含铅废水处理工艺
电镀含铅废水处理方法及案例展示
电镀行业是国民经济中不可缺少的环节,涉及国防、工业、生活领域,而在工业中电镀工艺在处理过程中会产生大量的酸性含铅重金属废水,同时含有其他重金属离子,有机物,无机物,色度很深,会给环境带来严重的污染,因此,电镀废水处理是很关键的。
生物吸附法:凡具有从溶液中分离金属能力的物体或生物体制备的衍生物称为生物吸附剂。
生物吸附剂主要是菌体、藻类及一些提取物。
微生物对重金属的吸附机理取决于许多物理、化学因素,如光、温度、pH值、重金属含量及化学形态、其他离子、螫合剂的存在和吸附剂的预处理等。
生物吸附技术治理重金属污染具有一定的优势,在低含量条件下,生物吸附剂可以选择性地吸附其中的重金属,受水溶液中钙、镁离子的干扰影响较小。
该方法处理效率高,无二次污染,可有效地回收一些贵重金属。
但是生物成长环境不容易控制,往往会因水质的变化而大量中毒死亡。
案例展示:行业客户需求:电镀废水不能直接通过化学沉淀法达到排放要求, 因此必须要对废水进行深度处理,传统的化学沉淀法结合海普功能材料开发的吸附法,以达到处理效果,产生电镀废水企业客户对废水处理的需要包括以下三点:(1)高效、稳定的去除废水中的重金属到排放限值以下;(2)一次投资费用低、运行费用低、设备操作维护方便;(3)工艺先进可靠、无二次污染。
吸附工艺的原理是利用我公司开发的特种吸附材料对要去除的组分或物质进行选择性吸附,当吸附饱和时,再利用特定的脱附剂对吸附材料进行脱附处理,使吸附材料得以再生,如此不断循环进行,吸附法处理废水常规工艺见下图。
采用吸附工艺处理酸性含铅废水时,将废水预先过滤去除其中的悬浮和颗粒物质,然后进入吸附塔吸附,吸附塔中填充的特种吸附材料能将废水中的重金属吸附在材料表面,使出水重金属持续达标排放。
吸附饱和后,再利用特定的脱附剂对吸附材料进行脱附处理,使吸附材料得以再生,如此不断循环进行。
酸性含铅废水吸附处理工艺流程见下图。
4、工艺处理效果:采用吸附工艺处理含铅金属废水,可有效脱除废水中的铅金属,具体处理数据见下表:序号 吸附进酸铅(mg/L)吸附出酸铅 (mg/L)去除率 1 3000 29.7 99.2% 2 3000 29.5 99.2% 3300029.199.1%苏州某企业要求处理后废水中铅含量低于50mg/L,实验处理效果表明采用吸附处理,废水中的锌可以稳定小于50mg/L,在保证达到客户的要求的同时留有一定的安全余量,能有效防止入料废水的水质波动造成出水不达标效果见下图。
含铅废水的处理方法
含铅废水的处理方法
处理含铅废水的方法通常包括以下几种:
1. 化学沉淀法:将含铅废水中的铅离子与适当的沉淀剂反应生成较稳定的铅沉淀物,如氢氧化钠、氢氧化钙等。
然后通过沉淀物的沉淀和过滤等步骤将废水中的铅去除。
2. 离子交换法:使用含有特定重金属离子选择性吸附树脂,如硫酸铅树脂、过渡金属树脂等,将废水中的铅离子吸附到树脂上,并通过再生树脂的方法将铅离子从树脂上洗脱,达到去除铅的目的。
3. 膜分离技术:利用反渗透、超滤、电渗析等膜分离技术,通过膜的选择性截留作用,将废水中的铅离子分离出来,获得清洁的水。
4. 活性炭吸附法:使用活性炭吸附剂将废水中的铅离子吸附到活性炭表面,并通过适当的处理方法将活性炭中的铅去除,实现废水处理和资源回收。
需要根据废水的具体情况选择合适的处理方法,并结合其他工艺步骤进行综合处理,以确保废水得到有效的处理和排放。
同时,在处理废水时要严格遵守环境保护法规和标准,防止对环境造成进一步的污染。
含汞,铅废水处理
含汞废水处理处理方法处理过程方法缺点参考文献物理或化学处理法(化学沉淀法)混凝沉淀和硫化物沉淀用化学沉淀法易于快速去除大量的金属离子.但由于受沉淀剂和环境条件的影响.1、出水浓度往往达不到排放要求还需进一步处理2、产生的沉淀物必须很好地处理和处置,否则会造成二次污染。
含汞废水处理郭素梅,张永龙(天能化工有限公司,新疆石河予832000)电解法电解法是利用金属的电化学性质.在直流电作用下,汞化合物在阳极离解成汞离子。
在阴极还原成金属汞,而除去废水中的汞。
水中的汞离子浓度不能降得很低。
1、电解法不适用于处理含低浓度的汞离子废水。
2、电耗大,投资成本高3、容易产生汞蒸汽,形成二次污染。
离子交换法离子交换法在离子交换器中进行,用大孑L巯基(一SH)离子交换树脂吸附汞离子,达到去除水中汞离子的目的。
受废水中杂质的影响以及交换剂品种、产量和成本的限制。
活性炭吸附法活性炭具有极大的表面积.在活化过程中形成含氧官能团(一COOH,一OH,>C—O)使活性炭具有化学吸附和催化氧化、还原的性能,能有效去除重金属。
活性炭价格昂贵,不适于大规模处理含汞废水。
金属还原法根据电极电位理论,利用铜、锌、铝、镁、锰等毒性小而电极电位又低的金属(屑或粉)从废水中置换汞离子,其中以铁、锌效果较好。
脱汞不完全,需和其他方法结合使用。
微生物法生物吸附法1、单一菌种2、基因工程菌3、混合菌1、单一菌种随着汞浓度急剧升高吸附汞的效率显著提高最终导致菌体内汞浓度的剧增,从而加速死亡;2、虽然在降解汞方面取得了良好的效果,但是其繁琐的技术要求,大量资金的投入限制了其工业化。
3、混合菌不受汞浓度连续或者急剧升高的影响,始终保持着较高的汞降解率。
虽然混合菌在很多领域中的作用己得到充分肯定,部分成果己成功应用。
但在已经应用的混合菌体系中存在着不能有效地协调菌间的关系使其达最佳生态状态的问题,这严重地阻碍了混合菌培养的发展和应用。
含铅废水处理化学沉淀法中和沉淀法在废水中加入NaOH,Ca(OH)2,Mg(OH)2,BaCO3,等中和剂,通过中和反应形成氢氧化物或碳酸盐沉淀而去除。
废水中铅离子的去除方法综述
废水中铅离子的去除方法综述摘要:铅对生态环境和人体健康的危害较大。
水中铅的去除方法可分为物理化学法和生物法等。
物理化学法主要包括吸附、沉淀、离子交换、化学还原、电化学法等。
生物法包括微生物和植物修复。
此外,上述两种或两种以上的联合使用能提高铅的去除效果。
1.引言铅及其化合物性质稳定,在环境中不可降解,同时铅是一种中枢神经系统毒物,对儿童血液和智能的危害非常严重。
因此,研究铅在水体中的去除对修复环境污染,对保障人体健康和安全有重要的意义。
国内外对含铅废水的净化研究很多,主要集中在物理法、化学法和生物法三大方面。
2.铅的去除方法2.1物理化学法1)吸附法通过使用吸附材料去除废水中的铅,常见的有活性炭、膨润土、白陶土等。
活性炭应用广泛,在此不再赘述;膨润土比表面积大、分散性高,对铅的去除通过物理吸附、化学吸附和离子交换吸附三种类型。
史艳婷等发现白陶土对水中铅离子去除的主要机制为离子交换、静电吸附和络合反应。
潘沛玲等比较了改性柚子皮与活性炭,发现活性炭去除水中的铅耗时少,对废水中铅的去除率更高。
但采用天然的植物型吸附材料处理污水可以达到以废治废的目的。
一些非植物类吸附材料如活性污泥、动物毛发、废水或垃圾中的有机成分等,也可去除水中的铅。
吸附法通常不改变价态使铅离子从水相转移到固相,不具有专性吸附,且吸附饱和的材料面临再生及铅回收的问题,因此该方法适于水中仅含有铅离子,或具有后续处理工艺的情况。
2)沉淀法沉淀法主要包括混凝沉淀法和化学沉淀法等。
混凝沉淀法通过向水中投加混凝剂,利用压缩双电层、吸附架桥和网捕等去除水中的铅。
混凝剂可分为无机混凝剂、有机混凝剂和生物絮凝剂等。
杨婷婷等比较了聚合氯化铝、聚合硫酸铁、聚丙烯酰胺对铅的去除,聚合硫酸铁的去除效果好、残留铝及成本均较低,在使用时具有一定的优势。
使用KMnO4预处理水样会大大提升了后续硫酸铝的混凝去除效果[1]。
其他尚处于研究阶段的改性絮凝剂如液态铁基生物絮凝剂、高铁酸钾等也可去除铅离子。
含铅废水处理工艺流程
含铅废水处理工艺流程含铅废水是指含有高浓度铅离子的废水。
铅是一种有毒重金属,对人体和环境具有严重的危害。
因此,处理含铅废水是非常重要的。
下面将介绍一种常用的含铅废水处理工艺流程。
一、废水预处理废水预处理是处理含铅废水的第一步。
在这一步骤中,废水经过初步的过滤和调节,以便进一步的处理。
首先,废水中的悬浮物和大颗粒物质通过过滤装置进行分离。
然后,废水的pH值进行调节,一般采用中性化处理,使其接近中性。
这样可以提高后续处理工艺的效果。
二、化学沉淀化学沉淀是处理含铅废水中铅离子的常用方法。
在这一步骤中,通过添加适量的化学药剂,使废水中的铅离子与药剂中的特定物质发生反应,形成沉淀物。
常用的化学药剂包括氢氧化钠、硫化钠等。
这些药剂与铅离子反应后生成的沉淀物具有较高的密度,可以很容易地被分离出来。
三、离子交换离子交换是处理含铅废水中残余铅离子的方法。
在这一步骤中,废水经过离子交换树脂床,废水中的铅离子与树脂中的其他离子发生交换。
这样可以有效地将废水中的铅离子去除。
离子交换是一种高效、经济的方法,可以使废水中的铅离子浓度降低到较低的水平。
四、吸附剂吸附吸附剂吸附是处理含铅废水中微量铅离子的方法。
在这一步骤中,废水通过吸附塔,废水中的微量铅离子被吸附剂吸附。
吸附剂一般是一种具有高吸附性能的材料,例如活性炭。
吸附剂吸附是一种简单有效的方法,可以将废水中的微量铅离子降低到极低的水平。
五、深度处理深度处理是对处理后的废水进行进一步处理的方法。
在这一步骤中,废水经过多次过滤和反应,以保证废水的质量达到排放标准。
常用的方法包括活性炭吸附、电解沉积等。
通过这些方法,可以进一步去除废水中的有机物和重金属离子,使废水的污染物浓度降低到很低的水平。
六、废水回用或排放处理后的废水可以选择回用或排放。
如果废水经过处理后可以满足再利用的要求,可以将其用于工业生产中的冷却水、洗涤水等。
如果废水无法回用,可以进行二次处理,以达到排放标准,然后将废水排放到环境中。
含铅废水处理可行性方案
含铅废水处理可行性方案铅常被用作原料应用于蓄电池、电镀、颜料、橡胶、农药、燃料等制造业。
铅进入人体后,除部分通过粪便、汗液排泄外,其余在数小时后溶入血液中,阻碍血液的合成,导致人体贫血,出现头痛、眩晕、乏力、困倦、便秘和肢体酸痛等;铅进入人体后还会通过血液侵入大脑神经组织,使营养物质和氧气供应不足,造成脑组织损伤,严重者可能导致终身残废。
目前水资源严重短缺,大量工业用水使得本来就匮乏的淡水资源越来越少。
铅蓄电池等废水含铅的企业排放的废水虽然达到行业排放的规定,但废水中仍然含有一定浓度的铅,其排放到水体后仍然会对水体造成较大的污染,危害人的身体健康。
有的企业将含铅废水深度处理后可使得处理后的废水进行工艺的回用,有效的节约了水资源,同时还减少了含铅污染废水的排放,保护环境,所以对含铅废水进行深度处理意义重大。
二、含铅废水处理工艺目前含铅废水的处理工艺,应用较多、较成熟可靠的技术有:离子交换法、沉淀法、吸附法、电解法以及其组合工艺。
我们这里主要介绍沉淀法。
沉淀法是工业处理含铅废水的一种重要工艺,主要分为化学沉淀法和物理沉淀法,化学沉淀法主要是选择合适的化学沉淀剂将铅离子转化为不溶性的铅盐与无机颗粒一起沉降。
物理沉淀法主要是絮凝沉淀法,选择主要的絮凝剂使铅离子变成中性的微粒,在分子的作用下,加快沉降速度,实现固液分离。
1 化学沉淀法化学沉淀法是目前使用较为普遍的方法。
其又可以分为a.氢氧化物沉淀法.b.硫化物沉淀法;c.碳酸盐沉淀法等等。
所用沉淀剂有:石灰、烧碱、硫化盐、纯碱以及磷酸盐。
其中氢氧化物沉淀法应用较多。
重金属离子与0H一离子能否生成难溶的氢氧化物沉淀,取决于溶液中重金属离子的浓度和0H的浓度。
最有效的氢氧化铅沉淀发生在pH值为9.2-9.5时,在更高的pH值时会出现反溶现象,氢氧化物沉淀形成的效果急速下降,所以控制好pH值是本方法的关键。
硫化物沉淀法是向溶液中投入硫化钠等沉淀剂,使废水中的Pb生成Pbs沉淀,Pbs 溶解度很小,其溶度积为3.48*10-28,在热水中几乎不溶,每除去lmg铅离子理论上只需加入0.1544mg硫离子。
技术:蓄电池生产含铅废水处理与回用
技术 | 蓄电池生产含铅废水处理与回用铅是一类重金属污染物,该企业生产废水如果不处理达标就直接排放,将对水环境造成严重污染,危害人体健康。
1、废水组成及水质按照环境保护的有关规定以及地方政策需求,要求处理后的废水水质执行污水综合排放标准(GB8978-1996)中的一级标准,同时要求废水总铅质量浓度小于1.0mg/L。
2、工艺流程2.1工艺设计该工艺主要为了去除水中的重金属铅及悬浮物固体并调节pH使达标排放,针对铅酸废水水质特点确定采用混凝反应+斜板沉淀工艺,具体工艺流程如图1所示。
2.2工艺说明1)铅酸废水从车间通过自流进入隔油沉淀池,隔油沉淀池采用平流结构,污水中粒径较大的粒状物质和漂浮在水面上的油得到去除。
往隔油沉淀池中投入一定量的碳酸钙石,可以使废水中的无机酸类物质与投入的碳酸钙石发生化学沉淀反应,生成钙镁盐类沉淀物质和CO2,废水的pH将会大大的升高,减轻后续处理负担,后续pH调节槽氢氧化钠的投入量会很大的减少。
2)隔油沉淀池出水自流进入调节池,调节池主要是用于调节水质、稳定水量,能有效缓解水量不均、浓度不均所带来的冲击,保证后续的处理工序能连续、稳定、有效地运行。
3)调节池中的含铅废水由泵提升进入一级pH调节槽,由碱液泵自动计量氢氧化钠投加量,向pH调节槽中泵入氢氧化钠,调节废水的pH在5.0左右。
一级调节槽的出水溢流入PAC混凝反应槽,絮凝剂采用聚合氯化铝,由计量泵投加,使水中难以沉淀的颗粒脱凝结、集聚,絮凝成较大的颗粒而沉淀,保证出水Pb浓度达标。
PAC反应槽出水溢流进入二级调节槽,由碱液泵自动计量氢氧化钠投加量,向pH调节槽中泵入氢氧化钠,调节废水的pH在9.5-10.5之间。
三槽均设计了搅拌机。
如若调节后pH不合格,二级pH调节槽出水回流至调节池。
4)二级pH调节槽出水溢流至斜板沉淀器,同时由计量泵控制投加PAM高分子助凝剂,使废水中难以沉淀的颗粒脱凝结,集聚,成为较易沉降的絮凝物,改善污泥的脱水性能,加强污泥的沉降能力。
《工业水处理》:含铅废水处理技术研究进展
《工业水处理》:含铅废水处理技术研究进展展开全文数据显示,2018年我国精炼铅产量为511万t,废铅回收量约为237万t,回收率达到46%。
虽然废铅回收率不断提高,但仍不足50%,半数以上的废铅进入水体、大气、土壤环境中,主要进入水环境,形成含铅废水。
含铅废水中的铅最高达到90 mg/L以上,一般在2~100 mg/L (蓄电池行业)。
铅在水中主要以二价铅离子形式存在,其存在形式受水中pH影响较大:当pH在7~10时,铅会出现沉淀;pH为10时,沉淀量达到最大。
铅具有不可降解性,可在环境中长期存在。
含铅废水一直是废水处理领域的难题之一。
我国对于铅的排放要求非常严格,GB 5749—2006《生活饮用水卫生标准》规定,地面水及生活饮用水中的铅不能超过0.05 mg/L。
GB 8978—1996《污水综合排放标准》将铅列为第一类污染物,最高允许排放质量浓度为1.0 mg/L。
因此,选择一种安全性高、处理效果好、成本低、二次污染少的处理技术显得尤为重要。
笔者对化学沉淀、吸附、膜分离、离子交换、生物修复和电解技术在含铅废水处理中的研究现状进行了介绍,总结了不同处理技术的优点和存在的问题,为进一步发展含铅废水的处理技术提供依据,并为多工艺组合处理含铅废水提供参考。
01化学沉淀化学沉淀主要是向水中投加沉淀剂,直接与Pb2+发生化学反应形成不溶性沉淀,常见的有氢氧化物沉淀、硫化物沉淀、磷酸盐沉淀、铁氧体沉淀和螯合沉淀。
1.1氢氧化物沉淀氢氧化物沉淀是向废水中投加NaOH、Ca(OH)2、CaO等沉淀剂使Pb2+转化为Pb(OH)2,从而达到去除目的,该反应受水中pH 的影响较大。
柳健等研究了氢氧化物沉淀去除Pb2+的最佳pH,发现对于Pb2+为2~10 mg/L的含铅废水,处理最佳pH为7.5~11.5;同时还对比了模拟含铅废水及企业含铅废水的处理效果,由于企业产生的污水还含有铁、铝、钙等元素,在加入碱性沉淀剂的过程中能产生相应的絮凝剂,吸附一部分Pb2+,提高Pb2+的去除率。
含铅废水处理工艺
含铅废水处理工艺铅常被用作原料应用于蓄电池、电镀、颜料、橡胶、农药、燃料等制造业。
铅板制作工艺中排放的酸性废水(pH3=铅浓度最高,电镀废液产生的废水铅浓度也很高。
铅是自然界分布很广的元素, 也是工业中常使用的元素之一。
铅和可溶性铅盐都有毒性, 含铅废水对人体健康和动植物生长都有严重危害。
如每日摄取铅量超过0.3-1.0 mg, 就可在人体内积累, 引起贫血、神经炎等。
随着工业技术的迅速发展, 工业废水中的重金属铅作为一类污染物, 国家排放标准中明确规定含铅废水的排放标准为铅总含1 mg/ L。
一、含铅废水的来源含铅废水来自各种电池车间、选矿厂、石油化工厂等。
电池工业是含铅废水的最主要来源, 据报道, 每生产1 个电池就造成铅损失4.54-6810mg, 其次是石油工业生产汽油添加剂。
尽管铅不如铜、镉那样常见, 但它却是废水中的普通组分。
尤其是电池厂在生产过程中产生大量含铅废水, 废水中铅含量超出国家标准百倍, 对地下水源构成很大威胁, 如果不进行处理而任意排放, 必然给环境与社会带来极大的危害。
二、含铅废水处理工艺目前含铅废水的处理工艺,应用较多、较成熟可靠的技术有:离子交换法、沉淀法、吸附法、电解法以及以上工艺的组合。
1. 离子交换法离子交换法的原理是利用离子交换剂分离废水中有害物质的方法,常用的离子交换剂有离子交换树脂、沸石等。
离子交换是靠交换剂自身所带的能自由移动的离子与被处理的溶液中的离子通过离子交换来实现的。
推动离子交换的动力是离子间浓度差和交换剂上的功能基对离子的亲和能力。
在对炸药厂废水的处理研究中,使用强酸性阳离子交换树脂、在pH值5.0—5.2时,用磷酸树脂对排放水进行离子交换处理,铅含量可降到O.20一O.53mg/L;在对离子交换工艺及相应工艺条件运行及考察,含铅量10m∥L的废水经离子交换处理,排出水含铅量为0.14一O.18mg/L,达到国家排放水质量标准。
利用由氯甲基化交联的聚苯乙烯氧化制得的带羧基的弱酸树脂强酸性阳离子交换树脂,在pH=2.5、流速为15夥小时,可以处理700倍树脂体积的废液流,排放量可以达到0.01毫影升以下。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
含铅废水处理工艺
铅常被用作原料应用于蓄电池、电镀、颜料、橡胶、农药、燃料等制造业。
铅板制作工艺中排放的酸性废水(pH3=铅浓度最高,电镀废液产生的废水铅浓度也很高。
铅是自然界分布很广的元素,也是工业中常使用的元素之一。
铅和可溶性铅盐都有毒性,含铅废水对人体健康和动植物生长都有严重危害。
如每日摄取铅量超过0.3-1.0mg,就可在人体内积累,引起贫血、神经炎等。
随着工业技术的迅速发展,工业废水中的重金属铅作为一类污染物,国家排放标准中明确规定含铅废水的排放标准为铅总含1mg/L。
一、含铅废水的来源
含铅废水来自各种电池车间、选矿厂、石油化工厂等。
电池工业是含铅废水的最主要来源,据报道,每生产1个电池就造成铅损失4.54-6810mg,其次是石油工业生产汽油添加剂。
尽管铅不如铜、镉那样常见,但它却是废水中的普通组分。
尤其是电池厂在生产过程中产生大量含铅废水,废水中铅含量超出国家标准百倍,对地下水源构成很大威胁,如果不进行处理而任意排放,必然给环境与社会带来极大的危害。
二、含铅废水处理工艺
目前含铅废水的处理工艺,应用较多、较成熟可靠的技术有:离子交换法、沉淀法、吸附法、电解法以及以上工艺的组合。
1.离子交换法
离子交换法的原理是利用离子交换剂分离废水中有害物质的方法,常用的离子交换剂有离子交换树脂、沸石等。
离子交换是靠交换剂自身所带的能自由移动的离子与被处理的溶液中的离子通过离子交换来实现的。
推动离子交换的动力是离子间浓度差和交换剂上的功能基对离子的亲和能力。
在对炸药厂废水的处理研究中,使用强酸性阳离子交换树脂、在pH值5.0—5.2时,用磷酸树脂对排放水进行离子交换处理,铅含量可降到O.20一O.53mg/L;在对离子交换工艺及相应工艺条件运行及考察,含铅量10m∥L的废水经离子交换处理,排出水含铅量为0.14一O.18mg/L,达到国家排放水质量标准。
利用由氯甲基化交联的聚苯乙烯氧化制得的带羧基的弱酸树脂强酸性阳离子交换树脂,在pH=2.5、流速为15夥小时,可以处理700倍树脂体积的废液流,排放量可以达到0.01毫影升以下。
离子交换法除铅工艺的特点是:a.除铅彻底,工业含铅废水可实现达标排放。
b.对环境污染危害小,污泥少。
c.离子交换树脂的使用寿命长达5年以上,可经再生反复使用。
d.离子交换装置占地面积小。
2.沉淀法
沉淀法是工业处理含铅废水的一种重要工艺,主要分为化学沉淀法和物理沉淀法,化学沉淀法主要是选择合适的化学沉淀剂将铅离子转化为不溶性的铅盐与无机颗粒一起沉降。
物理沉淀法主要是絮凝沉淀法,选择主要的絮凝剂使铅离子变成中性的微粒,在分子的作用下,加快沉降速度,实现固液分离。
1)化学沉淀法
化学沉淀法是目前使用较为普遍的方法。
其又可以分为a.氢氧化物沉淀法.b.硫化物沉淀法;c.碳酸盐沉淀法等等。
所用沉淀剂有:石灰、烧碱、硫化盐、纯碱以及磷酸盐。
其中氢氧化物沉淀法应
用较多。
重金属离子与0H一离子能否生成难溶的氢氧化物沉淀,取决于溶液中重金属离子的浓度和0H的浓度。
最有效的氢氧化铅沉淀发生在pH值为9.2-9.5时,在此pH值范围内处理的排水,铅含量为O.01-0.03mg/L,在更高的pH值时会出现反溶现象,氢氧化物沉淀形成的效果急速下降,所以控制好pH值是本方法的关键。
硫化物沉淀法是向溶液中投入硫化钠等沉淀剂,使中的Pb生成Pbs沉淀,Pbs溶解度很小,其溶度积为3.48*10-28,在热水中几乎不溶,每除去lmg铅离子理论上只需加入0.1544mg硫离子。
磷酸盐沉淀法是以Na3P04。
作沉淀剂,生成Pb3(p04)2:沉淀。
其在水中的溶解度很小。
有利于从废水中沉淀析出。
2)絮凝法
利用向废水中投加絮凝剂的方法,捕捉重金属,形成与废水中杂质粒子带相仿电荷的胶体,然后靠重力沉降予以分离,目前国内常用的絮凝剂有金属盐类和高分子聚合物两大类。
前者主要有铝盐和铁盐,后者主要有聚丙烯酞胺等。
2.吸附法
吸附法也是一种常用的含铅废水处理工艺,根据它的作用机理的不同也可以分为物理吸附法和生物吸附法。
1)物理吸附法
物理吸附法是利用吸附剂特殊的物理化学性质,如较高的表面活性、较大的比表面积、特殊的微孔结构等。
常用的吸附剂有改性膨润土、粉煤灰、沸石、陶土、活性炭等。
这种处理工艺具有除铅效率高、成本适中、不造成二次污染的特点,因此具有良好的使用前景,特别是对一些吸附剂的改性之后处理效果更加可观。
2)生物吸附法
微生物对重金属具有很强的亲和吸附性能,通过物理化学作用将重金属吸附在胞外聚合物的结合点上,从而从水中去除,活的和死的微生物对重金属离子都有较强的吸附能力。
这些微生物主要有藻类、真菌、细菌等。
该法以其原材料来源丰富、成本低、吸附速度快、吸附量大、选择性好、无毒、无害、无二次污染等特点正受到越来越多的重视。
3.电解法
电解法的原理是重金属离子在阴极表面得到电子而被还原为金属。
电解法处理废水一般无需加入很多化学药品,处理简单、占地面积小、管理方便、污泥量小,所以被称为清洁处理法。
这种方法可直接得到纯金属,可以回收使用重金属。
三维电极电解法的提出是电解法的革新,使得含铅废水通过点解法的深度进化成为可能。
三维电极电解法通过增大电极表面积实现低电流密度下电解,减小了浓差极化,从而提高了电流效率。
目前使用三维电极电解处理废水中的Cu“已经取得了较好的效果,并已应用于实践中。
R-C?Wjdener等人使用网状玻璃炭电极对酸性含铅废水进行了研究,在一O.8V(vs.SCE)的电位下,使用O.5moL/L硼酸作缓冲溶液,得出最佳条件是阴极孔隙率80ppi,流速240L/h。
可使初始浓度为50mg/L的含铅废水降至0.1mg/L,电流效率还可达到14%。
实现了含铅废水的深度净化。