逻辑运算类指令
第3章(09.2)
4.加1指令(5条) INC INC INC INC INC A Rn direct @Ri DPTR
指令功能:使操作数所指定的单元的内容加1 例:已知A=12H,R0=33H,(21H)=32H,(34H)=22H, DPTR=1234H,连续执行下面的指令。 说明:除了“INC A”影响奇偶标志位外,其余操作均 INC A 不影响PSW;“INC DPTR”是一条16位加1指令,这条 INC R0 指令在加1过程中,若低8位有进位可直接向高8位进位, INC 21H 不需要通过进位位Cy传送。 INC @R0 INC DPTR
4.清0与取反指令(2条) 取反: CPL A 5.循环移位指令(4条) RL A RR A RLC A RRC A 清零: C0
A.0 A.7 A.7 A.0 A.0
CY
CY
后两条指令,影响P标志和CY。
综合举例: 例1:把累加器A中的低4位状态,通过P1口的高4 位输出, P1口的低4位状态不变。 ANL A,#0FH ;屏蔽A的高4位 SWAP A ANL P1,#0FH ;清P1口高4位 ORL P1,A ;P1口高4位输出A的低4位; 例2:编制程序将存放在片外RAM的30H单元中某 数的低4位取反,高2位置1,其余2位清0。 例3:编制程序求片内RAM的20H,21H,22H单元 中的数的补码,并将结果仍放回到20H,21H, 22H中。
(40H)= (41H)=
H H
(50H) = (51H)=
H H
A= R0=
H H
5.减1指令(4条) DEC DEC DEC DEC A Rn direct @Ri
指令功能:使操作数所指定的单元的内容减1
说明:减1指令中没有DPTR减1指令.
微机原理 逻辑运算与位移类指令
和PF,对AF未定义。NOT指令不影响状态标志位。
[例] MOV AL,75H AND AL,32H OR AL,71H XOR AL,0F1H NOT AL
;AL75H ;AL30H,CF=OF=0、SF=0、ZF=0、PF=1 ;AL71H,CF=OF=0、SF=0、ZF=0、PF=1 ;AL80H,CF=OF=0、SF=1、ZF=0、PF=0 ;AL7FH,不改变状态标志位
Jcc LABEL
;条件满足,发生转移:
;IPIP+8位的位移量;
;否则,顺序执行。
注意:
① 条件转移指令Jcc只支持段内短转移的寻址方式,只能实 现段内-128~127个单元范围的跳转,其间共有多少条指令是不 确定的。
② 条件转移指令不影响标志,但利用状态标志作为控制转 移的条件。Jcc中的cc表示利用标志判断的条件。同一条指令可 能有多个助记符形式,这只是为了利于记忆,方便使用。
➢逻辑运算与移位类指令
当需要对字节或字数据中的各个二进制位进行操作时,可
以考虑采用逻辑运算与移位类指令。
ADD、ADC、SUB、SBB、CMP和AND、OR、XOR、TEST具有相同
的指令格式:
运算指令助记符
reg,imm/reg/mem
运算指令助记符
mem,imm/reg
以上格式表明了操作数的寻址方式。也可统一表示为:
……
JMP指令
JMP执行后 IP =
代码段
Disp=08H
EBH 0100H 08H 0101H
0102H
...... Disp=08H
MOV指令
B0H 010AH(HELLO) 新的IP
03H 010BH
2)段内直接近转移
逻辑运算类指令
标志位
解释
P OAC VCY
√ × × × 累加器A中的内容和直接地址单元中的内容执 行逻辑或操作。结果存在累加器A中
√ × × × 累加器A的内容和立即数执行逻辑或操作。结 果存在累加器A中
√ × × × 累加器A的内容和寄存器Rn的内容执行逻辑或 操作。结果存在累加器A中
√ × × × 累加器A的内容和工作寄存器Ri指向的地址单 元中的内容执行逻辑或操作。结果存在累加器 A中
单片机原理与应用
逻辑运算类指令
逻辑运算指令共有24条 有与、或、异或、求反、左右移位、清0等逻辑操作 有直接、寄存器和寄存器间址等寻址方式。
1. 清零指令(1条)
指令
功能
标志位 解释
P OA C VC Y
CLR A
A ←0
√ × × × 累加器A中的内容清0
2.求反指令(1条)
指令功能Βιβλιοθήκη 标志位√ × × × 累加器A的内容和工作寄存器Ri指向的地址单元中 的内容执行逻辑异或操作。结果存在累加器A中
√ × × × 累加器A的内容和立即数执行逻辑异或操作。结果 存在累加器A中
√ × × × 累加器A的内容和寄存器Rn中的内容执行逻辑异 或操作。结果存在累加器A中
× × × × 直接地址单元中的内容和累加器A的内容执行逻辑 异或操作。结果存在直接地址单元中
XRL A,Z
CPL A
ORL A,R1 MOV F,A SJMP $
;A ← (X) ;A ← (A)∧(Y) ;A内容暂存 ;A ← (Y)
;A ← (Y) (Z)
; A ←()()
;得到输出 ;存输出
单片机原理与应用
× × × × 直接地址单元中的内容和累加器A的内容执行 逻辑或操作。结果存在直接地址单元中
汇编指令
一、数据传送指令(七种助记符)MOV (Move)对内部数据寄存器RAM和特殊功能寄存器SFR的数据进行传送MOVX (Move External RAM)对外部存储器的数据传送XCH (Exchange)字节交换XCHD (Exchange Low-order Digit)低半字节交换PUSH (Push onto Stack)入栈POP (Pop from Stack)出栈二、算术运算指令(8种助记符)ADD (Addition)加法ADDC (Add with Carry)带进位加法SUBB (Subtract withBorrow)带借位减法DA (Decimal Adjust)十进制调整INC (Increment)加1DEC (Decrement)减1MUL (Multiplication Multiply)乘法DIV (Division Divide)除法三、逻辑运算类指令(10种助记符)ANL (AND Logic)逻辑与ORL (OR Logic)逻辑或XRL (Exclusive-OR Logic)逻辑异或CLR (Clear)清零CPL (Complement)取反RL (Rotate left)循环左移RLC (RL throught the carry flag)带进位循环左移SWAP (Swap)低4位与高4位交换四、控制转移类指令(17种助记符)ACCALL (Absolute subroutine Call)子程序绝对调用LCALL (Long subrout Call)子程序常调用RET (Return from Interruption)子程序返回RET1 (Return from Interruption)中断返回SJMP (Short jump)短转移AJMP (Absolute jump)绝对转移LJMP (Long Jump)长转移CJNE (Compare Jump if Not Equal)比较不等则转DJNZ (Decrement Jump if Not Zero)减1不为0则转JZ (Jump if zero)结果为0则跳转JNZ (Jump if Not Zero)结果不为0则跳转JC (Jump if Not carry flag is set)有进位则转移JB (Jump if the Bit is set)位为1则转移JNB (Jump if the Bit is Not set)位为0则转移JBC (JB and Clear the bit)位为1则转并清除该位NOP (No Operation)空操作五位操作指令(1种助记符)CLR 位清零SETB (Set Bit)位置1八种常用伪指令 16位地址此指令用在原程序或数据块的开始,指明此语句后面目标程序或数据块存放的起始地址2.【标号】DB 字节数据项表:奖项表中的字节数据存放到从标号开始的连续字节单元中。
汇编语言2-4逻辑移位指令
8086指令系统
一、数据传送类; 二、算术运算类; 三、位操作指令(逻辑运算和移位类); 四、串操作类; 五、控制转移类; 六、处理器控制类;
第 2章
8086指令系统
位操作指令,它们都是按位进行操作的包含逻辑运
算类指令和移位指令。 位操作类指令以二进制位为基本单位进行数据的操 作;这是一类常用的指令,都应该特别掌握 注意这些指令对标志位的影响 要求:全面而准确地理解每条指令的功能和应用 重点掌握以下指令:
第 2章
2、逻辑或指令OR
功能:对两个操作数执行按位逻辑或运 算,结果送到目的操作数
OR reg,imm/reg/mem ;reg←reg∨imm/reg/mem OR mem,imm/reg ;mem←mem∨imm/reg
说明:(1)按位逻辑或运算; (2)OR指令对操作数的限制和对标志位的影响; 思考: (1)某一个操作数自己和自己相逻辑或? 置某些位 (2)OR指令主要用在什么场合?
RCR reg/mem,1/CL
;带进位循环左移
;带进位循环右移
演示
第 2章
说明:循环移位指令
对操作数:同移位指令。 对标志的影响:
(1)按照指令功能设置进位标志CF (2)不影响SF、ZF、PF、AF (3)对于OF,同移位指令。如果进行一位移动, 则按照操作数的最高符号位是否改变,相应设置 溢出标志OF:如果移位前的操作数最高位与移位 后操作数的最高位不同(有变化),则OF = 1; 否则OF = 0。当移位次数大于1时,OF不确定
第 2章
例:移位指令
mov cl,4 mov al,0f0h ;al=f0h shl al,1 ;al=e0h ;CF=1,SF=1、ZF=0、PF=0,OF=0 shr al,1 ;al=70h ;CF=0,SF=0、ZF=0、PF=0、OF=1 sar al,1 ;al=38h ;CF=0,SF=0、ZF=0、PF=0、OF=0 sar al,cl ;al=03h ;CF=1,SF=0、ZF=0、PF=1 、OF=0
逻辑运算指令
逻辑运算指令
逻辑运算指令是计算机中用于执行逻辑运算操作的指令。
逻辑运算是基于逻辑代数的运算,用于处理逻辑值(真或假)的计算。
常见的逻辑运算指令包括以下几种:
1. 与运算(AND):将两个操作数的对应位进行逻辑与运算,结果为真时返回真,否则返回假。
2. 或运算(OR):将两个操作数的对应位进行逻辑或运算,结果为真时返回真,否则返回假。
3. 非运算(NOT):对一个操作数进行逻辑非运算,将真变为假,将假变为真。
4. 异或运算(XOR):将两个操作数的对应位进行逻辑异或运算,结果为真时返回真,否则返回假。
这些逻辑运算指令在计算机中广泛应用于条件判断、逻辑控制和数据处理等各个领域,是计算机运算的基础。
二算术逻辑运算指令
三、逻辑运算指令
⑵移位指令
• 累加器A循环左移指令: • RL A ; • 累加器A连同进位位循环左移指令: • RLC A ; • 累加器A循环右移指令: • RR A ; • 累加器A连同进位位循环右移指令 • RRC A ;
三、逻辑运算指令
• 例3-18:若(A)=10111101B=BDH, Cy=0
• 注:执行结果只影响PSW的奇偶校验位P (以A为操 作数时 )
二、算术运算指令
3.乘、除法指令
• MUL AB ; (A)←[(A)×(B)]7-0
•
(B)←[(A)×(B)]15-8
• 如果积大于255(FFH),则溢出标志OV置1,否则清0。进
位标志位Cy总为0。
二、算术运算指令
• 例3-17:设(A)=50H(80),(B) =0AH(160) 执行指令:MUL AB;
• 执行“ RLC A”的结果为 • (A)=01111010B=7AH,Cy=1 • A的内容扩大2倍
三、逻辑运算指令
2 .双操作数的逻辑运算指令
• ⑴逻辑“与”指令
• ANL A,Rn ;(A) ←(A)∧(Rn) • ANL A,direct ;(A) ←(A)∧(direct) • ANL A,@Ri ;(A) ←(A)∧((Ri)) • ANL A,#data ;(A) ←(A)∧data • ANL direct, A ;(direct)←(direct)∧(A) ANL direct,#data;(direct)←(direct)∧data
• 本指令不能简单的把累加器A中的16进制数变换成 BCD码
二、算术运算指令
• 例3-13:设累加器A内容为压缩BCD码56 (即01010110B),寄存器R3的内容为 压缩BCD码67(即01100111B),Cy内 容为1。执行下列的指令:
03.9 第三章 - 单片机指令系统(位操作指令MOV、SETB、CLR、CPL、ANL、ORL)
;A = 59H = 0101 1001B ;P1 = A = 0101 1001B ;C = 1 ;ACC.1 = 1 ;P1.3 = 0 ;P1.6 = 0 ;P1.2 = 1 ;(20H)= P1 = 0001 0101B ;(30H)= A = 0101 1011B
09:43
单片机技术
8
3.9.2 位控制指令(SETB、CLR、CPL)
;P1.0 = 1 ;ACC.3 = 0 ;C = 1 ;C = 1 ;C = 1 ;P3.4 = 1
09:43
单片机技术
14
3.9.3 位条件转移指令(JC、JB、JBC)
❖ 1.判C转移指令ຫໍສະໝຸດ JC、JNC)JC rel
;先PC←PC+2;若(Cy)= 1时转移,且PC'
=PC+rel,否则顺序执行
CPL bit ;(bit)= (/bit)
▪ 功能:将Cy或bit取反。
09:43
单片机技术
9
3.9.2 位控制指令(SETB、CLR、CPL)
❖ 课堂练习
▪ 执行以下指令?
SETB P1.0 CLR 20H CLR PSW.2 CPL PSW.2 CLR RS0 SETB RS1
;P1.0 = 1 ;20H = 0 ;PSW.2 = 0 ;PSW.2 = 1 ;RS0 = 0 ;RS1 = 1
❖ 1.位置1指令(SETB)
▪ 格式:SETB C ;(Cy) = 1
SETB bit ;(bit)= 1
▪ 功能:将Cy或bit置1。
❖ 2.位置0指令(CLR)
▪ 格式:CLR C ;(Cy) = 0
CLR bit ;(bit)= 0
▪ 功能:将Cy或bit置0。
第九节 逻辑运算类指令和位操作指令
9.1 逻辑运算指令 9.1.1 逻辑与运算指令
逻辑与运算指令举例
例:设(A)=0C3H(11000011B),(R0) =0C3H(11000011B),( ) ),(R0 =0AAH(10101010B),执行指令: =0AAH(10101010B),执行指令: ),执行指令 ANL A,R0 (逻辑与运算用符号∧表示) A, 逻辑与运算用符号∧表示) (A)=1执行结果:( :(A =82H(10000010B) 执行结果:(A)=82H(10000010B) 指令ANL常用来屏蔽某些不用位 常用来屏蔽某些不用位, 例:指令ANL常用来屏蔽某些不用位,方法是将该位 0”相 用“0”相“与”,这种操作的目的操作数常用直接地 址寻址,而源操作数则用立即数。 址寻址,而源操作数则用立即数。如 ANL P1,#01100110 B P1, 执行结果: P1口锁存器的第 口锁存器的第0 执行结果:将P1口锁存器的第0、3、4、7位的内容 屏蔽掉。不管P1口中的这些位原值为何值 口中的这些位原值为何值, 屏蔽掉。不管P1口中的这些位原值为何值,经与操作 后均屏蔽为0 而其它位保持原值不变。 后均屏蔽为0,而其它位保持原值不变。
9.1.2 逻辑或运算指令
ORL A,Rn A, ORL A,direct A, ORL A,@Ri A, ORL A,#data A, ORL direct,A direct, ORL direct,#data direct, 和前面逻辑与指令类似,这里前4 和前面逻辑与指令类似,这里前4条指令的操作结果 存放在A 后两条指令将结果存放在直接地址中。 存放在A中,后两条指令将结果存放在直接地址中。
第九节 逻辑运算类指令和 位操作指令
ANL A,Rn A, ANL A,direct A, ANL A,@Ri A, ANL A,#data A, 上述指令的目的操作数为累加器A的内容, 上述指令的目的操作数为累加器A的内容,源操作数 有四种寻址方式:寄存器Rn 直接和间接寻址、 Rn、 有四种寻址方式:寄存器Rn、直接和间接寻址、立 即数。两操作数进行“ 运算后, 即数。两操作数进行“与”运算后,结果保留在累加 响任何标志位。 器A中,不影响任何标志位。 ANL direct,A direct, ANL direct,#data direct, 上述指令的目的操作数为直接地址寻址单元内容, 上述指令的目的操作数为直接地址寻址单元内容,源 操作数有两种寻址方式: 和立即数。 操作数有两种寻址方式:累加器A和立即数。运算结 果保留在直接寻址单元中,不影响任何标志位。 果保留在直接寻址单元中,不影响任何标志位。
逻辑运算指令
例3:测试AL的bit7,bit5,bit2是否都是1。
AND AL, 1010 0100B CMP AL, 1010 0100B JZ YES <not all 1> …… YES:
6
(2) 逻辑“或” OR
对两个操作数进行按位逻辑”或”操作。 格式:OR dst, src 功能: (dst)∨(src)→(dst) 用途:对操作数的某几位置1;
移动次数count只能为1或CL。 如:SHL AX,1
SHL AL,CL
“0”
17
逻辑右移指令SHR(Shift logical Right)
格式: SHR dst,count
功能:
dst
CF
D7 D6 D5 D4 D3 D2 D1 D0
“0”
0 D7 D6 D5 D4 D3 D2 D1
D0
特点是移出的位进入进位位CF,空出的 位用“0”填入。
3.4 逻辑运算指令
● 运算规则:按位操作,无进/借位,包括以
下两类:
•
逻辑位运算
•
移位、循环移位
● 对标志位的影响(除NOT指令外):
CF OF SF ZF PF AF 0 0 * * * 无定义
根据运算结果设置
1
1、逻辑运算指令
有5条指令。 (1)“与”运算指令AND (2)“或”运算指令OR (3)“异或”运算指令XOR (4)“非” 运算指令NOT (5)测试指令TEST
通用寄存器 存储器
立即数
通用寄存器
11
三种运算指令的主要作用
指令
作用
举例
AND 使目的操作数某些位不变, 保留AX的最后4位
某些位变成0
逻辑运算指令
逻辑运算指令逻辑运算指令 1.ANL类指令(6条) ANL类是逻辑与指令,其功能是将源操作数作数内容和目的操作数内容按位相与,结果存入目的操作数指定单元中,源操作数不变。
ANL A, Rn ;A∩Rn→A ANL A, direct ;A∩(direct) →A ANL A, @Ri ;A∩(Ri) →A ANL A, #data ;A∩data→A ANL direct, A ;(direct)∩A→(direct) ANL direct, #data ;(direct)∩data→(direct) 例设A=F6H,(30H)=0FH 执行ANL A, 30H ;A∩ (30H) →A 操作如下: 11110110 (F6H) ∩ 00001111 (0FH)注意:按位相与 00000110 (06H) 结果:A=06H, 30H地址内容不变,即(30H)=0FH 若执行ANL 30H, A ;(30H)∩ A→(30H) 操作同上,结果放在30H地址中,A中内容不变,即(30H)=06H,A=F6H。
2.ORL类指令(6条) ORL类指令是逻辑或指令,其功能是将源操作数作数内容和目的操作数内容按位逻辑或,结果存入目的操作数指定单元中,源操作数不变。
ORL A, Rn ;A∪Rn→A ORL A,direct ;A∪(direct) →A ORL A, @Ri ;A∪(Ri) →A ORL A, #data ;A∪data→A ORL direct, A ;(direct)∪A→(direct) ORL direct, #data ;(direct)∪data→(direct) 或运算和与运算过程类似,这里不再举例。
欧姆龙plc il指令使用方法
欧姆龙plc il指令使用方法IL指令是一种低级的编程语言,用于控制逻辑和执行特定操作。
它是一种基于栈的语言,其中指令按照特定的顺序执行。
在欧姆龙PLC中,IL指令用于编写程序来控制输入和输出设备,实现自动化控制。
我们将介绍一些常用的IL指令。
在欧姆龙PLC中,常见的IL指令包括LD(加载)、AND(逻辑与)、OR(逻辑或)、OUT(输出)等。
这些指令用于加载数据、进行逻辑运算和控制输出设备。
以下是一些常用IL指令的示例:1. LD指令:LD指令用于将数据加载到寄存器中。
例如,LD A,#100将将值100加载到寄存器A中。
2. AND指令:AND指令用于执行逻辑与运算。
例如,AND A,B将A 和B寄存器中的数据进行逻辑与运算,并将结果存储在A寄存器中。
3. OR指令:OR指令用于执行逻辑或运算。
例如,OR A,B将A和B 寄存器中的数据进行逻辑或运算,并将结果存储在A寄存器中。
4. OUT指令:OUT指令用于控制输出设备。
例如,OUT 1,A将A寄存器中的数据输出到1号输出设备。
在编写IL指令程序时,需要注意以下几点:1. 确定输入和输出设备:首先,我们需要确定PLC的输入和输出设备,以便正确配置IL指令。
2. 设计逻辑控制:根据实际需求,设计逻辑控制流程。
可以使用LD指令加载输入设备状态,使用逻辑运算指令进行判断,然后使用OUT指令控制输出设备。
3. 编写IL指令程序:根据设计的逻辑控制流程,使用IL指令编写程序。
确保使用正确的指令和寄存器地址,并按照逻辑顺序编写指令。
4. 调试和测试:在编写完成IL指令程序后,进行调试和测试。
可以使用欧姆龙PLC的仿真功能进行调试,确保程序能够正确执行。
除了基本的IL指令,欧姆龙PLC还提供了一些高级的IL指令,用于实现更复杂的控制逻辑。
例如,可以使用JMP(跳转)指令实现循环控制,使用CMP(比较)指令进行数据比较,使用MOV(移动)指令进行数据传输等。
03.8 第三章 - 单片机指令系统(逻辑运算指令ANL、ORL、XRL、CPL、RL、RR、RRC、RLC)
0000 1001
0
9
09:42
单片机技术
6
3.8.1 逻辑“与”运算指令(ANL)
❖ 练习 ▪ 已知(A)=6EH,(R0)=9BH,执行ANL A,R0后 ?
0110 1110
∩ 1001 1010
0000 1010
0
A
09:42
单片机技术
7
3.8.1 逻辑“与”运算指令(ANL)
第三章:单片机指令系统
3.8 逻辑运算类指令
09:42
单片机技术
1
第三章:MSC-51 单片机指令系统
3.8 - 逻辑运算类指令
☺ 3.8.1 逻辑“与”运算指令 ☺ 3.8.2 逻辑“或”运算指令 ☺ 3.8.3 逻辑“异或”运算指令 ☺ 3.8.4 累加器A清0和取反 ☺ 3.8.5 “左移”循环指令(RL RLC) ☺ 3.8.6 “右移”循环指令(RR RRC)
∪ 1000 1001
1101 1111
D
F
09:42
单片机技术
12
3.8.2 逻辑“或”运算指令(ORL)
❖ 2.高考考点(ORL)
▪ 规则:有1出1,全0出0(按位) ▪ 功能:置1操作 ▪ 方法:某一位要置1则该位写1,其余不变位写0
09:42
单片机技术
13
3.8.2 逻辑“或”运算指令(ORL)
09:42
单片机技术
10
3.8.2 逻辑“或”运算指令(ORL)
❖ 1.“或” 逻辑指令(ORL)
▪ 指令格式:
ORL A ,
#data ;A ←(A)∪ data ,立即寻址 direct ;A ←(A)∪ direct ,直接寻址 Rn ;A ←(A)∪ (Rn) ,寄存器寻址 @Ri ;A ←(A)∪ (@Ri),寄间寻址
汇编orr指令
汇编orr指令orr指令是一种在汇编语言中常用的逻辑运算指令。
它主要用于将两个操作数进行逻辑或运算,并将结果存储到目标操作数中。
本文将介绍orr指令的用法和作用,同时探讨它在计算机系统中的重要性和应用场景。
一、orr指令的用法和作用orr指令是汇编语言中的一种逻辑运算指令,用于实现两个操作数的逻辑或运算。
它的语法格式通常为"orr 目标操作数,操作数1,操作数2"。
其中,目标操作数表示存储运算结果的寄存器或内存单元,操作数1和操作数2是参与逻辑或运算的源操作数。
orr指令的作用是将操作数1和操作数2的对应位进行逻辑或运算,并将结果存储到目标操作数中。
逻辑或运算的规则是:如果两个对应位中至少有一个为1,则结果对应位为1;否则,结果对应位为0。
二、orr指令的重要性和应用场景orr指令在计算机系统中具有重要的作用和广泛的应用场景。
首先,orr指令可以用于实现逻辑或运算,这在很多情况下是非常有用的。
例如,在某些算法或程序中,需要对多个条件进行判断,并根据判断结果做出相应的处理。
这时,orr指令可以将多个条件的判断结果进行逻辑或运算,从而得到最终的判断结果。
orr指令可以用于实现位操作。
在计算机系统中,位操作是非常常见和重要的操作方式。
通过位操作,可以对数据的某些特定位进行读取、设置或清零等操作。
orr指令可以将操作数的某些位与相应的掩码进行逻辑或运算,从而实现位操作。
orr指令还可以用于实现条件赋值。
在某些情况下,需要根据某个条件的判断结果来赋值给目标操作数。
orr指令可以将条件的判断结果与目标操作数进行逻辑或运算,从而实现条件赋值。
三、orr指令的使用示例下面通过一个简单的示例来说明orr指令的使用方法和效果。
假设有两个寄存器R1和R2,它们的值分别为0x0f和0x30。
现在需要将这两个寄存器的值进行逻辑或运算,并将结果存储到寄存器R3中。
可以使用orr指令来实现这个功能,具体的汇编代码如下:```orr R3, R1, R2```执行这条指令后,寄存器R3的值将变为0x3f,即前四位为1,后四位为0。
汇编语言4
高位
dest
低位
CF
图3-4 逻辑右移操作示意图
例3-35:分析以下程序段。
• MOV BX ,24H ;(BX)= 36 = 00100100B • MOV CL ,2 • SHR BX ,CL ;将BX内容右移2位, (BX)= 00001001B,CF=0 • 执行程序段以后,(BX)= 09H = 9,相当于除以2的2 次方。 • 由此可见,逻辑右移指令可以方便地实现操作数除运算 (n为移位次数)。不过在使用中要注意操作数应该为无 符号数,否则会得出错误结果。
例3-27:
MOV AL ,56H ;(AL)= 01010110B
NOT AL ;(AL)= 10101001B = 0A9H • 说明:NOT指令是单操作数指令,该操作数可以是立即数以 外的任何寻址方式。NOT指令不影响标志位。
2.逻辑与指令AND
• 指令格式:AND dest , src • 功能:将目的操作数和源操作数按位“与”,结果存入目的地 址中。即dest (dest)∧(src) 。 • “与”运算的规则为:1∧1=1,1∧0=0,0∧1=0,0∧0=0。 • 该指令可以屏蔽操作数中的某些位,使其余位保持不变。要屏 蔽的位与0相“与”,不变的位与1相“与”的左移和右移能够实现对数据乘以2的 整数次幂和除以2的整数次幂。 • MOV AL,64H • MOV CL,2 • SHL AL,CL;实现对64H左移2位,得到结果 AL=90H • 左移,可能出现溢出,造成错误。
算术移位的左移和右移实现乘除
• 算术移位的左移和右移能够实现对数据乘以2的 整数次幂和除以2的整数次幂。 • MOV AL,64H • MOV CL,2 • SHL AL,CL;实现对64H左移2位,得到结果 AL=90H • 左移,可能出现溢出,造成错误。
逻辑运算和移位指令
……
;否则(正数)不转移
MINUS: … …
……
8
2.移位指令
(1)非循环移位指令
算术左移指令 SAL(Shift Arithmetic Left)
算术右移指令 SAR(Shift Arithmetic Right) 逻辑左移指令 SHL(Shift Left)
逻辑右移指令 SHR(Shift Right) 这4条指令的格式相同,以SAL为例:
12
(2)循环移位指令
不含进位位的循环左移指令 ROL 不含进位位的循环右移指令 ROR 含进位位的循环左移指令 RCL 含进位位的循环右移指令 RCR
➢格式同非循环移位指令。 ➢移位位数放在CL寄存器中,如果只移1位, 也可以直接写在指令中。 ➢循环移位指令只影响标志位CF和OF。
13
这4条指令的功能如下图示:
MOV CL,4 SHR AL,CL ;AL中的内容右移4位 ➢影响C,P,S,Z,O标志。 ➢结果未溢出时: 左移1位≡操作数*2 右移1位≡操作数/2
11
例:把AL中的数x乘10 因为10=8+2=23+21,所以可用移位实现乘10 操作。程序如下:
SAL AL,1 ; 2x MOV AH,AL SAL AL,1 ; 4x SAL AL,1 ; 8x ADD AL,AH ; 8x+2x = 10x
……
; if not matall ‘1’
3
(2) 逻辑”或” OR
对两个操作数进行按位逻辑”或”操作。 格式:OR dest, src 用途:对操作数的某几位置1;对两操作数
进行组合。
例1:把AL中的非压缩BCD码变成相应十进制 数的ASCII码。 OR AL, 30H
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
START:
Mபைடு நூலகம்V SP,#5FH
MOV A,#80H
LOOP:
MOV P1,A
RL A
LCALL DELAY
LJMP LOOP
delay:
mov r7,#255
d1: mov r6,#255
d2: nop
nop
nop
nop
djnz r6,d2
djnz r7,d1
ret
END
先让我们将程序写入片中,装进实验板,看一看现象。
。
。
看到的是一个暗点流动的现象,让我们来分析一下吧。
前而的ORG 0000H、LJMP START、ORG 30H等我们稍后分析。从START开始,MOV SP,#5FH,这是初始化堆栈,在本程序中有无此句无关紧要,不过我们慢慢开始接触正规的编程,我也就慢慢给大家培养习惯吧。
MOV A,#80H,将80H这个数送到A中去。干什么呢?不知道,往下看。
例:(A)=73H,则执行CPL A,这样进行:
73H化为二进制为01110011,
逐位取反即为10001100,也就是8CH。
RL A是将(A)中的值的第7位送到第0位,第0位送1位,依次类推。
例:A中的值为68H,执行RL A。68H化为二进制为01101000,按上图进行移动。01101000化为11010000,即D0H。
逻辑运算类指令
1.对累加器A的逻辑操作:
CLR A;将A中的值清0,单周期单字节指令,与MOV A,#00H效果相同。
CPL A;将A中的值按位取反
RL A;将A中的值逻辑左移
RLC A;将A中的值加上进位位进行逻辑左移
RR A;将A中的值进行逻辑右移
RRC A;将A中的值加上进位位进行逻辑右移
SWAP A;将A中的值高、低4位交换。
练习,已知(A)=39H,执行下列指令后写出每步的结果
CPL A
RL A
CLR C
RRC A
SETB C
RLC A
SWAP A
通过前面的学习,我们已经掌握了相当一部份的指令,大家对这些枯燥的指令可能也有些厌烦了,下面让我们轻松一下,做个实验。
实验五:
ORG 0000H
LJMP START
ORG 30H
问题:
1.如何实现亮点流动?
2.如何改变流动的方向?
答案:
1、将A中的初始值改为7FH即可。
2、将RL A改为RR A即可。
RLC A,是将(A)中的值带上进位位(C)进行移位。
例:A中的值为68H,C中的值为1,则执行RLC A
1 01101000后,结果是0 11010001,也就是C进位位的值变成了0,而(A)则变成了D1H。
RR A和RRC A就不多谈了,请大家参考上面两个例子自行练习吧。
SWAP A,是将A中的值的高、低4位进行交换。
例:(A)=39H,则执行SWAP A之后,A中的值就是93H。怎么正好是这么前后交换呢?因为这是一个16进制数,每1个16进位数字代表4个二进位。注意,如果是这样的:(A)=39,后面没H,执行SWAP A之后,可不是(A)=93。要将它化成二进制再算:39化为二进制是10111,也就是0001,0111高4位是0001,低4位是0111,交换后是01110001,也就是71H,即113。