第二章 晶体管及放大电路基础

合集下载

晶体管及其放大电路之共基极放大电路

晶体管及其放大电路之共基极放大电路

晶体管及其放⼤电路之共基极放⼤电路
由于在基极输⼊的波形也出现在发射级上⾯,基于这样思想,信号从发射级输⼊,从集电极输出,构成共基极放⼤电路。

对于共基极放⼤电路,由于输⼊阻抗低,所以难以使⽤,但由于没有基极-集电极电容Cob的影响,频率特性变好,可以作为⾼频放⼤电路设计,主要掌握其计算分析⽅法及设计⽅法!
⼀.共基极放⼤电路的计算
1.计算及分析⽅法
⼆.共基极放⼤电路的设计
设计电压增益为5倍,最⼤输出电压为5Vp-p的共基极放⼤器
设计步骤:
1. 确定发射级电流及电压
2. 确定发射级电阻及R3,其作⽤是使发射级偏置电流流到GND。

Av=Rc/Re,Re不包括R
3.
3. 确定基极偏置电阻
4. 确定各种电容的⼤⼩。

输⼊阻抗R6//R3,输出阻抗:Rc(⼤)
共基极放⼤电路的频率特性⽐较好的原因:发射级的交流阻抗为0,等效于交流接地,不与发射级电阻Re形成低通滤波器(共射级电路形成),所以频率特性好,⽐共射级放⼤电路的⾼频截⽌频率⾼两倍以上,可以认为三极管的截⽌频率为放⼤电路的⾼频截⽌频率。

输出阻抗⾼的解决办法:在共基极放⼤电路后接射极跟随器,降低输出阻抗。

三.共基极放⼤电路的其他电路
1.PNP管构成共基极放⼤电路
2.负电源构成
3.⾼频放⼤电路(P125)。

第二章基本放大电路

第二章基本放大电路
T
Rc Cb1
T
Cb2 VCC
Rc Cb2
Rb VBB
(a)
(b)
(c)
工作原理 放大电路的静态分析
静态 Ui=0时,放大电路的工作状态,也称直流工作状态。
静态分析 确定放大电路的静态值IBQ、ICQ、UCEQ,即静 态工作点Q。静态工作点的位置直接影响放 大电路的质量。
静态分析方法 1. 计算法 计算法 图解分析法
根据所用放大管的类型设置合适的静态工作点Q 。对 于晶体管应使发射结正偏,集电结反偏,以使晶体管工 作于线性放大区; 必须保证从输入到输出信号的正常流通途径。输入信 号能有效地作用于放大电路的输入回路;输出信号能有 效地加到负载上。 对实用放大电路的要求:共地、直流电源种类尽可能 少、负载上无直流分量。
-
动态信号作用时:uI ib ic uRc uCE (uo ) 输入电压ui为零时,晶体管各极的电流、b-e间的电 压、管压降称为静态工作点Q,记作IBQ、 ICQ(IEQ)、 UBEQ、 UCEQ。
Back
Next
Home
由于(IB,UBE) 和( IC,UCE )分别对应于输入、输出 特性曲线上的一个点,所以称为静态工作点。
Back
Next
Home
两种实用放大电路:(1)直接耦合放大电路
- + UBEQ
有交流损失 有直流分量 将两个电源 问题: 合二为一 静态时,U BEQ U Rb1 1. 两种电源 2. 信号源与放大电路不“共地” 动态时,VCC和uI同时作用 于晶体管的输入回路。 共地,且要使信号 驮载在静态之上
大倍数为源增益us、Ais、Ars 和Ags。 A
4
(2)输入电阻: 从输入端看进去的等效电阻

第二章 双极型晶体管及其放大电路

第二章 双极型晶体管及其放大电路
0 U BE(on)
uBE
0 UCE(sat)
uCE b c iB e UCE(sat)
输入特性近似
输出特性近似
b
c
b
c iB e
放大状态模型
UBE(on) e
截止状态模型
βi B
UBE(on)
饱和状态模型
a.截止: UBE<UBE(ON) , iB≈0 , iC≈0 b.放大:UBE>UBE(ON) c.饱合:.UBE>UBE(ON)
∆i ∆iC =0 uCE一定 ∆ib
5
10
15
截止区
饱和压降: uces (or uce(sat))=0.3V 饱和: Saturation 4.击穿区:
三、温度对晶体管特性曲线的影响 温度对晶体管特性曲线的影响 uBE -(2~2.5)mv/℃ 2(T2-T1)/10 T iC 曲线上移 间隔加大(输出) 曲线左移 (输入)
双极型晶体管是由三层杂质半导体构成的器件。它有三个电极, 双极型晶体管是由三层杂质半导体构成的器件。它有三个电极, 又称半导体三极管、晶体三极管等,以后我们统称为晶体管。 又称半导体三极管、晶体三极管等,以后我们统称为晶体管。
小功率管
大功率管
大功率达林顿晶体管
2907A PNP 双极性晶体管
100 GHz 铟磷 钐铟砷异质 铟磷/钐铟砷异质 结双极性晶体管的电子扫 描显微图片
条件:三极管特点(e区重掺杂;b区薄;c区面积大)+e结正偏+c结反偏 利用两个特殊结构的PN结,将e结扩散电流“转化”为c 结漂移电流,使c 极出现受be结电压控制的较大电流。 对比:与变压器(杠杆、放大镜)的区别 IC ≈
β ΙΒ
电流控制型器件

晶体三极管及其基本放大电路

晶体三极管及其基本放大电路

22
2.4、三极管的主要参数
• 1、电流放大系数 • i)共射极电流放大系数
直流电流放大系数 IC
IB
交流电流放大系 数 Vic
Vib
h( fe 高频)
一般工作电流不十分大的情况下,可认为
Ma Liming
Electronic Technique
23
ii)共基极电流放大系数
共基极直流电流放大系数
3
6
9
IB=0 12 vCE(V)
区时, 有:VB>VC Rb
+

UBB
Ma Liming
+ 对于PNP型三极管,工作在饱和区 UCC 时, 有:VB<VC<VE

Electronic Technique
13
例:如图,已知三极管工作在放大状态, 求:1).是NPN结构还是PNP结构?
Ma Liming
Electronic Technique
20
方法二:用万用表的 hFE档检测 值
1. 拨到 hFE挡。
2.将被测晶体管的三个引脚分别插入相应的插孔 中(TO-3封装的大功率管,可将其3个电极接 出3根引线,再插入插孔),三个引脚反过来 再插一次,读数大的为正确的引脚。
3.从表头或显示屏读出该管的电流放大系数。
N
b
c PV
Rb
eN
+

UBB
Ma Liming
+
UCC 对于PNP型三极管,工作在放大区 - 时, 有:VC<VB<VE
Electronic Technique
10
iC(mA ) 4 3
2 1

晶体管及其放大电路

晶体管及其放大电路
晶体管放大原理主要基于晶体三极管的特性。晶体三极管由发射极、基极和集电极构成,根据材料、结构和使用频率等有不同的分类。其电流放大原理需要满足一定的内部和外部条件,子经历复杂的传输过程,发射区向基区注入多子电子形成发射极电流,电子到达基区后多数向集电结方向扩散,少数与空穴复合。这导致了晶体三极管各电极间的电流分配关系,其中集电极电流与基极电流之间存在一定的比例关系,即电流放大系数。此外,晶体三极管的特性曲线包括输入特性和输出特性,分别描述了基极电流与发射结电压、集电极电流与集电极电压之间的关系。在放大区,集电极电流与基极电流呈线性关系,这是晶体管实现电流放大的关键。

第二章(简好用新)-基本放大电路..

第二章(简好用新)-基本放大电路..

五、实用共发射极放大电路
1.温度对工作点的影响
温度升高
UBE减小 ICBO增大
β增大
注:旁路电容的作用。接人发射极电阻 RE,一方面发射极电流的直流分量IE 通过它能起到自动稳定静态工作点的作 用;另一方面发射极电流的交流分量ie 也会产生交流压降,使uBE减小,这样 就会降低电压放大倍数,因此增加了旁 路电容,使交流信号从电容上流过。
ic
ii
ib
C
+ BE
+ Rs ui RB RE
RL
+
uo
us


E B
V
us+-
Rs
RB C ui+-
RE
RL
+-uo
交流通路
二、共集电极放大电路分析 1.静态工作点的计算
VCC IBQRB U BEQ IEQRE
I BQ

VCC U BE
RB (1 )RE
ICQ I BQ I EQ
动态分析步骤:
1.先画出交流通路, 有时为了便于分析, 还要把电路变形为我 们便于分析的方式。
2.根据交流通路画微 变等效电路
E B
V
RB C ui+-
RE
RL
+-uo
ic
ii
ib
C
+ BE
+ Rs ui RB RE
RL
+
uo
us


Ii B
Ib
Ic
画微变等效电路时需注意的 问题:
1.交流通路变化成微变等效
RC
C2
+-
uCE

第2章 双极型晶体管及其基本放大电路 参考答案

第2章 双极型晶体管及其基本放大电路 参考答案

均很小。(1)若要求放大电路的最大不失真输出电压幅度尽可能大,则上偏置电阻 Rb1
应为多大?设晶体管的 ICEO 和UCES 皆为零,UBE = 0.7V 。(2)在上述条件下,求
Aɺu = ?
解:(1)Q 点在交流负载线的中点时输出幅度最大,由此可得
,解得 , 。 UICCQERQL′≈=VUCCCEQ− ICQ (Rc +Re )
2.7 分压式稳定工作点共射放大电路如图 ( ) 2.6.4 a
所示,习题 2.7 图为晶体管输出特性及交直流负载线,
且负载电阻 RL = 6kΩ 。(1)确定 Rc 、Re 和VCC 的数值;
( )若 , ,试确定 、 。 2 IRb2 = 370µA UBE = 0.7V
Rb1 Rb2
习题 2.7 图
解:UB

Rb2 Rb1 + Rb2
VCC
=
12 30 +12
×12

3.43V
I EQ
= UB − UBEQ Re1 + Re2
=
3.43 − 0.7 200 +1300
= 1.82mA
rbe
=
rbb′
+
(1 +
β)
26(mV) IEQ (mA)
=
80
+
61× 26 1.82

0.95kΩ
Aɺ u
管 ( 其 极 限 参 数 , , ICM = 30mA
U(BR)CEO = 9V
), ,取 。 , PCM =100mW β = 20 UBE = −0.3V Rb = 24kΩ
Rc = 0.5kΩ ,−VCC = −12V 。试分析:(1)电路中的晶体

[整理]02第二章 放大电路基础

[整理]02第二章 放大电路基础

第二章放大电路基础一、基本要求:1、认识三种组态放大电路,知道其特点及应用;2、知道放大电路基本工作原理,认识单管共发射极放大电路组成并会分析;知道静态工作点、输入电阻和输出电阻的概念及意义;3、会测试和调整静态工作点,知道静态工作点与波形失真的关系4、认识多级放大电路,认识放大电路的频率特性。

二、重难点:1、重点:单管共发射极放大电路组成、分析及特性;2、难点:放大电路原理,放大电路技术指标的理解。

三、例题:例2.1电路如题2.1(a)图所示,图(b)是晶体管的输出特性,静态时V BEQ=0.7V。

利用图解法分别求出R L =∞和R L =3kΩ时的静态工作点和最大不失真输出电压V om (有效值)。

解:空载时:I BQ =20μA ,I CQ =2mA ,V CEQ =6V ;最大不失真输出电压峰值约为6-0.3=5.7V ,有效值约为4.03V 。

带载时:I BQ =20μA ,I CQ =2mA ,V CEQ =3V ;最大不失真输出电压峰值约为 2.7V ,有效值约为1.91V 。

v o+V BB v CE /V题2. 1图(a) (b)v CE /V解题2. 1图v CES例2.2在由NPN 型管组成的共射电路中,由于电路参数不同,在信号源电压为正弦波时,测得输出波形如题2.2图(a )、(b )、(c )所示,试说明电路分别产生了什么失真,如何消除?解:(a)饱和失真,增大R b ,减小R c 。

(b)截止失真,减小R b 。

(c)同时出现饱和失真和截止失真,应增大V CC 。

例2.3若由PNP 型管组成的共射电路中,输出电压波形如题2.2图(a )、(b )、(c )所示,则分别产生了什么失真?题2.2图解:(a )截止失真;(b )饱和失真;(c )同时出现饱和失真和截止失真。

例2.4电路如题2.4图(a)所示, 已知β=50,r be =1kΩ;V CC =12V ,R b1=20kΩ, R b2=10kΩ, R c =3kΩ, R e =2kΩ, R s =1kΩ,R L =3kΩ,(1)计算Q 点;(2)画出小信号等效电路;(3)计算电路的电压增益A v =v o /v i 和源电压增益A vs =v o /v s ;输入电阻R i 、输出电阻R o 。

晶体管放大原理及条件

晶体管放大原理及条件

iB
+
u_i RB
+
uBE _
VBB
iC +
T uCE iE _
RC iB = ib + IB VCC iC = ic + IC
uCE = uce + UCE
模拟电子技术
2. 晶体管及放大电路基础
iB
iC +
RC uCE =VCC - iC Rc
u_+i RB
+ T uCE
uBE
iE
_
_
VCC
=VCC - (IC +ic )Rc =(VCC - IC Rc )-ic Rc
IB ICBO0
O
UBE b
IB
为三极管共射极
RB VBB
UCE
直流电流放大系数
VCC
RC
模拟电子技术
2. 晶体管及放大电路基础
由 的关系式
由 IE IC IB
及 与 的定义

1

1
0.95 ~ 0.995 20 ~ 200
模拟电子技术
2. 晶体管及放大电路基础
当输入回路电压
集电区掺杂浓度低,面积大。 外部条件:发射结正偏,集电结反偏
模拟电子技术
谢 谢!
模拟电子技术
模拟电子技术
2. 晶定义体管及放大电路基础
若只考虑电流的变化量,则定义:
I C
IE
共基极交流电流放大系数
I C
IB
共射极交流电流放大系数
一般可以认为: ,
模拟电子技术
2. 晶体管及放大电路基础
符号的意义
电流 :
IB

第2章晶体管及其基本放大电路自测题习题解案08829

第2章晶体管及其基本放大电路自测题习题解案08829

第2章 晶体管及其基本放大电路2.1 知识点归纳1. 晶体管的类型及工作状态晶体管有NPN 、PNP 两种类型,它们均有三个工作区:放大区、饱和区和截止区。

主要有三种工作状态:放大状态(发射结正向偏置、集电结反向偏置)、饱和状态(发射结正向偏置、集电结正向偏置)、截止状态(发射结反向偏置、集电结反向偏置)。

(1)根据管脚电流判别晶体管的工作状态方法如表2-1所示(2)根据工作电压判别NPN 管的工作状态方法如表2-2所示。

PNP 管工作电压的极性和各极电流方向与NPN 管相反。

2. (1) 晶体管的电流关系① 晶体管三个电极的电流关系为:B C E I I I +=② 工作于放大状态时B C I βI ≈B E )1(I βI +≈其中B I 最小、C I 居中、E I 最大。

对于NPN 管:E I 流出晶体管,B I 、C I 流入晶体管。

对于PNP 管:E I 流入晶体管,B I 、C I 流出晶体管。

(2) 两种极间反向电流:集电极-基极反向饱和电流I CBO 与集电极-发射极反向穿透电流I CEO 的关系I CEO = (1+β)I CBO(3) 两种电流放大系数:共基极交流电流放大系数α与共发射极交流电流放大系数β的关系α-=1αβ,ββα+=1 (4) 晶体管的放大作用晶体管是一种电流控制型器件,它要具有放大作用除了满足发射区掺杂浓度高、基区很薄、集电结面积大的内部结构条件外,还必须满足发射结正向偏置、集电结反向偏置的外部条件。

此时,各电极电位之间的关系:NPN管U C>U B>U EPNP管U C<U B<U E硅管的BEU约为0.2~0.4V。

U约为0.6~0.8V,锗管的BE3. 晶体管放大电路的组成原则(1) 确保晶体管工作于放大区,即满足发射结正向偏置,集电结反向偏置的外部条件。

(2) 确保被放大的交流输入信号能够作用于晶体管的输入回路。

(3) 确保放大后的交流输出信号能传送到负载上去。

双极型晶体管及其放大电路

双极型晶体管及其放大电路
IEP << IEN ,可忽略不计。因此,发射极电流IE≈IEN, 其方向与电子注入方向相反。
第2章 双极型晶体管及其放大电路
二、电子在基区中边扩散边复合
,成为基区中的非平衡少子,它在e结 处浓度最大,而在c结处浓度最小(因c结反偏,电子浓 度近似为零)。因此,在基区中形成了非平衡电子的浓 度差。在该浓度差作用下,注入基区的电子将继续向c 结扩散。在扩散过程中,非平衡电子会与基区中的空 穴相遇,使部分电子因复合而失去。但由于基区很薄 且空穴浓度又低,所以被复合的电子数极少,而绝大 部分电子都能扩散到c结边沿。基区中与电子复合的空 穴由基极电源提供,形成基区复合电流IBN,它是基极 电流IB的主要部分。
(2―4)
称为穿透电流。因ICBO很小,在忽略其影响时,则有
IC IB IE (1 )IB
(2―5a) (2―5b)
式(2―5)是今后电路分析中常用的关系式。
第2章 双极型晶体管及其放大电路
为了反映扩散到集电区的电流ICN与射极注入电流
IEN的比例关系,定义共基极直流电流放大系数 为
第2章 双极型晶体管及其放大电路
为了反映扩散到集电区的电流ICN与基区复合电流 IBN之间的比例关系,定义共发射极直流电流放大系数

ICN IC ICBO
I BN I B ICBO
(2―2)
其含义是:基区每复合一个电子,则有
个电子扩散到集电区去。 之间。
值一般在20~200
确定了 值之后,由式(2―1)、(2―2)可得
IC IB (1 )ICBO IB ICEO (2―3) IE (1 )IB (1 )ICBO (1 )IB ICEO

第二章 基本放大电路 2.1 放大的概念和放大电路的主要性能指标2.2 基本共射放大电路的工作原理2.3 放大电

第二章  基本放大电路 2.1 放大的概念和放大电路的主要性能指标2.2 基本共射放大电路的工作原理2.3 放大电
电流能够作用于负载.
RC +C2
RS +
es –
C1 +
+
ui + ––
iB iC + + TuCE
RBuB–E – RL
VBB iE
+ uo –
共发射极基本电路
晶体管T--放大元
件, iC= iB。要保
+ 证集电结反偏,发 VCC射结正偏,使晶体 – 管工作在放大区 。
基极电源VBB与基极 电阻RB--使发射结 处于正偏,并提供 大小适当的基极电 流。
直接耦合共射放大电路 直 流 通 路
视为短路
直接耦合共射放大电路
直 流 通 路
直接耦合共射放大电路
视为 接地
交 流 通 路
直接耦合共射放大电路 交 流 通 路
阻容耦合共射放大电路
1、直流通路 对直流信号电容 C 可看作开路(即将电容断开)
断开 RB
C1 +
RS +
+ ui
es –

+UCC
RC +C2 断开
iB iC + + TuCE + uB–E – RL uo
iE

+UCC
RB
RC IB IC
+
U+B–ETU–CE
直流通路
IE
直流通路用来计算静态工作点Q ( IB 、 IC 、 UCE )
2、对交流信号(有输入信号ui时的交流分量)
+UCC
RB
RC
+C2
XC 0,C 可看作 对地短路 短路。忽略电源的
ib:IBQIBQ IB

放大电路基础

放大电路基础
(3)多级放大电路的输出电阻ro。 从图2.3.2得出,多级放大电路的输出电阻ro就是最末级电路的输出 电阻ro2,即
2.3 多级放大电路
2.3.3 直接耦合
1
直接耦合的含义
图2.3.3所示为直接耦合电路,所谓直接耦合就是将前 级的输出端直接接后级的输入端。可用来放大缓慢变化的 信号或直流量变化的信号。
2.2 放大电路的分析
2.2 放大电路的分析
rbe是对交流而言的动态电阻,称为晶体管的输入电阻。小 信号时,rbe是一个常数。由它可以确定电压、电流交流分量ube、 ib之间的关系,即ube=rbeib。因此,晶体管的输入电路可以用 rbe等效代替,如图2.2.4(b)所示。
2.2 放大电路的分析
1
晶体管的微变等效电路
由图2.2.3可知,放大电路在小信号工作时,晶体管的动态 工作点只在静态工作点附近小范围内移动,晶体管的输入、输 出特性曲线可近似为直线,各极的电流、电压增量有线性关系。 尽管晶体管是非线性器件,但可以进行线性化处理,用线性化 等效电路模型来代替。
1)输入回路的微变等效电路 当输入信号电压很小时,在已确定的静态工作点Q附近的 工作段可以认为是直线。当uCE为常数时,令ΔuBE和ΔiB的比值 为rbe,即
第2章 放大电路基础
前言
实际中常常需要把一些微弱信号放大到便于测量和利用 的程度。例如,从收音机天线接收到的无线电信号或从传感 器得到的信号,有时只有微伏或毫伏的数量级,必须经过放 大才能驱动扬声器或进行观察、记录和控制。
所谓放大,表面上是将信号的幅度由小增大,但是,放 大的实质是能量的转换,即由一个较小的输入信号控制直流 电源,使之转换成交流能量输出,驱动负载。
显然,输出电阻ro是衡量放大电路性能指标的又一个重要参数。 ro越小,带负载能力越强。 输出电阻ro的计算式为

第02章基本放大电路

第02章基本放大电路

iB
Ec/Rb
B
- 1/Rb
Q
放大电路的输入和输出直流负载线
确定静态工作点 I
UBE Ec uBE
(1)由输入特性曲线和输入直流负载线求IBQ、UBEQ
EC
UBE=EC- IBRb → 直流负载线
IB IC UCE
作出直流负载线,直流负载线和输入 特性曲线的交点即是静态工作点Q,由 Q可确定IB、UBE
1.估算法 (1) 首先画出直流通路
EC
(2)求静态值 求解顺序是先求IB→IC→UCE
Si管:UBE=0.6V~0.7V
IB UBE IC UCE
Ge管:UBE=0.2V~0.3V
IB
E C U BE Rb

E C 0 .7 Rb
IC β IB
UCE=EC-ICRC
2. 图解法
三极管的输入和输出特性曲线
EC Ii Uo Ui Ib
Ic Uo
Ui
2. 放大电路的工作过程
当有交流信号ui加到放大器的输入端时,晶体管各点
的电压和电流将在静态值基础上叠加一交流分量,
此时电路中的信号即有直流,又有交流。
各点波形
iC
+EC
RC RB C1 iB
ui
t iB ui t
iC C2
t
uC u C uo
t
uo t
US ~
Ui
Au
ri
Ui Ii
(2-3)
三、输出电阻ro
放大电路对其负载而言,相当于信号源,我们 可以将它等效为戴维南等效电路,这个戴维南 等效电路的内阻就是输出电阻。
US ~
Au
ro
US' ~

第2章+基本放大电路(含图解法)

第2章+基本放大电路(含图解法)

第2章 基本放大电路
《模拟电子技术基础》
2.2.2 设置静态工作点的必要性
一、 静态工作点 (Quiescent Point)
放大电路没有输入信号时的工作状态称为静态。
输入电压ui为零时,晶体管各极的电流、b-e间的电压、管压 降称为静态工作点Q,记作IBQ、 ICQ(IEQ)、 UBEQ、 UCEQ。
第2章 基本放大电路
五、非线性失真
非线性失真产生的原因
《模拟电子技术基础》
由于晶体管输入特性的非线性, 当b-e间加正弦波信号电压时,基 极电流的变化不是正弦波。
非线性失真系数
D ( A2 )2 ( A3 )2
A1
A1
第2章 基本放大电路
《模拟电子技术基础》
六、最大不失真输出电压
在输出波形没有明显失真情况下放大电路能够提供 给负载的最大输出电压(或最大输出电流)可用峰-峰值 (UOPP、IOPP)表示,或有效值表示(Uom 、Iom)。
VBB越大,
UBEQ取不同的 值所引起的IBQ 的误差越小。
列晶体管输入、输出回路方程,将UBEQ作为已知条件, 令ICQ=βIBQ,可估算出静态工作点。
第2章 基本放大电路
《模拟电子技术基础》
二、阻容耦合共射放大电路的直流通路和交流通路
直流通路
bc e
I
=VCC-U
BQ
Rb
BEQ
ICQ IBQ
4.晶体管三种基本放大电路各有什么特点?如何根据它 们的特点组成派生电路?
第2章 基本放大电路
《模拟电子技术基础》
§2.1 放大的概念与放大电路 的性能指标
2.1.1 放大的概念 2.1.2 放大电路的性能指标
第2章 基本放大电路
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章晶体管及放大电路基础一、教学要求
知识点
教学要求
学时掌握理解了解
晶体管晶体管的结构√电流分配与放大作用√√
晶体管的工作状态、伏安特性及主要参数√√
放大电路基础放大电路的组成原则及工作原理√
放大电路的主要技术指标√
放大电路
的分析方法
图解法√
静态工作点估算法√
微变等效电路法√
三种基本放大电路比较√
静态工作点的选择与稳定√√多极放大电路
耦合方式及直接耦合电
路的特殊问题

分析计算方法√
放大电路的频率响

频率响应的基本概念√√
频率响应的分析计算方

√√
本章的重点是:
晶体管的伏安特性、主要参数;放大电路的组成原则及工作原理、静态工作点的近似估算法、主要动态指标的微变等效电路分析法、静态工作点的选择与稳定、三种基本放大电路的特点;放大电路频率响应的基本概念及分析计算方法。

本章的难点是:
放大电路频率响应的基本概念及分析方法。

三、教学内容
2.1晶体管
1. 晶体管的结构及类型
晶体管有双极型和单极型两种,通常把双极型晶体管简称为晶体管,而单极型晶体管简称场效应管。

晶体管是半导体器件,它由掺杂类型和浓度不同的三个区(发射区、基区和集电区)形成的两个PN结(发射结和集电结)组成,分别从三个区引出三个电极(发射极e、基极b和集电极c)。

晶体管根据掺杂类型不同,可分为NPN型和PNP型两种;根据使用的半导体材料不同,又可分为硅管和锗管两类。

晶体管内部结构的特点是发射区的掺杂浓度远远高于基区掺杂浓度,并且基区很薄,集电结的面积比发射结面积大。

这是晶体管具有放大能力的内部条件。

2. 电流分配与放大作用
晶体管具有放大能力的外部条件是发射结正向偏置,集电结反向偏置。

在这种偏置条件下,发射区的多数载流子扩散到基区后,只有极少部分在基区被复合,绝大多数会被集电区收集后形成集电极电流。

通过改变发射结两端的电压,可以达到控制集电极电流的目的。

晶体管的电流分配关系如下:
其中电流放大系数和之间的关系是=/(1+),=/(1-);I CBO是集电结反向饱和电流,I CEO是基极开路时集电极和发射极之间的穿透电流,并且I CEO=(1+)I CBO。

在放大电路中,通过改变U BE,改变I B或I E,由ΔI B或ΔI E产生ΔI C,再通过集电极电阻R C,把电流的控制作用转化为电压的控制作用,产生ΔU O=ΔI C R C。

实质上,这种控制作用就是放大作用。

3. 晶体管的工作状态
当给晶体管的两个PN结分别施加不同的直流偏置时,晶体管会有放大、饱和和截止三种不同的工作状态。

这几种工作状态的偏置条件及其特点如表2.1所列。

表2.1 晶体管的三种工作状态
工作状态直流偏置条件各电极之间的电位关系特点
NPN PNP
放大发射结正偏,集电结反偏U C>U B>U E U C<U B<U E I C=βI B
饱和发射结正偏,集电结正偏 U B >U E,U B >U C U B <U E,U B <U C U CE=U CES
截止发射结反偏,集电结反偏 U B <U E,U B <U C U B >U E,U B >U C I C=0
4.
(1)共射极输入特性(以NPN管为例)
输入特性表达式为:。

当U CE=0时,输入特性相当于两个并联二极管的正向特性。

当U CE>0时,输入特性右移,U CE≥1V后输入特性基本重合。

因为发射结正偏,晶体管的输入特性类似于二极管的正向伏安特性。

(2)共射极输出特性(以NPN管为例)
共射极输出特性表达式为:。

晶体管输出特性曲线的三个区域对应于晶体管的三个工作状态(饱和、放大和截止)。

a)饱和区:此时U CE很小,集电区收集载流子的能力很弱。

I C主要取决于U CE,而与I B 关系不大。

b)放大区:位于特性曲线近似水平的部分。

此时,I C主要取决于I B,而与U CE几乎无关。

c)截止区:位于I B=-I CBO的输出特性曲线与横轴之间的区域。

此时,I C几乎为零。

(3)主要参数
a)直流参数:共基极直流电流放大系数,共射极直流电流放大系数;集电极—基极间反向饱和电流I CBO,集电极—发射极间穿透电流I CEO。

b)交流参数:共基极交流电流放大系数,共射极交流电流放大系数,其中,
;共基极截止频率,共射极截止频率,特征频率,其中。

c)极限参数:集电极最大允许功率耗散P CM,集电极最大允许电流I CM ;反向击穿电压:U(BR)CEO,U(BR)EBO,U(BR)CBO。

(4)温度对参数的影响
温度每增加1℃,U BE将减小(2~2.5)mV;温度每增加10℃左右,I CBO增加一倍;温度每增加1℃,β增大(0.5~1)%。

2.2 放大电路的组成及工作原理
1. 放大电路的组成原则
放大电路的作用是把微弱的电信号不失真地放大到负载所需要的数值。

即要求放大电路既要有一定的放大能力,又要不产生失真。

因此,首先要给电路中的晶体管(非线性器件)施加合适的直流偏置,使其工作在放大状态(线性状态),其次要保证信号源、放大器和负载之间的信号传递通道畅通。

(1) 直流偏置原则:晶体管的发射结正偏,集电结反偏。

(2) 对耦合电路的要求:第一,信号源和负载接入放大电路时,不能影响晶体管的直流偏置;第二,在交流信号的频率范围内,耦合电路应能使信号无阻地传输。

固定偏置的共射极放大电路如图2.1所示。

图中电容器C1、C2起耦合作用,只要电容器的容量足够大,在信号频率范围内的容抗足够小,就可以保证信号无阻地传输;同时电容器又有“隔直”作用,信号源和负载不会影响放大器的直流偏置。

这种耦合方式称为阻容耦合。

相关文档
最新文档