∴∠D =∠ABF ,∵△ABC 为等边三角形,∴AB =AC ,∠BAC=∠ACB =60°,∵∠DAF=∠CAH,∴△AFD≌△AHC,∴∠AFD=∠AHC,∠D=∠ACH,∴∠AFB=∠CHE,∵∠AFB+∠ABF=∠ACH+∠HCE=60°,∴∠CHE+∠D=∠D+∠HCE=60°,∴∠CHE=∠HCE,∴CE=HE,∴AE=AH+HE=AF+CE.【点睛】本题考查了旋转的性质,三角形外角的性质,等边三角形性质及应用,解题的关键是正确画出图形和作出辅助线.。

2022年精品解析鲁教版(五四制)七年级数学下册第九章概率初步重点解析试题(含答案解析)

2022年精品解析鲁教版(五四制)七年级数学下册第九章概率初步重点解析试题(含答案解析)

鲁教版(五四制)七年级数学下册第九章概率初步重点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列事件中属于必然事件的是()A.两直线平行,同位角相等B.在一张纸上任意画两条线段,这两条线段相交C.有两条边长为3,4的三角形是直角三角形D.在一个只装有白球的袋子中摸出一个红球2、“抚顺市明天降雪的概率是70%”,对此消息,下列说法中正确的是()A.抚顺市明天将有70%的地区降雪B.抚顺市明天将有70%的时间降雪C.抚顺市明天降雪的可能性较大D.抚顺市明天肯定不降雪3、下列事件中是必然事件的是()A.小菊上学一定乘坐公共汽车B.某种彩票中奖率为1%,买10000张该种票一定会中奖C.一年中,大、小月份数刚好一样多D.将豆油滴入水中,豆油会浮在水面上4、以下事件为随机事件的是()A.通常加热到100℃时,水沸腾B.篮球队员在罚球线上投篮一次,未投中C.任意画一个三角形,其内角和是360°D.半径为2的圆的周长是45、下列事件是必然事件的是()A.任意选择某电视频道,它正在播新闻联播B.温州今年元旦当天的最高气温为15℃C.在装有白色和黑色的袋中摸球,摸出红球D.不在同一直线上的三点确定一个圆6、在一个不透明的袋中装有6个只有颜色不同的球,其中1个红球、2个黄球和3个白球.从袋中任意摸出一个球,是白球的概率为().A.16B.13C.12D.237、一个国家的强盛,离不开精神的支撑;一个民族的进步,有赖于文明的成长.学习践行社会主义核心价值观(内容如表)成为某校师生的新风尚.某教师在学校举行的“我学习·我践行”即兴演讲活动中抽签,抽到“社会层面”内容的概率是()A.13B.14C.112D.1248、下列说法中正确的是()A.一组数据2、3、3、5、5、6,这组数据的众数是3B.袋中有10个蓝球,1个绿球,随机摸出一个球是绿球的概率是0.1C.为了解长沙市区全年水质情况,适合采用全面调查D.画出一个三角形,其内角和是180°为必然事件9、下列事件是随机事件的是()℃A.三角形内角和为360度B.测量某天的最低气温,结果为120C.买一张彩票中奖D.太阳从东方升起10、下列说法正确的是().A.“抛掷一枚质地均匀的硬币,落地后正面朝上”是随机事件B.“打开电视机,正在播放乒乓球比赛”是必然事件C.“面积相等的两个三角形全等”是不可能事件D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定是50次第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、有如下四个事件:①随机抛掷一枚硬币,落地后正面向上;②任意写出一个数字,这个数字是一个有理数;③等腰三角形的三边长分别为2cm、2cm和5cm;④《九章算术》是中国传统数学重要的著作,书中《勾股章》说,把勾和股分别自乘,然后把它们的乘积加起来,再进行开方,便可以得到弦.在这四个事件中是不可能事件是________.(填写序号即可)2、有背面完全相同,正面分别画有等腰三角形、平行四边形、矩形、菱形、等腰梯形的卡片5张,现正面朝下放置在桌面上,将其混合后,并从中随机抽取一张,则抽中正面的图形一定是轴对称图形的卡片的概率为 __.3、某学校计划在周一至周五中随机选择连续的两天召开运动会,则其中有一天是周五的概率是________.4、在数3141592653中,偶数出现的频率是______.5、一个不透明的袋子中放有3个红球和5个白球,这些球除颜色外均相同,随机从袋子中摸出一球,摸到红球的概率为 _____.三、解答题(5小题,每小题10分,共计50分)1、同时掷两枚质地均匀的骰子,计算下列事件的概率:(1)两枚骰子的点数相同;(2)两枚骰子点数的和是9;(3)至少有一枚骰子的点数为2.2、不透明袋子中有2个红球、3个绿球和4个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球.(1)能够事先确定取出的球是哪种颜色吗?(2)取出每种颜色的球的概率会相等吗?(3)取出哪种颜色的球的概率最大?(4)如何改变各色球的数目,使取出每种颜色的球的概率都相等(提出一种方法即可)?3、如图是计算机中“扫雷”游戏的画面.在一个有9×9个方格的正方形雷区中,随机埋藏着10颗地雷,每个方格内最多只能藏1颗地雷.小王在游戏开始时随机地点击一个方格,点击后出现了如图所示的情况.我们把与标号3的方格相邻的方格记为A区域(画线部分),A区域外的部分记为B区域.数字3表示在A区域有3颗地雷.如果小王在游戏开始时点击的第一个方格出现标号1,那么下一步点击哪个区域比较安全?4、五名同学参加演讲比赛,以抽签方式决定每个人的出场顺序.为了抽签,我们在盒中放五个看上去完全一样的纸团,每个纸团里面分别写着表示出场顺序的数字1,2,3,4,5.把纸团充分搅拌后,小军先抽,他任意(随机)从盒中抽取一个纸团.请思考以下问题:(1)抽到的数字有几种可能的结果?(2)抽到的数字小于6吗?(3)抽到的数字会是0吗?(4)抽到的数字会是1吗?5、如图,端午节期间,某商场为了吸引顾客,设立了一个可以自由转动的转盘,并规定顾客每购买200元商品,就能获得一次转动转盘的机会,如果转盘停止后,指针上对准红、黄、绿的区域,顾客就可以分别获得50元、20元、10元的奖金,对准无色区域则无奖金(转盘等分成16份).(1)小明购物180元,他获得奖金的概率是多少?(2)小德购物210元,那么获得奖金的概率是多少?(3)现商场想调整获得10元奖金的概率为14,其他金额的获奖率不变,则需要将多少个无色区域涂上绿色?-参考答案-一、单选题1、A【解析】【分析】必然事件是在一定条件下一定会发生的事件,对各个选项进行判断即可得出答案.【详解】解:A中两直线平行,同位角相等是平行线的性质,属于必然事件,故符合要求;B中任意两条线段的位置关系可相交,可不相交,属于随机事件,故不符合要求;C中两条边长为3,4的三角形中,第三条边的长度大于1小于7均可,当第三边长为5时,该三角形为直角三角形,属于随机事件,故不符合要求;D中在只装有白球的袋子中摸出一个红球,属于不可能事件,故不符合要求;故选A.【点睛】本题考查了必然事件.解题的关键在于对必然事件,随机事件与不可能事件的理解.2、C【解析】【分析】概率值只是反映了事件发生的机会的大小,不是会一定发生.不确定事件就是随机事件,即可能发生也可能不发生的事件,发生的概率大于0并且小于1.【详解】解:“抚顺市明天降雪的概率是70%”,正确的意思是:抚顺市明天降雪的机会是70%,明天降雪的可能性较大.故选C.【点睛】本题考查概率的意义,解题关键是理解概率的意义反映的只是这一事件发生的可能性的大小.3、D【解析】【分析】必然事件就是一定发生的事件,根据定义即可解答.【详解】解:A、小菊上学乘坐公共汽车是随机事件,不符合题意;B、买10000张一定会中奖也是随机事件,尽管中奖率是1%,不符合题意;C、一年中大月份有7个,小月份有5个,不相等,是不可能事件,不符合题意;D、常温下油的密度<水的密度,所以油一定浮在水面上,是必然事件,符合题意.故选:D.【点睛】用到的知识点为:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4、B【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A.通常加热到100℃时,水沸腾是必然事件;B.篮球队员在罚球线上投篮一次,未投中是随机事件;C.任意画一个三角形,其内角和是360°是不可能事件;D.半径为2的圆的周长是4 是必然事件;故选:B.【点睛】考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5、D【解析】【分析】由题意依据必然事件指在一定条件下一定发生的事件逐项进行判断即可.【详解】解:A. 任意选择某电视频道,它正在播新闻联播,是随机事件,选项不符合;B. 温州今年元旦当天的最高气温为15℃,是随机事件,选项不符合;C. 在装有白色和黑色的袋中摸球,摸出红球,是不可能事件,选项不符合;D. 不在同一直线上的三点确定一个圆,是必然事件,选项符合.故选:D.【点睛】本题考查确定事件和不确定事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6、C【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:∵袋子中共有6个小球,其中白球有3个,∴摸出一个球是白球的概率是31 62 .故选:C.【点睛】本题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.7、A【解析】【分析】根据概率公式直接求解即可.【详解】解:∵社会主义核心价值观共3个层面,∴抽到“社会层面”内容的概率为1 3故选A【点睛】本题考查了根据概率公式求简单概率,掌握概率公式是解题的关键.概率=所求情况数与总情况数之比.8、D【解析】【分析】根据统计调查、事件的发生可能性与概率的求解方法即可依次判断.【详解】A. 一组数据2、3、3、5、5、6,这组数据的众数是3和5,故错误;B. 袋中有10个蓝球,1个绿球,随机摸出一个球是绿球的概率是111,故错误;C. 为了解长沙市区全年水质情况,适合采用抽样调查,故错误;D. 画出一个三角形,其内角和是180°为必然事件,正确;故选D.【点睛】此题主要考查统计调查、概率相关知识,解题的关键是熟知概率公式的求解.9、C【解析】【分析】随机事件是可能发生也可能不发生的事件,根据定义即可作出判断.【详解】解:A、三角形的内角和是180°,因而三角形的内角和是360°是不可能事件,故选项错误;B、是不可能事件,故选项错误;C、是随机事件,故选项正确;D、是必然事件,故选项错误.故选:C.【点睛】考查了随机事件.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.用到的知识点为:确定事件包括必然事件和不可能事件.必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.10、A【解析】【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【详解】解:A、“抛掷一枚质地均匀的硬币,落地后正面朝上”是随机事件,故此选项正确;B、“打开电视机,正在播放乒乓球比赛” 是随机事件,故此选项错误;C、“面积相等的两个三角形全等” 是随机事件,故此选项错误;D、投掷一枚质地均匀的硬币100次,正面朝上的次数不一定是50次,故此选项错误;故选:A.【点睛】本题考查了必然事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.二、填空题1、③【分析】根据随机事件、不可能事件、必然事件的定义解答.【详解】解:①②是随机事件,③是不可能事件,④是必然事件故答案为:③.【点睛】此题考查事件的分类:不确定事件、不可能事件、必然事件,正确掌握各定义是解题的关键.2、4 5【解析】【分析】卡片中,轴对称图形有等腰三角形、矩形、菱形、等腰梯形,再根据概率公式P=满足条件的样本个数÷总体的样本个数,可求出最终结果.【详解】解:卡片中,轴对称图形有等腰三角形、矩形、菱形、等腰梯形,根据概率公式,P(轴对称图形)45 =.故答案为:45.【点睛】本题主要考查概率问题,属于基础题,掌握轴对称图形的性质以及概率公式是解题关键.3、1 4【解析】一周连续两天有周一、周二;周二、周三;周三、周四;周四、周五;共有4种等可能性,确定有周五的有一种可能性,根据定义计算概率.【详解】∵一周连续两天有周一、周二;周二、周三;周三、周四;周四、周五;共有4种等可能性,确定有周五的有一种可能性,∴其中有一天是周五的概率是14,故答案为:14.【点睛】本题考查了利用公式计算概率,正确确定一周连续两天的等可能性是解题的关键.4、30%【解析】【分析】在数3141592653中共出现了3个偶数,由频率的计算公式即可求得频率.【详解】由题意知,10个数字中出现了3个偶数,则偶数出现的频率为:3100%30% 10⨯=故答案为:30%【点睛】本题考查了频率的计算,根据频率的计算公式,知道总的次数及事件出现的次数即可求得频率.5、3 8【解析】让红球的个数除以球的总数即为摸到红球的概率.【详解】解:∵红球的个数为3个,球的总数为3+5=8(个),∴摸到红球的概率为38,故答案为:38.【点睛】本题考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.三、解答题1、(1)两枚骰子的点数相同是16;(2)两枚骰子点数的和是9的是19;(3)至少有一枚骰子的点数为2的是11 36.【解析】【分析】(1)列举出所有情况,看两个骰子的点数相同的情况占总情况的多少即可;(2)看两个骰子的点数的和为9的情况数占总情况的多少即可解答;(3)看至少有一个骰子点数为2的情况占总情况的多少即可.【详解】两枚骰子分别记为第1枚和第2枚,可以用下表列举出所有可能出现的结果.由表可以看出,同时掷两枚骰子,可能出现的结果有36种,并且它们出现的可能性相等. (1)两枚骰子的点数相同(记为事件A )的结果有6种,即()1,1,()2,2,()3,3,()4,4,()5,5,()6,6,所以()61366P A ==. (2)两枚骰子的点数和是9(记为事件B )的结果有4种,即()3,6,()4,5,()5,4,()6,3,所以()41369P B ==. (3)至少有一枚骰子的点数为2(记为事件C )的结果有11种,所以()1136P C =. 【点睛】本题考查了利用列表法与树状图法求概念的方法:先利用列表法或树状图法展示所有等可能的结果数n ,再找出其中某事件可能发生的可能的结果m ,然后根据概率的定义计算出这个事件的概率=mn.注意本题是放回实验,找到两个骰子点数相同的情况数和至少有一个骰子点数为2还有两个骰子的点数的和为9的情况数是关键.2、(1)不能;(2)不会相等,;(3)取出蓝球的概率最大;(4)使各颜色球的数目相等,例如:增加一个红球,减少一个蓝球.【解析】【分析】(1)根据袋中装有不同颜色的球进行判断;(2)计算出每种颜色的球的概率即可判断;(3)计算出每种颜色的球的概率即可判断;(4)使各种颜色的球数量相同即可.【详解】解:(1)袋中装有不同颜色的球,所以不能确定取出球的颜色;(2)不会相等,因为共有2+3+4=9个球,所以取出红球的概率是29,取出绿球的概率是39=13,取出蓝球的概率是49;(3)由(2)可知取出蓝球的概率最大;(4)使各颜色球的数目相等即可例如:增加一个红球,减少一个蓝球.【点睛】本题主要考查了概率公式的简单应用,关键是掌握随机事件A的概率为()P A=事件A可能出现的结果数÷所有可能出现的结果数.3、两个区域一样,理由见解析.【解析】【分析】本题需先根据已知条件得出各个区域的地雷所占的比例,再进行比较,即可求出答案.【详解】解:将与标号为1的方格相邻的方格记为A区域,A区域以外的部分记为B区域,P(点击A区域遇到地雷)=18,P(点击B区域遇到地雷)=9999⨯-=972=18.∵P(点击A区域遇到地雷)=P(点击B区域遇到地雷),∴ 两个区域一样.【点睛】本题主要考查了几何概率,在解题时要注意知识的综合应用以及概率的算法是本题的关键.4、(1)5;(2)抽到的数字一定小于6;(3)抽到的数字绝对不会是0;(4)抽到的数字可能是1,也可能不是1,事先无法确定.【解析】【分析】(1)一共有1-5五个数字,每个数字都有可能被抽到,所以有五种可能的结果;(2)数字1,2,3,4,5都小于6,所以抽到的数字一定小于6;(3)数字1,2,3,4,5都大于0,所以抽到的数字一定大于0;(4)一共有1-5五个数字,每个数字都有可能被抽到,所以抽到的数字可能是1,可能不是1.【详解】通过简单的推理或试验,可以发现:(1)数字1,2,3,4,5都有可能抽到,共有5种可能的结果,但是事先无法预料一次抽取会出现哪一种结果;(2)抽到的数字一定小于6;(3)抽到的数字绝对不会是0;(4)抽到的数字可能是1,也可能不是1,事先无法确定.【点睛】题目主要考查随机事件的概率,结合实际、理解题意是解题关键.5、(1)0;(2)38;(3)1【解析】【分析】(1)用消费的钱数和200元比较即可确定能否参与抽奖,不能参加抽奖则获得奖金的概率为0;(2)用概率公式求解即可;(3)设需要将x个无色区域涂上绿色,根据获得10元奖金的概率为14列出方程,求解即可.【详解】(1)180 < 200,∴小明购物180元,不能获得转动转盘的机会,∴小明获得奖金的概率为0;(2)小德购物210元,能获得一次转动转盘的机会,获得奖金的概率是63 168=(3)设需要将x个无色区域涂上绿色,则有31 164 x+=解得:1x=,所以需要将1个无色区域涂上绿色.【点睛】本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率()mP An=,掌握概率计算公式是解题的关键.。

数学人教版七年级上册重难点题型 有理数(解析版)

数学人教版七年级上册重难点题型   有理数(解析版)

专题01 有理数章末重难点题型(举一反三)【考点1 科学记数法及近似数】【方法点拨】(1)科学记数法的表示形式为a×10n的形式,解决此类问题只需确定a与n的值,其中1≤|a| <10,n为整数位数减1,如若数带单位可先将其还原;(2)一般地,一个近似数四舍五入到哪一位,就说这个数近似到哪一位,也叫做精确到哪一位,但有一个易错点需注意,如2.019×105很多同学错误的认为这个数是精确到千分位,解决此类问题需将这个数还原成整数201900,这时能确定这个9应在百位上,因此这个数精确到百位.【例1】(2018•浉河区校级期中)2018年河南省全年生产总值48055.86亿元,数据“48055.86亿”用科学记数法表示为()A.4.805586×104B.0.4805586×105C.4.805586×1012D.4.805586×1013【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n是负数.【解答】解:48055.86亿用科学记数法表示为4.805586×1012.故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.【变式1-1】(2018秋•沭阳县期末)某种鲸鱼的体重约为1.36×105kg,关于这个近似数,下列说法正确的是()A.它精确到百位B.它精确到0.01C.它精确到千分位D.它精确到千位【分析】根据近似数的精确度求解.【解答】解:1.36×105精确到千位.故选:D.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.【变式1-2】(2018•凉州区校级期中)绿水青山就是金山银山,为了创造良好的生态生活环境,我省2017年一季度清理垃圾约1.16×107方,数字1.16×107表示()A.1.16亿B.116万C.1160万D.11.6亿【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1.16×107=11600000=1160万.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.【变式1-3】近似数3.5的准确值a的取值范围是()A.3.45≤a≤3.55B.3.4<a<3.6C.3.45≤a<3.55 D.3.45<a≤3.55【分析】根据四舍五入法,可以得到似数3.5的准确值a的取值范围,本题得以解决.【解答】解:近似数3.5的准确值a的取值范围是3.45≤a≤3.54,故选:C.【点评】本题考查近似数和有效数字,解答本题的关键是明确近似数和有效数字的含义.【考点2 表示相反意义的量】【方法点拨】解决此类问题关键是明确正负数在题目中的实际意义从而进一步求解.(2018秋•襄州区期中)一箱苹果的重量标识为“10±0.25”千克,则下列每箱苹果重量中合格的是()【例2】A.9.70千克B.10.30千克C.9.60千克D.10.21千克【分析】根据“10±0.25千克”,可算出合格范围,再根据合格范围,选出答案.【解答】解:∵10﹣0.25=9.75(千克),10+0.25=10.25(千克),∴合格范围为:9.75~10.25千克.故选:D.【点评】本题考查了正数和负数,计算出合格范围是解题关键.【变式2-1】(2018秋•睢宁县期中)某粮店出售4种品牌的面粉,袋上分别标有质量为(20±0.1)kg、(20±0.2)kg、(20±0.3)kg、(20±0.4)kg,这种合格面粉最多相差()A.0.4kg B.0.5kg C.0.6kg D.0.8kg【分析】根据题意给出4种品牌的质量波动范围,并求出任意两袋质量相差的最大数.【解答】解:根据题意从中找出两袋质量波动最大的(20±0.4)kg,则相差0.4﹣(﹣0.4)=0.8kg.故选:D.【点评】本题考查了这正数和负数,有理数的减法运算时解题关键.【变式2-2】(2018秋•慈溪市期中)213路公交车从起点开始经过A,B,C,D四站到达终点,各站上下车人数如下(上车为正,下车为负)例如(7,﹣4)表示该站上车7人,下车4人.现在起点站有15人,A(4,﹣8),B(6,﹣5),C(7,﹣3),D(1,﹣4).车上乘客最多时有()名.A.13 B.14 C.15 D.16【分析】根据题意可以算出各个阶段对应的乘客人数,从而可以解答本题.【解答】解:由题意可得,起点到A站之间,车上有15人,A站到B站之间,车上有:15+4﹣8=11(人),B站到C站之间,车上有:11+6﹣5=12(人),C站到D站之间,车上有:12+7﹣3=16(人),D站到终点之间,车上有:16+1﹣4=13(人),由上可得,车上乘客最多有16人,故选:D.【点评】本题考查正负数,解答本题的关键是明确正负数在题目中的实际意义.【变式2-3】(2018秋•封开县期中)如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()A .﹣3.5B .+2.5C .﹣0.6D .+0.7【分析】求出每个数的绝对值,根据绝对值的大小找出绝对值最小的数即可.【解答】解:∵|﹣0.6|<|+0.7|<|+2.5|<|﹣3.5|,∴﹣0.6最接近标准,故选:C .【点评】本题考查了绝对值和正数和负数的应用,掌握正数和负数的概念和绝对值的性质是解题的关键,主要考查学生的理解能力,题目具有一定的代表性,难度也不大.【考点3 有理数相关概念】【方法点拨】解决此类问题需理解并熟记有理数相关概念,如①整数和分数统称为有理数;②正有理数、0和负有理数亦可称为有理数;③只有符号不同的两个数叫做互为相反数;④在数轴上原点的两旁,离开原点距离相等的两个点所表示的数,叫做互为相反数;⑤数轴上表示数a 的点与原点的距离叫做数a 的绝对值;⑥一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.【例3】(2018秋•江城区期中)下列说法中正确的是( )A .正数和负数统称为有理数B .有理数是指整数、分数、正有理数、负有理数和0五类C .一个有理数不是整数,就是分数D .整数包括正整数和负整数【分析】根据有理数的分类,逐一做出判断即可. 【解答】解:因为是正数,却不是有理数,故选项A 错误;有理数按定义分为整数和分数,按性质分为正有理数、负有理数和0.故选项B 错误;因为整数和分数统称有理数,所以一个有理数不是整数,就是分数,故选项C 正确;整数包括正整数、负整数和0,由于缺少0故选项D 错误.故选:C .【点评】本题考查有理数的分类,解题的关键是掌握有理数的分类标准,做到不重不漏.【变式3-1】(2018秋•常熟市期中)下列各数:47-,1.010010001,338,0,﹣π,﹣2.626626662…,∙∙21.0,其中有理数的个数是( )A .3B .4C .5D .6【分析】直接利用有理数的概念分析得出答案.【解答】解:﹣,1.010010001,,0,﹣π,﹣2.626626662…,0.,其中有理数为:﹣,1.010010001,,0,0.,共5个.故选:C.【点评】此题主要考查了有理数的相关概念,正确把握相关定义是解题关键.【变式3-2】下列说法正确的是()A.正数与负数互为相反数B.符号不同的两个数互为相反数C.数轴上原点两旁的两个点所表示的数是互为相反数D.任何一个有理数都有它的相反数【分析】A、B、C可举反例判断,D根据相反数的概念解答即可.【解答】解:A、B、C、如+3和﹣2不是互为相反数,故本选项错误;D、任何一个有理数都有它的相反数,正确.故选:D.【点评】本题考查了相反数的意义,相反数是只有符号不同的两个数.【变式3-3】(2018秋•东台市期中)下列说法正确的是()A.绝对值等于3的数是﹣3B.绝对值不大于2的数有±2,±1,0C.若|a|=﹣a,则a≤0D.一个数的绝对值一定大于这个数的相反数【分析】利用绝对值的知识分别判断后即可确定正确的选项.【解答】解:A、绝对值等于3的数是3和﹣3,故错误;B、绝对值不大于2的整数有±2,±1,0,故错误;C、若|a|=﹣a,则a≤0,正确,D、负数的绝对值等于这个数的相反数,故错误,故选:C.【点评】本题考查了绝对值的性质,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【考点4 利用数轴判断符号】【方法点拨】解决此类问题需由数轴得知字母所表示的数的正负性,再根据有理数加、减、乘、除、乘方、绝对值的意义以及数轴上右边点的数总比左边的数大判断即可.【例4】(2018秋•宿松县期末)有理数a,b在数轴上的表示如图所示,则下列结论中:①ab<0,②﹣a>﹣b,③a+b<0,④a﹣b<0,⑤a<|b|,正确的有()A.2个B.3个C.4个D.5个【分析】根据数轴知b<0<a,且|a|<|b|,再利用有理数的乘法、加法、减法及绝对值性质等知识点逐一判断可得.【解答】解:由数轴知b<0<a,且|a|<|b|,则①ab<0,此结论正确;②﹣a<﹣b,此结论错误;③a+b<0,此结论正确;④a﹣b>0,此结论错误;⑤a<|b|,此结论正确;故选:B.【点评】本题考查的是数轴和绝对值,熟知数轴上右边的数总比左边的大及有理数的混合运算法则是解答此题的关键.【变式4-1】(2018秋•西城区期末)如图,数轴上A,B两点对应的数分别是a和b,对于以下四个式子:①2a﹣b;②a+b;③|b|﹣|a|:④,其中值为负数的是()A.①②B.③④C.①③D.②④【分析】根据图示,可得b<﹣3,0<a<3,据此逐项判断即可.【解答】解:根据图示,可得b<﹣3,0<a<3,①2a﹣b>0;②a+b<0;③|b|﹣|a|>0;④<0.故其中值为负数的是②④.故选:D.【点评】此题主要考查了绝对值的含义和求法,以及数轴的特征和应用,要熟练掌握,解答此题的关键是判断出a、b的取值范围.【变式4-2】(2018秋•九龙坡区校级期中)如图,数轴上A、B两点分别对应有理数a、b,则下列结论:①ab <0;②a+b>0;③a﹣b>1;④a2﹣b2<0,其中正确的有()A.1个B.2个C.3个D.4个【分析】根据数轴的性质,可以得到两个点表示数的大小关系和符号,根据有理数计算法则可得出结论【解答】解:∵b<﹣1<0,0<a<1∴①ab<0,正确②a+b>0,错误③a﹣b>1,正确④a2﹣b2<0,正确故选:C.【变式4-3】(2018秋•黄陂区期中)有理数a、b、c在数轴上对应的点的位置,如图所示:①abc<0;②|a ﹣b|+|b﹣c|=|a﹣c|;③(a﹣b)(b﹣c)(c﹣a)>0;④|a|<1﹣bc,以上四个结论正确的有()个.A.4 B.3 C.2 D.1【分析】先根据数轴上a、b、c的位置判断它们的正负、大小,利用乘法的符号法则、有理数的减法法则、绝对值的化简等知识点逐个判断得结论.【解答】解:由数轴知:a<﹣1<0<b<c<1.∵a<0.b>0,c>0,∴abc<0,故①正确;∵a<b,b<c,a<c,∴|a﹣b|+|b﹣c|=b﹣a+c﹣b=c﹣a,|a﹣c|=c﹣a,∴|a﹣b|+|b﹣c|=|a﹣c|,故②正确;∵a<b,b<c,a<c,∴a﹣b<0,b﹣c<0,c﹣a>0∴(a﹣b)(b﹣c)(c﹣a)>0,故③正确;∵a<﹣1,∴|a|>1,∵0<b<c<1,∴0<bc<1,∴1﹣bc<1,∴|a|>1﹣bc,故④不正确.故选:B.【点评】本题考查了数轴上点的特点,有理数乘法的符号法则,有理数的大小比较,绝对值的化简等知识点,掌握减法、乘法的符号法则是解决本题的关键.【考点5 绝对值及偶次乘方的非负性】【方法点拨】直接利用绝对值及偶次乘方的非负数的性质分别得出字母的值,进而得出答案.【例5】(2019春•瑞安市期中)若|x+2|+(x+3y+1)2=0,则y x的值为.【分析】直接利用绝对值以及偶次方的性质分别化简得出答案.【解答】解:∵|x+2|+(x+3y+1)2=0,∴x+2=0,x+3y+1=0,解得:x=﹣2,y=,故y x=()﹣2=9.故答案为:9.【点评】此题主要考查了非负数的性质,正确得出x,y的值是解题关键.【变式5-1】(2018秋•蔡甸区期末)若(x﹣2)2与|x+2y|互为相反数,则y﹣x=.【分析】直接利用非负数的性质分别得出x,y的值,进而得出答案.【解答】解:∵(x﹣2)2与|x+2y|互为相反数,∴x﹣2=0,x+2y=0,解得:x=2,y=﹣1,故y﹣x=﹣1﹣2=﹣3.故答案为:﹣3.【点评】此题主要考查了非负数的性质,正确得出x,y的值是解题关键.【变式5-2】(2018秋•滨湖区校级月考)当x时,2﹣(x+3)2有最大值.【分析】直接利用偶次方的性质分析得出答案.【解答】解:当x+3=0时,2﹣(x+3)2有最大值,解得:x=﹣3.故答案为:=﹣3.【点评】此题主要考查了非负数的性质,正确利用偶次方的性质是解题关键.【变式5-3】(2018秋•江南区校级月考)当x=时,﹣10+|x﹣1|有最小值,最小值为.【分析】直接录用绝对值的性质分析得出答案.【解答】解:∵|x﹣1|最小为0,∴当x=1时,﹣10+|x﹣1|有最小值,最小值为:﹣10.故答案为:1,﹣10.【点评】此题主要考查了非负数的性质,正确掌握绝对值的性质是解题关键.【考点6 利用相反数、倒数、绝对值定义求值】【方法点拨】解决此类问题需熟知两个互为相反数的数和为0,两个互为倒数的数乘积为1,值得注意的是已知一个数的绝对值为非0的数,那么这个数应该有两个,此时应注意分类讨论,结果往往有两个.【例6】(2018秋•富顺县期中)若a,b互为相反数,c,d互为倒数,m的绝对值为4.(1)直接写出a+b,cd,m的值;(2)求m+cd+m ba的值.【分析】(1)直接利用互为相反数以及互为倒数和绝对值的定义分别分析得出答案;(2)利用(1)中所求,代入得出答案.【解答】解:(1)∵a,b互为相反数,c,d互为倒数,m的绝对值为4,∴a+b=0,cd=1,m=±4;(2)由(1)得:原式=±4+1=5或﹣3.【点评】此题主要考查了倒数、相反数、绝对值,正确把握相关定义是解题关键.【变式6-1】(2019春•白塔区校级月考)已知a,b互为相反数,c,d互为倒数,m的绝对值等于3,求m2+(cd+a+b)×m+(cd)2018的值.【分析】利用倒数,相反数的性质,以及绝对值的代数意义求出a+b,cd,m的值,代入原式计算即可求出值.【解答】解:∵a,b互为相反数,c,d互为倒数,m的绝对值等于3,∴a+b=0,cd=1,|m|=3,当m=﹣3时,m2+(cd+a+b)×m+(cd)2018=(﹣3)2+(1+0)×(﹣3)+12018=9+1×(﹣3)+1=9+(﹣3)+1=7;当m=3时,∴m2+(cd+a+b)×m+(cd)2018=13【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.【变式6-2】(2018秋•临洮县月考)若a、b互为相反数,c、d互为倒数,p的绝对值等于2,则关于x的方程(a+b)x2+3cd•x﹣p2=0的解是多少?【分析】直接利用倒数以及绝对值、相反数的定义得出答案.【解答】解:∵a、b互为相反数,c、d互为倒数,p的绝对值等于2,∴a+b=0,cd=1,p2=4,∴(a+b)x2+3cd•x﹣p2=0,整理得:3x﹣4=0,解得:x=.【点评】此题主要考查了倒数、相反数、绝对值,正确把握相关定义是解题关键.【变式6-3】(2018秋•湖里区校级月考)已知:有理数m所表示的点与﹣1表示的点距离4个单位,a,b 互为相反数,且都不为零,c,d互为倒数.求:2a+2b+(a+b﹣3cd)﹣m的值.【分析】直接利用相反数以及互为倒数的性质得出a+b=0,cd=1,进而分类讨论得出答案.【解答】解:∵有理数m所表示的点与﹣1表示的点距离4个单位,∴m=﹣5或3,∵a,b互为相反数,且都不为零,c,d互为倒数,∴a+b=0,cd=1,当m=﹣5时,∴2a+2b+(a+b﹣3cd)﹣m=2(a+b)+(a+b)﹣3cd﹣m=﹣3﹣(﹣5)=2,当m=3时,2a+2b+(a+b﹣3cd)﹣m=2(a+b)+(a+b)﹣3cd﹣m=﹣3﹣3=﹣6综上所述:原式=2或﹣6.【点评】此题主要考查了倒数与相反数,正确把握相关定义是解题关键.【考点7 利用绝对值、乘方的性质求值】【方法点拨】解决此类问题需熟知一个数的绝对值或乘方是一个正数,那么这个数应该有两个,需注意进行分类讨论,另外会熟练运用绝对值的意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.包括逆向用法.【例7】(2018秋•江阴市校级月考)若实数a,b满足a2=16,|b|=6,且a﹣b<0,求a+b的值.【分析】根据有理数的乘方和绝对值的性质求出a、b,再根据a﹣b<0判断出a、b的对应情况,然后相加即可得解.【解答】解:∵a2=16,|b|=6,∴a=±4,b=±6,∵a﹣b<0,∴a<b,∴①a=﹣4,b=6,则a+b=2,②a=4,b=6,则a+b=10,综上所述,a+b的值等于2或10.【点评】本题考查了有理数的加法,绝对值的性质,有理数的减法,确定出a、b的值是解题的关键.【变式7-1】(2018秋•孝南区月考)已知|a|=8,b2=36,若|a﹣b|=b﹣a,求a+b的值.【分析】根据绝对值和乘方的意义可得a=±8,b=±6,再由绝对值的性质可得a﹣b≤0,进而可确定a、b的值,然后可得答案.【解答】解:∵|a|=8,b2=36,∴a=±8,b=±6,∵|a﹣b|=b﹣a,∴a﹣b≤0,∴a≤b,∴a=﹣8,b=﹣6,则a+b=﹣14,a=﹣8,b=6,a+b=﹣2,故答案为:﹣2或﹣14.【点评】此题主要考查了绝对值的性质和有理数的乘方,关键是掌握有理数乘方的意义,掌握非正数的绝对值等于它的相反数.【变式7-2】(2018秋•江岸区期中)已知|x+4|=5,(1﹣y)2=9,且x﹣y<0,求2x+y的值.【分析】根据绝对值和偶次幂得出x,y的值,进而解答即可.【解答】解:因为|x+4|=5,(1﹣y)2=9,且x﹣y<0,所以x=1,y=4,或x=﹣9,y=﹣2,所以2x+y=6或﹣20.【点评】本题考查有理数的乘方、绝对值的性质,解题的关键是根据绝对值和偶次幂得出x,y的值.【变式7-3】(2018秋•泰兴市校级月考)若|a|=2,|b|=3,|c|=6,|a+b|=﹣(a+b),|b+c|=b+c.计算a+b﹣c的值.【分析】根据题意可以求得a、b、c的值,从而可以求得所求式子的值.【解答】解:∵|a|=2,|b|=3,|c|=6,∴a=±2,b=±3,c=±6,∵|a+b|=﹣(a+b),|b+c|=b+c,∴a+b≤0,b+c≥0,∴a=±2,b=﹣3,c=6,∴当a=2,b=﹣3,c=6时,a+b﹣c=2+(﹣3)﹣6=﹣7,a=﹣2,b=﹣3,c=6时,a+b﹣c=﹣2+(﹣3)﹣6=﹣11.【点评】本替考查有理数的加减混合运算、绝对值,解答本题的关键是明确有理数加减混合运算的计算方法.【考点8 有理数混合运算】【方法点拨】解决此类问题需熟练掌握有理数混合运算的先后顺序,先算乘方,再算乘除,最后算加减,有括号的先算括号里,值得注意有些题可能会运用运算律进行简便运算.【例8】(2019春•黄州区校级月考)计算:(1)135()36 6412-+-⨯(2)22128(3)2()42()433-÷⨯-++⨯- 【分析】(1)原式利用乘法分配律计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:(1)原式=﹣6+27﹣15=6;(2)原式=9××(﹣)+4+4×(﹣)=﹣﹣+4=﹣.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.【变式8-1】(2018秋•宝应县期末)计算:(1)215[1(425)]-----⨯(2)2019211(1)|3(3)|2---÷-- 【分析】(1)先算乘方,再算乘法,最后算减法;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;(2)先算乘方,再算除法,最后算减法;同级运算,应按从左到右的顺序进行计算;如果有括号和绝对值,要先做括号和绝对值内的运算.【解答】解:(1)﹣15﹣[﹣1﹣(4﹣22×5)]=﹣15﹣[﹣1﹣(4﹣4×5)]=﹣15﹣[﹣1﹣(4﹣20)]=﹣15﹣(﹣1+16)=﹣15﹣15=﹣30;(2)﹣12019﹣(1﹣)÷|3﹣(﹣3)2|=﹣1﹣÷|3﹣9|=﹣1﹣÷6=﹣1﹣=﹣1.【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.【变式8-2】(2019春•沙坪坝区校级月考)计算:(1)344[(2)()(2)]3(27)3-⨯-+--+-. (2)20191111()(24)3126---+⨯-. 【分析】(1)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值;(2)原式利用乘方的意义,以及乘法分配律计算即可求出值.【解答】解:(1)原式=﹣8﹣81﹣27=﹣113;(2)原式=﹣1+8﹣2+4=9.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.【变式8-3】(2018秋•渝中区校级期末)有理数的计算:(1)22321(21)(31)5353-+++- (2)201924242(1)[12()]339-+-÷⨯-+ 【分析】(1)去括号,再利用加法交换律和结合律计算可得;(2)根据有理数的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=﹣1+2+1+3﹣1=﹣1+6=5;(2)原式=﹣2﹣1××(12﹣+)=﹣2﹣×12=﹣2﹣9=﹣11.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则及其运算律.【考点9 有理数混合运算的应用】【方法点拨】对于应用题理解题意是解决此类题型的关键.【例9】(2018秋•新疆期末)某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数):(1)生产量最多的一天比生产量最少的一天多生产多少辆?(2)本周总生产量是多少?比原计划增加了还是减少了?增减数为多少?【分析】(1)由表格找出生产量最多与最少的,相减即可得到结果;(2)根据题意列出算式,计算即可得到结果.【解答】解:(1)7﹣(﹣10)=17(辆);(2)100×7+(﹣1+3﹣2+4+7﹣5﹣10)=696(辆),答:(1)生产量最多的一天比生产量最少的一天多生产17辆;(2)本周总生产量是696辆,比原计划减少了4辆.【点评】此题考查了有理数的加减混合运算,以及正数与负数,弄清题意是解本题的关键.【变式9-1】(2018秋•康巴什校级月考)根据实验测定:高度每增加1千米,气温大约变化量为﹣6℃,某登山运动员攀登2km后,(1)气温有什么变化?(2)过一会后运动员在攀登途中发回信息,报告他所在高度的气温为﹣15℃,如果当时地面温度为3℃,求此时该登山运动员攀登了少千米?【分析】(1)由高度每增加1千米,气温大约变化量为﹣6℃可得.(2)根据高度每增加1千米,气温大约降低6℃,由他所在高度的气温即可求出高度.【解答】解:(1)根据题意,登山运动员攀登2km后,气温下降12℃;(2)根据题意得:[3﹣(﹣15)]÷6×1=3(千米),则此时该登山运动员所在位置的高度是3千米.【点评】此题考查了有理数混合运算的应用,解题的关键是理解“高度每增加1千米,气温大约降低6℃”的意义.【变式9-2】(2018秋•雁塔区校级期末)快递配送员王叔叔一直在一条南北走向的街道上送快递,如果规定向北为正,向南为负,某天他从出发点开始所行走的路程记录为(长度单位:千米):+3,﹣4,+2.+3.﹣1,﹣1,﹣3(1)这天送完最后一个快递时,王叔叔在出发点的什么方向,距离是多少?(2)如果王叔叔送完快递后,需立即返回出发点,那么他这天送快递(含返回)共耗油多少升(已知每千米耗油0.2升)?【分析】(1)在计算最终位置的时候,既要考虑距离的变化,又要考虑方向的变化,所以包含表示方向的符号一起进行加减运算,即求:+3﹣4+2+3﹣1﹣1﹣3的和.(2)考虑耗油时,只要考虑路程的总变化,不需要考虑方向的变化,所以将上述数值的绝对值相加,并包括回到出发点的距离求总路程,再计算耗油量.【解答】解:(1)由题意得:+3﹣4+2+3﹣1﹣1﹣3=﹣9+8=﹣1答:王叔叔送完最后一个快递时,在出发点的南方,距离出发点是1km.(2)设王叔叔总的行驶路程为S,则S=|+3|+|﹣4|+|+2|+|+3|+|﹣1|+|﹣1|+|﹣3|+|﹣1|=18∵每行驶1千米耗油0.2升,∴耗油量为18×0.2=3.6答:王叔叔这天送快递(含返回)共耗油3.6升.【点评】本题考查的是有理数中正负数表示的意义与绝对值的意义,理解符合在问题中表示的意义是解决本题的关键.【变式9-3】小明是“环保小卫士”,课后他经常关心环境天气的变化,最近他了解到上周白天的平均气温,如下表(+表示比前一天升了,﹣表示比前一天下降了.单位:℃)已知上周周日平均气温是16.9℃,回答下列问题:(1)这一周哪天的℃平均气温最高是多少?(2)计算这一周每天的平均气温?(3)小明了解到本地的平均气温同期历史最高气温是17.2℃,最低气温是4.2℃,用一句话概括本地的气温变化.【分析】(1)观察表中数字不难看出:前六天中,除了星期二是负数,其它均为正数,显然周六的平均气温最高;(2)只需依次相加即可分别求出这一周每天的平均气温;(3)根据前面的计算结果,和历史数据比较就可以得到结论.【解答】解:(1)16.9+1.1=18℃18﹣0.3=17.7℃17.7+0.2=17.9℃17.9+0.4=18.3℃18.3+1=19.3℃19.3+1.4=20.7℃20.7﹣0.3=20.4℃故周六平均气温最高,最高是20.7℃;(2这周每天的平均气温是:周一16.9+1.1=18℃;周二18﹣0.3=17.7℃;周三17.7+0.2=17.9℃;周四17.9+0.4=18.3℃;周五18.3+1=19.3℃;周六19.3+1.4=20.7℃;周日20.7﹣0.3=20.4℃.(3)由于本地的平均气温同期历史最高气温是17.2℃,最低气温是4.2℃,所以本地温差变化不大.【点评】此题要求学生熟练进行有理数的连加减运算.【考点10 有关数轴的探究题】【方法点拨】解决此类问题数形结合思想是关键.【例10】(2018秋•海淀区校级期中)如图,半径为1的小圆与半径为2的大圆,有一个公共点与数轴上的原点重合,两圆在数轴上做无滑动的滚动,小圆的运动速度为每秒π个单位,大圆的运动速度为每秒2π个单位,(1)若小圆不动,大圆沿数轴来回滚动,规定大圆向右滚动的时间记为正数,向左滚动时间即为负数,依次滚动的情况录如下(单位:秒):﹣1,+2,﹣4,﹣2,+3,+6①第次滚动后,大圆与数轴的公共点到原点的距离最远;②当大圆结束运动时,大圆运动的路程共有多少?此时两圆与数轴重合的点之间的距离是多少?(结果保留π)(2)若两圆同时在数轴上各自沿着某一方向连续滚动,滚动一段时间后两圆与数轴重合的点之间相距9π,求此时两圆与数轴重合的点所表示的数.【分析】(1)①算出每次滚动后大圆与数轴的公共点到原点的距离,然后比较大小即可;②总路程与方向无关把每次的移动的距离相加即可;(2)分同向和反相两种情况讨论,同向路程之差为9π,反向路程之和为9π,然后求出相应时间,再根据不同方向确定两圆与数轴重合的点所表示的数【解答】解:(1)①:第1次滚动后,大圆与数轴的公共点到原点的距离:|﹣1×2π|=2π第2次滚动后,大圆与数轴的公共点到原点的距离:|﹣1×2π+2×2π|=2π第3次滚动后,大圆与数轴的公共点到原点的距离:|﹣1×2π+2×2π﹣4×2π|=6π第4次滚动后,大圆与数轴的公共点到原点的距离:|﹣1×2π+2×2π﹣4×2π﹣2×2π|=10π第5次滚动后,大圆与数轴的公共点到原点的距离:|﹣1×2π+2×2π﹣4×2π﹣2×2π+3×2π|=4π第6次滚动后,大圆与数轴的公共点到原点的距离:|﹣1×2π+2×2π﹣4×2π﹣2×2π+3×2π+6×2π|=8π所以第四次滚动后大圆与数轴的公共点到原点的距离最远.故答案为4;②总路程为:|﹣1×2π|+|+2×2π|+|﹣4×2π|+|﹣2×2π|+|+3×2π|+|+6×2π|=36π此时两圆与数轴重合的点之间的距离为:|﹣1×2π+2×2π﹣4×2π﹣2×2π+3×2π+6×2π|=8π(2)当它们同向运动时秒,小圆与数轴重合的点所表示的数为9π,大圆与数轴重合的点所表示的数为18π,或小圆与数轴重合的点所表示的数为﹣9π,大圆与数轴重合的点所表示的数为﹣18π,当它们反向运动时秒,小圆与数轴重合的点所表示的数为﹣3π,大圆与数轴重合的点所表示的数为6π,或小圆与数轴重合的点所表示的数为3π,大圆与数轴重合的点所表示的数为﹣6π,【点评】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.【练10-1】(2018秋•江岸区校级月考)如图,数轴上A,B两点对应的数分别﹣4,8.有一动点P从点A 出发第一次向左运动1个单位长度;然后在新的位置第二次运动,向右运动2个单位长度;在此位置第三次运动,向左运动3个单位长度,…按照如此规律不断地左右运动(1)当运动到第2018次时,求点P所对应的有理数.(2)点P会不会在某次运动时恰好到达某一个位置,使点P到点B的距离是点P到点A的距离的3倍?若可能请求出此时点P的位置,若不可能请说明理由.【分析】(1)根据题意可以发现点P运动后对应的点的规律,从而可以解答本题;(2)根据题意分两种情况:①当P点在A点的左边时;②当P点在AB之间时;可以求得点P对应的有理数.【解答】解:(1)﹣4﹣1+2﹣3+4﹣5+6﹣…﹣2017+2018=﹣4+1009=1005.故点P所对应的有理数是1005.(2)①当P点在A点的左边时,∵PB=3P A,∴AB=2P A,∴P A=6,∴P点对应的数为﹣10,﹣4﹣1+2﹣3+4﹣5+6﹣7+8﹣9+10﹣11=﹣10,∴可以;②当P点在AB之间时,。

最新京改版七年级数学下册第六章整式的运算重点解析试题(含答案解析)

最新京改版七年级数学下册第六章整式的运算重点解析试题(含答案解析)

京改版七年级数学下册第六章整式的运算重点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列运算正确的是()A.3a+2a=5a2B.﹣8a2÷4a=2aC.4a2•3a3=12a6D.(﹣2a2)3=﹣8a62、小明在做作业的时候,不小心把墨水滴到了作业本上,▄×2ab=4a2b+2ab3,阴影部分即为被墨汁弄污的部分,那么被墨汁遮住的一项是()A.(2a+b2)B.(a+2b)C.(3ab+2b2)D.(2ab+b2)3、下列说法正确的是()A.0不是单项式B.单项式xy的次数是1C.单项式22a b的系数是12D.多项式2321x y x+-的一次项次数是—14、如图所示的运算程序中,若开始输入x的值为2,则第2022次输出的结果是()A .-6B .-3C .-8D .-25、下列关于整式的说法错误..的是( ) A .单项式xy -的系数是-1B .单项式222mn 的次数是3C .多项式23xy x y +是二次三项式D .单项式32ab -与ba 是同类项 6、下列计算正确的是( )A .3362a a a +=B .538a a a ÷=C .()3263a b a b =D .()211a a a -=-7、把式子()()2m n m ---去括号后正确的是( )A .2m n m ---B .2m n m +-+C .2m n m --+D .2m n m +--8、若2210a b -=,2a b -=,则a b +的值为( )A .5B .2C .10D .无法计算9、下列各式中,能用平方差公式计算的是( )A .(a +b )(﹣a ﹣b )B .(a +b )(a ﹣b )C .(a +b )(a ﹣d )D .(a +b )(2a ﹣b )10、多项式2243x xy --的次数和常数项分别是( )A .1和4-B .3-和4-C .2和4-D .3和4-第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、观察下面一列数,1,2,﹣3,﹣4,5,6,﹣7,﹣8,9,10,﹣11,﹣12,…则这列数的第2013个数是______.2、观察下列单项式:2x,5x2,10x3,17x4,26x5,…,按此规律,第10个单项式是_____.3、已知10a b ab+==,则22a b+的值为________.4、定义一种新运算⊗:x⊗y=3x﹣2y,那么(﹣5)⊗4=___.5、已知代数式235x x++的值是7,则代数式2392x x+-的值是_______.三、解答题(5小题,每小题10分,共计50分)1、先化简,在求值:其中12x=,12y=.()()2232322x xy x y xy y⎡⎤+-----⎣⎦2、在任意n位正整数K的首位后添加6得到的新数叫做K的“顺数”,在K的末位前添加6得到的新数叫做K的“逆数”,若K的“顺数”与“逆数”之差能被17整除,称K是“最佳拍档数”.比如31568的“顺数”为361568,31568的“逆数”为315668,31568的“顺数”与“逆数”之差为36156831566845900-=,45900172700÷=,所以31568是“最佳拍档数”.(1)请根据以上方法判断1324______(选填“是”或“不是”)最佳拍档数.(2)若一个首位是4的四位“最佳拍档数”N,其个位数字与十位数字之和为7,且百位数字不大于十位数字,求所有符合条件的N的值.3、观察下面三行数,回答问题:2-,4,8-,16,32-,64…1,7,5-,19,29-,67…2,5,1-,11,13-,35…(1)第①行数按什么规律排列,请用含n(n为正整数)的式子表示;(2)第②③行数与第①行数存在一定关系,计算这两行数的差(用含n的式子表示).4、计算下列各题(1)()222(2)x y xy -⋅- (2)24(1)(25)(25)x x x +-+- 5、先化简,再求值2221(63)(52)2(1)2ab a b ab -+---,其中2a =,12b =----------参考答案-----------一、单选题1、D【分析】根据合并同类项,同底数幂的除法和乘法法则,积的乘方和幂的乘方法则,逐项计算即可.【详解】A.325a a a +=,故该选项错误,不符合题意;B.2842a a a -÷=-,故该选项错误,不符合题意;C.2354312a a a =⋅,故该选项错误,不符合题意;D. 236(2)8a a -=-,故该选项正确,符合题意;故选:D .【点睛】本题考查合并同类项,同底数幂的除法和乘法,积的乘方和幂的乘方.掌握各运算法则是解答本题的关键.2、A【分析】根据多项式除单项式的运算法则计算即可.∵(4a 2b +2ab 3)÷2ab =2a +b 2,∴被墨汁遮住的一项是2a +b 2.故选:A .【点睛】本题考查了多项式除以单项式,一般地,多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加.3、C【分析】根据单项式的判断,单项式的系数与次数,多项式的次数、项数等概念逐项分析判断即可【详解】解:A. 0是单项式,故该选项不正确,不符合题意;B. 单项式xy 的次数是2,故该选项不正确,不符合题意;C. 单项式22a b 的系数是12,故该选项正确,符合题意;D. 多项式2321x y x +-的一次项次数是2,故该选项不正确,不符合题意;故选C【点睛】本题考查了单项式的判断,单项式的系数与次数,多项式的次数、项数等概念,掌握以上知识是解题的关键.单项式中,所有字母的指数和叫单项式的次数,数字因数叫单项式的系数,单项式中所有字母的指数的和叫做它的次数,通常系数不为0,应为有理数, 多项式的每一项都有次数,其中次数最高的项的次数,就是这个多项式的次数,一个多项式的项数就是合并同类项后用“+”或“-”号之间的多项式个数,次数就是次数和最高的那一项的次数; 一个多项式中,次数最高的项的次数,叫做这个多项式的次数;多项式的项数就是多项式中包含的单项式的个数.4、B先分别求出第1-8次输出的结果,再归纳类推出一般规律,由此即可得出答案.【详解】解:第1次输出的结果为1212⨯=;第2次输出的结果为154-=-;第3次输出的结果为1(4)22⨯-=-;第4次输出的结果为1(2)12⨯-=-;第5次输出的结果为156--=-;第6次输出的结果为1(6)32⨯-=-;第7次输出的结果为358--=-;第8次输出的结果为1(8)42⨯-=-,…,由此可知,从第2次开始,输出的结果是以−4,−2,−1,−6,−3,−8循环往复的,因为(20221)63365-÷=,所以第2022次输出的结果与第6次输出的结果相同,即为−3,故选:B.【点睛】本题考查了程序流程图与代数式求值,正确归纳类推出一般规律是解题关键.5、C【分析】根据单项式系数和次数的定义,多项式的定义,同类项的定义逐一判断即可.【详解】解:A 、单项式xy -的系数是-1,说法正确,不符合题意;B 、单项式222mn 的次数是3,说法正确,不符合题意;C 、多项式23xy x y +是三次二项式,说法错误,符合题意;D 、单项式32ab -与ba 是同类项,说法正确,不符合题意; 故选C .【点睛】本题主要考查了单项式的次数、系数的定义,多项式的定义,同类项的定义,解题的关键在于能够熟知相关定义:表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数;几个单项式的和的形式叫做多项式,每个单项式叫做多项式的项,不含字母的项叫做常数项,多项式里,次数最高项的次数叫做多项式的次数;同类项的定义:如果两个单项式所含的字母相同,相同字母的指数也相同,那么这两个单项式就叫做同类项.6、C【分析】根据幂的运算及整式的乘法运算即可作出判断.【详解】A 、333622a a a a +=≠,故计算不正确;B 、5328a a a a ÷=≠,故计算不正确;C 、()3263a b a b =,故计算正确; D 、()21a a a a -=-,故计算不正确.故选:C【点睛】本题考查了同底数幂的除法、积的乘方、同类项合并、单项式乘多项式等知识,掌握这些知识是关键.7、C【分析】由去括号法则进行化简,即可得到答案.【详解】解:()()22m n m m n m =----+-,故选:C【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.顺序为先大后小.8、A【分析】利用平方差公式:()()22a b a b a b -=+-进行求解即可.【详解】解:∵2a b -=,()()2210a b a b a b -=+-=,∴5a b +=,故选A .【点睛】本题主要考查了平方差公式,熟知平方差公式是解题的关键.9、B【分析】根据平方差公式(a+b)(a﹣b)=a2﹣b2对各选项分别进行判断.【详解】解:A、(a+b)(﹣a﹣b)=﹣(a+b)(a+b)两项都相同,不能用平方差公式计算.故本选项不符合题意;B、(a+b)(a﹣b)存在相同的项与互为相反数的项,能用平方差公式计算,故本选项符合题意;C、(a+b)(a﹣d)中存在相同项,没有相反项,不能用平方差公式计算.故本选项不符合题意;D、(a+b)(2a﹣b)中存在相反项,没有相同项,不能用平方差公式计算.故本选项不符合题意;故选:B.【点睛】本题考查了平方差公式.运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.10、D【分析】多项式的次数是其中最大的非零项的次数;多项式中不含字母的项是常数项.【详解】解:有题意可知多项式的次数为3,常数项为4故选D.【点睛】本题考查了多项式的次数和常数项.解题的关键在于正确判断次数所在的项.常数项的符号是易错点.二、填空题1、2013【分析】由题意得出这组数字的绝对值等于序数,若以四个数为一个周期,每个周期前两个数为正数,后两个数为负数,据此解答即可.【详解】解:根据题意可知,这组数字的绝对值等于序数,若以四个数为一个周期,每个周期前两个数为正数,后两个数为负数,据此第2013个数的绝对值是2013,∵2013÷4=503…1,∴第2013个数为正数,则第2013个数为2013,故答案为:2013.【点睛】本题主要考查了数字的变化规律,根据已知数的规律得出这组数字的绝对值等于序数,若以四个数为一个周期,每个周期前两个数为正数,后两个数为负数是解题的关键.2、101x10【分析】分析题中每个单项式,系数为(n2+1),含未知数的部分为:x n,则第n项应为:(n2+1)x n.【详解】解:所给单项式分别是2x,5x2,10x3,17x4,26x5,…,则第n个单项式为:(n2+1)x n.故第10个单项式为:(102+1)x10=101x10.故答案为:101x10.【点睛】本题考查了单项式,解题的关键是发现所给单项式的系数和次数规律,从而解答问题.3、25【分析】把已知条件a b +=【详解】解:∵a b +=∴22245a ab b ++=,∵10ab =,∴224521025a b +=-⨯=..故答案是:25.【点睛】本题考查了完全平方公式,解题的关键是熟记公式结构,灵活运用.4、-23【分析】根据新定义的运算代入数值计算即可得.【详解】解:∵32x y x y ⊗-=,∴()54-⊗()3524=⨯--⨯,158=--,23=-.故答案为:﹣23.题目主要考查求代数式的值,理解题目中新定义的运算是解题关键.5、4【分析】根据题意,可先求出x 2+3x 的值,然后整体代入所求代数式求值即可.【详解】解:∵235x x ++=7,∴x 2+3x =2,则3(x 2+3x )=6,∴3x 2+9x -2=3(x 2+3x )-2=4.故答案为:4.【点睛】本题考查了代数式求值,解题的关键是代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式x 2+3x 的值,然后利用“整体代入法”求代数式的值.三、解答题1、4xy ;1【解析】【分析】根据整式的加减计算法则和去括号法则化简,然后代值计算即可.【详解】解:()()2232322x xy x y xy y ⎡⎤+-----⎣⎦ ()22363222x xy x y xy y =+--++22363222x xy x y xy y =+-+--当12x=,12y=时,原式114122=⨯⨯=.【点睛】本题主要考查了整式的化简求值和去括号,解题的关键在于能够熟练掌握相关计算法则.2、(1)是;(2)4152或4661【解析】【分析】(1)根据定义得出1324的“顺数”与“逆数”,计算“顺数”与“逆数”的差,根据是否能被17整除即可得答案;(2)设十位数字为x,百位数字为y,可得0≤x≤7,0≤y≤7,y≤x,根据“最佳拍档数”的定义可得59409090017x y--是整数,进而可得出x、y的值,即可得答案.【详解】(1)1324的“顺数”与“逆数”分别为16324和13264,∵(1632413264)17-÷=180,∴1324是“最佳拍档数”.故答案为:是(2)设十位数字为x,百位数字为y,∵个位数字与十位数字之和为7,百位数字不大于十位数字,∴个位数字为(7x-),∴N=4000+100y+10x+7x-,0≤x≤7,0≤y≤7,y≤x,[(46000+100y+10x+7x-)-(40000+1000y+100x+60+7x-)]÷17=59409090017x y--=3497555317x y x y -+--+, ∵N 为“最佳拍档数”, ∴7517x y -+为整数, ∵x 、y 都为整数,0≤x ≤7,0≤y ≤7,y ≤x ,∴51x y =⎧⎨=⎩或66x y =⎧⎨=⎩, ∴N =4152或N =4661.【点睛】本题考查整式的加减,正确理解“顺数”、“逆数”、“最佳拍档数”的定义,熟练掌握合并同类项法则是解题关键.3、(1)(1)2n n -;(2)1(1)2n n --或11(1)2n n +--【解析】【分析】(1)先确定符号,奇数为负,偶数为正,表示为(1)n -,再确定数值,2=12,4=22,8=32,把符号与数值组合即为答案;(2)第②行比第①行各数多3,第③行比第①行各数一半多3,计算即可.【详解】(1)2-,4,8-,16,32-,64…奇数为负,偶数为正,符号可表示为(1)n -,∵2=12,4=22,8=32,…∴规律排是(1)2n n -;(2)∵第②行比第①行各数多3,∴第②行的规律是(1)2n n -+3;∵第③行是比第①行各数一半多3, ∴第③行的规律是(1)22n n-+3即1(1)2n n --+3; ∴这两行的差为(1)2n n -+3-(1(1)2n n --+3)或 1(1)2n n --+3-(1)2n n -+3),整理,得1(1)2n n --或11(1)2n n +--.【点睛】本题考查了有理数中的规律,学会从符号,底数,指数角度寻找与序号的关系是解题的关键.4、(1)538x y -;(2)8x 29+.【解析】【分析】(1)先进行积的乘方计算,再计算乘法即可;(2)先分别利用完全平方公式公式和平方差公式计算,在进行合并同类项即可.【详解】解:(1)()222(2)x y xy -⋅- 42=4(2)x y xy ⋅-53=8x y -;(2)24(1)(25)(25)x x x +-+-22=4(1)(4225)x x x +--+22=444825x x x -+++=829x +.【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.5、22352ab a b -+,-11 【解析】【分析】先去括号,合并同类项,再将字母的值代入计算即可.【详解】 解:2221(63)(52)2(1)2ab a b ab -+--- =2223352222ab a b ab -+--+=22352ab a b -+ 当2a =,12b =-时,原式=221312()52()222⨯--+⨯⨯-=131022--=-11.【点睛】此题考查了整式加减中的化简求值,正确掌握整式的加减计算法则是解题的关键.。

七年级数学上册第一单元《有理数》-解答题专项知识点(答案解析)(1)

七年级数学上册第一单元《有理数》-解答题专项知识点(答案解析)(1)

一、解答题1.计算(1)(-1)2019+0.25×(-2)3+4÷23 (2)21233()12323-÷+-⨯+解析:(1)3;(2)-2【分析】(1)先计算乘方,然后计算乘除,再计算加减运算,即可得到答案;(2)先计算乘方,然后计算乘除,再计算加减运算,即可得到答案;【详解】解:(1)原式=-1+0.25×(-8)+6=-1-2+6=3;(2)原式=12931212323-÷+⨯-⨯+ =-3+6-8+3=-2;【点睛】本题考查了有理数的加减乘除混合运算,解题的关键是熟练掌握运算法则,正确的进行计算.2.计算: (1)5721()()129336--÷- (2)22115()(3)(12)23-+÷-⨯---⨯ 解析:(1)37;(2)50.【分析】(1)先把除法转化为乘法,然后根据乘法分配律计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】 (1)原式=572()(36)152824371293--⨯-=-++=. (2)原式=15(3)(3)(14)2145650-+⨯-⨯---⨯=-++=. 【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 3.计算 ①()115112236⎛⎫--+--- ⎪⎝⎭②()32112114132⎛⎫⎛⎫-÷-⨯--- ⎪ ⎪⎝⎭⎝⎭ ③524312(4)()12(152)2-÷-⨯-⨯-+ ④()()213132123242834⎛⎫⎛⎫-÷--+-⨯- ⎪ ⎪⎝⎭⎝⎭ ⑤222019111()22(1)2⎡⎤---÷--⨯-÷-⎢⎥⎣⎦ 解析:①-2;②458-;③-10;④-9;⑤-13. 【分析】①先去括号和绝对值,在进行加减运算即可.②先运算乘方,去括号,再将除法改为乘法,最后进行混合运算即可.③先运算乘方,再去括号,最后进行混合运算即可.④先运算乘方,利用乘法分配律去括号,再将除法改为乘法,最后进行混合运算即可. ⑤先运算乘方,再将除法改为乘法,再去括号,去绝对值,最后进行混合运算即可.【详解】①原式14171236=+-- 386176666=+-- 2=-. ②原式3274()(3)()48=-⨯-⨯--- 2798=-+ 458=-. ③原式3132(4)12(1516)4=-÷-⨯-⨯-+ 181214=⨯-⨯ 10=-.④原式()()()()1171542242424834=⨯--⨯--⨯-+⨯- 8335690=-++-9=-.⑤原式11(12)2(1)4=---÷-⨯÷-1(142)2=-+-⨯-⨯1(6)2=-+-⨯112=--13=-.【点睛】本题考查有理数的混合运算,掌握有理数混合运算的顺序是解答本题的关键. 4.计算:(1)231+-+;(2)()3202111024⎡⎤-⨯+-÷⎣⎦. 解析:(1)6;(2)12-【分析】 (1)先化简绝对值,再算加法即可求解;(2)先算乘方,再算括号里面的,最后算乘除即可.【详解】(1)原式=2+3+1=6;(2)原式=1(108)4-⨯-÷=124-⨯÷=1124-⨯⨯=12- 【点睛】此题考查有理数的混合运算,掌握运算顺序和运算法则是解答此题的关键.5.某儿童自行车厂计划一周生产儿童自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天的生产量与计划每天的生产量有出入.实际情况如下表(超产记为正,减产记为负)(2)这周生产量最多的一天比生产量最少的一天多生产多少辆?(3)该厂实行每周计件工资制,每生产一辆可得50元,若超额完成任务,则超出部分每辆另奖12元;少生产一辆扣20元,那么该工厂这周的工资总额是多少元?解析:(1)该厂本周实际生产自行车1409辆;(2)产量最多的一天比产量最少的一天多生产自行车26辆;(3)该厂工人这一周工资总额是70558元.【分析】(1)根据每天的增减量,依次相加,可得答案;(2)根据每天的增减量,用最多的一天减去最少的一天即可;(3)该厂一周工资=实际自行车产量×50+超额自行车产量×12.【详解】解:(1)1400+5-2-4+13-10+16-9=1409(辆),答:该厂本周实际生产自行车1409辆;(2)16-(-10)=26(辆),答:产量最多的一天比产量最少的一天多生产自行车26辆;(3)50×1409+12×9=70558.答:该厂工人这一周工资总额是70558元.【点睛】本题考查有理数加、减运算的应用,用正数和负数表示.明白“+”是比计划多、“-”是比计划少是解题的关键.6.计算:(1)113623⎛⎫-⨯- ⎪⎝⎭ (2)2233(3)3(2)|4|-÷-+⨯-+-解析:(1)2;(2)-21.【分析】(1)根据有理数的混合运算法则即可求解;(2)根据有理数的混合运算法则即可求解.【详解】解:(1)113623⎛⎫-⨯-⎪⎝⎭ =1136623-⨯+⨯ =332-+=2;(2)2233(3)3(2)|4|-÷-+⨯-+-=993(8)4-÷+⨯-+=1244--+=-21.【点睛】此题主要考查有理数的运算,解题的关键是熟知其运算法则.7.计算:(1)()2131753-⨯---+ (2)311131484886⎛⎫-+⨯- ⎪⎝⎭解析:(1)6;(2)58. 【分析】(1)先计算乘方,再计算乘法,最后计算加减即可;(2)带分数化成假分数,利用乘法分配律去掉括号,再计算加减即可.【详解】(1)()2131753-⨯---+ 29753=-⨯++ 675=-++6=;(2)311131484886⎛⎫-+⨯- ⎪⎝⎭1591148484886=-+⨯-⨯ 3096888=-+- 30916888=-- 58=. 【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.8.如图,将一根木棒放在数轴(单位长度为1cm )上,木棒左端与数轴上的点A 重合,右端与数轴上的点B 重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B 时,它的右端在数轴上所对应的数为30;若将木棒沿数轴向左水平移动,则当它的右端移动到点A 时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长为________cm ;(2)图中点A 所表示的数是_______,点B 所表示的数是_______;(3)由(1)(2)的启发,请借助“数轴”这个工具解决下列问题:一天,妙妙去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要37年才出生;你若是我现在这么大,我就119岁啦!”请问奶奶现在多少岁了?解析:(1)8;(2)14,22;(3)奶奶现在的年龄为67岁.【分析】(1)由观察数轴可知三根这样长的木棒的长度,即可求出这根木棒的长;(2)由所求出的这根木棒的长,结合图中的已知条件即可求得A 和B 所表示的数;(3)根据题意,设数轴上小木棒的A 端表示妙妙的年龄,小木棒的B 端表示奶奶的年龄,则小木棒的长表示二人的年龄差,由此参照(1)中的方法结合已知条件分析解答即可.【详解】(1)观察数轴可知三根这样长的木棒长为30624cm -=,则这根木棒的长为2438cm ÷=;(2)由这根木棒的长为8cm ,所以A 点表示为6+8=14,B 点表示为6+8+8=22;(3)借助数轴,把妙妙和奶奶的年龄差看做木棒AB ,奶奶像妙妙这样大时,可看做点B 移动到点A ,此时点A 向左移后所对应的数为37-,可知奶奶比妙妙大()11937352⎡⎤⎣÷⎦--=,则奶奶现在的年龄为1195267-=(岁). 【点睛】此题考查认识数轴及用数轴表示有理数和有理数的加减法,难度一般,读懂题干要求是关键.9.某市质量监督局从某公司生产的婴幼儿奶粉中,随意抽取了20袋进行检查,超过标准质量的部分记为正数,不足的部分记为负数,抽查的结果如下表:(2)若每袋奶粉的标准质量为480克,则抽样检测的这些奶粉的总质量是多少克? 解析:(1)多1.75克;(2)9635克【分析】 (1)先计算出平均质量,若正则比标准质量多,若负则比标准质量少;(2)抽样总质量等于标准总质量加上超出的质量,或等于平均每袋质量乘以抽取的袋数.【详解】解:(1)()()15505551035110203520 1.571-÷=÷=⎡⨯+-⨯+⎤⎣⨯++⨯++⎦⨯⨯(克).所以这批样品每袋的平均质量比标准质量多1.75克.(2)()5428001.56793+⨯=(克)所以抽样检测的这些奶粉的总质量为9635克.【点睛】本题考查了有理数的混合运算和正负数的意义.有理数混合运算的顺序:先算乘除再算加减,有括号的先算括号里面的.10.计算:(1)()222112136⎡⎤⎛⎫⎛⎫-+---÷- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦(2)131121346⎛⎫-⨯-+ ⎪⎝⎭解析:(1)1;(2)9-【分析】(1)先算括号里面的,再算括号外面的即可;(2)根据乘法分配律计算即可;【详解】(1)()222112136⎡⎤⎛⎫⎛⎫-+---÷- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 11463⎡⎤=-+-⨯⎢⎥⎣⎦, 121=-+=;(2)131121346⎛⎫-⨯-+ ⎪⎝⎭, ()()()431121212346=-⨯--⨯+-⨯, 16929=-+-=-;【点睛】 本题主要考查了有理数的混合运算,准确计算是解题的关键.11.计算:(1)()21112424248⎛⎫-+--+⨯- ⎪⎝⎭(2)()()1178245122-÷-⨯--⨯+÷ 解析:(1)9;(2)34【分析】 (1)根据绝对值的性质、乘法分配律计算各项,即可求解;(2)先算乘除,再算加减,即可求解.【详解】解:(1)()21112424248⎛⎫-+--+⨯- ⎪⎝⎭ ()()()11144242424248=-+-⨯-+⨯--⨯- 01263=+-+9=;(2)()()1178245122-÷-⨯--⨯+÷()()1174204+=---- 34=. 【点睛】本题考查有理数的混合运算,掌握有理数的运算法则是解题的关键.12.计算(1))()()(2108243-+÷---⨯-;(2))()(22000112376⎡⎤--⨯--÷-⎥⎢⎦⎣. 解析:(1)20-;(2)116-. 【分析】(1)先计算有理数的乘方与乘法,再计算有理数的除法,然后计算有理数的加减法即可得;(2)先计算有理数的乘方,再计算有理数的加减乘除法即可得.【详解】(1)原式108412=-+÷-,10212=-+-,20=-;(2)原式())(112976=--⨯-÷-, ())(11776=--⨯-÷-, )(7176=-+÷-, 116=--, 116=-. 【点睛】本题考查了含乘方的有理数混合运算,熟练掌握有理数的运算法则是解题关键. 13.定义:数轴上给定不重合两点A ,B ,若数轴上存在一点M ,使得点M 到点A 的距离等于点M 到点B 的距离,则称点M 为点A 与点B 的“平衡点”.请解答下列问题: (1)若点A 表示的数为-3,点B 表示的数为1,点M 为点A 与点B 的“平衡点”,则点M 表示的数为_______;(2)若点A 表示的数为-3,点A 与点B 的“平衡点”M 表示的数为1,则点B 表示的数为________;(3)点A 表示的数为-5,点C ,D 表示的数分别是-3,-1,点O 为数轴原点,点B 为线段CD 上一点.①设点M 表示的数为m ,若点M 可以为点A 与点B 的“平衡点”,则m 的取值范围是________;②当点A 以每秒1个单位长度的速度向正半轴方向移动时,点C 同时以每秒3个单位长度的速度向正半轴方向移动.设移动的时间为t (0t >)秒,求t 的取值范围,使得点O 可以为点A 与点B 的“平衡点”.解析:(1)-1;(2)5;(3)①43t -≤≤-;②26t ≤≤且 5t ≠【分析】(1)根据平衡点的定义进行解答即可;(2)根据平衡点的定义进行解答即可;(3)①先得出点B 的范围,再得出m 的取值范围即可;②根据点A 和点C 移动的距离,求得点A 、C 表示的数,再由平衡点的定义得出答案即可.【详解】解:(1)(1)点M 表示的数=312-+=−1; 故答案为:−1;(2)点B 表示的数=1×2−(−3)=5;故答案为:5;(3)①设点B 表示的数为b ,则31b -≤≤-,∵点A 表示的数为-5,点M 可以为点A 与点B 的“平衡点”,∴m 的取值范围为:43m -≤≤-,故答案为:43m -≤≤-;②由题意得:点A 表示的数为5t -,点C 表示的数为33t -,∵点O 为点A 与点B 的平衡点,∴点B 表示的数为:5t -,∵点B 在线段CD 上,当点B 与点C 相遇时,2t =,当点B 与点D 相遇时,6t =,∴26t ≤≤,且 5t ≠,综上所述,当26t ≤≤且 5t ≠时,点O 可以为点A 与点B 的“平衡点”.【点睛】本题考查了实数与数轴,掌握数轴上点的表示方法,以及两点的中点表示方法是解题的关键.14.某粮仓原有大米132吨,某一周该粮仓大米的进出情况如下表:(运进大米记作“+”,运出大米记作“-”,例如:当天运进大米8吨,记作8+吨;当天运出大米15吨,记作15-吨)若经过这一周,该粮仓存有大米88吨.(1)求星期五粮仓大米的进出情况;(2)若大米进出粮仓的装卸费用为每吨15元,求这一周该粮仓需要支付的装卸总费用.解析:(1)星期五粮仓当天运出大米20吨;(2)2700元.【分析】(1)根据有理数的加法,可得答案;(2)根据单位费用乘以总量,可得答案.【详解】(1)m=88﹣(132﹣32+26﹣23﹣16+42﹣21)=﹣20,∴星期五粮仓当天运出大米20吨;(2)(|﹣32|+|+26|+|﹣23|+|﹣16|+|﹣20|+|+42|+|﹣21|)×15=2700(元),答:这一周该粮仓需要支付的装卸总费用为2700元.【点睛】本题考查了用正负数表示相反意义的量及有理数加减法的应用,第(2)问利用单位费用乘以总量是解题关键.15.计算题:(1)3×(﹣4)﹣28÷(﹣7);(2)﹣12020+(﹣2)3×1123⎛⎫-+⎪⎝⎭.解析:(1)﹣8;(2)13.【分析】(1)先计算乘除,再计算加减,即可得到答案;(2)先计算乘方、然后计算乘法和括号内的运算,再计算加法即可.【详解】解:(1)3×(﹣4)﹣28÷(﹣7)=(﹣12)+4=﹣8;(2)﹣12020+(﹣2)3×1123⎛⎫-+⎪⎝⎭.=-1+(-8)×16⎛⎫-⎪⎝⎭=413-+ =13. 【点睛】本题考查了有理数的加减乘除运算,解题的关键是熟练掌握运算法则进行解题. 16.小明早晨跑步,他从自己家出发,向东跑了2km 到达小彬家,继续向东跑了1.5km 到达小红家,然后又向西跑了4.5km 到达学校,最后又向东跑回到自己家.(1)以小明家为原点,以向东为正方向,用1个单位长度表示1km ,在图中的数轴上,分别用点A 表示出小彬家,用点B 表示出小红家,用点C 表示出学校的位置;(2)求小红家与学校之间的距离;(3)如果小明跑步的速度是250m/min ,那么小明跑步一共用了多长时间? 解析:(1)见解析;(2)4.5km ;(3)36分钟 【分析】(1)根据题意在数轴上标出小彬家和小红家,再标出学校即可; (2)根据数轴上两点距离的计算方法计算即可得出答案;(3)先计算小明总共跑的路程,先向东跑了3.5km ,再向西跑了4.5km ,再向东跑了1km ,用总路程除以跑步速度即可得出答案. 【详解】解:(1)如图所示:(2)3.5(1) 4.5()km --=, 故小红家与学校之间的距离是4.5km ; (3)小明一共跑了(2 1.51)29()km ++⨯=, 跑步用的时间是:900025036÷=(分钟). 答:小明跑步一共用了36分钟. 【点睛】本题主要考查了数轴上两点间的距离,根据题意列式计算式解决本题的关键. 17.设0a >,x ,y 为有理数,定义新运算:||a x a x =⨯※.如323|2|6=⨯=※,()414|1|a a -=⨯-※.(1)计算20210※和()20212-※的值. (2)若0y <,化简()23y -※.(3)请直接写出一组,,a x y 的具体值,说明()a x y a x a y +=+※※※不成立. 解析:(1)0;4042;(2)6y -;(3)1a =,2x =,3y =-(答案不唯一)(1)根据题意※表示前面的数与后面数的绝对值的积,直接代入数据求解计算; (2)有y<0,得到y 为负数,进而得到-3y 为正数,去绝对值后等于本身-3y ,再代入数据求解即可;(3)按照题意要求写一组具体的,,a x y 的值再验算即可. 【详解】解:(1)根据题意得:202102021|0|0=⨯=※; ()202122021|2|4042-=⨯-=※;(2)因为0y <, 所以30y ->,所以()()232|3|236y y y y -=⨯-=⨯-=-※; (3)由题意,当,,a x y 分别取1a =,2x =,3y =-时,此时()2311※※(-1)=1-=,而11※2※(-3)=2+3=5+,所以,()a x y a x a y +=+※※※不成立. 【点睛】本题是新定义题型,按照题目中给定的运算要求和顺序进行求解即可. 18.计算:(﹣1)2014+15×(﹣5)+8 解析:8 【分析】先算乘方,再算乘法,最后算加法,由此顺序计算即可. 【详解】 原式=1+15×(﹣5)+8=1﹣1+8=8. 【点睛】此题考查有理数的混合运算,注意运算的顺序与符号的判定.19.某粮库6天内粮食进、出库的吨数如下(“+”表示进库,“-”表示出库) +25,-22,-14,+35,-38,-20(1)经过这6天,仓库里的粮食是增加了还是减少了?)(2)经过这6天,仓库管理员结算时发现库里还存280吨粮,那么6天前仓库里存粮多少吨?(3)如果进出的装卸费都是每吨5元,那么这6天要付多少装卸费? 解析:(1)减少了34吨;(2)314吨;(3)770元 【分析】(1)求出6天的数据的和即可判断; (2)根据(1)中结果计算即可; (3)求出数据的绝对值的和,再乘5即可;解:(1)25−22−14+35−38−20=−34<0, 答:经过6天,粮库里的粮食减少了34吨; (2)280+34=314(吨), 答:6天前粮库里的存量314吨;(3)(25+22+14+35+38+20)×5=770(元), 答:这6天要付出770元装卸费. 【点睛】本题考查有理数混合运算的实际应用,正确理解题意,列出算式是解题的关键. 20.计算: (1)6÷(-3)×(-32) (2)-32×29-+(-1)2019-5÷(-54) 解析:(1)3;(2)1. 【分析】(1)根据有理数的乘除混合运算法则计算即可; (2)根据有理数的混合运算法则计算即可. 【详解】解:(1)原式=6×1-3⎛⎫⎪⎝⎭ ×(-32)=3;(2)原式=-9×29+(-1)-5×4-5⎛⎫ ⎪⎝⎭=-2-1+4 =1. 【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 21.计算: (1)-8+14-9+20(2)-72-5×(-2) 3+10÷(1-2) 10 解析:(1)17;(2)1. 【分析】(1)原式利用加法结合律相加即可求出值;(2)原式先计算乘方运算,再计算乘除法运算,最后算加减运算即可求出值. 【详解】解:(1)814920--++()()=891420--++=17-+34=17(2)2310752+()(1012)--⨯-÷-()1=4958+10--⨯-÷=49+40+10-=1【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,﹣4,+10,﹣8,﹣6,+13,﹣10. (1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米? (3)守门员全部练习结束后,他共跑了多少米? 解析:(1)回到了球门线的位置;(2)11米;(3)56米 【分析】(1)由于守门员从球门线出发练习折返跑,问最后是否回到了球门线的位置,只需将所有数加起来,看其和是否为0即可;(2)计算每一次跑后的数据,绝对值最大的即为所求; (3)求出所有数的绝对值的和即可. 【详解】解:(1)(+5)+(﹣4)+(+10)+(﹣8)+(﹣6)+(+13)+(﹣10) =(5+10+13)-(4+8+6+10) =28-28 =0.答:守门员最后回到了球门线的位置; (2)(3)|+5|+|﹣4|+|+10|+|﹣8|+|﹣6|+|+13|+|﹣10| =5+4+10+8+6+13+10 =56(米).答:守门员全部练习结束后,他共跑了56米. 【点睛】本题考查了正数和负数以及有理数加减运算的应用等知识点,解题的关键是理解“正”和“负”的相对性,确定具有相反意义的量.23.如图,数轴上A ,B 两点之间的距离为30,有一根木棒MN ,设MN 的长度为x .MN 数轴上移动,M 始终在左,N 在右.当点N 移动到与点A ,B 中的一个重合时,点M 所对应的数为9,当点N 移动到线段AB 的中点时,点M 所对应的数是多少?解析:点M所对应的数为24或-6.【分析】设MN=x,然后分类计算即可:①当点N与点A重合时,点M所对应的数为9,则点N对应的数为x+9;②当点N与点B重合时,点M所对应的数为9,则点N对应的数为x+9.【详解】设MN=x,①当点N与点A重合时,点M所对应的数为9,则点N对应的数为x+9,∵AB=30,∴当N移动到线段AB的中点时,点N对应的数为x+9+15=x+24,∴点M所对应的数为x+24-x=24;②当点N与点B重合时,点M所对应的数为9,则点N对应的数为x+9,∵AB=30,∴当N移动到线段AB的中点时,点N对应的数为x+9-15=x-6,∴点M所对应的数为x-6-x=-6;综上,点M所对应的数为24或-6.【点睛】本题综合考查了数轴的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.数形结合并分类讨论是解题的关键.24.点A、B在数轴上所表示的数如图所示,回答下列问题:(1)将A在数轴上向左移动1个单位长度,再向右移动9个单位长度,得到点C,求出B、C两点间的距离是多少个单位长度?(2)若点B在数轴上移动了m个单位长度到点D,且A、D两点间的距离是3,求m的值.解析:(1)B、C两点间的距离是3个单位长度;(2)m的值为2或8.【分析】(1)利用数轴上平移左移减,右移加可求点C所表示的数为﹣3﹣1+9=5,利用绝对值求两点距离BC=|2﹣5|=3;(2)分类考虑当点D在点A的左侧与右侧,利用AD=3,求出点D所表示的数,再利用BD=m求出m的值即可.【详解】解:(1)点C所表示的数为﹣3﹣1+9=5,∴BC=|2﹣5|=3.(2)当点D在点A的右侧时,点D所表示的数为﹣3+3=0,所以点B移动到点D的距离为m=|2﹣0|=2,当点D在点A的左侧时,点D所表示的数为﹣3﹣3=﹣6,所以点B移动到点D的距离为m=|2﹣(﹣6)|=8,答:m的值为2或8.【点睛】本题考查数轴上平移,两点距离问题,利用AD的距离分类讨论点D的位置是解题关键.25.画一条数轴,把1-12,0,3各数和它们的相反数在数轴上表示出来,并比较它们的大小,用“<”号连接.解析:数轴表示见解析;-3<112-<0<112<3.【分析】先画出数轴,把各数依次表示出来,从左到右用“<”把各数连接起来即可.【详解】解:112-的相反数是112,0的相反数是0,3的相反数是-3,在数轴上的表示如图所示:从左到右用“<”连接为:-3<112-<0<112<3.故答案为:-3<112-<0<112<3.【点睛】本题考查的是数轴的特点、相反数的定义及有理数的大小比较,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.26.在数轴上,一只蚂蚁从原点O出发,它先向左爬了2个单位长度到达点A,再向右爬了3个单位长度到达点B,最后向左爬了9个单位长度到达点C.(1)写出A,B,C三点表示的数;(2)根据点C在数轴上的位置回答,蚂蚁实际上是从原点出发,向什么方向爬了几个单位长度?解析:(1)A,B,C三点表示的数分别是-2,1,-8;(2)向左爬了8个单位.【分析】(1)向左用减法,向右用加法,列式求解即可写出答案;(2)根据C点表示的数,向右为正,向左为负,继而得出答案.【详解】解:(1)A点表示的数是0-2=-2,B 点表示的数是-2+3=1,C 点表示的数是1-9=-8;(2)∵O 点表示的数是0;C 点表示的数是-8, ∴蚂蚁实际上是从原点出发,向左爬了8个单位. 【点睛】本题考查了数轴的知识及有理数的加减法的应用,属于基础题,比较简单,理解向左用减法,向右用加法,是关键.27.计算:(1)()()()923126--⨯-+÷-(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭. 解析:(1)1;(2)-1. 【分析】(1)先算乘除,再算加减即可求解;(2)先算乘方,后算除法,最后算加减即可求解. 【详解】(1)()()()923126--⨯-+÷- =962-- =1;(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭=11891632-+-÷ =1893216-+-⨯=892-+- =-1.【点睛】此题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化. 28.探索代数式222a ab b -+与代数式2()a b -的关系 (1)当5a =,2b =-时,分别计算两个代数式的值. (2)你发现了什么规律?(3)利用你发现的规律计算:2220182201820192019-⨯⨯+ 解析:(1)49, 49;(2)a 2−2ab +b 2=(a−b )2;(3)1. 【分析】(1)将a 、b 的值分别代入a 2−2ab +b 2与(a−b )2计算可得;(2)根据(1)中的两式的计算结果即可归纳总结出关系式; (3)原式变形后,利用完全平方公式计算可得结果. 【详解】解:(1)当a =5,b =−2时,a 2−2ab +b 2=52−2×5×(−2)+(−2)2=25+20+4=49, (a−b )2=[5−(−2)]2=72=49;(2)根据(1)的计算,可得规律:a 2−2ab +b 2=(a−b )2; (3)20182−2×2018×2019+20192 =(2018−2019)2 =(−1)2 =1. 【点睛】本题考查了代数式的求值及完全平方公式的应用,解题的关键是掌握代数式的求值方法以及利用完全平方公式简便运算.29.阅读下列材料:(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩,即当0x <时,1x x x x ==--.用这个结论可以解决下面问题:(1)已知a ,b 是有理数,当0ab ≠时,求a ba b+的值; (2)已知a ,b ,c 是有理数,0a b c ++=,0abc <,求b c a c a ba b c+++++的值. 解析:(1)2或2-或0;(2)-1. 【分析】(1)分三种情况讨论,①0,0a b >>,②0,0a b <<,③0ab <,分别根据题意化简即可;(2)由0a b c ++=整理出,,a b c b c a a c b +=-+=-+=-,判断a b c ,,中有两正一负,再整体代入,结合题意计算即可. 【详解】 (1)0ab ≠∴①0,0a b >>,==1+1=2a b a ba b a b++; ②0,0a b <<,==11=2a b a ba b a b+-----; ③0ab <,=1+1=0a ba b+-,综上所述,当0ab ≠时,a ba b+的值为:2或2-或0; (2)0a b c ++=,0abc <,,a b c b c a a c b ∴+=-+=-+=-即a b c ,,中有两正一负,∴==()1b c a c a b a b c a b ca b c a b c a b c+++---++++-++=-. 【点睛】本题考查绝对值的非负性以及有理数的运算等知识,是重要考点,难度一般,掌握相关知识是解题关键. 30.计算 (1)3124623⎛⎫⎛⎫-÷-+⨯- ⎪ ⎪⎝⎭⎝⎭(2)()()34011 1.950.50|5|5---+-⨯⨯--+. 解析:(1)14;(2)0 【分析】(1)先计算乘法和除法,再计算加法;(2)分别计算乘方、乘法和绝对值,再计算加法和减法. 【详解】解:(1)原式=2124633⎛⎫⎛⎫-⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭()162=+-14=;(2)原式011055=-++-+=0.【点睛】本题考查有理数的混合运算.(1)中注意要先把除法化为乘法再计算;(2)中注意多个有理数相乘时,只要有一个因数为0,那么积就为0.。

重难点解析人教版七年级数学上册第一章 有理数难点解析试题(含答案详解版)

重难点解析人教版七年级数学上册第一章 有理数难点解析试题(含答案详解版)

人教版七年级数学上册第一章有理数难点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、数轴上,把表示2的点向左平移3个单位长度得到的点所表示的数是().A.-5 B.-1 C.1 D.52、3的相反数为()A.﹣3 B.﹣13C.13D.33、如果13,5,244a b c==-=-,那么||||a b c+-等于().A.2-B.172C.2 D.172-4、在5-,3-,0,1.7这4个数中绝对值最大的数是()A.5-B.3-C.0 D.1.7 5、若有理数a,b满足2022|3-|+(+2)a b=0,则a+b的值为()A.1 B.﹣1 C.5 D.﹣5 6、下列各组数中,互为相反数是()A .||a 与a -B .||a 与aC .12-与12- D .12与12 7、如图,已知数轴上,A B 两点表示的数分别是,a b ,则计算b a -正确的是( )A .b a -B .-a bC .a b +D .a b --8、若a 、b 互为相反数,c 、d 互为倒数,m +1的绝对值为5,则式子|m |﹣cd a bm++的值为( ) A .3B .3或5C .3或﹣5D .49、在计算|(-5)+□|的□中填上一个数,使结果等于11,这个数是( ) A .16B .6C .16或6D .16或-610、下列各式,计算正确的是( ) A .|3||2|1--+-=B .311252⎛⎫--÷-= ⎪⎝⎭C .43443433⎛⎫-÷-⨯= ⎪⎝⎭D .23112(2)(2)424⎛⎫---+-÷-= ⎪⎝⎭第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、把8.5046用四舍五入法精确到0.01后所得到的近似数是______.2、如图,边长为1的正方形ABCD ,沿数轴顺时针连续滚动.起点A 和2-重合,则滚动2026次后,点C 在数轴上对应的数是______.3、点A 和点B 是数轴上的两点,点A B 表示的数为1,那么A 、B 两点间的距离为_____.4、中国古代的算筹计数法可追溯到公元前5世纪.摆法有纵式和横式两种(如图所示),以算筹计数的方法是摆个位为纵,十位为横,百位为纵,千位为横……这样纵横依次交替,宋代以后出现了笔算,在个位数划上斜线以表示负数,如 表示752-,表示2369,则表示________.5、求-2017的相反数与12的倒数的和是_________ 三、解答题(5小题,每小题10分,共计50分)1、已知a 与b 的差为223,b 与c 互为倒数,c 与d 的和为145,若2d =,求a 、b 、c 的值.2、计算:(1)21571|835|()()26126--+-÷-;(2)5231(1)(35)[1(3)]7-⨯--⨯--.3、计算: (1)计算:117313()(48)126424-+-⨯- (2)11(370)0.2524.5(25%)542⎛⎫⎛⎫-⨯-+⨯+-⨯- ⎪ ⎪⎝⎭⎝⎭(3)15(3)3(811)236⎛⎫-÷-÷---⨯ ⎪⎝⎭(4)(-9)÷(-4)÷(-2)(5)111111(1)(1)(1)(1)(1)(1)234520032004----⋯-- (6)2004×20032003-2003×20042004 4、计算:(1)(6)(13)-+- (2)4354⎛⎫-+ ⎪⎝⎭5、把下列各数填在相应的集合中: 15,-12,0.81,-3,227,-3.1,-4,171,0,3.14,π,1.6 正数集合{ …}; 负分数集合{ …}; 非负整数集合{ …}; 有理数集合{ …}.-参考答案-一、单选题 1、B 【解析】 【分析】根据数轴上点的坐标特点及平移的性质解答即可. 【详解】解:根据题意:数轴上2所对应的点为A ,将A 点左移3个单位长度,得到点的坐标为2-3=-1, 故选:B .【考点】本题考查了数轴上的点与实数对应关系及图形平移的性质等有关知识. 2、A 【解析】 【分析】根据相反数的定义:只有符号不同的两个数互为相反数计算即可. 【详解】解:3的相反数是﹣3. 故选:A . 【考点】此题考查求一个数的相反数,解题关键在于掌握相反数的概念. 3、C 【解析】 【分析】根据有理数的加法,先计算绝对值,再进行混合运算即可. 【详解】13,5,244a b c ==-=-∴||||a b c +-135244=---3342244=-= 故选C . 【考点】本题考查了代数式求值,有理数的加减运算,求一个数的绝对值,正确的计算是解题的关键.4、A 【解析】计算绝对值要根据绝对值的定义分别求出这四个数的绝对值,再进行比较即可. 【详解】解:|- 5|=5, |- 3|=3, |0|=0,|1.7|=1.7, ∵5>3>1.7>0,∴绝对值最大的数为-5, 故选: A. 【考点】本题考查的是绝对值的规律,一个 正数的绝对值是它本身,一个负数的绝对值是它的相反数, 0的绝对值是0. 5、A 【解析】 【分析】根据绝对值和偶次方的非负性求出a ,b 的值,即可得到a +b 的值. 【详解】解:∵|3-|0a ≥,2022(2)0b +≥ ∴3-a =0,b +2=0 ∴a =3,b =-2 ∴a +b =1 故选:A . 【考点】本题考查绝对值和偶次方的非负性,有理数的加法,解题的关键是掌握几个非负数的和为0,则这几个非负数都为0. 6、C 【解析】 【分析】根据相反数的定义:只有符号不同的两个数互为相反数,进行逐一判断即可. 【详解】解:A 、||a 与a -,当a 小于0时,||=a a -,则||a 与a -不一定是相反数,此说法不符合题意; B 、||a 与a ,当a 大于0时,||=a a ,则||a 与a 不一定是相反数,此说法不符合题意; C 、11=22-,由12和12-互为相反数可知12-与12-互为相反数,此说法符合题意;D 、11=22-,可知12-与12不是相反数,此说法不符合题意;故选C . 【考点】本题主要考查了相反数的定义,解题的关键在于能够熟练掌握相反数的定义. 7、C 【解析】 【分析】根据数轴上两点的位置,判断,a b 的正负性,进而即可求解. 【详解】解:∵数轴上,A B 两点表示的数分别是,a b , ∴a <0,b >0,∴()b a b a a b -=--=+,【考点】本题考查了数轴,绝对值,掌握求绝对值的法则是解题的关键.8、B【解析】【分析】【详解】【分析】利用相反数、倒数的性质,以及绝对值的代数意义求出各自的值,代入原式计算即可求出值.∵a,b互为相反数,c,d互为倒数,m+1的绝对值为5,∴a+b=0,cd=1,|m+1|=5,∴m=﹣6或4,则原式=6﹣1+0=5或4﹣1+0=3.故选:B.9、D【解析】【分析】根据绝对值的性质和有理数的加法法则即可求得.【详解】解:|(-5)+□|=11,即(-5)+□=11或-11,∴□=16或-6,故选D.本题考查了绝对值以及有理数的加法,关键是得到(-5)+口=-11或11.10、D【解析】【分析】根据绝对值,有理数的乘方和有理数的四则混合运算计算法则求解即可.【详解】解:A.原式321=-+=-,故本选项错误;B.原式12(2)143=--⨯-=-+=,故本选项错误;C.原式4446433327=⨯⨯=,故本选项错误;D.原式11114(8)4842244⎛⎫⎛⎫=---+-⨯-=-++=⎪ ⎪⎝⎭⎝⎭,故本选项正确.故选D.【考点】本题主要考查了有理数的乘除法,含乘方的有理数计算,绝对值,解题的关键在于能够熟练掌握相关知识进行求解.二、填空题1、8.50【解析】【分析】把千分位上数字4进行四舍五入即可.【详解】解:8.5046≈8.50(精确到0.01).故答案为8.50.【考点】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.2、2024【解析】【分析】滚动2次点C第一次落在数轴上,再滚动(2026-2)次,得出点C第506次落在数轴上,进而求出相应的数即可.【详解】解:将起点A和-2重合的正方形,沿着数轴顺时针滚动2次,点C第1次落在数轴上的原点.以后每4次,点C会落在数轴上的某一点,这样滚动2026次,点C第(2026-2)÷4=506次落在数轴上,因此点C所表示的数为2024,故答案为:2024.【考点】本题是利用规律求解问题.解题的关键是要找到规律“正方形ABCD沿着数轴顺时针每滚动一周,B、C、D、A依次循环一次”,同时要注意起点是-2,起始循环的字母为点A.31【解析】【分析】数轴上两点之间的距离,用在数轴右边的点所对应的数减左边的点所对应的数或加绝对值符号即可.【详解】=,解:本题主要考查数轴上两点间的距离,点A和点B111.【考点】本题考查了数轴上两点之间的距离,解题的关键是理解距离是非负数.4、7416-【解析】【分析】根据算筹记数的规定可知,“”表示一个4位负数,再查图找出对应关系即可得表示的数.【详解】解:由已知可得:“”表示的是4位负整数,是7416-.故答案为:7416-.【考点】本题考查了应用类问题,解题关键是通过阅读材料理解和掌握我国古代用算筹记数的规定.5、2019【解析】【分析】根据“只有符号不同的两个数互为相反数”和“乘积是1的两个数互为倒数”解答即可.【详解】-2017的相反数是2017,12的倒数是2,故-2017的相反数与12的倒数的和是2019.故答案为:2019 【考点】本题考查的是相反数及倒数,掌握相反数及倒数的定义是关键.三、解答题1、4333,511,115 【解析】【分析】 根据题意可知,223a b -=,1bc =,145c d +=,然后代入计算即可. 【详解】 解:1114225551c =-==,511b =, 5242311333a =+=. 【考点】本题解题的关键是明确倒数的意义.2、(1)0;(2)-8【解析】【分析】根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】解:(1)21571|835|()()26126--+-÷- 15727()362612=-+-⨯ 27183021=--+0=;(2)5231(1)(35)[1(3)]7-⨯--⨯-- 21(1)(2)(127)7=-⨯--⨯+ 114287=-⨯-⨯ 44=--8=-.【考点】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.3、(1)2;(2)100;(3)35;(4)98-;(5)12004-;(6)0 【解析】【分析】(1)根据乘法分配律进行简便计算;(2)将原式中的小数和百分数统一成分数,然后利用乘法分配律进行简便计算;(3)先算乘除,再算加减,有小括号先算小括号里面的;(4)根据有理数除法运算法则进行计算;(5)先算小括号里面的,然后根据数字变化规律进行符号确定和约分计算;(6)将原式中数据进行拆分,然后再计算.【详解】解:(1)原式117313(48)(48)(48)(48)126424=⨯--⨯-+⨯--⨯- 44563626=-+-+=2;(2)原式1111137024544224=⨯+⨯+⨯ 111370245224⎛⎫=++⨯ ⎪⎝⎭ 14004=⨯ =100;(3)原式=6-33+3(3)25⨯⨯--⨯ =18965-++ =35; (4)原式=-9÷4÷2 =11942-⨯⨯ =98-; (5)原式=123420022003()()()234520032004⨯-⨯⨯-⨯⋯⨯-⨯ =-123420022003234520032004⨯⨯⨯⨯⋯⨯⨯ =-12004; (6)原式= 2004×2003×10001-2003×2004×10001=0.【考点】此题主要考查了有理数的混合运算,注意明确有理数混合运算顺序(先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算)是解题关键.4、(1)-19;(2)1 20 -【解析】【分析】(1)根据有理数的加法法则计算;(2)根据有理数的加法法则计算;【详解】解:(1)(6)(13)-+-=-6-13=-19;(2)4354⎛⎫-+ ⎪⎝⎭=34 45 -=151620 20-=1 20 -【考点】本题考查了有理数的加法运算,解题的关键是注意运算过程中的符号问题.5、15,0.81,227,171,3.14,π,1.6;-12,-3.1;15,171,0;15,-12,0.81,-3,227,-3.1,-4,171,0,3.14,1.6.【解析】【分析】正数就是大于0的数,负数就是小于0的数,有理数是整数与分数的统称,据此即可进行分类.【详解】解:正数集合{15,0.81,227,171,3.14,π,1.6,…};负分数集合{12-,-3.1,…};非负整数集合{15,171,0,…};有理数集合{15,12-,0.81,-3,227,-3.1,-4,171,0,3.14,1.6,…}.【考点】本题主要考查了有理数的概念,认真掌握正数、负数、整数、分数、正有理数、负有理数的定义与特点是解题关键.注意整数和正数的区别,注意0是整数,但不是正数.。

七年级数学有理数的除法典型试题及答案(中考重点考点试题)

七年级数学有理数的除法典型试题及答案(中考重点考点试题)

七年级数学有理数的除法典型试题及答案(中考重点考点试题)5分钟训练(预习类训练,可用于课前)1.填空:(1)乘积是1的两个数互为______;(2)有理数的除法法则,除以一个数等于乘以这个数的______;(3)两数相除,同号得______,异号得______,并把绝对值______,0除以任何一个不等于0的数都得______.思路解析:根据倒数定义及除法法则来判别.答案:(1)倒数(2)倒数(3)正负相除02.-513,2.6,|-17|,-(-4),-2.5的倒数分别为________.思路解析:本题是求有理数的倒数,正数的倒数小学里我们学过,负数的倒数先确定符号,仍为负数,再把它们的绝对值求倒数注意先要化简.答案:-135,513,7,14,-253.化简下列分数:(1)412--; (2)3618-; (3)-244-.思路解析:本题利用除法可以简化分数的符号.分子、分母、分数的值三个符号中,任意改变其中的两个,值不变.答案:(1)13;(2)-2;(3)6.10分钟训练(强化类训练,可用于课中)1.填空题:(1)-6的倒数是_____,-6的倒数的倒数是_______,-6的相反数是______,-6的相反数的相反数是_______;(2)当两数_____时,它们的和为0;(3)当两数_____时,它们的积为0;(4)当两数_____时,它们的积为1.思路解析:根据倒数、相反数的定义来解.答案:(1) -16-6 6 -6(2)互为相反数(3)其中有一个数为0 (4)互为倒数2.计算:(1)(+36)÷(-4); (2)(-213)÷(-116);(3)(-90)÷15; (4)-1÷(+35).思路解析:本题第(1)(3)两小题应选用除法法则二;第(2)(4)两小题应选用除法法则一进行计算.解:(1)原式=-364=-9;(2)原式=73×67=2;(3)原式=-9015=-6;(4)原式=-1×53=-53.3.计算下列各题:(1)(-1 700 000)÷(-16)÷(-25)÷25;(2)(+125)÷(-3)+(-62)÷3+(+187)÷3.思路解析:同级运算应依次由前向后进行,混合运算应先乘除后加减,或化除为乘.两小题都应用了技巧(1)用了化除为乘,避免了大数的运算;(2)逆用了运算法则.解:(1)原式=-1 700 000×116×125×125=-170;(2)原式=-13(125+62-187)=0.4.用简便方法计算:(1)(-81)÷214-94÷(-16);(2)1÷{(-1111)×(-156)-(-3.9)÷[1-34+(-0.7)]}.思路解析:依照混合运算顺序进行逐层计算.解:(1)原式=-81×49+49×116=-36+136=-353536;(2)原式=1÷[1211×116+3.9÷(-0.45)]=1÷(2-263)=-320.5.化简下列分数:(1)26--; (2)39--;(3)03-; (4)-ab--.思路解析:利用除法化简分数,主要是简化分数的符号,一般地有,分数的分子、分母、分数本身的三个符号中,任意改变其中两个的符号,分数的值不变,这一结论使上述问题化简过程更为简便,如第(4)小题-ab--=-ab++=-ab.答案: (1)1/3; (2)13; (3) 0; (4)-ab.快乐时光三部曲老师:“这次你考试不及格,所以我要送你三本书.现在先看第一本《口才》.尽量说服父亲不要打你.如果说服不了,赶紧看第二本书《短跑》.如果没跑掉,就只能看第三本书了.”学生:“什么书?”老师:“《外科医学》.”30分钟训练(巩固类训练,可用于课后) 1.计算:(1)(-40)÷(-8);(2)(-5.2)÷33 25.思路解析:题(1)能整除,在确定商的符号之后,直接除比较简便;题(2)的除数是分数,把它转化为乘法比较简便.解:(1)原式=5;(2)原式=-265×2578=53.2.计算:(1)(-1)÷(-310); (2)(-0.33)÷(+13)÷(-9);(3)(-9.18)×(0.28)÷(-10.71); (4)63×(-149)+(-17)÷(-0.9).思路解析:先确定结果的符号,然后将除法运算转化成乘法运算.解:(1)原式=103;(2)原式=0.33×3×19=0.11;(3)原式=-9.18×0.28×110.71=-625;(4)原式=63×(-149)+17×109=-91+1063=-905363.3.计算:(-163)÷(19-27+23-114).思路解析:乘法对加法满足分配律,但除法对加法并不满足分配律.只有当把除法转化为乘法以后,才能运用分配律.解:原式=-163÷(1641991414+--)=-163÷53126=-253.4.计算:(1)29÷3×13;(2)(-35)×(-312)÷(-114)÷3;(3)[(+17)-(-13)-(+15)]÷(-1105).思路解析:对于乘除混合运算,首先由负数的个数确定符号,同时将小数化成分数,带分数化成假分数,算式化成连乘积的形式,再进行约分.(1)题注意乘除是同一级运算,应从左往右顺序运算,不能先做乘再做除;(3)题将除转化为乘的同时,化简中括号内的符号,然后用乘法分配律进行运算较简单.解:(1)原式=29×13×13=299;(2)原式=35×72×(-45)×13=-1425;(3)原式=(17+13-15)×(-105)=-17×105-13×105+15×105=-15-35+21=-29.5.混合运算:(1)619÷(-112)×1924; (2)(-81)÷214×49×(-16);(3)(-21316)÷(34×98); (4)|-1.3|+0÷(5.7×|-45|+54).思路解析:第(1)(2)小题应先把带分数化为假分数,然后进行运算;第(3)小题有括号,应先算括号里面的,再把除法转化为乘法进行计算;第(4)小题有0作被除数,早发现可使运算简便.解:(1)原式=-619×23×1924=-16;(2)原式=81×49×49×16=256;(3)原式=-4516×3227=-313;(4)原式=1.3+0=1.3.6.已知m除以5余1,n除以5余4,如果3m>n,求3m-n除以5的余数. 思路解析:此题应用了化除为乘的思想.答案:3m-n除以5的余数是4.7.计算:(-317÷158+1÷365×1198)×(215+1-165).思路解析:前一个括号计算复杂,后一个括号则很特殊且简单,结果为零,因此有时不能只顾算前面忽视后面.答案:原式=(-317÷158+1÷365×1198)×0=0.8.计算:(-191 919×9 898+989 898×1 919)÷(-12+3.14).思路解析:此题看上去好像计算量很大,但仔细观察分子可发现,19 1919=19×10 101,9 898=98×101,989 898=98×10 101,1 919=19×101,这样一来,两个积互为相反数,相加得0.答案:09.有一种“算24”的游戏,其规则是:任取四个1~13之间的自然数,将这四个数(每数只能用一次)进行加减乘除混合运算,其结果为24.例如2,3,4,5作运算.(5+3-2)×4=24,现有四个有理数3、4、-6、10,运用以上规则写出等于24的算式,你能写出几种算法?答案:例如:3×(10+4-6)=24.其他略.。

(完整版)苏教七年级下册期末解答题压轴数学重点初中真题解析

(完整版)苏教七年级下册期末解答题压轴数学重点初中真题解析

(完整版)苏教七年级下册期末解答题压轴数学重点初中真题解析一、解答题1.在△ABC中,射线AG平分∠BAC交BC于点G,点D在BC边上运动(不与点G重合),过点D作DE∥AC交AB于点E.(1)如图1,点D在线段CG上运动时,DF平分∠EDB①若∠BAC=100°,∠C=30°,则∠AFD=;若∠B=40°,则∠AFD=;②试探究∠AFD与∠B之间的数量关系?请说明理由;(2)点D在线段BG上运动时,∠BDE的角平分线所在直线与射线AG交于点F试探究∠AFD与∠B之间的数量关系,并说明理由2.(1)如图1所示,△ABC中,∠ACB的角平分线CF与∠EAC的角平分线AD的反向延长线交于点F;①若∠B=90°则∠F=;②若∠B=a,求∠F的度数(用a表示);(2)如图2所示,若点G是CB延长线上任意一动点,连接AG,∠AGB与∠GAB的角平分线交于点H,随着点G的运动,∠F+∠H的值是否变化?若变化,请说明理由;若不变,请求出其值.3.操作示例:如图1,在△ABC中,AD为BC边上的中线,△ABD的面积记为S1,△ADC 的面积记为S2.则S1=S2.解决问题:在图2中,点D、E分别是边AB、BC的中点,若△BDE的面积为2,则四边形ADEC 的面积为 . 拓展延伸:(1)如图3,在△ABC 中,点D 在边BC 上,且BD =2CD ,△ABD 的面积记为S 1,△ADC 的面积记为S 2.则S 1与S 2之间的数量关系为 .(2)如图4,在△ABC 中,点D 、E 分别在边AB 、AC 上,连接BE 、CD 交于点O ,且BO =2EO ,CO =DO ,若△BOC 的面积为3,则四边形ADOE 的面积为 . 4.如图,直线//PQ MN ,一副直角三角板,ABC DEF ∆∆中,90,45,30,60ACB EDF ABC BAC DFE DEF ︒︒︒︒∠=∠=∠=∠=∠=∠=.(1)若DEF ∆如图1摆放,当ED 平分PEF ∠时,证明:FD 平分EFM ∠.(2)若,ABC DEF ∆∆如图2摆放时,则PDE ∠=(3)若图2中ABC ∆固定,将DEF ∆沿着AC 方向平移,边DF 与直线PQ 相交于点G ,作FGQ ∠和GFA ∠的角平分线GH FH 、相交于点H (如图3),求GHF ∠的度数.(4)若图2中DEF ∆的周长35,5cm AF cm =,现将ABC ∆固定,将DEF ∆沿着CA 方向平移至点F 与A 重合,平移后的得到''D E A ∆,点D E 、的对应点分别是''D E 、,请直接写出四边形'DEAD 的周长.(5)若图2中DEF ∆固定,(如图4)将ABC ∆绕点A 顺时针旋转,1分钟转半圈,旋转至AC 与直线AN 首次重合的过程中,当线段BC 与DEF ∆的一条边平行时,请直接写出旋转的时间.5.互动学习课堂上某小组同学对一个课题展开了探究. 小亮:已知,如图三角形,点D 是三角形内一点,连接BD ,CD ,试探究BDC ∠与A ∠,,2∠之间的关系.小明:可以用三角形内角和定理去解决. 小丽:用外角的相关结论也能解决.(1)请你在横线上补全小明的探究过程: ∵,(______) ∴,(等式性质)∵, ∴,∴.(______)(2)请你按照小丽的思路完成探究过程; (3)利用探究的结果,解决下列问题: ①如图①,在凹四边形中,,,求______;②如图②,在凹四边形中,与ACD ∠的角平分线交于点E ,60A ∠=︒,,则______;③如图③,,ACD ∠的十等分线相交于点、、、…、,若,,则A ∠的度数为______;④如图④,BAC ∠,BDC ∠的角平分线交于点E ,则B ,C ∠与E ∠之间的数量关系是______; ⑤如图⑤,,BAC ∠的角平分线交于点E ,,,求AEB ∠的度数.6.如图,//AB CD ,点O 在直线CD 上,点P 在直线AB 和CD 之间,ABP PDQ α∠=∠=,PD 平分BPQ ∠.(1)求BPD ∠的度数(用含α的式子表示);(2)过点D 作//DE PQ 交PB 的延长线于点E ,作DEP ∠的平分线EF 交PD 于点F ,请在备用图中补全图形,猜想EF 与PD 的位置关系,并证明;(3)将(2)中的“作DEP ∠的平分线EF 交PD 于点F ”改为“作射线EF 将DEP ∠分为1:3两个部分,交PD 于点F ”,其余条件不变,连接EQ ,若EQ 恰好平分PQD ∠,请直接写出FEQ ∠=__________(用含α的式子表示).7.我们将内角互为对顶角的两个三角形称为“对顶三角形.例如,在图1中,AOB 的内角AOB ∠与COD △的内角COD ∠互为对顶角,则AOB 与COD △为对顶三角形,根据三角形内角和定理知“对顶三角形”有如下性质:A B C D ∠+∠=∠+∠. (1)(性质理解)如图2,在“对顶三角形”AOB 与COD △中,EAO C ∠=∠,2D B ∠=∠,求证:EAB B ∠=∠;(2)(性质应用)如图3,在ABC 中,点D 、E 分别是边AB 、AC 上的点,BOD A ∠=∠,若ECD ∠比DBE ∠大20°,求BDO ∠的度数;(3)(拓展提高)如图4,已知BE ,CD 是ABC 的角平分线,且BDC ∠和BEC ∠的平分线DP 和EP 相交于点P ,设A α∠=,求P ∠的度数(用α表示P ∠).8.已如在四边形ABCD 中,90A C ∠=∠=︒.(1)如图1,若70ABC ∠=︒,则NDC ∠=________.(2)如图2,若BF 、DE 分别平分CBM ∠、CDN ∠,判断DE 与BF 位置关系并证明理由.(3)如图3,若BP 、DP 分别五等分CBM ∠、CDN ∠(即15CBP CBM ∠=∠,15CDP CDN ∠=∠),则P ∠=_______.9.当光线经过镜面反射时,入射光线、反射光线与镜面所夹的角对应相等,例如:在图①、图②中,都有∠1=∠2,∠3=∠4.设镜子AB 与BC 的夹角∠ABC =α. (1)如图①,若入射光线EF 与反射光线GH 平行,则α=________°.(2)如图②,若90°<α<180°,入射光线EF 与反射光线GH 的夹角∠FMH =β.探索α与β的数量关系,并说明理由.(3)如图③,若α=120°,设镜子CD 与BC 的夹角∠BCD =γ(90°<γ<180°),入射光线EF 与镜面AB 的夹角∠1=m (0°<m <90°),已知入射光线EF 从镜面AB 开始反射,经过n (n 为正整数,且n ≤3)次反射,当第n 次反射光线与入射光线EF 平行时,请直接写出γ的度数.(可用含有m 的代数式表示)10.已知:射线//OP AE(1)如图1,AOP ∠的角平分线交射线AE 与点B ,若58BOP ∠=︒,求A ∠的度数. (2)如图2,若点C 在射线AE 上,OB 平分AOC ∠交AE 于点B ,OD 平分COP ∠交AE 于点D ,39ADO ∠=︒,求ABO AOB ∠-∠的度数.(3)如图3,若A m ∠=︒,依次作出AOP ∠的角平分线OB ,BOP ∠的角平分线1OB ,1B OP ∠的角平分线2OB ,1n B OP -∠的角平分线n OB ,其中点B ,1B ,2B ,,1n B -,nB 都在射线AE 上,直接写出n AB O ∠的度数.【参考答案】一、解答题1.(1)①115°;110°;②;理由见解析;(2);理由见解析 【分析】(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由解析:(1)①115°;110°;②1902AFD B ∠=︒+∠;理由见解析;(2)1902AFD B ∠=︒-∠;理由见解析【分析】(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由角平分线定义得出1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,由三角形的外角性质得出∠DGF=100°,再由三角形的外角性质即可得出结果;若∠B=40°,则∠BAC+∠C=180°-40°=140°,由角平分线定义得出12BAG BAC ∠=∠,12FDG EDB ∠=∠,由三角形的外角性质即可得出结果;②由①得:∠EDB=∠C ,1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,由三角形的外角性质得出∠DGF=∠B+∠BAG ,再由三角形的外角性质即可得出结论;(2)由(1)得:∠EDB=∠C ,12BAG BAC ∠=∠,1122BDH EDB C ∠=∠=∠,由三角形的外角性质和三角形内角和定理即可得出结论. 【详解】(1)①若∠BAC=100°,∠C=30°, 则∠B=180°-100°-30°=50°, ∵DE ∥AC , ∴∠EDB=∠C=30°,∵AG 平分∠BAC ,DF 平分∠EDB ,∴1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒, ∴∠DGF=∠B+∠BAG=50°+50°=100°, ∴∠AFD=∠DGF+∠FDG=100°+15°=115°; 若∠B=40°,则∠BAC+∠C=180°-40°=140°, ∵AG 平分∠BAC ,DF 平分∠EDB ,∴12BAG BAC ∠=∠,12FDG EDB ∠=∠,∵∠DGF=∠B+∠BAG ,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG =()12B BAC C ∠+∠+∠ 1401402=︒+⨯︒4070110=︒+︒=︒故答案为:115°;110°; ②1902AFD B ∠=︒+∠;理由如下:由①得:∠EDB=∠C ,12BAG BAC ∠=∠,12FDG EDB ∠=∠,∵∠DGF=∠B+∠BAG , ∴∠AFD=∠DGF+∠FDG =∠B+∠BAG+∠FDG =()12B BAC C ∠+∠+∠ ()11802B B =∠+︒-∠ 1902B =︒+∠;(2)如图2所示:1902AFD B ∠=︒-∠;理由如下:由(1)得:∠EDB=∠C ,12BAG BAC ∠=∠,1122BDH EDB C ∠=∠=∠,∵∠AHF=∠B+∠BDH , ∴∠AFD=180°-∠BAG-∠AHF11802BAC B BDH=︒-∠-∠-∠1118022BAC B C =︒-∠-∠-∠()11802B BAC C =︒-∠-∠+∠ ()11801802B B =︒-∠-︒-∠ 1180902B B =︒-∠-︒+∠1902B =︒-∠.【点睛】本题考查了三角形内角和定理、三角形的外角性质、平行线的性质等知识;熟练掌握三角形内角和定理和三角形的外角性质是解题的关键.2.(1)①45°;②∠F =a ;(2)∠F+∠H 的值不变,是定值180°. 【分析】(1)①②依据AD 平分∠CAE ,CF 平分∠ACB ,可得∠CAD=∠CAE ,∠ACF=∠ACB ,依据∠CAE 是△ABC解析:(1)①45°;②∠F =12a ;(2)∠F +∠H 的值不变,是定值180°. 【分析】(1)①②依据AD 平分∠CAE ,CF 平分∠ACB ,可得∠CAD=12∠CAE ,∠ACF=12∠ACB ,依据∠CAE 是△ABC 的外角,可得∠B=∠CAE-∠ACB ,再根据∠CAD 是△ACF 的外角,即可得到∠F=∠CAD-∠ACF=12∠CAE-12∠ACB=12(∠CAE-∠ACB )=12∠B ;(2)由(1)可得,∠F=12∠ABC ,根据角平分线的定义以及三角形内角和定理,即可得到∠H=90°+12∠ABG ,进而得到∠F+∠H=90°+12∠CBG=180°.【详解】解:(1)①∵AD 平分∠CAE ,CF 平分∠ACB , ∴∠CAD =12∠CAE ,∠ACF =12∠ACB ,∵∠CAE 是△ABC 的外角, ∴∠B =∠CAE ﹣∠ACB ,∵∠CAD是△ACF的外角,∴∠F=∠CAD﹣∠ACF=12∠CAE﹣12∠ACB=12(∠CAE﹣∠ACB)=12∠B=45°,故答案为45°;②∵AD平分∠CAE,CF平分∠ACB,∴∠CAD=12∠CAE,∠ACF=12∠ACB,∵∠CAE是△ABC的外角,∴∠B=∠CAE﹣∠ACB,∵∠CAD是△ACF的外角,∴∠F=∠CAD﹣∠ACF=12∠CAE﹣12∠ACB=12(∠CAE﹣∠ACB)=12∠B=12a;(2)由(1)可得,∠F=12∠ABC,∵∠AGB与∠GAB的角平分线交于点H,∴∠AGH=12∠AGB,∠GAH=12∠GAB,∴∠H=180°﹣(∠AGH+∠GAH)=180°﹣12(∠AGB+∠GAB)=180°﹣12(180°﹣∠ABG)=90°+12∠ABG,∴∠F+∠H=12∠ABC+90°+12∠ABG=90°+12∠CBG=180°,∴∠F+∠H的值不变,是定值180°.【点睛】本题主要考查了三角形内角和定理、三角形外角性质的综合运用,熟练运用定理是解题的关键.3.解决问题:6;拓展延伸:(1)S1=2S2 (2)10.5【解析】试题分析:解决问题:连接AE,根据操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,从而得到结论;拓展延伸:(1)解析:解决问题:6;拓展延伸:(1)S1=2S2(2)10.5【解析】试题分析:解决问题:连接AE,根据操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,从而得到结论;拓展延伸:(1)作△ABD的中线AE,则有BE=ED=DC,从而得到△ABE的面积=△AED的面积=△ADC的面积,由此即可得到结论;(2)连接AO.则可得到△BOD的面积=△BOC的面积,△AOC的面积=△AOD的面积,△EOC的面积=△BOC的面积的一半,△AOB的面积=2△AOE的面积.设△AOD的面积=a,△AOE的面积=b,则a+3=2b,a=b+1.5,求出a、b的值,即可得到结论.试题解析:解:解决问题连接AE.∵点D、E分别是边AB、BC的中点,∴S△ADE=S△BDE,S△ABE=S△AEC.∵S△BDE =2,∴S△ADE =2,∴S△ABE=S△AEC=4,∴四边形ADEC的面积=2+4=6.拓展延伸:解:(1)作△ABD的中线AE,则有BE=ED=DC,∴△ABE的面积=△AED的面积=△ADC的面积= S2,∴S1=2S2.(2)连接AO.∵CO=DO,∴△BOD的面积=△BOC的面积=3,△AOC的面积=△AOD的面积.∵BO=2EO,∴△EOC的面积=△BOC的面积的一半=1.5,△AOB的面积=2△AOE的面积.设△AOD的面积=a,△AOE的面积=b,则a+3=2b,a=b+1.5,解得:a=6,b=4.5,∴四边形ADOE的面积为=a+b=6+4.5=10.5.4.(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s 【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EK∥MN,利用平行线性解析:(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EK∥MN,利用平行线性质即可求得答案;(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,运用平行线性质和角平分线定义即可得出答案;(4)根据平移性质可得D′A=DF,DD′=EE′=AF=5cm,再结合DE+EF+DF=35cm,可得出答案;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:①当BC∥DE时,②当BC∥EF时,③当BC∥DF时,分别求出旋转角度后,列方程求解即可.【详解】(1)如图1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°,∵ED平分∠PEF,∴∠PEF=2∠PED=2∠DEF=2×60°=120°,∵PQ∥MN,∴∠MFE=180°−∠PEF=180°−120°=60°,∴∠MFD=∠MFE−∠DFE=60°−30°=30°,∴∠MFD=∠DFE,∴FD平分∠EFM;(2)如图2,过点E作EK∥MN,∵∠BAC=45°,∴∠KEA=∠BAC=45°,∵PQ∥MN,EK∥MN,∴PQ∥EK,∴∠PDE=∠DEK=∠DEF−∠KEA,又∵∠DEF=60°.∴∠PDE=60°−45°=15°,故答案为:15°;(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,∴∠LFA=∠BAC=45°,∠RHG=∠QGH,∵FL∥MN,HR∥PQ,PQ∥MN,∴FL∥PQ∥HR,∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA−∠LFA,∵∠FGQ和∠GFA的角平分线GH、FH相交于点H,∴∠QGH=12∠FGQ,∠HFA=12∠GFA,∵∠DFE=30°,∴∠GFA=180°−∠DFE=150°,∴∠HFA=12∠GFA=75°,∴∠RHF=∠HFL=∠HFA−∠LFA=75°−45°=30°,∴∠GFL=∠GFA−∠LFA=150°−45°=105°,∴∠RHG=∠QGH=12∠FGQ=12(180°−105°)=37.5°,∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°;(4)如图4,∵将△DEF沿着CA方向平移至点F与A重合,平移后的得到△D′E′A,∴D′A=DF,DD′=EE′=AF=5cm,∵DE+EF+DF=35cm,∴DE+EF+D′A+AF+DD′=35+10=45(cm),即四边形DEAD′的周长为45cm;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:BC∥DE时,如图5,此时AC∥DF,∴∠CAE=∠DFE=30°,∴3t=30,解得:t=10;BC∥EF时,如图6,∵BC∥EF,∴∠BAE=∠B=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°,∴3t=90,解得:t=30;BC∥DF时,如图7,延长BC交MN于K,延长DF交MN于R,∵∠DRM=∠EAM+∠DFE=45°+30°=75°,∴∠BKA=∠DRM=75°,∵∠ACK=180°−∠ACB=90°,∴∠CAK=90°−∠BKA=15°,∴∠CAE=180°−∠EAM−∠CAK=180°−45°−15°=120°,∴3t=120,解得:t =40,综上所述,△ABC 绕点A 顺时针旋转的时间为10s 或30s 或40s 时,线段BC 与△DEF 的一条边平行. 【点睛】本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键.5.(1)三角形内角和180°;等量代换;(2)见解析;(3)①;②;③;④;⑤ 【分析】(1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断; (2)想要利用外角的性质求解,就需要构造外解析:(1)三角形内角和180°;等量代换;(2)见解析;(3)①;②;③40A ∠=︒;④;⑤【分析】(1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断;(2)想要利用外角的性质求解,就需要构造外角,因此延长BD 交AC 于E ,然后根据外角的性质确定,,即可判断BDC ∠与A ∠,,2∠之间的关系;(3)①连接BC ,然后根据(1)中结论,代入已知条件即可求解; ②连接BC ,然后根据(1)中结论,求得的和,进而得到的和,然后根据角平分线求得的和,进而求得,然后利用三角形内角和定理,即可求解;③连接BC ,首先求得,然后根据十等分线和三角形内角和的性质得到,然后得到的和,最后根据(1)中结论即可求解;④设BD 与AE 的交点为点O ,首先利用根据外角的性质将∠BOE 用两种形式表示出来,然后得到,然后根据角平分线的性质,移项整理即可判断;⑤根据(1)问结论,得到的和,然后根据角平分线的性质得到的和,然后利用三角形内角和性质即可求解.【详解】 (1)∵,(三角形内角和180°) ∴,(等式性质)∵, ∴,∴.(等量代换)故答案为:三角形内角和180°;等量代换. (2)如图,延长BD 交AC 于E ,由三角形外角性质可知,,,∴.(3)①如图①所示,连接BC,,根据(1)中结论,得,∴,∴;②如图②所示,连接BC,,根据(1)中结论,得,∴,的角平分线交于点E,∵与ACD∴,,∴,∵,,∴,∴,∵,∴;③如图③所示,连接BC,,根据(1)中结论,得, ∵,,∴, ∵与ACD ∠的十等分线交于点, ∴,,∴,∴,∵,∴,∴,∴,∴40A ∠=︒;④如图④所示,设BD 与AE 的交点为点O , ∵AE 平分BAC ∠,BD 平分BDC ∠, ∴,,∵,,∴,∴, ∴,即;⑤∵,BAC ∠的角平分线交于点E ,∴,∴.【点睛】本题考查了三角形内角和定量,外角的性质,以及辅助线的做法,重点是观察题干中的解题思路,然后注意角平分线的性质,逐渐推到即可求解.6.(1);(2)画图见解析,,证明见解析;(3)或 【分析】(1)根据平行线的传递性推出,再利用平行线的性质进行求解; (2)猜测,根据平分,推导出,再根据、平分,通过等量代换求解; (3)分两种情解析:(1)2BPD α∠=;(2)画图见解析,EF PD ⊥,证明见解析;(3)452α︒-或3452α︒-【分析】(1)根据平行线的传递性推出////PG AB CD ,再利用平行线的性质进行求解; (2)猜测EF PD ⊥,根据PD 平分,2BPQ BPD α∠∠=,推导出2BPD DPQ α∠=∠=,再根据//DE PQ 、EF 平分DEP ∠,通过等量代换求解;(3)分两种情况进行讨论,即当:1:3PEF DEF ∠∠=与:1:3DEF PEF ∠∠=,充分利用平行线的性质、角平分线的性质、等量代换的思想进行求解. 【详解】(1)过点P 作//PG AB ,//,//AB CD PG AB ,////PG AB CD ∴,,BPG ABP DPG PDQ αα∴∠=∠=∠=∠=,2BPD BPG DPG α∴∠=∠+∠=.(2)根据题意,补全图形如下:猜测EF PD ⊥,由(1)可知:2BPD α∠=,PD 平分,2BPQ BPD α∠∠=,2BPD DPQ α∴∠=∠=,//DE PQ ,2EDP DPQ α∴∠=∠=,1801804DEP BPD EDP α∴∠=︒-∠-∠=︒-,又EF 平分DEP ∠, 19022PEF DEP α∠=∠=︒-,18090EFD PEF BPD ∴∠=︒-∠-∠=︒,EF PD ∴⊥.(3)①如图1,:1:3PEF DEF ∠∠=,由(2)可知:2,1804EPD DPQ EDP DEP αα∠=∠=∠=∠=︒-,:1:3PEF DEF ∠∠=,1454PEF DEP α∴∠=∠=︒-,313534DEF DEP α∠=∠=︒-,//DE PQ ,DEQ PQE ∴∠=∠,180EDQ PQD ∠+∠=︒, 2,EDP PDQ αα∠=∠=, 3EDQ EDP PDQ α∴∠=∠+∠=,1801803PQD EDQ α∠=︒-∠=︒-, 又EQ 平分PQD ∠,139022PQE DQE DEQ PQD α∴∠=∠=∠=∠=︒-,331353(90)4522FEQ DEF DEQ ααα∴∠=∠-∠=︒--︒-=︒-;②如图2,1804DEP α∠=︒-,1803PQD α∠=︒-(同①);若:1:3DEF PEF ∠∠=,则有11(1804)4544DEF DEP αα∠=∠=⨯︒-=︒-,又113(1803)90222PQE DQE PQD αα∠=∠=∠=⨯︒-=︒-,//DE PQ ,3902DEQ PQE α∴∠=∠=︒-,1452FEQ DEQ DEF α∴∠=∠-∠=︒-,综上所述:3452FEQ α∠=︒-或452α︒-,故答案是:452α︒-或3452α︒-. 【点睛】本题考查了平行线的性质、角平分线、三角形内角和定理、垂直等相关知识点,解题的关键是掌握相关知识点,作出适当的辅助线,通过分类讨论及等量代换进行求解.7.(1)见详解;(2)100°;(3)∠P=45°- 【分析】(1)由“对顶三角形”的性质得,从而得,进而即可得到结论; (2)设=x , =y ,则=x+20°,=y-20°,可得∠ABC+∠DCB=解析:(1)见详解;(2)100°;(3)∠P =45°-14α 【分析】(1)由“对顶三角形”的性质得EAO AEO C D ∠+∠=∠+∠,从而得2AEO B ∠=∠,进而即可得到结论;(2)设DBE ∠=x , BDC ∠=y ,则ECD ∠=x +20°,BEC ∠=y -20°,可得∠ABC +∠DCB =y -20°,根据三角形内角和定理,列出方程,即可求解;(3)设∠ABE =∠CBE =x ,∠ACD =∠BCD =y ,可得x +y =90°-12α,结合∠CEP +∠ACD =∠CDP +∠P ,即可得到结论. 【详解】(1)证明:∵在“对顶三角形”AOE △与COD △中, ∴EAO AEO C D ∠+∠=∠+∠, ∵EAO C ∠=∠, ∴AEO D ∠=∠, ∵2D B ∠=∠, ∴2AEO B ∠=∠, 又∵AEO EAB B ∠=∠+∠ ∴EAB B ∠=∠;(2)∵ECD ∠比DBE ∠大20°,ECD ∠+BEC ∠=DBE ∠+BDC ∠, ∴设DBE ∠=x , BDC ∠=y ,则ECD ∠=x +20°,BEC ∠=y -20°, ∵BOD A ∠=∠,∴∠ABC +∠ACB =180°-∠A =180°-BOD ∠=x +y ,∴∠ABC +∠DCB =∠ABC +∠ACB -ECD ∠= x +y - x -20°=y -20°, ∵∠ABC +∠DCB +BDC ∠=180°, ∴y -20°+y =180°,解得:y =100°, ∴BDO ∠=100°;(3)∵BE ,CD 是ABC 的角平分线, ∴设∠ABE =∠CBE =x ,∠ACD =∠BCD =y ,∴2x +2y +α=180°,即:x +y =90°-12α,∵BDC ∠和BEC ∠的平分线DP 和EP 相交于点P , ∴∠CEP =12(180°-2y -x ),∠CDP =12(180°-2x -y ), ∵∠CEP +∠ACD =∠CDP +∠P ,∴∠P =12(180°-2y -x )+y -12(180°-2x -y )= 12x +12y =45°-14α, 即:∠P =45°-14α. 【点睛】本题主要考查角平分线的定义,三角形内角和定理,三角形外角的性质,熟练掌握“对顶三角形”的性质,是解题的关键.8.(1)70°;(2)DE ∥BF ,证明见解析;(3)54° 【分析】(1)根据四边形内角和计算即可;(2)根据平角的定义和等量代换可得∠MBC+∠CDN=180°,再根据角平分线的定义得到∠CBF解析:(1)70°;(2)DE∥BF,证明见解析;(3)54°【分析】(1)根据四边形内角和计算即可;(2)根据平角的定义和等量代换可得∠MBC+∠CDN=180°,再根据角平分线的定义得到∠CBF+∠CDE=90°,从而推出∠EDB+∠FBD=180°,可得结论;(3)根据五等分得到∠CDP+∠CBP=36°,连接PC并延长,证明∠DCB=∠DPB+∠CBP+∠CDP,即可计算.【详解】解:(1)∵∠A=∠C=90°,∠ABC=70°,∴∠ADC=360°-90°-90°-70°=110°,∴∠NDC=180°-110°=70°;(2)DE∥BF,如图,连接BD,∵∠ABC+∠ADC=180°,且∠MBC+∠ABC=180°,∠CDN+∠ADC=180°,∴∠MBC+∠CDN=180°,∵∠CBF=12∠MBC,∠CDE=12∠CDN,∴∠CBF+∠CDE=90°,∵∠C=90°,∴∠CBD+∠CDB=90°,∴∠EDB+∠FBD=∠CBF+∠CDE+∠CBD+∠CDB=180°,∴DE∥BF;(3)∵∠MBC+∠CDN=180°,∴∠CDP+∠CBP=15(∠MBC+∠CDN)=36°,连接PC并延长,∵∠DCE=∠CDP+∠CPD,∠BCE=∠CPB+∠CBP,∴∠DCB=∠DCE+∠BCE=∠DPB+∠CBP+∠CDP,∴∠DPB=90°-36°=54°.【点睛】本题考查多边形内角和与外角,三角形内角和定理,平行线的判定等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.9.(1)90°;(2)β=2α-180°,理由见解析;(3)90°+m或150°【分析】(1)根据EF∥GH,得到∠FEG+∠EGH=180°,再根据∠1+∠2+∠FEG=180°,∠3+∠4+∠解析:(1)90°;(2)β=2α-180°,理由见解析;(3)90°+m或150°【分析】(1)根据EF∥GH,得到∠FEG+∠EGH=180°,再根据∠1+∠2+∠FEG=180°,∠3+∠4+∠EGH=180°,以及∠1=∠2,∠3=∠4,可得∠2+∠3=90°,即可求出α=90°;(2)在△BEG中,∠2+∠3+α=180°,可得∠2+∠3=180°-α,根据入射光线、反射光线与镜面所夹的角对应相等可得,∠MEG=2∠2,∠MGE=2∠3,在△MEG中,∠MEG+∠MGE+β=180°,可得α与β的数量关系;(3)分两种情况画图讨论:①当n=3时,根据入射光线、反射光线与镜面所夹的角对应相等,及△GCH内角和,可得γ=90°+m.②当n=2时,如果在BC边反射后与EF平行,则α=90°,与题意不符;则只能在CD边反射后与EF平行,根据三角形外角定义,可得∠G=γ-60°,由EF∥HK,且由(1)的结论可得,γ=150°.【详解】解:(1)在△BEG中,∠2+∠3+α=180°,∵EF∥GH,∴∠FEG+∠EGH=180°,∵∠1+∠2+∠FEG=180°,∠3+∠4+∠EGH=180°,∴∠1+∠2+∠3+∠4=180°,∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∴α=180°-(∠2+∠3)=90°;(2)β=2α-180°,理由如下:在△BEG中,∠2+∠3+α=180°,∴∠2+∠3=180°-α,∵∠1=∠2,∠1=∠MEB,∴∠2=∠MEB,∴∠MEG=2∠2,同理可得,∠MGE=2∠3,在△MEG中,∠MEG+∠MGE+β=180°,∴β=180°-(∠MEG+∠MGE)=180°-(2∠2+2∠3)=180°-2(∠2+∠3)=180°-2(180°-α)=2α-180°;(3)90°+m或150°.理由如下:①当n=3时,如下图所示:∵∠BEG=∠1=m,∴∠BGE=∠CGH=60°-m,∴∠FEG=180°-2∠1=180°-2m,∠EGH=180°-2∠BGE=180°-2(60°-m),∵EF∥HK,∴∠FEG+∠EGH+∠GHK=360°,则∠GHK=120°,则∠GHC=30°,由△GCH内角和,得γ=90°+m.②当n=2时,如果在BC边反射后与EF平行,则α=90°,与题意不符;则只能在CD边反射后与EF平行,如下图所示:根据三角形外角定义,得∠G =γ-60°,由EF ∥HK ,且由(1)的结论可得,∠G =γ-60°=90°,则γ=150°.综上所述:γ的度数为:90°+m 或150°.【点睛】本题考查了平行线的性质、列代数式,解决本题的关键是掌握平行线的性质,注意分类讨论思想的利用.10.(1)64°;(2)78°;(3)【分析】(1)根据平行线的性质得出∠A=∠1,根据平角的定义求得∠AOP=116°,根据角平分线的性质和平行线的性质求得∠A 的度数;(2)利用已知条件和平行线解析:(1)64°;(2)78°;(3)11802n m +︒-︒ 【分析】(1)根据平行线的性质得出∠A=∠1,根据平角的定义求得∠AOP=116°,根据角平分线的性质和平行线的性质求得∠A 的度数;(2)利用已知条件和平行线的性质、角平分线的性质解答即可.(3)分别求出∠ABO ,∠AB 1O ,∠AB 2O ,得到规律,即可求得∠AB n O .【详解】解:(1)如图1,∵OP ∥AE ,∴∠A=∠1,∵∠BOP=58°,OB 是∠AOP 的角平分线,∴∠AOP=2∠BOP=116°,∴∠1=180°-116°=64°,∴∠A=∠1=64°;(2)如图2,∵OP ∥AE ,∴∠POD=∠ADO=39°,∵OB 平分∠AOC ,∴∠AOB=∠BOC ,∵OD 平分∠COP ,∴∠COP=2∠DOP=78°,∴∠ABO-∠AOB=∠COP=78°;(3)如图3,由(1)可知,∠ABO=12(180°-m ),∠AB 1O=12(180°-∠OBB 1)=12∠ABO=14(180°-m ), ∠AB 2O=18(180°-m ), …则∠AB n O=11802n m +︒-︒.【点睛】本题考查了平行线的性质,三角形外角的性质,三角形内角和定理,角平分线的性质,熟练掌握性质定理是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档